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Matrix Metalloproteinases and Tissue
Inhibitor of Metalloproteinases
in Inflammation and Fibrosis of Skeletal
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Abstract. In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloPro-
teinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling
situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve
the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in
animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or
function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles
that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological mod-
ulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further
discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade
inflammation favor cellular and molecular modifications resulting in fibrosis.
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ADAM A Desintegrin And
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�-SMA Alpha-Smooth Muscle Actin
CA-MMP Cysteine Array-MMP
CCL2 chemokine (C-C motif) ligand 2

(CCL2);
MCP1 Monocyte Chemotactic Protein 1
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CCR2 C-C chemokine Receptor type 2
CD Cluster of Differentiation
CTGF Connective Tissue Growth Factor
CXC Cysteine X Cysteine
CXCL Cysteine X Cysteine Ligand
CXCR Cysteine X Cysteine Receptor
DAMPs Damage associated Molecular

Patterns
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
cGMP Cyclic Guanosine Monophosphate
HE4 Human Epididymis Protein 4
HGF Hepatocyte Growth Factor also

known as Scatter Factor
IGF Insulin Growth Factor
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IGFBP Insulin Growth Factor Binding
Protein

IGFR Insulin Growth Factor Receptor
M-CSF Macrophage Colony Stimulating

Factor
MMPs Matrix MetalloProteinases
MMPIs Matrix MetalloProteinase

Inhibitors
MT-MMP Membrane Type- MMP
Musk Muscle specific Kinase
NO Nitric Oxide
NOS Nitrogen Reactive Species
NOX NADPH Oxidase
NRROS Negative Regulator of ROS
PAMPs Pathogen Associated Molecular

Patterns
PDE5 PhosphoDiesterase 5
PDGF Platelet Derived Growth Factor
PMN Polymorphonuclear Leukocyte
Prss (23) Protease, Serine, (23) or (35)

or Prss (35):
RASI Rheumatoid Arthritis Sign of

Inflammation,
RECK Reversion-inducing-Cysteine-rich

protein with Kazal motifs
ROS Reactive Oxygen Species
SDF-1 Stromal Derived Factor-1 or

(CXCL12)
SMAD Sma and Mad Related Protein
SOD Super Oxide Dismuthase
TACE Tumour necrosis factor Alpha

Converting Enzyme
TGF-�: Transforming Growth Factor beta
TIMP Tissue Inhibitor of

MetalloProteinase
TLR Toll Like Receptor
TNF-�: Tumour Necrosis Factor alpha
VEGF Vascular Endothelial Growth

Factor
XMMP Xenopus MMP
PUMP-1 Plant Uncoupling Mitochondrial

Protein 1

INTRODUCTION

The balance between hydrolytic activity and its
inhibition regulates tissue and extracellular matrix
(ECM) homeostasis. Disruption of this balance
occurs as an integral part of tissue response to
remodeling stimuli but its long lasting perturba-
tion deregulates many biological processes and leads

to the development of diseases. High MMP levels
characterize acute or chronic disease situations and
correlate with disease severity suggesting they have
detrimental effects. Hardly appreciated however, is
the possibility that these proteins serve essential or
beneficial functions. MMPs are major determinants
in remodeling events such as placental development,
embryo implantation- a highly invasive but tightly
controlled process involving ECM degradation and
cell migration-, angiogenesis, bone development
and mammary involution. They participate in ECM
degradation by direct cleavage of connective tissue
collagen, activation of latent enzymes and process-
ing or liberation of structural or signaling molecules
from the ECM.

In normal skeletal muscles, the steady state situ-
ation is characterized by basal activity of hydrolytic
enzymes titrated by their inhibitors. Modifications of
functional demands, trauma or disease disrupt this
balance and trigger an adaptive response that includes
MMPs/TIMPs regulation [1–12]. In turn, these pro-
teins alter cell-cell and/or cell-matrix interactions
thereby affecting cell proliferation, migration and
differentiation. Nevertheless, “guidance cues”, able
to relocate and stop regenerating axons at original
synaptic sites, are preserved during the denerva-
tion/reinnervation process [13] indicating that highly
regulated and tightly controlled hydrolysis of ECM
components characterize the accomplishment of a
specific task.

The involvement of metallo-endopeptidase in
myoblast fusion were published in the early eighties
[14, 15] but their implication in pathophysio-
logical processes [16–27] and therapeutic follow-
up/perspectives [28–33] were published decades
later. At present, we have indications of some of the
functions accomplished by MMP-2, MMP-9, MMP-
10 and MMP-14 but there is hardly a hint of the role
played by other family members. However, consid-
ering the dysregulation of MMPs/TIMPs balance in
disease situations, it seems important to identify the
modification of expression pattern in identified mus-
cle disease entities to sort out “IF” and “HOW” they
affect clinical severity and determine potential tar-
gets for therapeutic interventions. By exploring the
function(s) of each MMP and TIMP and identifying
their degrading and regulatory actions one may depict
the mechanism involved in their mode of action as
described for MMP-9 and MT6-MMP [34, 35].

In a previous review, we have presented the
involvement of MMPs/TIMPs in specific skele-
tal muscle diseases such as muscular dystrophies,
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Table 1
Matrix Metalloproteinases: their alternative names, location within tissues and chromosomes and source of activation from a pro-form.
MMP: Matrix Metalloproteinase; MT(n)-MMP: Membrane Type (n = 1,2,3,4,5,6)- MMP; RASI: Rheumatoid Arthritis Sign of Inflammation,

XMMP: Xenopus MMP; CA-MMP: Cysteine Array-MMP; Pump-1: plant uncoupling mitochondrial protein 1

Enzyme MMP Location Activation Chromosomal Location

Collagenases
Interstitial collagenase; collagenase 1 MMP-1 Secreted MMP-3 11q22-q23
Neutrophil collagenase; collagenase 2 MMP-8 Secreted MMP-3 11q21-q22
Collagenase 3 MMP-13 Secreted MMP-14/TIMP-2/MMP-3 11q22.3
Collagenase 4 (Xenopus) MMP-18 Secreted Unknown NA
Gelatinases
Gelatinase A MMP-2 Secreted MMP-14/TIMP-2 16q13
Gelatinase B MMP-9 Secreted MMP-3/MMP-13 20q11.2-q13.1
Matrilysin
Matrilysin 1; Pump-1 MMP-7 Secreted MMP-3 11q21-q22
MMP-26 Secreted Unknown 11p15
Membrane-type MMPs
MT1-MMP MMP-14 Membrane Furin 14q11-q12
MT2-MMP MMP-15 Membrane Furin 15q13-q21
MT3-MMP MMP-16 Membrane Furin 8q21
MT4-MMP, TACE MMP-17 Membrane Furin 12q24.3
MT5-MMP MMP-24 Membrane Furin 20q11.2
MT6-MMP MMP-25 Membrane Furin 16p13.3
Metalloelastase
Macrophage Elastase MMP-12 Secreted Unknown 11q22.2-q22.3
Stromelysin
Stromelysin 1 MMP-3 Secreted MMP-14/TIMP-2 11q23
Stromelysin 2 MMP-10 Secreted Unknown 11q22.3-q23
Stromelysin 3 MMP-11 Secreted Furin 22q11.2
Others
RASI MMP-19 Secreted Unknown 12q14
Enamelysin MMP-20 Secreted Unknown 11q22.3
XMMP (Xenopus) MMP-21 Secreted Unknown ND
CA-MMP MMP-23 Secreted Furin 1p36.3
CMMP (Gallus) MMP-27 Secreted Unknown 11q24
Epilysin MMP-28 Secreted Furin 17q21.1

inflammatory myopathies and neurogenic muscu-
lar diseases [36]. Here, we chose to focus on
MMPs/TIMPs involvement in inflammation and
fibrosis that occur in several muscle diseases namely
inflammatory myopathies and muscular dystrophies.
In this respect, the emblematic Duchenne Muscular
Dystrophy or its animal models, characterized by the
occurrence of both components, have been widely
used to investigate the functional consequences of
MMPs/TIMPs balance modulation and will, there-
fore, be referred to in a specific section to illustrate
these points.

Matrix Metalloproteinases (MMPs)

The MMP family is composed of 23 members in
human (24 in mouse) [37, 38] most of which are
secreted and six are membrane bound (Table 1). They
are inhibited by TIMPs and, collectively, degrade
all ECM components. Their general characteristics
and regulation have been reviewed in [36]. The

regulation of MMPs activity and the modulation of
MMPs/TIMPs activity/expression in inflammatory
and wound conditions are schematically presented in
Fig. 1.

MMP-2, MMP-10 and MMP-3 deficient mice are
reported with no evident signs of malformation.
Curiously, Mmp2-/- mice, originally characterized
as overtly normal but with slower growth rate [39]
revealed, upon closer examination, attenuated fea-
tures of multicentric osteolysis and arthropathy [40]
caused by MMP-2 mutations which lead to car-
diac defects when the terminal hemopexin domain
is deleted [41]. Such mutations may have pheno-
typic repercussions on skeletal muscles as well but
has not been investigated in animal models. Mmp14
deficiency causes severe developmental defects and
defective muscle maturation leading to premature
death [42]; a phenotype aggravated by additional
MMP-2 deficiency [43]. Mice deficient in MMP-
3, known to degrade agrin, have high agrin levels
and show increased size and number of AchR at
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Fig. 1. Schematic representation of MMPs activation in inflammatory and wound conditions. Panel A: Overview of MMPs production,
activation and their inhibition by TIMPs. Panel B: Modulation of MMPs/TIMPs production by reactive oxygen species, other proteases and
by cytokines and growth factors released in inflammatory and wound conditions. These regulations are reported in the literature and may
depend on cell types and tissue microenvironment. Pro-MMPs are the inactive MMPs forms; MT-MMPs membrane-type MMP; TIMPs,
Tissue Inhibitor of Metalloproteinases. Thin curved arrow indicates MMP activation and � MMPs inhibition.

neuromuscular junctions [44, 45]. Upon prolonged
denervation, they maintain a normal topography with
preserved agrin and Musk at denervated endplates [5].

MMPs have an essential role as regulators of
microenvironmental changes. They participate to cell
migration by hydrolyzing ECM components and
releasing cryptic fragments with different biologi-
cal activities. MMPs and their related ADAMs (a
disintegrin and metalloproteases) and ADAM-TSs
(ADAMs with thrombospondin repeats) families are
involved in shedding growth factors or cell-surface-
adhesion molecules such as syndecan-1. From simple
hydrolytic enzymes, MMPs have evolved to regula-
tors of signal transduction, of innate and adaptive
immunity, and modifiers of cellular/molecular phe-
notype [46, 47].

In skeletal muscles, MMPs have been involved in
cell migration and fusion. On one hand, MMP-1,
MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, and
MMP-14 enhance myoblast migration [48–54]. On
the other hand, MMP-7, MMP-9, MMP-14 are
involved in cell fusion [48, 49, 52, 53, 55–58].
Further, MMP-2, MMP-10, MMP-14 proved to be
essential for successful muscle regeneration: MMP-
2 and MMP-14 act on the maturation of muscle fibers
by controlling angiogenesis [42, 43, 59] whereas
MMP-10 is involved in CXCR4/SDF1 signaling axis
that is essential for efficient skeletal muscle regen-
eration [60, 61]. Finally, MMP-2 and MMP-9 may
potentially be involved in muscular dystrophies and
muscle atrophy. Indeed, � and � dystroglycan are
ascertained and direct targets for MMP-2 and MMP-9
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[62, 63] as originally proposed for �-dystroglycan
processing by MMPs [64]. Furthermore, intracellu-
larly localized MMP-2 [65] is involved in muscle
fibers atrophy in various physiological and patholog-
ical situations [66–70]. This activity probably relies
on MMP-2 ability to hydrolyze sarcomeric proteins
such as troponin I, myosin light chain-1, titin, and
�-actinin [71–73].

MMPs Inhibitors: The physiological (TIMPs)
and synthetic inhibitors (MMPIs)

The TIMP family is composed of four members
(TIMP-1,-2,-3 and -4) with significant homology that
inhibit MMPs with some specificity [74, 75]. Origi-
nally, TIMPs are thought to function exclusively as
endogenous inhibitors of MMPs thereby modulating
MMP-mediated ECM degradation. However accu-
mulating evidence indicate they are multifunctional
proteins involved in various biological activities that
may or may not depend on their inhibitory function
and range from cell growth and differentiation, to cell
migration, invasion, angiogenesis, survival and apop-
tosis depending on cell and tissue context [76–82].
TIMP-1 promotes cell proliferation in a wide range
of cell types and regulates apoptosis. TIMP-2 is
involved in MMP-2 activation through association
with MMP-14. It contributes to ECM protection from
proteolysis and increases both fibroblast proliferation
and collagen production. TIMP-3 has pro-apoptotic
activity whereas TIMP-4, the most recently identified
and least studied, is reported to modulate angiogen-
esis. TIMPs and MMPs are regulated in a similar or
reciprocal manner whereas cytokines and growth fac-
tors regulate TIMPs in tissue-specific, constitutive, or
inducible manner [78].

In skeletal muscles, different TIMPs have been
implicated in myoblasts fusion and myofibers matu-
ration. The involvement of TIMP-1 in cell fusion has
been suggested by the concomitance between MMP-
9 downregulation and TIMP-1 upregulation during
cell fusion [83] whereas Timp2 can be involved
in skeletal muscle maturation directly or via for-
mation of the TIMP-2/MMP-14/MMP-2 complex
leading to MMP-2 activation. Timp-2 Knockout mice
have deficient motor function with abnormalities
of neuromuscular junctions, increased sprouting of
intramuscular nerves and decreased muscle mass
[84, 85]. Timp-3 regulates myogenesis via miR-206-
TIMP3-TACE-TNF-�−p38 signaling pathway and
acts as an On/Off switch by regulating autocrine
release of Tumor Necrosis Factor-� (TNF-�) [86].

Clinical trials have used synthetic MMP Inhibitors
(MMPIs) to limit the progression of diseases. They
have been unsuccessful [87, 88] but underscored the
necessity for designing more selective inhibitors that
discriminate between the different members of the
MMP family [89, 90].

MMPs are involved in skeletal muscle
inflammation

Several members of the MMP family have been
involved in the inflammatory process occurring after
injury or disease [91]. Inflammation is an essential
step in the initiation and progression of tissue remod-
eling and entails the degradation and reorganization
of the ECM scaffold to which MMPs are impor-
tant contributors. Yet, despite its importance in host
defense and tissue repair, if the inflammatory pro-
cess becomes excessive or chronic, it associates with
organ dysfunction and exacerbation of pathological
features [92]. The pattern of MMPs/TIMPs regula-
tion in non-pathological or pathological remodeling
of skeletal muscles has been reviewed [36] and is
summarized in (Table 2). Recently, experimental
findings have characterized the involvement of MMP-
10 (stromelysin-2) in muscle regeneration [61] and
report transient MMP-13 upregulation during muscle
injury [50].

MMP-9 is the most widely documented protease in
the inflammatory process that characterizes the initial
stages of muscle injury. MMP-9 increase correlates
with the invasion of necrotic tissue by inflam-
matory cells, more particularly polymorphonuclear
neutrophils (PMN) and activated satellite cells [7,
93]. Increased MMP-9 expression/activity quanti-
tatively and qualitatively correlates with different
stages of inflammation. An early phase of dra-
matic increase of MMP-9 protein corresponds to
the initial flux of PMN into the necrotic tissue fol-
lowed by a second phase of massive invasion by
macrophages during which MMP-9 protein level is
less intense but gelatinase activity more potent [7].
Such increase is predictable since white blood cells
produce MMPs that facilitate their migration [94] and
regulate their function [95, 96]. MMP-9 produced
by these cells [97] is stored in granules [98–100]
being, hence, immediately available for degranula-
tion thereby facilitating transmigration through the
vessel/capillary wall. These cells also regulate MMP-
9 production in a time and phase specific manner
[101] similar to sequential variations of MMP-9 at
the early stages of muscle regeneration.
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Table 2
MMPs and TIMPs expression in neuromuscular diseases and their animal models. ALS TgSOD1 (G93A): Transgenic mouse model of
Amyotrophic Lateral Sclerosis carrying mutant Super Oxide Dismuthase gene, CSF: Cerebro Spinal Fluid; CXMD: canine x-linked muscular

dystrophy; mdx: x-linked muscular dystrophy; ND: Not determined, Neu1−/Neu1− mice: Neuraminidase deficient mice

Inflammatory Myopathies MMP expressed MMP localisation TIMPs expressed Circulating References

– Inclusion body myositis MMP-2, MMP-9 MMP-9 in atrophic
fibers &
inflammatory cells

MMPs unchanged [22, 25]

MMP-1 and MMP-9
(mRNA)++

TIMPs unchanged

– Sporadic inclusion body
myositis

MMP-2 and MMP-9 MMP-2 in rimmed
vacuoles

MMPs unchanged [18]

MMP-9 cytotoxic T
cells

TIMPs unchanged

– Polymyositis MMP-2 and-9 MHC
class1 + fibers

MMPs unchanged [18]

MMP-7 in
inflammatory cells

TIMPs unchanged [22]

MMP-1 around
sarcolemma & in
fibroblasts

MMP-1 and MMP-9
(mRNA)+++

– Dermatomyositis MMP-2 MMP-9 in
perifascicular
atrophic fibers

MMPs unchanged [22, 25]

MMP-1 around
sarcolemma & in
fibroblasts

TIMPs unchanged

MMP-1 and MMP-9
(mRNA)+++

Muscular Dystrophies
Human
– Duchenne muscular

dystrophy
MMP-1, MMP-2,

MMP-9
MMP-1 around

individual or groups
of muscle fibers

TIMP-1 & TIMP-2 MMP-9 and TIMP-1 [27, 33, 111, 214]

MMP-2 surface of
few myofibers and
around blood
vessels

MMP-9 in blood
vessels,
mononuclear cells
and cytoplasm of
regenerating fibers

– Emery-Dreifuss muscular
dystrophy

MMP-2, MMP-9,
MMP-14

MMP-2, MMP-9,
MMP-14, TIMP-1

[215]

Animal models

– mdx MMP-2, MMP-9,
MMP-13

MMP activity in ECM
around myofibers
and in the
sarcoplasm MMP-9
mRNA in
inflammatory and
satellite cells

TIMP1 (mRNA) MMP-9 [7, 203, 216]

TIMP2,-3 (mRNA)
MMP3,-8,-9,-10,-12,-

14,-15

(mRNA)

[32, 61]

MMP11,
– CXMD MMP-2, MMP-9,

MMP-14
[20]

(Continued)
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Table 2
(Continued)

Inflammatory Myopathies MMP expressed MMP localisation TIMPs expressed Circulating References

Neurodegenerative
Muscular disorders

Human
– Amyotrophic lateral

sclerosis (affected patients)
MMP-2,-7,-9,

MMP-14
MMP + in normal and

atrophic fibers
MMP-1, -2, -9, -14 [105, 217, 218]

– Spinal muscular atrophy MMP-7, -9 MMP + in normal and
atrophic fibers

MMP-9 [102]

[103]

– Chronic axonal
neuropathies

MMP-9 MMP + in normal and
atrophic fibers

TIMP-1 (CSF) [105]

– Guillain Barre MMP-9 [219]

TIMP-1
Animal models

– Neu1−/Neu1− mice MMP-2,MMP-9 ND [220]

– ALS TgSOD1(G93A) low
copy number and low
progression

MMP-2, MMP-9 MMP-2,-9 activity
associate with
disease onset

[221]

– ALS TgSOD1(G93A) high
copy number and rapid
progression

MMP-2, MMP-9 MMP-2,-9 activity
associate with
disease onset

[221]

Autoimmune Myopathies
– Myasthenia Gravis: Ocular

and Generalized subgroup
(17% seropositive and 10%
seronegative)

MMP-2, MMP-3,

MMP-9

MMP-2,-3,-9 [217, 222–224]

MMP upregulation correlates with inflammation
in muscular dystrophies and inflammatory
myopathies

In a number of muscle pathologies, MMP overex-
pression correlates particularly but not exclusively
with inflammation (Table 2). In muscular dystro-
phies and inflammatory myopathies, MMP elevation
is due, at least in part, to inflammation whereas in
motor neuron and peripheral nervous system dis-
eases with secondary muscle manifestations, the
evidence points towards an association with tissue
remodeling [102–105]. In muscles of Duchenne Mus-
cular Dystrophy (DMD) patients, the presence of
inflammatory cells [106–109] correlates with high
MMP-9 [17, 20, 110] in blood vessels, mononu-
clear cells and regenerating fibers [111]. MMP-9
is also elevated in the serum of dystrophic mice
[36] and DMD patients [33]. Intense MMP-1 sig-
nal is reported around individual or small groups
of necrotic muscle fibers and areas containing a
high density of macrophages [111]. TIMP-1 is ele-
vated in the serum, plasma, and muscle biopsies
of DMD patients [27, 33] and increased immunola-
beling is observed in the endomysium (unpublished
results). TIMP-1 and MMP-2 mRNAs localize to

areas of degeneration/regeneration whereas TIMP-2
transcripts distribute more homogeneously in mes-
enchymal fibroblasts [27].

In inflammatory myopathies, there is no evidence
of elevation of MMP or TIMP levels in the serum
[22] but MMP-9 up-regulation is found in muscles
of Polymyositis, Dermatomyosistis, and Inclusion
Body Myositis patients [22, 25, 112]. Immunola-
beling localizes MMP-9 to atrophic myofibers or is
restricted to CD8+ cytotoxic T cells [18]. MMP-1
transcripts are also upregulated in these patholo-
gies, and the protein localizes around the sarcolemma
and in cells resembling fibroblasts. MMP-7 strongly
labels myofibers invaded by inflammatory cells in
polymyositis cases only [25] and MMP-2 has a sim-
ilar distribution but weaker intensity.

Effects of MMP modulation in Duchenne
muscular dystrophy

Overexpression or inhibition of individual MMPs
may deteriorate or ameliorate skeletal muscle struc-
ture and function depending on the specific outcome
one is investigating. Examples of deleterious effects
are provided by dystrophic and Amyotrophic Lat-
eral sclerosis (ALS) mouse models in which MMP-9
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overexpression has been incriminated in the aggra-
vation of dystrophy in mdx mice [110] and selective
denervation of fast muscles in the SOD1 ALS mouse
model [113]. In this context, MMP-9 inhibition in
mdx mice was reported to reduce necrosis, fibrosis,
increase the levels of �-dystroglycan and improve
muscle force production [31, 32, 110, 114]. It is
thought to act by favoring satellite cell prolifera-
tion, emergence of M2 pro-myogenic macrophages,
increase of the expression of Notch ligands, receptors
and components of canonical Wnt signaling while
decreasing non-canonical Wnt signaling [30]. These
characteristics represent circumstantial evidence that
fit well with structural and functional improvement
but the effect of MMP-9 inhibition on satellite cell
proliferation and improvement of muscle regenera-
tion remains controversial. High MMP-9 levels in
myogenic cells favored cell migration, differentia-
tion and engraftment upon grafting into dystrophic
mice [57] and its inhibition delayed myoblast prolif-
eration and differentiation [115] causing, in the long
term, impairment of muscle regeneration, reduction
of muscle force and the development of fibroadi-
pogenic tissue [26]. L-arginine, Nitric Oxide (NO)
donors, Doxycycline (Dox) and Minocycline (Min)
or other natural substances have the same ben-
eficial effect. These substances decrease MMP-9
levels, orchestrate inflammation towards the “repair
mode”, favor preservation of structural integrity
and reduce fibrosis in different mouse models
[31, 116–118].

As far as we know today, the deficiency or inhi-
bition of other MMPs have a detrimental effect
on skeletal muscle regeneration/maturation. MMP-
2 deficiency impairs the maturation of regenerating
skeletal muscles by inhibiting angiogenesis [59]
while MMP-10 deficiency is reported to worsen mus-
cle dystrophy, delay muscle regeneration, impair the
recruitment of endothelial cells and reduce the lev-
els of ECM proteins by a mechanism associated with
Vascular Endothelial Growth Factor (VEGF)/Akt sig-
naling [61].

MMPs/TIMPs are involved in muscle fibrosis

Fibrosis is a multifactorial process that inte-
grates multiple cellular and biochemical events
between different cell types, growth factors, inflam-
matory/fibrogenic cytokines and proteolytic enzymes
resulting in the alteration of the tissue microenviron-
ment. The build-up of fibrosis reflects a disruption
of the balance between synthesis and degradation

of ECM components, accomplished by MMPs and
proteases of the plasminogen activation system [36,
55, 119]. Myofibroblasts, the key cellular media-
tors of fibrosis, are increased in fibrotic tissues [111,
120] and contribute to ECM and protease production.
Their existence is still debated because we lack reli-
able markers to discriminate between myoblasts and
myofibroblasts [121, 122].

Myofibroblasts arise from independent sources
[123–127] and help in the repair process. They
induce re-emergence of embryonic ECM proteins
that favor tissue reconstitution [128]. The activa-
tion of myofibroblasts, necessary for tissue repair,
involves paracrine signals derived from lympho-
cytes and macrophages, autocrine factors, pathogen-
(PAMPs) or damage- (DAMPs) associated molecular
patterns [129] and mechanosensing [130]. Fibrob-
lasts respond to signals from immune cells that
produce cytokines, growth factors and proteases that
modify the phenotype of neighboring cells. Simi-
larly, the behavior of different cells types sharing
the same environment is profoundly influenced by
the disturbance and remodeling of ECM. Increased
tissue stiffness and decreased elasticity generate a
mechanical stress that exacerbates tissue injury and
perpetuates the activation of fibroblasts [128, 131].

Persistence of inflammation favors
the transformation of wound healing to fibrosis

The wound healing response involves transitory,
highly orchestrated events consisting of interrelated
dynamic phases with overlapping time course that
lead to tissue replacement [132]. They necessi-
tate high levels of extracellular proteolytic activity
attributed to MMPs, serine proteases and cysteine
proteases [133]. The fibrotic response is initiated by
innate wound healing mechanisms involving inflam-
matory myeloid cells and adaptive immune activation
that modulate synthesis and deposition of ECM by
myofibroblasts [134]. The accumulation of fibrin and
fibronectin, immediately after trauma, forms a pro-
visional matrix that serves to fill in the lesion and
allow inflammatory cells to migrate into the wound
[135, 136]. The platelets present in the clot partic-
ipate in the recruitment of inflammatory cells, by
releasing growth factors such as Platelet Derived
Growth Factor (PDGF), potent chemoattractant for
inflammatory cells and TGF-�1 which stimulates
ECM synthesis [134]. Innate immunity is activated
in response to molecular signals such as cryptic
fragments, liberated by the digestion of ECM compo-
nents, endowed with chemoattractant properties due
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to structural relatedness to Cystein X Cystein (CXC)
chemokines [137]. Endogenous myofiber proteins
and mitochondrial-DAMPs, released into the circu-
lation, generate a systemic inflammatory reaction
and activate PMN through formyl peptide receptor-
1 and toll-like receptor (TLR) 9 [138]. In turn,
TLR activation initiates signaling cascades that con-
verge at the NF-�B pathway activating the synthesis
of inflammatory cytokines and �-defensins [139,
140]. TLR-9 activation by mitochondrial DAMPS
induces the release of MMP-8, which, together with
MMP-9, aid in PMN tissue penetration and recruit-
ment [36, 138]. The second wave of inflammatory
cells, the monocyte/macrophages, have a remark-
able plasticity and ability to exacerbate, suppress
or reverse fibrosis [141–143]. During the evolution-
ary phases of wound healing, macrophages with
divergent functions arise progressively in response
to exposure to fate determining mediators. Ini-
tial amplification of the inflammatory response
is followed by a phase during which inflamma-
tion is resorbed and tissue repaired [144–146].
The neutrophil-specific protease Membrane-Type
6 Matrix Metalloproteinase (MT6-MMP/MMP-25)
has a salient role in favoring monocyte chemotaxis
and resolution of inflammation. It regulates the shift
of macrophages from pro- to anti-inflammatory phe-
notype and contributes to efferocytosis by increasing
phagocytic removal of neutrophils carrying “eat-me”
signals [35]. Efferocytosis triggers specific down-
stream intracellular signal transduction pathways
resulting in the production of anti-inflammatory, anti-
protease and growth-promoting effects that favor
the replacement of dead cells [147, 148]. Activated
fibroblasts acquire a myofibroblast phenotype, syn-
thesize and deposit ECM to replace the provisional
matrix and contribute to the contraction and matura-
tion of granulation tissue [149]. They also produce
MMPs that disrupt the basement membrane allowing
cell migration at the site of injury. Scar forma-
tion further involves progressive remodeling of the
granulation tissue by proteolytic enzymes and their
inhibitors, followed by a resolution phase leading to
reconstitution of the damaged tissue and reduction
of myofibroblast number by apoptosis [150]. Recur-
rent necrosis/regeneration, like in DMD, results in
perpetuation of DAMPs release and chronic low-
grade inflammation with persistence of neutrophils
and monocytes at the injury site. These produce
proteases, cytokines as well as reactive oxygen and
nitrogen species (ROS/RNS) causing supplementary
damage [151] and generating a prolonged inflamma-

tory reaction, chemokine/cytokine production with
consequent modifications of gene expression, cell
functions and phenotype. In such conditions, wound
healing is sustained with continuous degradation
and deposition of ECM matrix resulting in fibrosis
(Fig. 2).

Skeletal muscle fibrosis: The result of an
interplay between cytokine/chemokines and
growth factors which affect cell fate and levels of
MMPs/TIMPs

Permanent induction of the wound healing
response in muscles generates continuous exudation
of plasma proteins, recruitment of inflammatory cells,
activation of inflammatory mediators and increased
expression of MMPs. These induce a cascade of
molecular modifications that affect tissue reconstitu-
tion. During these modifications, the balance between
hydrolysis of ECM components and their synthesis is
deregulated in favour of hydrolysis in a first stage fol-
lowed by a resolution phase during which inhibitors
are upregulated. The end-result of these continu-
ous cycles of necrosis-regeneration can, therefore,
be associated with an increase of both MMPs and
TIMPs, as occurs in DMD muscles.

Inflammatory cells contribute to increased fibro-
sis by producing cytokines/chemokines [109, 122,
146, 152] that regulate MMPs. These in turn, mod-
ulate the activities of cytokines [153, 154], their
receptors and ligands, which are abundant in injured
muscles [155–159]. Among them, SDF-1/CXCR,
CCL2(MCP-1)/CCR2 and M-CSF/M-CSFR axis
have a beneficial effect on muscle recovery [160,
161]. The first one improves cell mobilization and
migration by increasing MMP-2 and MMP-9 expres-
sion [162] and interferes in muscle regeneration by
a mechanism dependent on MMP-10 [60]. The sec-
ond two [163, 164] participate in the recruitment
of monocytes/macrophages that help to repair the
injury by producing Insulin Growth Factor-1 (IGF-
1). The mitogenic IGF/IGF receptor autocrine loop is
partly regulated by a family of six IGF Binding Pro-
teins (IGFBPs) proteolyzed by MMP-1, MMP-3 and
MMP-9 [165–167]. In contrast, the reduction of IGF-
I/insulin signaling promotes fibrosis by regulating the
interaction between p-Akt and Smad3. This allows
the dissociation of Smad-3 and its nuclear transloca-
tion and results in increased TGF-�1 signaling and
fibrosis [168].

Growth factors also influence satellite cell
activation, (trans)-differentiation and muscle regen-
eration. TGF-� induces phenotypic transformation of
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Fig. 2. Schematic representation showing the involvement of inflammatory cells in the regulation of myofibroblast activation in wound
healing and fibrosis. Tissue injury triggers a cascade of interconnected steps to restore tissue homeostasis. The initial activation of coagulation
pathway is followed by an acute inflammation and activation of innate immune mediators including macrophages, neutrophils and dendritic
cells. Cytokines liberated by injured and inflammatory cells subsequently regulate the activation of adaptive immune response. Inflammatory
cells and immune mediators attempt to eliminate noxious stimuli and activate fibroblasts into myofibroblasts that orchestrate angiogenesis
and regulation of ECM components. Failure to eliminate factors causing the injury perpetuates wound healing and inflammation ultimately
resulting in fibrosis.

myoblasts into myofibroblasts, downregulates myo-
genic regulatory proteins [126], stimulates collagen
synthesis and inhibits its degradation [169, 170] by
reducing MMP activity and promoting TIMP expres-
sion [132]. TGF-� is activated by MMP-9 [171] and
it is neutralized by decorin. The latter is cleaved
by MMP-2, MMP-3 and MMP-9 that release TGF-
� from the complex [172]. The action of TGF-�
is synergized by Connective Tissue Growth Factor
(CTGF), incriminated in multiple fibrotic diseases
[173, 174] and upregulated in DMD muscles [175].
The modular domains composing the protein have
independent functions and can be cleaved by MMP-
1, -2, -3, -7, -9, -13, elastase, and plasmin [176].
CTGF overexpression in normal skeletal muscles
induces dystrophic features [177] possibly through
the c-terminal module IV shown to have an immuno-
modulatory function [178]. Its inhibition reduces
skeletal muscle impairment, reverses fibrosis and

improves muscle strength without affecting TGF-�
[179, 180] indicating that CTGF is, by itself, a critical
modulator of fibrosis.

Activated metalloproteinases from both MMPs
and A Desintegrin And Metalloproteinase (ADAMs)
families signal through their receptors and down-
stream mitogen-activated kinases to activate the
transcription of immediate-early genes, mediators
of fibrosis [181]. Two ADAMs, notably ADAM-
17 (Tumour Necrosis Factor-� Converting Enzyme
TACE, or MT4-MMP) and ADAM-12 are key play-
ers in the pathogenesis of inflammatory and fibrous
connective tissue diseases. TACE overexpression and
activation in dermal fibroblasts, activates Epidermal
Growth Factor Receptor (EGFR) by its ligands and
stimulates type I collagen expression [182]. In a
model of cardiac fibrosis induced by angiotensin II
[183], TACE overexpression induces transcriptional
regulation of MMP-2 and ADAM-12 that activate
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TGF-� signalling independently of its protease activ-
ity [184]. This leads one to question whether the
blockade of fibrosis in dystrophic mdx mice by
ACE inhibitors inhibits only CTGF expression as
hypothesized [180] or whether it also affects TACE
expression and activation. TACE release of TNF-�
activates the myogenic program [185] and stimulates
collagen synthesis in fibroblasts [186] exerting direct
adverse effects on skeletal muscle function and regen-
eration. Its blockade reduces necrosis and contractile
dysfunction in response to eccentric exercise [187,
188] and significantly reduces the levels of TGF-�1
and type I collagen mRNA in mdx mice [189].

TIMPs and other protease inhibitors interfere in
the fibrotic process. Exposure of cardiac fibroblasts
to any of the four TIMPs stimulates cell prolifer-
ation and induces a significant increase of �-SMA
but only TIMP-2 increases both fibroblast prolifera-
tion and collagen production [81]. The occurrence
of a similar process in skeletal muscles needs to
be investigated. We also need to, precisely, define
the effects of all four inhibitors on fibroblast and
myoblast proliferation, differentiation and ECM pro-
duction. Finally, a putative serine protease inhibitor
HE4 (encoding human epididymis protein 4), that
inhibits serine proteases Prss23 and Prss35 as well as
collagenase, MMP-2, MMP-9 and trypsin, is upreg-
ulated in fibrosis-associated fibroblasts of mouse and
human kidneys and in serum of patients with chronic
kidney diseases [190]. Its inhibition accelerates colla-
gen I degradation, inhibits fibrosis and restores higher
levels of Prss23 and Prss35 indicating that HE4 serves
as biomarker and therapeutic target for the treatment
of renal fibrosis. To date, HE4 expression is still
unexplored either in skeletal muscles and serum of
dystrophic patients or in other fibrotic diseases.

CONCLUDING REMARKS

Although we have gained some insight about the
expression and role of certain MMPs and TIMPs
in skeletal muscles, we still have much to learn
before being able to use them for therapeutic per-
spectives. Clearly, MMP-2 and its activator MMP-14
are linked to angiogenesis and vessel growth [59]
and MMP-2 contributes to satellite cell activation by
mediating HGF shedding from extracellular matrix
in response to NO [191]. Furthermore, MMP-9 and
MMP-10 are important for muscle regeneration and
one can assume, although it remains to be experimen-
tally proven, that deficiency of MMP-25, MMP-28 or

MMP-24 would have a deleterious effect on muscle
regeneration because MMP-25 and MMP-28 influ-
ence macrophage progression [35, 192] and MMP-24
regulates stem cell quiescence [193].

Another observation concerns the specific issue
of inhibiting proteases in general and MMPs in
particular as a complementary therapeutic approach
to cell or gene therapy. Many reviews have high-
lighted the potential benefit of inhibiting diverse
classes of proteases in muscular dystrophies plac-
ing “MMPs” among potential therapeutic targets
[194–196]. This can be misleading in the absence
of a comprehensive view of the role played by
these proteins in skeletal muscles. Clearly, it is only
short term inhibition of MMP-9 or its signaling
cascade that was proven to improve skeletal mus-
cle and tendon healing and ameliorate structure and
function of dystrophic muscles [30, 32, 110]. What
MMP-9 inhibition is, most likely, doing is limiting
“excessive/prolonged” inflammation and attenuat-
ing its micro-environmental consequences possibly
by cooling-off inflammation [197]. Alternatively,
reduction of hydrolytic enzymes reduces inflamma-
tion and ROS production causing a reduction of
pro-MMP-1, -8, -9 activation and oxidative cell injury
[198, 199] expected to limit DAMPs release, reduce
the activation/perpetuation of the immune response
and decrease MMP-9 levels [198, 199]. Several
substances that modulate p38-MAPK, NF-kB, NO-
cGMP [116, 118, 200–203], inhibit TGF-� [204],
reduce oxidative stress [205] or inflammation [206,
207] have had beneficial effects in muscular dystro-
phies and deserve to be tested, in preclinical settings,
in combination with short-term, transitory MMP-9
inhibition. With the exception of MMP-9 that plays
a dual role in skeletal muscle regeneration/dystrophy
[110, 208, 209], the inhibition of other MMPs proved
they are essential for efficient muscle regeneration
-this review and [210]-, reduction of fibrosis [211]
and amelioration of myoblast engraftment follow-
ing implantation into dystrophic mice [212]. This
confirms the necessity for questioning long-term inhi-
bition of MMPs not only in cancer and inflammation
[213] but also in muscular dystrophies and other mus-
cle diseases.
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