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Recent experiments suggest that subsecond dopamine

delivery to human striatum encodes a combination of reward

prediction errors and counterfactual errors thus composing the

actual with the possible into one neurochemical signal. Here,

we present a model where the counterfactual part of these

striatal dopamine fluctuations originates in another valuation

system that shadows the dopamine system by acting as its

near-antipode in terms of spike-rate encoding yet co-releases

dopamine alongside its own native neurotransmitter. We show

that such a hypothesis engenders important representational

consequences where valence processing appears subject to

the efficient encoding considerations common to the visual and

auditory systems. This new perspective opens up important

computational consequences for understanding how value-

predicting information should integrate with sensory

processing streams.
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Counterfactual signaling encoded by striatal
dopamine fluctuations
Recent work in human striatum has provided electro-

chemical evidence that subsecond dopamine fluctuations

carry information related to two distinct kinds of error

signals — Firstly, reward prediction error (as anticipated

by a large literatures in rodents and primates) and finally,

counterfactual error encoding [1�]. The authors note that
www.sciencedirect.com 
the ‘compositional encoding of ‘actual’ and ‘possible’ is

consistent with how one should ‘feel’ and may be one

example of how the human brain translates computations

over experience to embodied states of subjective feeling’

[1�]. In contrast with this lofty possibility, we present a

computational perspective on the findings that exploits

the hypothesis that the counterfactual signals carried by

dopamine arise in a paired system that nearly anti-corre-

lates with dopaminergic encoding of prediction errors in

reward but is ideally suited to predict future aversive

stimuli. The motivating finding is shown in Figure 1.

The idea proposed by Kishida and colleagues was that

some other source/sink for dopamine existed that could

encode information about foregone gains and losses

(encoded in the game by bet level [1�]). In the game,

subjects saw a stationary price trace, placed a bet

expressed as a fraction of their total holdings between

0% and 100%, the price fluctuated to its next value, and

losses or gains occurred. Subsecond dopamine measure-

ments in the human striatum encoded signed fluctuations

around a running estimate of the mean outcome, but also

showed a dependence on the bet level, which suggested

that dopamine was encoding a combination of reward

prediction errors in outcome (which scales positively with

the price fluctuation) and a separate part that scaled

negatively with the price fluctuation (which they termed

the counterfactual error). There are many counterfactual

errors one can define in this simple game, but Kishida and

colleagues specifically meant the foregone gains or losses

compared to how well or poorly things might have gone in

the extreme (bets all in or all out, see [1�]).

Several possibilities ensue from these observations. First,

it is possible that midbrain dopamine neurons, in the

context of this simple cognitive challenge, have prediction

error and counterfactual error computations available and

encoded appropriately as changes in spike rate. The

reason this has not been observed before is that prior

work never really challenged an animal in the same way

(with parametrically connected foregone gains and losses;

see Figure 1) while recording either dopaminergic spikes

or dopamine fluctuations at target projection sites. A

second possibility, a version of the first, is the existence

of another population of dopaminergic neurons (not pre-

viously described) that modulate their activity oppositely

to dopaminergic neurons and effectively add/subtract

dopamine from baseline extracellular levels as a near-

opponent to the prediction error encoding long described
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Figure 1
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Sequential betting game against a market. Subjects bet between 0% and 100% of their total on each trial, a ‘price’ variable changes (goes up or

down), and the subject gains or loses that fractional amount of their current total. There are no time limits between choices [1�].
for these neurons. A third possibility is that some neuronal

population that nearly anti-correlates with the dopaminer-

gic modulation during reward-based tasks releases dopa-

mine because it is capable of loading dopamine into its

terminals rather than manufacturing it itself, and does so in

the same regions of the dorsal striatum (the primary

recording site of Kishida and colleagues). This latter

possibility falls into the opponent process hypothesis

(see [2��,3]).

To summarize the possibilities: (1) midbrain dopamine

neurons known for generating reward prediction error

signals also generate spike modulations consistent with

prediction error and counterfactual error signaling, OR (2)

there is another class of midbrain dopamine neuron

dedicated to the counterfactual term, OR (3) there is

an opponent to the dopaminergic reward prediction error

signal that releases dopamine or controls the release of

dopamine in striatal regions. This list is not biologically

exhaustive. In this opinion piece, we restrict our focus to

the possibility that the shadow system in possibility 3 are

serotonergic neurons from the nucleus raphe and we lean

on the fact that they can load dopamine into their term-

inals [4��].

Cross-loading between serotonin and
dopamine: inspiring the P and N model
There is solid neurobiological evidence that dopamine

and serotonin are capable of cross-loading into one

another’s terminals [4��,5�,6��]. For example, Zhou

et al. [6��] have provided compelling evidence that, under

a multi-week regimen of selective serotonin reuptake

inhibitors (SSRI), serotonin loads into dopaminergic

terminals through dopamine transporters. Whether this
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displaces the dopamine carrying capacity of these term-

inals is not known quantitatively but one class of behav-

ioral side effect of selective serotonin reuptake inhibitors

(SSRIs) resembles Parkinsonian symptoms; an observa-

tion consistent with a diminishment in dopaminergic

transmission. In a another recent report, Gantz et al.
[5�] showed that under L-DOPA treatment, serotonin

terminals originating from neurons in the dorsal raphe

nucleus contributed directly to dopaminergic transmis-

sion. This cross-loading has important downstream con-

sequences including the fact that there are two dynamic

sources of dopamine fluctuations — dopaminergic term-

inals and serotonergic terminals. In the event that the

parent dopamine and serotonin neurons encode different

operations, these operations would be combined due to

cross-loading. This is exactly the possibility that we

offered above to explain the human dopamine data

recorded in humans during the simple betting game

(Figure 1) adding the hypothesis that the counterfactual

signal encoded in dopamine is likely being carried by

modulation of serotonergic neurons but translated into

both dopamine and serotonin co-release.

Below we build on this cross-wiring hypothesis to suggest

that the reward prediction system thought to be repre-

sented in part by mesostriatal dopaminergic projections is

mirrored by an aversive prediction system carried to the

same target neural structure by serotoninergic fibers.

Furthermore, these systems may mix their computations

through neurotransmitter cross-loading, here termed soft

cross-wiring to emphasize the computational composition

idea rather than just a physiological eventuality. These

biophysical possibilities are consistent with the data

shown above but not necessitated by them; however,
www.sciencedirect.com
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we show that soft-cross wiring also suggests a different

way to conceive of valence processing in terms of efficient

encoding hypotheses more typical of visual and auditory

analyses [7�,8,9,10��,11�,12,13].

To summarize briefly: Humans with Parkinson’s disease

exhibit subsecond striatal dopamine fluctuations that

encode a combination of a reward prediction error signal

and a counterfactual error signal with the latter signal type

consistent with a near antipode of the reward prediction

error (in the restricted case of the simple game used here)

[1�]. Here, such an antipode of a reward prediction error

signal would be an aversive prediction error signal, which

for example fluctuates above and below baseline in a

fashion nearly opposite to the reward prediction error

signal. The simplest way to account for this oppositely

directed prediction error is to suppose that this other

system is learning to predict future aversive stimuli in

a manner analogous to reward prediction accounts typical

of dopamine systems [14]. If so, then the soft cross-wiring

that we sketched above has new and very interesting

consequences for valence processing in general.

Separating P and N error signaling from
neurotransmitter semantics
We pursue these ideas by assuming that there are two

neuronal systems, P and N (positive and negative), capa-

ble of learning and emitting prediction errors in future

rewards and aversions respectively and suggest that the

neurotransmitter couplings between these systems can be

seen as one way to transform from separate P and N
systems, let us call that the {P,N} bases, to a different basis

{(P + N), (P � N)}, which act respectively as a salience

channel (P + N) and a value contrast (P � N) channel (see

Figure 3). This means that salience processing and value

contrast processing would be handled by the combination

of dopamine and serotonin and not just one system alone;

a fact that may also help to explain the odd relationship

between dopamine, salience and reward prediction error

signaling generally.

In this section, we first review briefly current reinforce-

ment learning (RL) models [15] of how modulations in

spike activity in dopaminergic neurons report on predic-

tion errors in future reward [16–18] and we build a similar

but nearly opposite case for a system that would shadow

the dopaminergic system in terms of predicting future

aversive stimuli [2��]. One new step is to assume that all

states can be independently and concurrently assigned

positive (reward predicting) and negative (aversive pre-

dicting) value.

To learn from experience a mobile organism must pos-

sess adaptive mechanisms for valuing the world in the

face of changing contingencies; an almost self-evident

rendering of what it means to adapt to and learn from a

variable world. One general approach to learning about
www.sciencedirect.com 
rewarding and aversive events is called reinforcement

learning (RL), which focuses on how an agent responds

to, stores, and plans actions around the rewards and

aversives it encounters or could have encountered

[15]. A typical reinforcement learning (RL) account of

reward learning in animal brains begins with a simple

hypothesis about how an organism should value its future

states, and moves on to suggest how, given that model of

valuation, the system should update the valuation of its

states based on experience (for overviews see [16–20]).

This paper avoids a detailed discussion of how such

systems organize the mapping from valuations to actions

in order to emphasize the conditions under which our

proposal — soft cross wiring — engenders downstream

computational consequences.

In reinforcement learning, the main valuation hypothesis

is that a learning agent should assign a value VP to its

current state St according to the discounted rewards

expected from that state into the distant future [15].

Here the superscript P indicates positive valence. This

simple hypothesis embeds the Markovian or history-in-

dependent assumption — how a state is acquired is not

relevant to its valuation, only the future that it portends

influences its value:

VPðStÞ ¼ E½rt þ grtþ1 þ g2r tþ2 þ � � � � (1)

E is the expected value operator, g is a discount factor set

somewhere between 0 and 1 that devalues rewards

expected to the future of the current state, and t is

discretized time. According to the same idea, the valua-

tion of the next state St+1 follows similarly:

VPðStþ1Þ ¼ E½r tþ1 þ gr tþ2 þ g2rtþ3 þ � � � � (2)

From these expressions, one arrives at a form of the well-

known Bellman equation 4 that relates the value of the

state at one moment to the value of the state in the next

moment (allowing that we are not specifying any proper-

ties of this state transition in this paper):

E½rt � þ gVPðStþ1Þ ¼ V PðStÞ (3)

If a learning agent (like a rat) was using a similar scheme

to value its states then a natural ‘error signal’ would be the

difference between the right and left hand sides of

Equation 3:

dP
t ¼ E½r t � þ gVPðStþ1Þ�V PðStÞ (4)

This kind of error signal can be used simply and directly

to update parameters used to estimate the value function:

VPðStÞ   VPðStÞ þ a�dP
t (5)

There is now substantial evidence that a subset of

mammalian midbrain dopamine neurons encode dP
t into
Current Opinion in Behavioral Sciences 2016, 11:121–129
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perturbations in their spike rate [16–20]. Hence, dopamine

neurons communicate a spike-rate-change-encoded pre-

diction error dP
t to their terminals and the neurotransmitter

in those terminals converts dP
t to a diffusive signal that

communicates through the tissue to appropriately selec-

tive downstream effectors (e.g. dopamine receptors). Few

if any models have explored the reason or limitations of

this dissipative step for the particular case of a reward

prediction error dP
t .

An exactly analogous argument could be made for the

learning of future aversive stimuli and the way a state

should be valued in terms of predicting this discounted

aversive future. The hypothesis here is that the potential

negative value VN associated with a state St is the

expected value of exponentially discounted aversives

expected from St forward into the distant future:

VN ðStÞ ¼ E½at þ gatþ1 þ g2atþ2 þ � � � � (6)

which leads to the same Bellman equation as above (but

framed on future aversive stimuli) and yields its own error

signal dN
t :

dN
t ¼ E½at � þ gV N ðStþ1Þ�VN ðStÞ (7)

Which can be used to update the value function over

aversives:

VN ðStÞ   V N ðStÞ þ b�dN
t (8)

The basic idea for the two systems is that each updates

its predictions of future rewards and aversives separately

but these predictions combine to produce a composite

error signal encoded as signed pertubations in baseline

spike rates, dP
t along the P pathway and dN

t along the N
pathway, which would translate into signed fluctuations

in dopamine and serotonin release. The extracellular

space ‘adds up’ the ensuing changes in these transmit-

ters to encode dP
t þ dN

t . Similarly, receptors sensitive to

either or both transmitters or that through intracellular

signaling converged on common targets could likewise

compose these signals in flexible ways. This composite

error signal is thus well placed to update an overall

value function VP(St) � VN(St). This conceptual framing

of the valuation and prediction problem (without com-

mitting to any specific representation) closely resembles

Daw et al. [2��] except that it possesses two separate

value functions and thereby entails two signed predic-

tion error signals. The explicit consideration of the

prediction errors as diffusible signals within a common

space allows them to act alone or together in a manner

dependent only on the response elements present. A

new possibility occurs when one considers what happens

when one neurotransmitter, say dopamine, carries infor-

mation related to both prediction errors dP
t and

dN
t . Conversely, each prediction error is encoded as a

mixture of serotonin and dopamine.
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One important assumption in this account is that neu-

rotransmitter fluctuations (e.g. dopamine, serotonin

fluctuations) are already understood by downstream re-

ceptor systems as updating respectively future predic-

tions about positively valenced and negatively valenced

stimuli. So one key conceptual step is to separate the

error encoding by the parent neurons (expressed as

perturbations in spike rate) from the neurotransmitter

semantics (as interpreted by downstream effector

mechanisms).

The P � N basis
We have presented a caricaturized view of valence pro-

cessing by considering the dopamine system as the posi-

tive valence pathway P and separately imagining that the

serotonin system is the negative valence pathway N. We

have sketched how P and N could direct reward and

aversive prediction learning in fashion aligned with rein-

forcement learning models generally, and argued for

midbrain dopamine and serotonin systems as a possible

substrates. This style of model has been used fruitfully to

understand a wide range of behavioral data and has

informed possibilities for mapping these models to sup-

porting biological substrates [15,21–24]. However, the

simple opponency claim for the two systems has serious

difficulties. The most glaring is that it appeals to the

dopamine and serotonin systems as being near-antipodes

to one another and thus apparently redundant. There are

many contexts where a resource-constrained system

should show redundancy as an inefficiency, and this

perspective has been explored for decades in sensory

systems[9,10��,11�,12,13]. We consider this apparent val-

ue system redundancy from a different perspective and

motivate why such systems might want to share neuro-

transmitter as the data suggest they do.

As suggest in Figure 2, the P and N pathways represent

separate positive and negative valence prediction ca-

pacity. Here we show a depiction of the bi-directionally

coupled P and N systems where perturbations in

the dynamics of the two neurotransmitters (dD(t),
dS(t)) are controlled by both the spike-encoded reward

prediction errors dP
t and the spike-encoded aversive

prediction errors dN
t :

dD tð Þ
dS tð Þ

� �
¼ a 1�b

1�a b

� �
dP

t

dN
t

� �
þ N D tð Þ

NS tð Þ

� �
(9)

a is the fraction of the native neurotransmitter (labeled D
here for ‘dopamine’) in the P pathway that is present in

the P terminal and the remainder (1 � a) is assigned to

the N pathway terminal. Similarly, b is the fraction of

native neurotransmitter (labeled S for ‘serotonin’) in the

N pathway terminal and the remainder (1 � b) is assigned

to the P pathway terminal. Noise terms ND(t) and NS(t) for

each transmitter include synaptic noise and unaccounted

for extrasynaptic sources/sinks for D and S.
www.sciencedirect.com
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Figure 2
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Dopamine fluctuations in the human striatum encode the difference of reward prediction errors and counterfactual errors during a simple betting

game. Prediction errors are computed as fluctuations in outcome around a running estimate of the mean outcome (blue triangle indicates time

outcome is revealed). Counterfactual errors for this game were defined as the best/worst outcome minus the actual outcome or

1 � rt � btrt = rt(1 � bt) where rt was the fractional change in price Dpt/pt at trial t. The hypothesis is that dopamine transients encode a difference

between reward prediction errors and this style of counterfactual error. Notice that on gains, rt is positive and so the counterfactual mechanism

would have to subtract dopamine from the extracellular space. On losses, rt is negative and so the counterfactual mechanism would have to add

dopamine to the extracellular space. The dependence of dopamine changes on the bet bt is captured (qualitatively) by the term. This model

(subtracting the counterfactual term suggested above) is equivalent to assuming a separate signal that scales with �rt and can add/remove

dopamine from the extracellular space relative to ongoing baseline levels. The reward prediction error pathway would scale with +rt and likewise

be capable of increasing and decreasing dopamine relative to baseline. Red traces are for outcomes where prediction errors were negative and

green traces are for outcomes where prediction errors were positive (error bars are �SEM; see [1�] for statistical details). At high bets, the

counterfactual term drops to 0, but grows as bets decrease, an effect that would add/subtract dopamine depending on the sign of the RPE.
Equation 9 expresses two couplings: (1) the coupling of

spike-encoded prediction errors along P and N pathways

to perturbations in neurotransmitter release, and (2) the

neurotransmitter coupling between the two systems; a

feature we have termed soft cross-wiring. For a = b = 1,

the ‘normal’ situation ensues where dopamine and sero-

tonin separately carry the reward prediction error and

aversive prediction error information. Ignoring issues

about diffusion, this is the situation where the prediction

errors from moment-to-moment could be monitored sep-

arately by recording dopamine and serotonin simulta-

neously in the vicinity (receptors could do this). Once

cross-loading occurs because either or both alpha and beta

deviate from 1, then the prediction errors and the learned

weights that instantiate them become mixed. One can

then imagine wanting to unmix these signals or detect

both serotonin and dopamine in a combination that had

computational relevance. We explore this below.

One way to understand the nearly anti-correlated

responses of the P and N pathways is to imagine that these

systems’ sensitivities are close in order to discriminate
www.sciencedirect.com 
valence in a world where the positive and negative valua-

tions pertinent for survival are close. So let us take the

closeness as evidence of an adaptation to a tough set of

valence discrimination problems — ignoring the fact that a

nervous system does not simply discriminate raw valence

but instead assigns it to objects (including living objects),

which possess a range of other properties not considered

here. Consequently, the near redundancy along the P and

N pathways is not the best representation to process the

valence information since it wastes resources because of

the high degree of correlation between the systems. One

way to deal with this correlation is to decorrelate the

signals. One simple way to accomplish this is to rotate

to a different set of directions with the obvious ones being

P + N and P � N. Downstream receptors can easily effect

such a transformation either by direct binding or through

convergence onto intracellular signaling cascades. This

new {P + N, P � N} basis provides natural directions where

P + N is a salience signal and P � N a valence contrast signal. It

is important to note that both dopamine and serotonin

would be involved in coding the response along each new

direction. Taking the system in Equation 9 expressed in
Current Opinion in Behavioral Sciences 2016, 11:121–129
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Figure 3
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Positive and negative valence prediction systems with soft cross-wiring. Valence predicting systems P and N help build representations of reward

predicting value (P) and aversive predicting value (N) according to standard reinforcement learning framework (Equations 1–8). There is substantial

evidence that midbrain dopaminergic neurons emit reward prediction errors dP
t in this manner and there is scattered evidence that there is a near-

opponent system (N) that approximately anti-correlates with the dopaminergic system and is thus capable of the same kind of prediction but for

future aversive stimuli. Such predictions are ideally suited to inform an agent when to avoid stimuli or wait, and have been hypothesized to be one

substrate for conditioned inhibition. Serotonin (S) is thought to be one such opponent system to dopamine. The soft cross-wiring claim is that

these systems interact at the level of their neurotransmitter — by virtue of importing both transmitters at their terminals, each system influences

the extracellular dynamics of both transmitters. Soft-cross wiring can be thought of as a rotation in the abstraction depicted here for P and N. A

brief thought experiment helps. Imagine that for the P and N pathways, only P contained neurotransmitter (D, orange). Both pathways can still

encode prediction errors in changes in spike rate but only the P pathway translates this modulation into a change in neurotransmitter release

(dopamine) while the N pathway spikes run out into neurotransmitter-free terminals. Now start moving the dopamine one molecule at a time from

the P terminal into the N terminal and continue until all the dopamine has been moved. At this point the dopamine will now fluctuate as a function

of the aversive prediction errors produced in the N pathway. At the start of this transfer, dopamine fluctuated according to the reward prediction

errors because it was all in the P terminals. In the abstract valence space where P and N point in different directions, this procedure rotates the

signal carried by dopamine from the direction of P to the direction of N.
the {P,N} basis, we can rotate into the {P + N, P � N} basis

but keeping things expressed in terms of the changes

in transmitters to make clear how downstream effector
1ffiffiffi
2
p 1 �1

1 1

� �
dD tð Þ
dS tð Þ

� �
¼ 1ffiffiffi

2
p
�
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mechanisms could ‘sense’ valence responses along direc-

tions that incorporated an efficient encoding principle

[9,10��,11�,12,13]:
1 �1

1 1

 �
a 1�b

1�a b

� �
dr

t

da
t

� �
þ ND tð Þ

N S tð Þ

� �� �
(10)

www.sciencedirect.com
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Multiplying out the left hand side shows in Equation

11 how downstream receptors could sense and respond to

dopamine and serotonin changes in a manner aligned with

P � N and P + N directions. They can simply respond to

the sum or difference in the fluctuations. This could take

place on the surface of a cell or using intracellular cas-

cades (both serotonin and dopamine couple to g-protein

coupled receptors for example):
1ffiffiffi
2
p dD tð Þ�dS tð Þ

dD tð Þ þ dS tð Þ

� �
¼ 1ffiffiffi

2
p 1 �1

1 1

� �
a 1�b

1�a b

� �
dr

t

da
t

� �
þ N D tð Þ

NS tð Þ

� �� �
(11)
We can express the situation, ignoring lots of potential

complications, as:

valence diff

salience

� �
�

dD tð Þ�dS tð Þ
dD tð Þ þ dS tð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
receptors can sense

sum and difference

of 5H ; DA

� ðRotateÞðMixÞ
dr

t

da
t

� �
|fflffl{zfflffl}
spike

encoded

errors

(12)

Notice that for the normal case of a = b = 1, there is no

mixing and the transformation here is a simple decorrela-

tion that would define a salience channel and a valence

difference channel. We have left off the issue of how to

adjust the sensitivity for the different directions in order

to focus on the idea of handling the valence processing

problem in terms of efficient encoding and separate value

systems (but see [10��,11�,13]). Once the mixing matrix

above moves away from the identity, then the system

mixes the information channels before releasing trans-

mitter and before decoding by downstream receptors. We

strongly suspect that this coupling has many conse-

quences only a few of which are sketched here, but it

is possible that such mixing allows the system to learn to

predict composite values of events that predict both

future rewards and punishments. The current idea and

its scant but supporting data suggest that both dopamine

and serotonin play an important information-bearing role

in learning such composite values.

There is a loose, but instructive analogy here with the

ecology of (color) vision and red/green cone sensitivities.

In primates, the peak spectral sensitivities of red and

green cones are very close (�30 nm), which apparently

reflect the range of wavelengths where such discrimation

is computationally pertinent [10��,11�]. The proximity of

the spectral sensitivity peaks for R and G pathways is put

into perspective when the response properties of these

pathways is faced with measured visual statistics from the

natural world of the primate [10��]. This work in vision

has relied in part on the capacity to capture images

of natural visual scenes easily and cheaply; however,
www.sciencedirect.com 
collecting natural reward statistics is subtle and ultimately

involves the fluctuating internal needs of the mobile

creature as they compare to the surrounding environment.

Summary
In summary, we began with a new measurement of striatal

dopamine in human subjects and found that existing

computational models of dopaminergic function were
inadequate to capture the possibility that dopamine

encodes prediction errors in reward and counterfactual

errors in reward. One trivial possibility is that some

simplistic element of the behavioral task (a scalar betting

game against a market) is accidentally creating a situation

for dopamine release that is not normal and only appears

to encode a bet-dependent counterfactual signal — this is

indeed possible since the subjects involved have a disease

of their dopaminergic system (Parkinson’s Disease). The

interactions that we posit here are quite specific in terms

of transmitters and neural elements; however, other work

has observed loosely similar coupling and suggested a way

to relate L-DOPA drugs used to treat Parkinson’s and

computational ideas about basal ganglia function [22–25].

We suspect that there are ways to connect the framework

sketched here to the ideas present in that work.

Several new possibilities emerge from the opinion pre-

sented here. First, we suggest that all stimuli have the

possibility to be assigned a composite of positive and

negative valence through the operation of two prediction

systems P and N (positive and negative) dedicated to

making this assignment. We think here of P and N as

directions in some valence space and claim that they rate

the reward-predicting or aversive-predicting valence of

situations that represent difficult valence detection pro-

blems. These same systems can share transmitter at their

terminals when those terminals happen to be sufficiently

close; a fact that immediately mixes reward and aversive

prediction information. In the context of the behavioral

task in Figure 1, this sharing provides the explanation for

the observed counterfactual component. As outlined

above, we see that soft cross wiring might also allow

the system to rotate parametrically from the {P,N} to

other bases; we considered one specific case. One possi-

bility is that the bet dependence of dopamine encoding of

prediction errors is directly related to the coupling coeffi-

cients in Equation 9.

We have completely avoided treating learned timing

among stimuli and the near-term rewards and punish-

ments that they portend. However, there should be

very interesting connections of this framework to related
Current Opinion in Behavioral Sciences 2016, 11:121–129
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analyses in the visual system. For example, there is strong

evidence that independent objects in the visual world are

the source of natural visual scaling statistics [26�] and that

visual cortical neurons can learn to respond to reward-

predictive visual cues [27�]. We suspect that an analysis of

this coupling based on an efficient encoding framework

[11�] would show that many levels of structure in visual

pathways should show predictable P and N channel mod-

ulation. It could even be the case that the exquisite

structural arrangements in the striatum can be understood

as natural ways to organize P and N information in a

fashion homologous to similar analyses in visual cortex

[11�,13].
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