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Decentralised Nonlinear Sliding Mode Control with
Application To Automated Highway Systems∗†‡

Jianqiu Mu1, Xing-Gang Yan1, Sarah K. Spurgeon1,2 and Dongya Zhao2

Abstract—In this paper, a decentralised control strategy based
on sliding mode techniques is proposed for a class of nonlinear in-
terconnected systems. Both matched uncertainties in the isolated
subsystems and mismatched uncertainties associated with the
interconnections are considered. Under mild conditions, sliding
mode controllers for each subsystem are designed in a decen-
tralised manner by only employing local information. Conditions
are determined which enable information on the interconnections
to be employed within the decentralised controller design to
reduce conservatism. The developed results are applied to an
automated highway system. Simulation results pertaining to a
high-speed following system are presented to demonstrate the
effectiveness of the approach.

Index Terms—Decentralised control, sliding mode techniques,
nonlinear interconnected systems, automated highway systems.

I. INTRODUCTION

A class of complex systems, including multi-machine power
systems [1], [2], automated highway systems [3] and multi-
agent systems [4], can be modelled as a collection of sub-
systems with appropriate interconnections [7]. Such classes
of systems are called large scale interconnected systems. The
interconnections among subsystems together with the inher-
ent nonlinearity of the coupled dynamics inevitably produce
complex dynamics. Moreover, such classes of systems are fre-
quently distributed in space. This may render a centralised con-
trol strategy difficult to implement as centralised controllers
require that the controller in each subsystem can access all
the state information relating to all the other subsystems. Prob-
lems such as network failure or blockage of communication
channels may prevent information transfer among subsystems.
This has motivated the development of decentralised control
strategies in which each subsystem is controlled independently.
The control is based only on local information, which not
only enhances system reliability but reduces the overhead in
information transfer. In view of this, decentralised strategies
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have been effectively applied in various areas such as fault
diagnosis and discrete-event systems [5], [6].

It is well known that uncertainties or modelling errors may
seriously affect control system performance. Specifically, for
large scale interconnected systems, uncertainties experienced
by one subsystem not only affect its own performance but
usually affect the other subsystems’ performance as well due
to the interactions between the subsystems. Sliding mode
control has been recognised as a powerful approach in dealing
with uncertainties [8], [9]. The general process to design a
sliding mode controller can be separated into two steps:
1). Design of a sliding surface such that the behaviour of the
system in the sliding mode exhibits desired performance.
2). Design a control law to ensure that the system state can
be driven to the previously designed sliding surface and then
remains on it thereafter.
When the system is constrained to the sliding surface, a
sliding motion which is governed by the corresponding sliding
mode dynamics is said to occur. The closed loop system is
completely insensitive to matched uncertainties in the sliding
mode [8], [9]. The sliding mode approach can also be used to
deal with systems in the presence of unmatched uncertainty
[10] although the property of total insensitivity is frequently
lost. However, in contrast to the case of centralised control,
decentralised control can only use local information and
thus the uncertainties within the interconnections may not be
rejected, even if they are matched. Designing a decentralised
control scheme to reject the effect of uncertainties in the
interconnection terms is thus challenging.

The problem of robust decentralised controller design has
received much attention and many results have been obtained.
In [11], [12], [13], [14], only matched uncertainties are
considered and the bounds on the matched uncertainties are
assumed to be linear or polynomial. In terms of mismatched
uncertainties, in order to achieve asymptotic stability, some
limitations are unavoidable. Mismatched uncertainties have
been considered in [10], [15] where centralised dynamical
feedback controllers are designed which need more resources
to exchange information between subsystems. A class of
constraints called integral quadratic constraints is imposed on
the considered systems to limit the structure of the original
systems [15]. In some cases, adaptive techniques are applied
to estimate an upper bound on the mismatched uncertainty
which can then be used to counteract its effects [16]. This
approach can be powerful when the uncertainty satisfies a
linear growth condition. In [17], although the uncertainties are
assumed to be functions, the system needs to be transformed
into a special triangular structure. All the literature which con-
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siders mismatched uncertainties mentioned above inevitably
requires extra resources and increases system complexity. This
may be unattractive from the viewpoint of implementation.
Specifically, output feedback control based results impose very
strong limitations on the uncertainties and interconnections
(see e.g. [11], [22], [19], [1]).

In this paper, a decentralised control strategy for a class
of nonlinear interconnected systems is proposed based on a
sliding mode control paradigm. In terms of the robustness,
both matched uncertainties and mismatched unknown inter-
connections are considered. It is well known that to deal with
interconnections is one of the main challenges for intercon-
nected systems when decentralised control is considered. The
main contribution of this work can be summarized as follows:

i). The uncertain interconnections are separated into two
parts to reduce the conservatism.

ii). It is not required that the interconnections vanish at the
origin.

iii). The bounds on the uncertainties have a more general form
than those imposed within existing work.

Based on the approach proposed in [8], a sliding surface for
each subsystem is designed. Together these constitute a com-
posite sliding surface for the interconnected system. A set of
sufficient conditions is developed such that the corresponding
sliding motion is asymptotically stable when the system is
restricted to the designed sliding surface. Then, a decentralised
sliding mode control is designed to drive the large-scale
interconnected system to the sliding surface in finite time.
It is shown that if the uncertainties/interconnections possess
a superposition property, a decentralised control scheme may
be designed to counteract the effect of the uncertainty. Finally,
the developed decentralised control scheme is applied to an
automated highway system. Simulation results relating to a
high-speed car following system show that the obtained results
are effective. The study shows that limitations on the bounds
assumed on the uncertainties and interconnections can be
greatly reduced when compared with the output feedback case.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a nonlinear large-scale interconnected system
composed of N subsystems where the i-th subsystem is
described by

ẋi = Aixi +Bi (ui + φi(t, xi)) +

N∑
j=1

Ξij(t, xj)

+ψi(t, x) i = 1, 2, . . . , N (1)

where xi ∈ Di ⊂ Rni (Di is the neighborhood of the origin
xi = 0), ui ∈ Rmi denote the state variables and inputs of
the i-th subsystem, respectively. The matrix pairs (Ai, Bi) are
constant with appropriate dimensions. The matched uncertain-
ties are denoted by φi(t, xi). The terms

∑n
j=1 Ξij(t, xj) with

Ξij(t, 0) = 0 describe the known interconnection of the i-
th subsystem. The nonlinear functions ψi(t, x) represent the
uncertain interconnections where x = col(x1, x2, . . . , xn) is
the state of the whole interconnected system. It is assumed
that all the nonlinear functions are sufficiently smooth such
that the unforced system has a unique continuous solution.

It should be noted that
N∑
j=1

Ξij(t, xj) = Ξii(t, xi) +

N∑
j 6=i

j=1

Ξij(t, xj) (2)

In this case, Ξii(t, xi) can be considered as the known non-
linearity in the ith subsystem and the term

∑N
j 6=i

j=1
Ξij(t, xj) as

the known interconnection within the ith subsystem. It will be
shown that such a class of interconnections can be employed
in decentralised controller design to reduce conservatism.
Definition 1 (see [7], [18]) The following systems:

ẋi = Aixi +Bi (ui + φi(t, xi)) + ψi(t, x) (3)
i = 1, 2, . . . , N

are called the isolated subsystems of the interconnected system
(1).
Definition 2 (see [7], [18]) Consider the interconnected system
(1). If the designed controller ui for the i-th subsystem
depends on the time t and states xi of the i-th subsystem
only, i.e.

ui = ui(xi, t), (xi, t) ∈ Di ×R+, i = 1, 2, . . . , N (4)

then the control (4) is called a decentralised control.
Remark 1. From the Definitions 1 and 2 above, it is clear that
the decentralized control paradigm for interconnected systems
is different from the one adopted for multi-agent systems as
the interconnected systems are interconnected through inter-
connection terms for the case of decentralised control. With
a multi-agent system, the systems are interconnected through
distributed controls [4], [7].

The objective of this paper is to design a decentralised
control

ui = ui(xi, t), i = 1, 2, . . . , N (5)

for system (1) based on sliding mode techniques such that
the corresponding closed-loop system formed by applying the
controllers (5) to the system (1) is asymptotically stable.

The following basic assumption is firstly imposed on the
system (1).
Assumption 1. The matrix pairs (Ai, Bi) are controllable and
rank(Bi) = mi for i = 1, 2, . . . , N .

Under the condition that rank(Bi) = mi in Assumption 1,
there exists an invertible matrix T̃i ∈ R(ni×ni) such that
after the coordinate transformation x̃i = T̃ixi, the matrix
pairs (Ai, Bi) with respect to the new coordinates x̃i have
the following structure

Ãi =

[
Ãi1 Ãi2
Ãi3 Ãi4

]
= T̃iAiT̃

−1
i (6)

B̃i =

[
0

B̃i2

]
= T̃iBi (7)

where Ãi1 ∈ R(ni−mi)×(ni−mi) and the matrix B̃i2 ∈
Rmi×mi is nonsingular for i = 1, 2, . . . , N . It should be noted
that the matrix T̃i can be obtained using basic matrix theory.

Assume that (Ai, Bi) is controllable. From [8], it follows
that the matrix pair (Ãi1, Ãi2) in (6) is controllable. Then,
there exists a matrix Ki ∈ R(ni−mi)×mi such that Ãi1 −
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KiÃi2 is Hurwitz stable. Considering the system (1), introduce
a new transformation matrix as follows:

Ti =

[
Ini−mi

0
Ki Imi

]
T̃i (8)

It is clear that the matrix Ti is nonsingular. Define z =
col(z1, z2, . . . , zN ) where zi = Tixi. Then in this new
coordinate system, system (1) has the following form

żi =

[
Ai1 Ai2
Ai3 Ai4

]
zi +

[
0

B̃i2

]
(ui + gi(t, zi))

+

N∑
j=1

Γij(t, zj) + δi(t, z) (9)

where zi ∈ Ti(Di) := Ωi, Ai1 = Ãi1 − Ãi2Ki is stable,
T−1 ≡: diag{T−1

1 , T−1
2 , . . . , T−1

N }, and

gi(t, zi) = φi(t, T
−1
i zi) (10)

Γij(t, zj) ,

[
Γaij(t, zj)
Γbij(t, zj)

]
= TiΞij(t, T

−1
j zj) (11)

δi(t, z) ,

[
δai (t, z)
δbi (t, z)

]
= Tiψi(t, T

−1z) (12)

where Γaij(t, zj) ∈ R(ni−mi), δai (t, z) ∈ R(ni−mi),
Γbij(t, zj) ∈ Rmi , and δbi (t, z) ∈ Rmi for i, j = 1, 2, . . . , N .

For further analysis, now partition zi =col(zai , z
b
i ) where

zai ∈ Rni−mi and zbi ∈ Rmi . Then the system (9) can be
rewritten in the following form

żai = Ai1z
a
i +Ai2z

b
i +

N∑
j=1

Γaij(t, zj) + δai (t, z) (13)

żbi = Ai3z
a
i +Ai4z

b
i + B̃i2(ui + gi(t, zi))

+

N∑
j=1

Γbij(t, zj) + δbi (t, z) (14)

where the matrix Ai1 in (13) is stable.
The following assumption is imposed on the uncertainty.

Assumption 2. There exist known continuous functions
ρi(t, zi), ηai (t, z) and ηbi (t, z) such that for i = 1, 2, . . . , N ,

(i) ‖gi(t, zi)‖ ≤ ρi(t, zi)
(ii) ‖δai (t, z)‖ ≤ ηai (t, z)‖z‖

(iii) ‖δbi (t, z)‖ ≤ ηbi (t, z)

Remark 2. Assumption 2 is a limitation on all the uncertain-
ties experienced by the interconnected system. It is required
that bounds on the uncertainties are known. These bounds will
be employed in the control design to reject the effects of the
uncertainty. It should be emphasised that the bounds on the
uncertainties in Assumption 2 have a more general form when
compared with existing work [11], [19], [1], [22]. It should be
noted that it is only required that δai (·) vanish at the origin,
and it is not required that gi(·) and δbi (·) vanish at the origin.

III. STABILITY ANALYSIS OF THE SLIDING MOTION

In this section, a sliding surface is designed for the system
(9) and the stability of the corresponding sliding motion is
analysed. A set of sufficient conditions is provided such that
the sliding motion is asymptotically stable.

It is clear that system (13)-(14) has regular form. Choose the
local sliding surface for the ith subsystem of the large-scale
interconnected system (9) as follows:

σi(zi) ≡: zbi = 0, i = 1, 2, . . . , N. (15)

Then, the composite sliding surface for the interconnected
system (13)-(14) is chosen as

σ(z) = 0 (16)

where

σ(z) ≡: col (σ1(z1), σ2(z2), . . . , σN (zN ))
= col

(
zb1, z

b
2, . . . , z

b
N

)
Since Ai1 in (13) is stable, for any Qi > 0, the following

Lyapunov equation has a unique solution Pi > 0 such that

Aτi1Pi + PiAi1 = −Qi, i = 1, 2, . . . , N. (17)

During sliding motion, zbi = 0 for i = 1, 2, . . . , N . Then,
the sliding mode dynamics for the system (13)-(14) associated
with the designed sliding surface (16) can be described by

żai = Ai1z
a
i +

n∑
j=1

Γsij(t, z
a
j ) + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (18)

where

Γsij(t, z
a
j ) := Γaij(t, zj)|zbj=0 (19)

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) := δai (t, z)|(zb1,zb2,...,zbN )=0 (20)

Here Γaij(t, zj) and δai (t, z) are defined in (11) and (12)
respectively.
Assumption 3. The functions Γsij(·) in (19) have the following
decomposition:

Γsij(t, z
a
j ) = Γ̃sij(t, z

a
j )zaj (21)

where Γ̃sij(t, z
a
j ) is an appropriately-dimensioned matrix func-

tion for i, j = 1, 2, . . . , N .
Remark 3. If the term Ξij(t, xj) in system (1) is sufficiently
smooth with Ξij(t, 0) = 0, then Γsij(t, z

a
j ) will be smooth

enough with Γsij(t, 0) = 0. From [19], it is straightforward
to see that the decomposition (21) holds. It should be noted
that in the system (13)-(14), the interconnection terms are
Γaij(t, zj) and Γbij(t, zj). Therefore, it is clear to see from
(21) and (19) that the Assumption 3 does not require that the
interconnections vanish at the origin. This is in comparison
with all of the associated work [11], [15], [17], [19] where it
is required that the interconnections vanish at the origin.

Under Assumptions 1-3, a reduced order interconnected
system composed of N subsystems with dimension ni −mi

is obtained as follows:

żaj = Ai1z
a
j +

n∑
j=1

Γ̃sij(t, z
a
j )zaj + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (22)
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which represents the sliding mode dynamics relating to the
sliding surface (16), where zai ∈ Rni−mi and Γ̃sij(t, z

a
j ) is

defined in (21).
Lemma 1: For the terms δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) in system

(22), if condition (ii) in Assumption 2 holds, then there exist
continuous functions γij(·) such that

‖δsi (t, za1 , za2 , . . . , zaN )‖ ≤
N∑
j=1

γi(t, z
a)‖zaj ‖ (23)

where
γi(t, z

a) = ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)

for i = 1, 2, . . . , N , and za = col(za1 , z
a
2 , . . . , z

a
N ).

Proof. From the definition of δsi (·) in (20), it follows that

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) = δai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0) (24)

From condition (ii) in Assumption 2,

‖δai (t, z)‖ ≤ ηai (t, z)‖z‖ (25)

From (24) and (25), it follows that

‖δsi (t, za1 , za2 , . . . , zaN )‖
= ‖δai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0)‖

≤ ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖za‖

≤
N∑
j=1

ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖zaj ‖

≤
N∑
j=1

γi(t, z
a)‖zaj ‖

Hence the result follows. �
The following result can now be presented.
Theorem 1: Consider the sliding mode dynamics given in

equation (22). Under Assumptions 1-3, the sliding motion
governed by (22) is asymptotically stable if there exists a
domain Ωza of the origin in za ∈ R

∑N
i=1(ni−mi) such that

Mτ +M > 0

in Ωza\{0} where M = (mij)N×N , and

mij =

{
λmin(Qi)− 2‖Pi‖γi(t, za)− ςii(t, zai ), i = j

−ςij(t, zaj )− 2‖Pi‖γi(t, za), i 6= j

where Pi and Qi satisfy (17), and the functions ςij(·) are
defined by

ςij(t, z
a
j ) :≡ ‖PiΓ̃sij(t, zaj ) + (Γ̃sij)

τ (t, zaj )Pi‖

with Γ̃sij(t, z
a
j ) given by (21), and γi(t, z

a) satisfy (23) for
i, j = 1, 2, . . . , N .
Proof. For system (22), consider the Lyapunov function can-
didate

V (t, za1 , z
a
2 , . . . , z

a
N ) =

N∑
i=1

(zai )τPiz
a
i (26)

where Pi satisfies equation (17).

Then, from the lyapunov equation (17), the time derivative
of V (t, za1 , z

a
2 , . . . , z

a
N ) along the trajectories of system (22)

is given by

V̇ =

N∑
i=1

{
(żai )τPiz

a
i + (zai )τPiż

a
i

}
≤

N∑
i=1

{
− λmin(Qi)‖zai ‖2

+2‖zai ‖‖Pi‖‖δsi (t, za1 , za2 , . . . , zaN )‖+
N∑
j=1

∥∥∥PiΓ̃si1(t, zaj ) + (Γ̃sij(t, z
a
j ))τzaj Pi

∥∥∥‖zai ‖‖zaj ‖}
≤

N∑
i=1

{
− λmin(Qi)‖zai ‖2 +

N∑
j=1

ςij(t, z
a
j )‖zai ‖‖zaj ‖

+2‖zai ‖‖Pi‖
N∑
j=1

γi(t, z
a)‖zaj ‖

}

= −
N∑
i=1

{
λmin(Qi)− 2‖Pi‖γi(t, za)

−ςii(t, zai )
}
‖zai ‖2 +

N∑
i=1

N∑
j=1

j 6=i

{
ςij(t, z

a
j ) + 2‖Pi‖γi(t, za)

}
‖zai ‖‖zaj ‖

= −1

2
Y τ (Mτ +M)Y (27)

where Y ≡: col(‖za1‖, . . . , ‖zaN‖).
Thus, the conclusion follows from Mτ +M > 0. �
Theorem 1 shows that the sliding motion corresponding to

the designed sliding surface is asymptotically stable. Condi-
tions to ensure this sliding motion is attained and maintained
will be developed in the next section.

IV. DECENTRALISED SLIDING MODE CONTROL DESIGN

A sliding mode control is designed to drive the system
to the sliding surface. It is well known that an appropriate
reachability condition is described by

στ (z)σ̇(z) < 0

for a centralised system with switching surfaces σ(z) = 0.
For the nonlinear interconnected system (1), the corresponding
condition is described by

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖
< 0 (28)

where σi(zi) is defined by (15). It should be noted that the
condition (28) is proposed in [20] and has been widely used
(see, e.g. [19]).

Consider system (13)-(14). In order to reduce the effects of
the unknown interconnection δbi (·), consider the expression

ηbi (t, z) =

N∑
j=1

µij(t, zj) + νi(t, z) (29)
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where νi(t, z) represents all the coupling terms which cannot
be included in the term

∑N
j=1 µij(t, zj).

Remark 4. The interconnection decomposition in (29) is not
unique and is introduced to reduce the conservatism caused by
the interconnection terms within the control design. There is
no general way to obtain the decomposition. The first intercon-
nection term

∑N
j=1 µij(t, zj) has a superposition property. It

will be shown that the term
∑N
j=1 µij(·) in (28) can be rejected

by selection of an appropriate decentralised control and this
will reduce conservatism. The second term, νi(t, z) in (28),
cannot be rejected by the choice of decentralised control.

The objective is to design a decentralised sliding mode
controller such that the reachability condition (28) is satisfied.
For i = 1, 2, . . . , N , the following control scheme is proposed:

ui = −B̃−1
i2

{
Ai3z

a
i +Ai4z

b
i +

N∑
j=1

Γbji(t, zi)
}

−B̃−1
i2 sgn(zbi )

{
‖B̃i2‖ρi(t, zi)

+

N∑
j=1

µji(t, zi) + ζi(t, zi)
}

(30)

where zi = col(zai , z
b
i ), ρi(t, zi) are defined in Assumption 2,

µji(t, zi) satisfy (29) and ζi(t, zi) is a reachability function
which will be defined later.

Theorem 2: Consider the nonlinear interconnected system
(9). Under Assumptions 1-3, the decentralised control (30)
is able to drive system (9) to the composite sliding surface
(16) and maintains a sliding motion on it thereafter if in the
considered domain Ω = Ω1 × Ω2 · · · × ΩN , the functions
ζi(t, zi) in (30) satisfy

N∑
i=1

ζi(t, zi) >

N∑
i=1

νi(t, z) (31)

in Ω\{0} for all t > 0 with νi(t, z) defined in (29).
Proof. From the analysis above, all that needs to be proved
is that the composite reachability condition (28) is satisfied.
From (16), for i = 1, 2, . . . , N ,

σ̇i(zi) = żbi = Ai3z
a
i +Ai4z

b
i

+B̃i2
(
ui + φi(t, T

−1
i zi)

)
+

N∑
j=1

Γbij(t, zj) + δbi (t, z) (32)

Substituting (30) into (32),

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖

=

N∑
i=1

{ (zbi )
τ

‖zbi ‖
{
δbi (t, z) + B̃i2φi(t, T

−1
i zi)

}
−‖B̃i2‖ρi(t, zi)−

N∑
j=1

µji(t, zi)− ζi(t, zi)
}

+
(zbi )

τ

‖zbi ‖
{ N∑
i=1

N∑
j=1

Γbij(t, zj)−
N∑
i=1

N∑
j=1

Γbji(t, zi)
}

≤
N∑
i=1

‖B̃i2φi(t, T−1
i zi)‖+

N∑
i=1

‖δbi (t, z)‖

−
N∑
i=1

‖B̃i2‖ρi(t, zi)−
N∑
i=1

N∑
j=1

µji(t, zi)

−
N∑
i=1

ζi(t, zi) (33)

From Assumption 2,
N∑
i=1

‖δbi (t, T−1z)‖

≤
N∑
i=1

N∑
j=1

µij(t, zj) +

N∑
i=1

νi(t, z)

=

N∑
i=1

N∑
j=1

µji(t, zi) +

N∑
i=1

νi(t, z) (34)

and

‖B̃i2φi(t, T−1
i zi)‖ ≤ ‖B̃i2‖‖φi(t, T−1

i zi)‖
≤ ‖B̃i2‖ρi(t, zi) (35)

Substituting inequalities (34) and (35) into (33),
N∑
i=1

στi σ̇i
‖σi‖

≤ −
N∑
i=1

ζi(t, zi) +

N∑
i=1

νi(t, z) < 0 (36)

Then the reachability condition (28) is satisfied. Hence, the
result follows. �
Remark 5. It should be noted that the functions ζi(·) in
(31) are design parameters. Theorem 2 shows that if ζi(·)
are designed to satisfy condition (31), then the well known
reachability condition holds and a sliding mode will occur.
Moreover, if all the interconnection functions νi(t, z) are
bounded for i = 1, 2, . . . , N in the considered domain Ω, it
is straightforward to see that (31) always holds by choosing
appropriate ζi(·).

From sliding mode control theory, Theorems 1 and 2
together guarantee that the closed-loop system formed by
applying the decentralised controller (30) to the interconnected
system (9) is asymptotically stable in the domain Ω.

It is clear to see that system (9) is an expression of system
(1) in the new coordinates zi(zi = Tixi). Partition Ti as
follows

Ti =

[
T ai
T bi

]
(37)

where T ai ∈ R(ni−mi)×ni and T bi ∈ Rmi×ni .
Then [

zai
zbi

]
:= zi = Tixi =

[
T ai xi
T bi xi

]
(38)

From the relationship between (1) and (9), it is straightfor-
ward to rewrite the control (30) in terms of the x coordinates
to stabilize the system (1) using (38).
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V. CASE STUDY - AUTOMATED HIGHWAY SYSTEMS

In order to achieve high traffic flow rates and reduce
congestion, an automated highway systems has been developed
[21]. During the automated driving process, cars are driven
automatically with both on-board lateral and longitudinal
controllers. The lateral controller is used to steer the vehicle
and the longitudinal controller is used to follow a lead vehicle
at a safe distance. The stability and the robustness of the
vehicle-following system will be considered as a case study
to demonstrate the theoretical results. The dynamics of the
vehicle-following system is described by [3]

ξ̇i = vi − v(i−1) (39)

v̇i =
1

mi

(
−Aipv2

i − di + fi
)

(40)

ḟi =
1

κi
(−fi + ui) (41)

where ξi represents the distance between the ith and the (i−
1)th vehicle, vi is the velocity of the ith vehicle and fi is the
force applied to the longitudinal dynamics of the ith vehicle,
where if fi > 0 a forward driving force occurs and if fi <
0, then a braking force takes place. mi is the mass of the
ith vehicle, di and κi are the constant frictional force and
the engine brake time constant. The signal ui is the control
variable, where if ui > 0, a throttle input results, and if ui < 0
then a braking input occurs. Parameters are chosen as in [3]:

mi = 1300kg, Aip = 0.3Ns2/m2, di = 100N
κi = 0.2s, v0 = 20m/s

As in [23], a safety distance frequently used in automated
highway systems based on the Time-Headway policy (CTH)
is used in this design. The safety distance defined by the CTH
policy is described by (e.g. see [23])

ξd(vi) = ξd0 + βvi (42)

where ξd0 is the distance between stationary vehicles, and
β is the so-called headway time. It is well known that the
safety distance is closely related to the vehicle’s velocity.
Therefore, the safety distances in (42) are more practicable
when compared with the work in [3] and [21] in which the
safety distance is chosen as a constant.

Define ξd0 = 1, β = 0.5 and vd = v0 as an ideal driving
velocity, and let

xi1 = ξi − ξd(vi) (43)
xi2 = vi − vd (44)

xi3 =
fi −Aipv2

0 − di
1000

(45)

for i = 1, 2, . . . , 6. Then, a 6-vehicle following system can be
described in the form of (1) as follows:

ẋi =

 0 1.0046 −0.3846
0 −0.0092 0.7692
0 0 −5


︸ ︷︷ ︸

Ai

xi

+

 0
0

0.005


︸ ︷︷ ︸

B

(ui + 220 + φi(xi, t))

+

 −x(i−1)2

0
0


︸ ︷︷ ︸

Ξi(i−1)

+

 0.00046x2
i2

−0.00023x2
i2

0


︸ ︷︷ ︸

Ξii

+ψi(t, x), i = 1, 2, . . . , 6 (46)

where Ξij = 0 if i 6= j and j 6= i− 1, and

Ξi0 =

 −x02

0
0

 =

 −v0 + vd
0
0

 = 0

The bounds of the unknown matched uncertainty φi(xi, t) are
assumed to satisfy

‖φ1(x1, t)‖ ≤ 20|x11 + x12|+ 80|x13| (47)
‖φ2(x2, t)‖ ≤ 25|x21 + x22|+ 75|x23| (48)
‖φ3(x3, t)‖ ≤ 30|x31 + x32|+ 70|x33| (49)
‖φ4(x4, t)‖ ≤ 35|x41 + x42|+ 65|x43| (50)
‖φ5(x5, t)‖ ≤ 40|x51 + x52|+ 60|x53| (51)
‖φ6(x6, t)‖ ≤ 45|x61 + x62|+ 55|x63| (52)

Remark 6. The high-speed following system is a physical
system and the mass of each vehicle is relatively large and thus
the corresponding driving/braking forces are large. It should be
noted that the uncertainty added to the system in the current
study is to illustrate the robustness of the designed control
system to verify the results obtained in this paper. This element
is not a feature of the system in [3].

Consider the system (46) in the domain

Di = {(xi1, xi2, xi3) |xi2| < 20} (53)

which, from (44), implies that the maximus speed of all the
cars is 40m/s (144 Km/h).

By using the algorithm in [8], the coordinate transformation
zi = Tixi for i = 1, 2, . . . , 6 can be obtained with Ti defined
by

Ti =

 1 0 0
0 1 0
13 20.79 1
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then the system (46) is transformed into the form (13)-(14)
with[

Ai1 Ai2
Ai3 Ai4

]
=

 5 9 −0.3846
−10 −16 0.7692
−77.88 −111.668 5.9908


Bi =

 0
0

0.005


for i = 1, 2, . . . , 6 and

Γii(t, zj) =

[
Γaii(t, zj)
Γbii(t, zj)

]
=

 0.000115x2
i2

−0.00023x2
i2

−0.0033x2
i2


for i = 1, 2, . . . , 6 and

Γi(i−1) =

[
Γai(i−1)(t, zj)

Γbi(i−1)(t, zj)

]

=

 −x(i−1)2

0
−13x(i−1)2

 , i = 2, . . . , 6

The bounds on the unknown interconnections satisfy

δa1 (t, z) ≤ 0.01 cos2(z12)‖z1‖+0.008 sin2(z21)‖z2‖
δa2 (t, z) ≤ 0.009 cos2(z21)‖z2‖+0.016 sin2(z13)‖z1‖

+0.0096 cos2(z33)‖z3‖
δa3 (t, z) ≤ 0.008 sin2(z32)‖z3‖+0.007 cos2(z11)‖z1‖

+0.011 cos2(z22)‖z2‖+0.0095 cos2(z42)‖z4‖
δa4 (t, z) ≤ 0.011 cos2(z41)‖z4‖+0.012 cos2(z22)‖z2‖

+0.01 cos2(z31)‖z3‖+0.0078 cos2(z51)‖z5‖
δa5 (t, z) ≤ 0.012 sin2(z51)‖z5‖+0.016 cos2(z23)‖z2‖

+0.009 sin2(z42)‖z4‖+0.0074 cos2(z63)‖z6‖
δa6 (t, z) ≤ 0.02 sin2(z63)‖z6‖+0.0075 sin2(z13)‖z1‖

+0.012 sin2(z51)‖z5‖

δb1(t, z) ≤ 0.24 cos2(z12)‖z1‖︸ ︷︷ ︸
µ11(t,z1)

+0.192|z22|︸ ︷︷ ︸
µ12(t,z2)

δb2(t, z) ≤ 0.18 cos2(z21)‖z2‖︸ ︷︷ ︸
µ22(t,z2)

+0.38 sin2(z13)‖z1‖︸ ︷︷ ︸
µ21(t,z1)

+

0.32 sin2(z22)‖z1‖+0.192 sin2(z22z33)‖z3‖︸ ︷︷ ︸
ν2(t,z)

δb3(t, z) ≤ 0.2|z21+z22|+0.1|z23|︸ ︷︷ ︸
µ32(t,z2)

δb4(t, z) ≤ 0.3|z11+z13|+0.2|z12|︸ ︷︷ ︸
µ41(t,z1)

+0.6|z51+z52|+0.4|z53|︸ ︷︷ ︸
µ45(t,z5)

δb6(t, z) ≤ 0.6|z21+z22|+0.4|z23|︸ ︷︷ ︸
µ62(t,z2)

It is clear that the known nonlinear interconnections
Γij(t, zj) in equation (21) can be expressed as

Γsii =

 0 0.3
1300xi2 0

0 − 0.3
1300xi2 0

0 − 4.2864
1300 xi2 0

 , i = 1, . . . , 6

Γs21 = Γs32 =

 0 −1 0
0 0 0
0 −13 0


which, by direct verification, satisfy (21). Now define the
sliding surface as

σ(zi) = zi3, i = 1, . . . , 6

Then, when the sliding motion takes place, from Lemma 1,

δa1 (t, za1 , . . . , z
a
6 ) ≤ 0.01 cos2(z12)‖za1‖+0.008 sin2(z21)‖za2‖

δa2 (t, za1 , . . . , z
a
6 ) ≤ 0.009 cos2(z21)‖za2‖+0.016 sin2(z12)‖za1‖

δa3 (t, za1 , . . . , z
a
6 ) ≤ 0.008 sin2(z32)‖za3‖+0.007 cos2(z11)‖za1‖

+0.011 cos2(z22)‖za2‖
+0.0095 cos2(z42)‖za4‖

δa4 (t, za1 , . . . , z
a
6 ) ≤ 0.011 cos2(z41)‖za4‖+ 0.012 cos2(z22)‖za2‖

+0.01 cos2(z31)‖za3‖
+0.0078 cos2(z51)‖za5‖

δa5 (t, za1 , . . . , z
a
6 ) ≤ 0.012 sin2(z51)‖za5‖+ 0.009 sin2(z42)‖za4‖

δa6 (t, za1 , . . . , z
a
6 ) ≤ 0.012 sin2(z51)‖za5‖

Choose Q1 = 1000I2, Q2 = 234I2, Q3 = 23I2, Q4 =
1.3I2, Q5 = 0.05I2 and Q6 = 0.01I2, by solving the
Lyapunov equation, (17) yields

P1 =

[
1577.27 −931.82
−931.82 613.64

]
P2 =

[
369.08 −218.05
−218.05 143.59

]
P3 =

[
36.28 −21.43
−21.43 14.11

]
P4 =

[
2.05 −1.21
−1.21 0.80

]
P5 =

[
0.079 −0.047
−0.047 0.031

]
P6 =

[
0.016 −0.0093
−0.0093 0.0061

]
Then, the matrix function M can be obtained. It is straightfor-

ward to verify that in the domain Ω = T (D1×D2×· · ·×D6)
where Di are given in (53) for i = 1, . . . , 6,

Mτ +M > 0

It follows from Theorem 1 that the designed sliding mode is
asymptotically stable.

Choose

ζ1 = 200 + 0.32‖z1‖ ζ4 = 200
ζ2 = 200 ζ5 = 200
ζ3 = 200 + 0.192‖z3‖ ζ6 = 200
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Fig. 1. Time responses of the state variables of the system (46)
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Fig. 2. Time responses of the velocities of the vehicles

From (30), the controller ui for i = 1, . . . , 3 is well
defined and the condition (31) in Theorem 2 is satisfied in
the considered domain.

Simulation results are obtained and shown in Fig.1-Fig.5.
The time responses of all the system states are shown in Fig.1.
From Fig.1, it is clear to see that all subsystems are stabilized
even in the presence of uncertainties. The time response
of velocities, driving/braking forces and distances with safe
distances defined in (42) are shown in Fig.2-Fig.4 respectively.
According to Fig.4, all cars are running within the prescribed
safe distance to avoid collision. In Fig.3, it is clear to see that
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Fig. 3. Time responses of the driving/braking forces of the vehicles

some subsystems, e.g. the 4th and 5th subsystems, experienced
relatively large disturbances. However, owing to the robustness
of the controller with respect to matched uncertainties when in
the sliding mode, the closed-loop performance is robust. The
control input signals applied to the system (46) are shown in
Fig.5. It should be noted that a boundary layer approximation
is used in the simulation, and thus there is no chattering. The
simulation results show that the proposed approach is effective.
Remark 7. From the simulation example, it is clear to see that
the bounds on the uncertainties have a more general form in
this paper when compared with the existing work in [3] and
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Fig. 4. Time responses of the actual distances between vehicles and the safe
distance defined in (42)
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Fig. 5. Time responses of the system input

[24]. In fact, in [3], the uncertainties are inevitably assumed to
be a linear combination of known nonlinear functions in order
to adaptively compensate parameter uncertainty. Furthermore,
the bounds on the interconnections are assumed to satisfy a
linear growth condition (i.e. ‖δi‖ ≤

∑N
j=0 cj‖xj‖). In [24],

an adaptive fuzzy control is applied on an automated highway
system. In order to counteract the effect of the uncertainties,
the bounds on the interconnection terms are assumed to have
a special structure [24].

VI. CONCLUSION

A decentralised state feedback sliding mode control law has
been proposed to asymptotically stabilise a class of nonlinear
interconnected systems with known and unknown interconnec-
tions in the considered domain. Both matched and mismatched
uncertainties are considered. The bounds on the uncertainties

can be functions instead of constants or polynomial bounds
as considered in previous work. Both known interconnections
and the bounds on the unknown interconnections have been
fully considered in the control design to reduce conservatism.
The developed results are applicable to a wide class of inter-
connected systems. Simulations based on a vehicle-following
system have been presented to show that the results obtained
are effective.
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