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Nowadays, rigid-link manipulators have been extensively used in various indus-

trial applications, such as automotive industry and manufacturing operations.

Nonetheless, despite of their precise and well-established position control, rigid-
link manipulators suffer from their lack of flexibility, especially when operated

in cluttered, unknown, dynamic environments, as well as their inherent rigid-

ity which limits their applications in a shared human-robot workspace. In this
paper, we report our current progress on mobile continuum manipulators ap-

plication in dynamic environments. The results show that a continuum arm,

mounted on a mobile platform and equipped with a reactive motion planner,
is a promising candidate to be used in dynamic industrial environments.
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1. Introduction

The rigid-link manipulators have been largely deployed in various industrial

applications. Mainly characterized by their precise position control, rigid-

link manipulators have became a perfect choice in industrial tasks which

require accurate movement in a well-defined environment. Nonetheless, this

feature does not eliminate the fact that current rigid-link manipulators suf-

fer from lack of flexibility, especially when operated in cluttered, unknown,

dynamic environments. Their inherent rigidity also limits their applications

in a task which requires human and robot working together in a shared en-

vironment.

In the last decade, several works have attempted to improve safety as-

pect of rigid-link manipulators. Several attempts from the mechanical side

have been reported, such as the design of flexible joint1 and variable stiff-

ness actuator.2 Although these solutions are generally low cost and have

fast response, they lack flexibility due to the fact that every task will need

a special-purpose compliant design. From the control design side, several

works have also been reported, such as a design of human-aware motion

planning which tried to use the safety criteria as parameters in the motion

planning stage3 and an elastic strip algorithm which exploits redundancy

of the manipulators.4,5

Besides those efforts, a recent development of new continuous backbone

manipulators has been well presented in several works.6,7 This continuum

manipulators, due to their ability to bend at any point along the back-

bone, possess higher flexibility and dexterity compared to the rigid-link

counterparts. Continuum manipulators are able to navigate in tight space

and also manipulate object with their whole body. Their compliance struc-

ture also makes their performance better under unavoidable contact with

environments, including human. Thus, despite their current vast deploy-

ment in medical applications,8 continuum manipulators can be a promising

candidate for industrial setting, like the serpentine-style manipulator used

in waste storage tank remediation,9 especially when attached on a mobile

platform.

In this paper, we report our current research on the design of reactive

motion planning strategy for mobile continuum manipulators in dynamic

environments. The motion planning is a modification of a well-known po-

tential field method usually employed in rigid-link manipulators. The al-

gorithm was tested on a model of three-segments continuum manipulators

assumed to be mounted on a mobile platform. The results show that the

proposed system can reach a desired position while avoiding contact with
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Fig. 1. An example of a tendon-driven continuum manipulator used as a model in this
work.

moving obstacle and, thus, can be a promising candidate to be used in

dynamic industrial setting, such as the one which requires human-robot

coexistence and collaboration.

2. Mobile Continuum Manipulator Model

In this section, we summarize the mathematical model that we use through-

out the paper. The continuum manipulator model is based on a constant-

curvature kinematic model. Each segment of the manipulators is assumed

to be a circular arc with constant curvature radius at every given time.

The pose of each segment is described by three configuration space param-

eters, i.e. the arc curvature κ, deflection angle φ, and segment length s.

These parameters will determine the pose of the tip with respect to the

base according to a forward kinematics relation as presented in.6

Besides the general forward kinematics relation which maps the config-

uration space to task space for all type of constant-curvature continuum

manipulators, we also need a specific mapping from actuator space to the

configuration space which depends on the actuation strategy of the manip-

ulators. The model in this paper is based on a tendon-driven continuum

manipulator presented in10 as depicted in Figure 1. Every segment consists

of 3 uniformly-separated tendons used to govern the movement. The N -

segments manipulator with a movable base can be described by actuator

space variables defined as q =
[
q0 q1 ... qN

]T
. While q0 ∈ R6 represents

the base’s position and orientation for a 6 degree-of-freedom base, every

element qi for i > 0 describes segment-i where qi =
[
li1 li2 li3

]T
and lij

denotes the tendon’s length of tendon-j in segment-i. The mapping be-

tween this actuator space variables to the configuration space variables is

well documented in.6
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Fig. 2. This figure illustrates a three-segments continuum manipulator with mobile

platform.

The pose of the point along the body of manipulators p(q, ξ) ∈ R3,

including the special case end-effector, can be derived using the forward

kinematics relation. ξ is defined as a scalar coefficient vector, describing a

point along the body of segment-i from the base (ξi = 0) to the tip (ξi = 1).

The pose can be expressed as

N
0 T(q, ξ) =

[
R(q, ξ) x(q, ξ)

01×3 1

]
(1)

where R(q, ξ) ∈ SO(3) stands for the rotation matrix. Applying a partial

derivative to the position vector with respect to actuator space variables

q, we can calculate the Jacobian J(q, ξ) ∈ R3×3N which relates velocity in

task space to the actuator space as follows

q̇ = J(q, ξ)+ẋ(q, ξ), (2)

where (+) operation represents a pseudo-inverse as described in.11

3. Reactive Motion Planning

Due to the nature of the unpredictable environment, the motion planning

strategy is based on a reactive obstacle avoidance approach. The well-known

potential field12 is employed in this paper with a modification such that it

can be easily applied to a kinematic model of continuum manipulators. In

preference to use the negative gradient of the potential (−∇U(x)) as a task-

space force F, we use them as a task-space velocity input ṗ. The attractive

field is designed to attract the end-effector towards a desired point while the

repulsive field is applied to a series of points-subjected-to-potential (PSPs)

along the backbone of manipulator to make it avoid collision. The resulting
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task space field can then be transformed to an actuator space velocity q̇

via inverse Jacobian relation in Equation (2).

Besides the field for obstacle avoidance, we also add another layer of po-

tential field in the actuator space for constraint avoidance. This is useful to

avoid the inherent mechanical constraints in the continuum manipulators,

i.e. the maximum and minimum tendon’s length deviation from a normal

length. This is done by applying an attractive field to make the tendon’s

length as close as possible to the normal length L, which consequently makes

the tendon’s length avoid maximum or minimum deviation. To make this

added potential works with as less disturbance as possible to the task space

obstacle avoidance potential, we multiply the overall constraint-avoidance

term with a weight function which depends on a distance between the end

effector x and a target point xd as follows

w(x) = (1− e−µ‖(x−xd)‖), (3)

where µ is positive constant.

The total field in actuator space can be derived by adding all of the

field components from the obstacle avoidance stage, i.e. the attractive field

in the end-effector and the repulsive field in all PSPs, as well as from the

constraint-avoidance stage. A more detailed explanation on this reactive

motion planning algorithm can be seen in.13 This actuator space velocity

q̇ will be fed as an input to the kinematic model. In reality, this can be

realized by modifying the tendon’s length q using DC motors connected to

each tendons.

4. Results and Discussion

In this section, we present the simulation results of the proposed algorithm.

The simulation was built under Robot Operating System (ROS) architec-

ture, running at a rate of 40 Hz. The number of segments is chosen to be 3

(N = 3) and the number of PSPs is 3 per segment. The target is assumed

to be fixed (drew as a red point) while a spherical obstacle with the radius

of 0.01 m (drew as a black sphere) moves at a constant speed.

In Figure 3, we can see the movement of the manipulators when the

obstacle moves close to the upper segment. We can see that the body of

manipulators can modify its shape to avoid collision with the obstacle while,

at the same time, the end effector still maintains its position to match a

desired target. This flexibility is advantageous, especially if the industrial

environment where the manipulator works is cluttered and unstructured.
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Fig. 3. The behavior of the manipulator for a static target position (small red dot)

when obstacle (black sphere) moves close to the upper segment. The order of movement
is as follows: upper left picture, upper right picture, lower left picture, and finally lower

right picture.

Figure 4, on the other hand, demonstrates the movement of manipula-

tor when obstacle moves close to the lower segment as well as the mobile

platform. The redundancy makes the manipulator can avoid obstacle by

changing the shape accordingly as well as moving its mobile base with-

out disturbing the task, i.e. makes the end effector tracks a static target

position.

From the results, we can see that the reactive manner of the algorithm,

combined with inherent flexibility and compliance of the continuum manip-

ulators, make the mobile continuum arm powerful for dynamic industrial

environments. The obstacle avoidance will make the manipulators avoid

collision by fully exploiting their redundancy and flexibility, hence, makes

them well suited for dynamic and cluttered environments. In case of un-

avoidable contact with the environment, the inherent compliance also makes

them safer in comparison to the rigid-link counterparts. These advantages

of course do not eliminate the fact that the current continuum manipulators

are still lacking in terms of force control and payload capacity, which are

also among the important aspects in a number of industrial tasks. However,

for a simple task, such as picking and placing light object, by attaching a
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Fig. 4. The behavior of the manipulator for a static target position (small red dot)

when obstacle (black sphere) moves close to the lower segment and the mobile platform.
The order of movement is as follows: upper left picture, upper right picture, lower left

picture, and finally lower right picture.

gripper in the end effector, this manipulator along with the algorithm will

be perfectly fit.

5. Conclusions

In this paper, we present our recent progress on a reactive motion plan-

ning for multi-segment tendon-driven continuum manipulator with a mobile

platform. The algorithm is based on a modification of a well-known poten-

tial field used to attract the end effector to a desired target and repel the

manipulator’s body from collision. Another layer of potential field is also

used to avoid mechanical constraint in the manipulator during the move-

ment. The algorithm is shown to work well in avoiding moving obstacle for

the kinematic model of continuum manipulator. The work demonstrates

that the overall proposal makes a suitable candidate to be applied in dy-

namic industrial settings, especially those that have cluttered environment

or human worker close to the manipulator.
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