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Abstract

In multiview video systems, multiple cameras generally uiiegthe same scene from different
perspectives, such that users have the possibility totsieir preferred viewpoint. This results in large
amounts of highly redundant data, which needs to be propertgled during encoding and transmission
over resource-constrained channels. In this work, we stadiing and transmission strategies in mul-
ticamera systems, where correlated sources send datagtheobottleneck channel to a central server,
which eventually transmits views to different interactivgers. We propose a dynamic correlation-aware
packet scheduling optimization under delay, bandwidtld, iswteractivity constraints. The optimization
relies both on a novel rate-distortion model, which captuhe importance of each view in the 3D scene
reconstruction, and on an objective function that optimi@sources based on a client navigation model.
The latter takes into account the distortion experiencedhisractive clients as well as the distortion
variations that might be observed by clients during mudtivinavigation. We solve the scheduling
problem with a novel trellis-based solution, which perntibssformally decompose the multivariate
optimization problem thereby significantly reducing thengutation complexity. Simulation results show
the gain of the proposed algorithm compared to baselinedsding policies. More in details, we show
the gain offered by our dynamic scheduling policy comparedtatic camera allocation strategies and
to schemes with constant coding strategies. Finally, wavghat the best scheduling policy consistently
adapts to the most likely user navigation path and that itinmizes distortion variations that can be

very disturbing for users in traditional navigation syssem
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I. INTRODUCTION

The bursting diffusion of novel video sharing and streamapglications has recently opened
the era of user-centric multimedia. In new multimedia sssj users do not passively download
media content, but rather dynamically select the conteyt &éine interested in. Resource allocation
strategies cannot anymore be built offline, according tadgiined users behaviors. Hence,
effective real-time interactive services can only be deyif adaptivity to channel conditions
and users dynamics represents the primary feature of medtlisery strategies.

In order to accomodate for dynamic networks, online resmualtocation strategies have
been proposed for video applications [1], [2]. However, femrks have extended the study
to interactive multiview video streaming applications.eTmain challenges with these new
applications are the proper handling of the spatial caieiahat exists among different camera
views capturing the same 3D scene, and the uncertainty of usguests since those can freely
navigate in the multiview content. These two challengesehawt been addressed together,
to the best of our knowledge. Spatial correlation has bekentanto account in multisource
resource allocation strategies for sensor networks [3] fandnore general wireless networks
[4], [5]. Interactivity of users is however mostly overlaak in resource allocation solutions in
the literature. In this work, we exactly aim at filling thispgy proposing resource allocation
strategies where users’ navigation features play a key irolehe optimized scheduling of
information from correlated sources.

We consider a live acquisition scenario in which multiplenesas acquire frames of the
same scene but from different perspectives. Each camewwresdghe scene, produces and stores
frames in its buffer, possibly in different independentlyceded versions. We assume that no
content information is exchanged among cameras due to stemsyconfiguration or resource
limitations. The only minimal information that is known aigmi is the position of the cameras,
which is possibly updated when cameras change positionynarndic settings. The encoded
frames are then sent from the cameras to a central servergthra bottleneck channel under

deadline constraints imposed by the streaming applicafiogerver gathers the camera frames
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Figure 1. Multicamera system with bottleneck network. Eaeimera acquires, encodes, and temporally stores frames of a
given view of the 3D scene. Frames are sent through a botkecieannel to a central server, that eventually servestslien

requests.

and eventually serves the clients requests. Our objeativeich a system is to maximize the
temporal quality variations for users navigating in the tiwidw content. In particular, when the
channel constraints do not permit to send all captured viégwsecomes important to optimize
the scheduling policy in such a way that the quality in theorestruction of the multi-camera
data is maximized and both bandwidth and time constrairggraet.

We propose a newavigation-aware packet scheduling algorithm for streaming from multiple
correlated cameras in bandwidth-limited networks. We wharsa correlation-based rate distortion
(RD) model that is specific to multi-camera systems and wenfibaite a packet scheduling
optimization problem that minimizes the distortion of thatal available at the server, while
also reducing the distortion variations along most likegvigation paths. We further propose
to select the coding structure dynamically according togheket scheduling strategy. In this
way, we are able to constantly adapt the set of coded padkatsate transmitted to the server
to the channel conditions, to the content information, al asto the expected users behavior.
To solve the resulting multivariate optimization problewe propose anovel solving algorithm
that is able to reduce the computational complexity of theedaling solution by decomposition
while preserving its optimality. Simulation results deratrate that our new dynamic scheduling
algorithm outperforms baseline scheduling policies wittis coding strategy and transmission
schemes with limited adaptivity. In particular, we showttimiormation about users’ interaction
in the problem formulation leads to an improvement in teringesceived quality with respect to

classical scheduling algorithms. Simulation results alsthine the limitations of commonly used
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static encoding strategies that have poor performanceghhhiconstrained scenarios. Finally,
the results show that smooth quality variations are expeeé over the navigation path with
our optimal scheduling strategy, which is not the case dest&the-art scheduling solutions
that merely target minimal average distortion.

The remainder of this paper is organized as follows. Relatedks on multiview video
streaming are described in Section Il. Section Il deserittee multicamera system, together
with our new rate-distortion function for the represematof 3D scenes. The packet scheduling
problem is formulated in Section IV and the trellis-basedirojzation solution is provided in

Section V. In Section VI, we discuss the simulation resudts] we conclude in Section VII.

[I. RELATED WORKS

Although resource allocation strategies have been widehgstigated in the literature for
single view video streaming, there are still many open engjés in multiview video scenarios.
In this section, we describe the works related to multivielWwesluling policies and highlight the
lack of complete solutions that take into account both sewarrelation in multiview settings
and users interactivity in navigation applications.

Several works have studied the problem of scheduling oktated video sources [3]-[7]. The
work in [3] proposes a spatial correlation model for visugbrmation in wireless multimedia
sensor networks (WMSNSs) and introduces an entropy-baselytmal framework to evaluate
the visual information offered by multiple cameras. Thetays however only solves a static
correlation-based camera selection problem, while we idensa dynamic correlation-based
packet scheduling optimization problem in our work. Morendwic camera scheduling for
WMSNSs have been proposed in [6], [7], where optimal resoaltmcation strategies adapt to
the dynamics of the system. The optimization however maaadlgresses surveillance networks
or object tracking scenarios, where the problem formutationsists in maximizing the coverage
of the area monitored by the camera sensors while presetivinlife time of the network. In our
work, we rather optimize the experienced quality of intév&cusers and the expected quality
variations perceived over likely navigation paths. Otherks [4], [5] have studied the problem
of source correlation aware transmission policy optimarafor multiview scheduling. However,
the interactivity of users has been neglected and only firemte coding strategies have been

considered so far.
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Some prior studies address the problem of providing to uségsactivity in selecting views,
while saving on transmitted bandwidth and view-switchiredag [8]—[13]. The work in [11] is
mainly focused on coding views with a minimum level of redandy in order to simplify the
view switching, and the works in [10], [14] optimize the slen of views to be encoded and
transmitted based on the user interest. The authors in [12],investigate the transmission of
multiview video coded streams on P2P networks and IP msliigaspectively. These works
mainly focus on the coding optimization proposed as an aripdefined solution to provide
interactive access to the different views [16]. In our wonke rather dynamically optimize the
coding modes and the scheduling of video frames for inteaatultiview navigation. We extend
our preliminary work in [17] to include users’ interactiyiin the scheduling optimization. This
allows the system to dynamically adapt the transmissioh@icbded frames to various system’s
dynamics and to outperform the above transmission polimies priori encoded frames.

Finally, in our scheduling optimization we aim at minimigirthe experienced distortion as
well as the temporal variations of the experienced digiorfor interactive users. Recently, it
has been shown the importance of studying the temporaltguwaiiations in adaptive streaming
strategies [18], [19]. These works target single view agapgtreaming over HTTP. We follow
similar intuitions and extend the mixed objective functioomposed on both the perceived

distortion and the temporal distortion variation to mu#iv video navigation applications.

[1l. M ULTIVIEW ACQUISITION FRAMEWORK

In the following, we first present the multicamera systemsidered in our work. Then, we
describe in details the adopted coding scheme and showhihabtrelation between the different
cameras plays a crucial role in the reconstruction of imagesultiview navigation in resource
constrained environments. Finally, we propose a new ratertion model for the representation

of the 3D scene information.

A. Multi-camera acquisition system

We consider a system with/ cameras that acquire images and depth information of a 3D
scene from different viewpoints. Each frame can be encodexkey frame (i.e., as intra-coded
frame) or dependent frames, that are indepdentely coddddistributed source coding (DSC)

techniques using correlated key frames as side inform#8on We denote by P the dependent
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frames that use key frames correlated in the temporal doasjpossible SI, while WZ frames
use neighboring key frames both in the temporal and theapiimains. The encoded versions
are stored in each camera buffer for a maximunigtime slots, wherd} represents the frame
deadline. The coded frames are then transmitted to a cesainar, which eventually serves the

requests from interactive users.

Each camera acquires temporally consecutive frames, wdmiehcorrelated, especially for
static or low-motion 3D scenes: this is tteenporal correlation in image sequences. Neighboring
cameras might also acquire overlapping portions of the samee; this leads to correlated frames
due to thespatial correlation between multiview cameras. We assume that no information is
exchanged between camera except minimal information att@utamera position. With this
position information, each camera is able to coarsely edgérnthe contribution that it can offer
to the reconstruction of neighbor views [5]. For an imdgewe denote by (F|F) the level of
correlation betweett” and its neighbors (either in time or space) in aefThis levelp(F|F)
represents the proportion of the imagethat can be estimated frow. In the case of only
one imagel” composing the sefF, we havep(F'|F’) as the correlation level between the two

images.

In practice, network limitations might prevent the transsmn of all views to the server, which
eventually serves users according to their different retpuevhile navigating in the multiview
dataset. At the decoder side, missing images can be regotestrfrom correlated neighboring
views if available!. Both temporal and spatial correlation might help in retaming missing
images, so that it is important to accurately select the aadg be transmitted and their encoding
mode (i.e., key-frame or dependent frame), such that theageedistortion is minimized and
quality variations along the users’ navigation paths amneitdd. This is precisely the frame
scheduling problem considered in this paper. Before foatmg the problem more precisely,
we provide below details about the coding modes and thediatertion model used in our

multiview system.

The decoding process can be physically performed eithdreaténtral server or at the clients. Our problem formulation

general enough to consider both cases.
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B. Frame Coding Modes

We now give some details on the encoding and decoding steuthat are considered in our
interactive multiview system. At the camera side, each &asnndependently encoded as a key
frame. It is also encoded as P or WZ frames, with no a priodrimgtion on the frames that will
be available at the decoder side (i.e., with no a priori keolgke of the actual frame scheduling).
For each imagéd’, we define a neighborhood as the images that can be used asfeiteation
for decoding the P or WZ version df. Ideally, the neighborhood of imageé should include
all images correlated té'. This would increase the chances 6rto be decoded if transmitted
as dependent frame. Similarly to [20], each P or WZ frame 0dad with respect to the least
correlated frame in the neighborhood, that is with a codiaig that guarantees decoding in
the worst-case scenario. The lower is the correlation batwe and the least correlated image
in the neighborhood, the less efficient is the codingtos dependent frame. For this reason,
the neighborhood is limited to any frame that has a level ofetation with /' greater than a
predefined threshold valyg

More in details, then-th camera acquires the franig,, at timet. For any acquired frame

F, .., we define the set of possible S| frames in spatial and terhploraain respectively as

Ns(Eym) = {Fiy st p(Em|Fr) > Bs, with 1€ [1,M]} (2)

NT<Ft,m) - {Ft’,m S.t. p(Ft,m‘Ft’,m) > BT, W|th t/ S t} .

The P version of, ,,, is encoded considering as Sl only neighbor frames in the ¢eahpomain,
i.e., Nr(F,,,). Analogously, we assume that the WZ versionFf,, is encoded assuming a
S| region, which extends in both time and space, and it defaed/(F,,,) = {Ns(F;.n) U
Nr(Fi,)}. Note that only key frames within the defined neighborhooals be used at the

decoder as SlI.

We assume that the WZ version of the fraifig,,, which has been encoded by considering
F,, as side information, has an encoding rateffF; .| Fii) = [1 — p(Fim|Frr)] R{fl, where

R{fl is the encoding rate of the key version Bf;. Thus, since encoding is based on worst case
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S| frames, each WZ and P frame is encoded at a rate of

R’? =  max 1 — p(F, | Fy )] RE >
t,m Fy N (Fum) {[ ,0( t, | t 71)] ¢ ,l} ( )
RP — max 1= p(FynlFy ) RE ‘
b FtlymeNT(Ft,'nL) {[ p( g | ¢ )] 3 7m}

Note that a more scalable scheme can be considered by aggsdifierent WZ or P versions,
each one with differenti thresholds and thus different encoding rates. This woulitheehe
optimal scheduling solution, but it would not change ourbpeon formulation. For the sake of
simplicity, we consider one WZ and P version per frame in thoding.

At the receiver side, each received key frame is decodedheriently. We denote by the
key frames available at the decoder. Key framesgimnd in the neighborhood&/(F;,,) or
Nr(F,,,) are used to decode WZ or P frames, respectively. The missiagés that have not
been transmitted at the server are estimated, at the deswidlerview interpolation algorithms
using information from neighbor key frames. The neighborhof a missing imagé; ,, is given
by the set of key frames with a non null correlation with,,. More precisely, a missing view is
recovered from the neighbor key frames available at thavecby depth-image based rendering
(DIBR) techniques [21]. Typically, DIBR algorithms use depnformation in order to estimate
by projection the position of pixels from view in the missing viewn. The projected pixels
are generally of good precision (depending on the accurtiyeodepth map [22]) but they do
not cover the whole estimated image, due to visual occlgsidhe portion of the imagé; ,,
that can be recovered (i.e., not occluded) by the neighlaonds isp(F;,,|x). The remaining
occluded pixels covers a portidn- p(F; ,,,|x) of the imagef; ,,, and are recovered by inpainting

techniques [23].

C. Navigation-Aware Rate-Distortion Model

We now propose a novel rate-distortion model for our mudtivivideo navigation framework.
Recall that only a subset of the compressed images captyratl tameras is transmitted to the
server, which should be able to serve any client requests.i§equivalent to offer to the client
the possibility to efficiently reconstruct any camera viewaay time instant. If the framéﬁn
(i.e., the key-frame) is available at the decoder, the distois directly dependent on the source

rate R{fm. The distortion function is evaluated from the general egpion of the RD function
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of an intra-coded frame with high-rate assumption [24]:
d(RfS,) = pro 272 n 3)

where ¢ is the spatial variance of the frame apg is a constant depending on the source
distribution. This model has been chosen because it is gintple and yet accurate. However,
our packet scheduling framework is general and other saateedistortion functions could be
used. We assume that all key frames are encoded at the seafnéefaf%{fm = RE V{t,m}, to
target an almost constant quality of the scene across spacknae, in such a way that a smooth
interactive system can be offered to the user in ideal cmmdit This translates to having the
encoding rate for all key views when image content is simitadifferent views. The model
presented in the following can however be easily extendeal nwulti-rate encoding system.

If the key version ofF} ,, is missing at decoder but a WZ or P versions are available, the
frame F, ,,, is reconstructed also at the distortidf?”) as long as their rate has been chosen
accordingly to Eg. (2) and side information is availablethe remaining case in which neither
the key nor the WZ or P versions & ,, is received, this frame is reconstructed through DIBR
using the key frames available at the decoder, as explain@geaThe part of the image that can
be reconstructed from neighbor frames, i€ ,,|x), has a distortion equal to the distortion of
key frames, namely] (RK). The remaining part corresponding to occlusions is re@m/evith
inpainting techniques at a distortidpay. This results in an overall distortion of the reconstructed
image given ofp(Fy .. [x) - d (R®) + (1 — p(Fym[x)) dmax

We denote by the operatd(F') = 1 the availability of frameF at the decoder, and by
I(F) = 0 its absence. The fram is either the key versioit’s, of F, ,,, its WZ versionF}}”

orits P versionFt{Dm. Finally, we can write the distortion of framg, ,, at decoder as
Dy (R |x) = (4)

;

piyo? 228" if Z(Ff,) =1
or if I(thz) =1 and EFt/,leN(Ft,rn) I(thfl) =
or if I(Ftl,Dm) =1 and ZFt/ ENT (Ft,m) I(Ft{fm) > 1
P(Fym|X) - 1176227285 4 (1 = p(F,mlX)) - dmax  Otherwise.

Note that the overall distortion does not depend on the gpdates of the P and WZ frames,
as those are set in a conservative way according to Eq. (2).
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The interactivity offered to clients is captured by the campopularity P, the portion of
clients that can request the viel. Each encoded framé},, has a popularity? ,,, with
> P = 1, which it is defined as the probability that an interactiverugquests framé; ,,,.
Furthermore, the probability for a user to navigate fromnfear; ,, to frame F;,,; is denoted
by w/,,, with >, w;, ; = 1. The expected distortion experienced by interactive usavigating

in the 3D scene acquired at timds given by
M

Z Pt,th7m(RK|X) . (5)

m=1

Beyond the popularity-weighted distortion, another intant metric in 3D interactive services
is the smoothness of the navigation, i.e., the quality Wamaexperienced during the naviga-
tion. Varying quality while changing view can result in annaging degradation in quality of

experience. The smoothness of the navigation is given by

M M
Z Z win,JPt—l,l }Dt—l,l(RK|X) - Dt7m(RK|X)} . (6)

m=1 [=1
It is worth noting that, we consider a novel rate-distortmadel for interactive navigation, which

is able to combine the overall distortion from Eq. (5) and sheoothness experienced by users

while navigating, given by Eq. (6).

V. PACKET SCHEDULING OPTIMIZATION

We now describe the problem of rate-distortion optimal gackcheduling for multiview
camera systems. First, we describe the transmission mramesidered in our work, then we

propose a new problem formulation based on the rate-distonhodel described above.

A. Transmission policy

Each image acquired at a given time instant from a particodanera is packetized into
multiple data units (DUs) (one per encoded version), ancedtin the camera buffer. The DUs
representing the key versions contain texture and depthnrdtion about the 3D scene, while
WZ or P versions only contain the encoded texture infornmatgince they are not used to
reconstruct missing views. We consider a channel with |ssiee time slotsr, each one of
duration A7 and each one being a transmission opportunity. At egcthhe scheduler decides

the best set of DUs to schedule, that is the set of DUs thatopiiimize the navigation of the
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users while satisfying bandwidth constraints. Lossleaasimissions are considered, such that
scheduled packets are eventually available at the sere¢rrdpresent each image ,, by a
generic imageF;, where we have dropped the subsc(iptn) in favor of a general subscript

for the sake of clarity. The imagg; is acquired at timé&y; and expires at timéxs;. We then
define the set of candidates for being sent at tima&s the set of acquired images that do not
expire before the transmission is completed, i+ {F; s.t.Ta; < 7,7+ AT < Trs;}. The
different encoded versions of views ih are candidate DUs for being scheduled. However, we
impose the following scheduling policies: i) only one DU amjowZ, P, and key versions of
the same image can be scheduled; ii) a WZ or P version is stdtedaly if some Sl image
has already been scheduled. Finally, since both the chaonelitions and content models may
vary over time, leading to different scheduling policiesdéterent transmission opportunities,

the scheduling policy is updated periodically at each nemgmission opportunity.

B. Problem Formulation

The objective is now to select the best transmission polityprder to minimize the dis-
tortion and the distortion variations under channel camsts, content dynamics, and client
interactivity behavior. We define a scheduling policy atdimast = [m,m,, . .. ,7r|£‘]T where
m = [m1, ™, T3], @andm g, m o, m 3 are the scheduling policy of respectively the key, WZ, and
the P DU of F;. 2 A policy binary m;; defines transmission of the key, WZ, and the P DU of
F, for i = 1,2, and 3, respectively. In other words;;; = 1 means that the associated DU is

sent at the current transmission opportunitW\We can then express our optimization problem

2. depends on the time at which the policy is optimized but, for sake of clarity, weib this dependency in the notation.
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as follows

Problem 1:
min Dy = > PDy(x)+ A > wyP;|Dj(x|x) — Di(x|x)| p (7a)
A <7<Trs, JTa,j=Ta1—1
st. Y ma R 4w RV 4+ m,RD < O (7b)
!
» mi<l, Vi (7¢)
< Y (7d)
F’mEN(Fl)
7{3 < Z Tm,1 (7e)
FmENT(Fl)

where the objective function is composed of the expectetbrdiisn, defined in Eqg. (5), and
the smoothness of the navigation, defined in Eq. (6), expes@ by interactive users while
navigating the 3D scene. if, = 1 or F; € x, thenZ(F;) = 1, whereZ(F;) is the availability of
frame F; at the decoder. We have denoted)Xothe multiplier that allows to assign the appropriate
weight to quality variations in the objective metric, aseally adopted in similar optimization
problems [19]. Eq. (7b) imposes the bandwidth constraimt tuthe network conditions at the
current transmission opportunity, Eq. (7c) imposes that@ét one encoded version of an image
is scheduled, and Eq. (7d) and Eqg. (7e) force a dependene ftarhe scheduled if and only if
at least one side information key frame is available at trmoder. Finally,x is the set of DUs

already available at the decoder side and it representsethits of past scheduled decisions.

V. TRELLIS-BASED SCHEDULING ALGORITHM

The above scheduling optimization problem is challenging tb the inter-dependency and
the redundancy that subsist among candidate DUs.cbdmg-dependence is imposed by the
coding structure and it is such that a WZ or P frame can be detodly if at least one side
information key frame can also be decoded. Tasard-dependence is rather coming from the
correlation among neighboring key frames. Since a schddudg frame can reconstruct missing
frames, the exact reward of scheduling a key DU is not knowmi@ipbut it depends on the

scheduling policy of the correlated DUs.

DRAFT December 3, 2014



13

Because of coding- and reward-dependence, the optimizati&q. (7) cannot be solved by
conventional optimization frameworks. Solutions progbse [1], [2] could be adopted in the
case of coding-dependence, but they do not address thedrelependence. Although a formal
scheduling optimization has been posed for redundant DU&5) computational complexity
remains an open issue. A viable solution feward-dependent DUs is the trellis-based algorithm
proposed in [5], where branches in the trellis are prunedetiuce the complexity. However,
this pruning applies only among key frames DUs and not amaygakd dependent candidate
frames that are considered in this work. Thus, the solvinghoteto optimize the scheduling
policy in multiview systems is still a very challenging ptein.

Here, we propose a trellis-based solution that allows tolregtimality while reducing at the
same time the computational complexity of a complex fulrskaolution. The heterogeneity of
the DUs enables us to include our scheduling rules in thetamt®on of the trellis. These rules
provide an elegant structure to decouple reward-deperidést(key frames) from the reward-

independent ones (dependent frames), thereby signifyaaalicing the computation complexity.

A. Trellis Construction

We start from an initial staté,, characterized by the initial set of candidate DUs. We then
construct a trellis, as depicted in Fig. 2, where each brasam action (i.e., the scheduling
of a DU). Each actioru has a cost given by the size of the scheduled DU and a reward in
terms of distortion gaid(a), derived as the difference in the objective functibp in Eq. (7¢)
with and without the DU corresponding to the schedulingaacti. Each node in the trellis is
a state. The stat§, ; is the k-th node corresponding to theth DU that has been scheduled.

It is defined by the set of feasible actions that can be takemodesS;  (i.e., set of possible
DUs to schedule af; ;) A(S;x) and by the remaining channel bandwidits; ), evaluated

as the channel bandwiditi, minus the sum of the transmission costs corresponding to the
decisions taken along the path fraf to S; . Note thatA(S;,) = AP(S;.) U A*(S; ), where
AP(S; ;) and A¥(S; ) are the set of dependent and key candidate DUs, respectielgction

a € A(S;)) taken from the stat®,; leads to a successor stafe; ;. The DU scheduled by

a is removed from the set of candidates DUs for the future stdiethe successor states, also
DUs corresponding to the same image but at different engodénsions are removed from the

set of candidate DUs, to respect the constraint providedjin(Ec) of Problem 1. We denote by
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Figure 2. Example of the trellis construction at timein which the initial set of candidates at the initial stefig is

A(So) = {F{, FE V2 FVZ EF, FF}. The channel bandwidth allows to schedule two key framesnerkey frame and
two WZ or P frames. Black circle nodes denote states withmdhset of candidates or non-zero remaining channel baaittiyi
while green square nodes represent final states from whidhrtteer action is taken. The frame label provided on eacindira

going from S;_ , to S, . indicates the action taken fro}_, , that leads taS; ..

P(Si11x|Sik, a) the probability of arriving in stateb;,, , by taking actiona from states, .
In our case, given the actiom the future state is deterministically evaluated by the iaimg
candidate DUs and the channel bandwidth. This means thahgmib future states, only one

will be such thatP (S;;1|Sik,a) = 1 and0 for the remaining states.

Each stateS; . is further characterized by the value functidf(S; ) under a scheduling
policy 7, which represents the reward when starting from sfate and following the policy
w thereafter. In our problemy is the set of actions taken froii; , and thereafter. If at state
S;, the remaining channel bandwidth is zero or the set of catesdes null,S;; is a final
state, and no further actions can be taken. The value funétioa final state is always null,
i.e., Vz(S;%) = 0 [26]. Finally, the full-path going fromS, to a final state, which leads to the
maximum total reward, corresponds to the best set of DUs techeduled. From the Bellman’s

optimality equations, the best full-path can be found bykbaed induction from every final
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stateS; ;. as follows [27]

Vie(Sig) = max : {5(a) + Z Var (Sizaw ) P (Siga e [Sik, a)} : (8)
k/

aE.A(SZ',k

Such a problem however suffers from large computationalptexity, namely the trellis con-
struction is exponentially complex. In order to reduce tbenplexity, we impose the following

two rules in the trellis construction.

Rule 1. If the actiona corresponds to the scheduling of a dependent frame, therfr&aes

cannot be scheduled in any successor state.

The first rule avoids to construct redundant paths with tmeeseeward and cost. Recall that the
order of the actions does not matter as all selected DUs @/#ldheduled in the same transmission
opportunity at timer and none of the candidate DUs expires in the current trassonignterval.
For example, in Fig. 2, scheduling DBX and then DUF;VZ leads to the staté,,, which is
the same state that can be reached by scheduling?dd first and DU F* afterwards. That
state is reached with the same cost and reward in both cases.

Rule 1 is equivalent to chosing first the key frames to be schedddethre any other frame
versions. It reduces redundancy among branches withasbfogptimality, but more importantly,
it permits toseparate reward-dependent DUs from reward-independent ones. Weheanstate

the second rule.

Rule 2: If the actiona corresponds to scheduling a WZ or P frame at state thena and all
successor states/actions are replaced by a single no &ctoonh, leading to a final staﬁﬁl,k,
with C(S9, ) = C(Sik), A(SZ, ) = AP(Six) and with state value functioﬂ?’w*(SﬁLk,),

which corresponds to the optimal value function that candaeed by feasible scheduling of
DUs in A?(S; k).

Because of the separation of WZ/P sub-paths from key oneesetpby Rule 1, once a WZ/P
sub-path starts, the optimal value function can be found lmyosing the best set of reward-

independent DUs id?(S, ;). This problem can be written as follows:

Problem 2:

Init: Let A”(S;,) be the set of candidate WZ or P DUs at stéfge. The set of
candidate DUs is defined as the acquired frames that do natexjihin the current
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Figure 3.  Equivalent trellis-based solution. Only key femrcan be scheduled at black nodesndAaction taken from state

Si,r leads to a final statsﬂl_,k,. At each final stateWZ or P can be scheduled following Problem 2.

transmission slot and that satisfy constraints provideé&an (7c), Eq. (7d), and Eq.
(7e) in Problem 1. Let; andd(q;) be the transmission cost and reward, respectively,
of DU F; € AP(S; ). Let C(S; ) be the available BW.

Solve:

Ve (S 1) b} 9
(i) Tcrj};gi’k); (a) (9)

S.t. ch < C(Suk)

leT

Problem 2 can be solved by DP programming. It is actually ampkack problem [27] as
shown in the following. Lebétﬁ’:j(SLk) C AP(S; ) be the set of the firsf listed candidate DUs
in AP(S, ). Let defineD[j, w] as D[j, w] = MAXTCAY (S, 1) Y e O(a) sty .- < w, where
¢, is the cost of the DWy,. This means thab|j, w] is the best cumulative reward obtained from
selecting the best DUs amon@jf:j(si,k) whose transmission cost sums uputo Since all DUs

in A?(S; ) are reward-independent, we can claim that
D[]v 'LU] = maX{D[] - ]_,'lU], D[] —lLw-— Cj] + 6(a])} (10)

Thus, D[|AP(S; )|, C(Six)] is the solution to the Problem 2 and the iterative equatidd) (1
allows to solve the optimization problem in Eq. (9) as dymamiogramming problem (e.g.,

knapsack 0-1 problem) with a computational complexityCdf.A?(S; x)|C(Sik))-
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The trellis construction in Fig. 2 can then be replaced bydhe in Fig. 3, where initial
branches are constructed only for key actions and final sted@ be reached by taking no
action from stateS, . In this case, ifA?(S; ) is not null andC(S; ;) > 0, the successor final
stateS(,, ,, has a value functioﬁ/ﬂ*(sgrw) resulting from Problem 2, which evaluates the best
scheduling for dependent DUs among the oneA(SHl w) = AP(S; k). The proof of optimality

of our solving method with a modified trellis is provided b&lo

B. Proof of Optimality
Recalling thatA(S; ) = A”(S; ) U A*(S; ), from Eq. (8) we have

acA(S

— Z / SZ / Si 5 9
max{ mkax { )+ E Vier (Si1,) 1 [k a)}
max 5 —|— E [/ﬂ* Si / P Si ! SZ 3

= Imax {Vﬂk*(si7k) Vp (Sz,k)} (11)

y Vor*

Ve (Si) = max { ) + Z Vir (Sig1.0) P (Sict1 17| Si e Cl)}

whereV% (S; ) and V% (S; ) represent the value function of stafg, under the best policy*,
characterized by the scheduling of only key frames and W& és, respectively The decompo-
sition allows to distinguish the best action taken at s&ﬁeas a key(max {VE(Sik), VE(Sik)}

= VE(S;x)) or a WZ or P frame(max {VE (S, Sik)} = ) The state value
function V% (S; ;) assumes that a key frame is scheduled from sfage thus Rule 2 does not
apply to this set of possible actions. On the contr&f,(S; ;) is the state value function under
the policy of scheduling a WZ or P frames in stétg, and in all future states, from Rule 1.
We now focus on/?(S; ;) and expand it as follows

Ve(Sik) = max ) { )+ Z P (Sit1,1]Si ks a) Ve (Sis, k’)}

aEAp(Si,k

- (5 P Si / Sz y
ae%?éi,w{ (@) + Y P (Sip1u|Sik a)

&
( max . {5(&’) + Z P (Si+2,k”|Si+1,k’a CL/) Vﬂ*(SZ-_,_Zm) }) } (12)

a/EA(SiJrl_’]) o
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Noting thatA(S;;1,;) = AP(Si+1;) because of Rule 1, the above expression is equivalent to

a€AP(S; 1), o
(lIE.Ap(SH»Lj

Vf*(si,k:) = max {5( ) + 6 —|— Z P i+2, k”|SZ ky @, Q ) Vﬂ*(SH_Q m)}
)

— max)a#a,{& )+ () + )P Z+2k,,|s,k,aa)vw(sm,m)} (13)

a,a’eAP(Si,k s )

where we have used the property tbét(S;., ;) = AP(S;x) \ @ because of the coding indepen-
dency among P and WZ DUs. Denoting byhe maximum number of actions that can be taken

from .S; ;, under the best policy* and expanding Eq. (13) till the final state we get

acAr (S

= aeg}l)ax {Z(S a, } (24)

wherea = [aq, as, .. . a;] is the action vector and the last equality holds since alll fitates in

Vi (Sik) = max {25 aq) +ZP (Sitr|Sik, @) Vi ( z+[k’)}

the original trellis are set t6. This means that’”.(S; ) corresponds to the gain achieved by
solving the optimization problem in Eq. (9), namél{. (S; ) = Vw*(sﬁu), with 5, ; being
the state that can be reached fréi, by taking no actions. Then, Eq. (11) is equivalent to

Var (Si) = max { VA (Si), Ve (52,)) } (15)
This proves that Rule 2 permits to reach optimalify.

We have described above a novel trellis-based solution ton@e the problem in Eq. (7).
To simplify the computational complexity of the solutiohat would be otherwise exponential,
we have proposed two scheduling rules. These allow to déedhp actions of scheduling key
(reward-dependent) frames from WZ/P (reward-independearnes. From this novel decompo-
sition, we can then reduce any WZ/P sub-path in the trelliarteequivalent final state whose

state value function is the solution of a simple knapsaek1 optimization problem.

VI. SIMULATION RESULTS
A. Smulation Setup
We provide now simulation results for a multi-camera scenahere data have to be sent to a

central server over a bottleneck channel. We start the stihngcbptimization at- = 1 and set the
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following transmission opportunities everyt. Each transmission opportunity is characterized
by a channel raté€’.. At this new scheduling opportunity, a new optimization efprmed over
the successive time slot. We proceed similarly till the ehthe simulation, which in our case
corresponds to the expiration time of the last frame of tlleeisequence.

Our simulations are carried out with the “Ballet” video seque [28], which consists of
Ny = 100 frames, at a resolution ofr = 768 x 1024 pixel/frame andFr = 15 frames per
second. The total number of camer&isSince “Ballet” is a quite static video sequence where the
spatial correlation model does not substantially change time and the temporal correlation is
extremely large, we also created a synthé€ieviews sequence with a more dynamic correlation
model to test our algorithm over a more challenging scendnidhis synthetic sequence, the
spatial correlation model substantially changes ev#ryframes. In practice this corresponds
to a moving obstacle in the scene, or to moving cameras. Fir $equences, we study the
performance of our algorithms in different configuratiofes, different camera setups, different
users’ behavior and for different dynamics of the channeld@adth.

The image correlation used in decoding and reconstructiadgheodifferent frames is charac-
terized by two parameters, namelyandpr. We denote bys the number of spatially correlated
cameras and we assume that each view is correlated to afpgi@steighbor views, if available,
on both the left and the right sides. The correlation in tisideénoted by, which corresponds
to the number of correlated images in the same camera vieth Boand ps represent the
maximum number of correlated images in the time and space domaipecasgely. The control
parametergr andps take different values in our simulations in order to study lehavior of the
scheduler for different neighborhood, as defined in Eq. Thgen, theactual level of correlation
p experienced in each single frame depends on the video dotités computed as the portion
of image that can be reconstructed by each image in the naigbbd. We refer the reader to
[29] for further details on the construction of the correlatvalues.

The network scenarios considered in our simulations areactexrized by eithestatic or
dynamic channels. The former means that the channel bandwidth is constant ttveeentire
streaming session, while the latter consider a dynamic\hehaf the channel. In this case,
we model the channel as a 2-state Markov model where bad and gfates identifies two
different values for the available channel bandwidth. Weate byp the transition probability,

i.e., the probability of change state, in the Markov modek. €ach video sequence a realization
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of the dynamic channel is considered and the schedulingoimeaince is evaluated for that
specific channel realization. This is iterated fdi0 loops to compute average performance
with channel dynamics. We further study two models for usgeractivity, namelystatic or
dynamic multiview navigation. In the case of static navigation, we assume that the viavgitian
probability w; = 0, for j # [ andw;; = 1. We also consider a uniform camera popularity, i.e.,
P, = 1/M, with M being the number of camera views. This scenario emulateati&a stene
where there is no a peak of interest in specific view and naasten changing viewpoints. On
the other hand, dynamic navigation is the scenario in whitghrtavigation path evolves over
time, to follow changes in the scene or change of preferefmessers. From a given frame
F, ., the user can navigate to neighboring views with probability;. In particular, users most
likely select views more on the right (left) if the scene isvimg to the right (left). As a result,
the camera popularity for the first acquired frames /37, while for all successive instants the
popularity is derived from the transition probabilities.j P, ,,, = >, Pi—1 Wim.

The performance results are given by the average qualitgpated as PSNR averaged over
the views, with the average weighted by the camera popytafihis leads to an average PSNR
value for each acquisition time. Alternatively, we also\pde the popularity-weighted PSNR
values averaged both in time and in space. In case of dyndmitnel settings, the latter metric
is also averaged over thB)0 simulated loops, while the PSNR over time is provided for a
representative realization rather than the behavior geeraver the loops. This allows to better
observe the quality oscillations experienced by userse lwit, even if some frames are decoded
at high quality, the average PSNR of the reconstructed scegkt be in the low PSNR range
in challenging transmission conditions.

Finally, we compare the proposed algorithm to three basedilgorithms: two scheduling
strategies (“BL, Cont=0" and “BL, Cont=1") for a pre-seledtcoding and camera selection
strategy, our previous scheduling solution (“Toni et ab])[where a simplistic coding is con-
sidered and no dynamic navigation path is taken into ac¢camd the well known “RaDiO”
algorithm [1]. In particular, “BL, Cont=0" considers an aigni camera selection and a coding
strategy optimized based on the spatial correlation thisteketween views at the beginning of

the sequence. This means that we consider a pre-selectew &icicture and camera priority

3The camera popularity evolves over time for dynamic naiégapaths, while it is constant for static navigation paths.
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order; at every transmission opportunity, we schedule tifecent number of DUs to reach
the channel bandwith. In practice, we have considered theea selection algorithm in [3]
and we have extended it to a coding and camera selectionithlgosuch that we can have a
fair comparison with our algorithm. The second baselinehoet “BL, Cont=1", is an improved
version of the previous one, where we assume that the codithga@mera selection is updated at
every acquired frame. This means that the selection cahgstonsiders an updated and correct
correlation model, but it neglects the channel informatiorthe optimization of the packet
scheduling. Finally, the packet scheduling optimizatidiorii et al.” uses a correlation-aware
packet scheduling optimization that is refined at everydmaigsion; the camera popularity is
considered in the optimization but there is no considenatibthe navigation path and quality
variations, and only key frames are used as candidate DUs.la3t baseline algorithm that
we have implemented is the “RaDiO” one, whose schedulingmopation has been extended
to multiview streaming. We have considered that each fraarelidate for being scheduled is
a DU. Each DU has its own policy vector (deciding if sending U and in which encoded
version) and the optimal scheduling strategy is evaluateeting the optimization over each
considered DU, following the same procedure as in [1].

In the following, the PSNR of the reconstructed scene isévstuated from the rate-distortion
model described in Sec. IlI-C. Later, we validate our findirlgy experiments with actual

reconstruction of the video frames at the decoder.

B. Average distortion minimization

We first look at the behavior of the scheduling strategiesha ¢ase of dynamic channels
when the objective function does not consider quality vemes, i.e., A = 0 in Eq. (7). For the
sake of clarity, we first compare our scheduling algorithrthwBL” and “Toni et al.” baseline
algorithms. Then, we provide a comparison with the “RaDiOéthod. In Fig. 4, we depict
the popularity-weighted PSNR (averaged over the views) ametion of the frame index for
both Synthetic and Ballet sequence. The navigation pathatsc $out the channel is dynamic,
with p = 0.8. For the Synthetic sequence, we have the channel statesdiefsC = {2,1},
which means that the available bandwidth is two times (ome)ithe transmission cost of a
key frame in good (bad) channel conditions, while for thel&asequences the channel states

are C = {1.5,1}. The results are averaged over several simluations, eaehcansidering a
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Figure 4. Temporal PSNR evolution for different schedulagorithms ps = 4, pr = 1, static navigation path andynamic
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Figure 5. View popularityP; ,,, for the Synthetic video sequence with dynamic navigation.

specific realization of the channel. For each realizatidhalgorithms are tested in order to
have a fair comparison among them. For both video sequetitesjariations of the channel
leads to a substantially varying PSNR over time. This is dn#h@ main motivation for taking
into account the variations of the quality in the objectiwmdtion (i.e.,A # 0) as shown in
the following subsection. Despite these variations, wk tive that the proposed algorithm
outperforms baseline algorithms in most of the time slaigt aan be observed from the average
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Figure 6. Temporal PSNR evolution for different schedulalgorithms ps = 4, pr = 1, static channel and dynamic

navigation path).

PSNR values. We can also observe that, for the Syntheticesequthe gain is larger than the
gain achieved by the Ballet sequence. This is mainly due éddbt that the Ballet sequence is
highly correlated both in time and space and the correlatiamry uniform in both dimensions.
This makes the streaming scenario less challenging. Héiners is less room for improvement
by our algorithm. On the contrary, the Synthetic sequensenii@ny obstacles in the scene, thus

non-optimal scheduling substantially affects the expexeel quality.

Finally, we also study the performance of different aldoris in a scenario in which the
channel is static while the navigation path is dynamic. Ig. B, we depict the simulated frame
popularity resulting from a dynamic navigation path. It slates a scenario in which the subject
of interest constantly move from left to right and back. Thens type of navigation is used for
both sequences. In Fig. 6, the mean PSNR (popularity-weilyaterage over views) is provided
as function of the frame index for both sequences andvfor 4, pr = 1. In both cases, we
observe the gain obtained by our algorithm that constamtiates the optimal scheduling to the
dynamic navigation path. This is deduced by comparing tlopgsed algorithm and the “Toni
et al.”, which also refines the scheduling policy at eachdmaission opportunity, with the BL

algorithms, which have a static scheduling optimizatioimc& the algorithm “Toni et al.” also
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Figure 7. Temporal PSNR evolution for the proposed algorignd the RaDIO one for the Ballet Sequen¢a & 1, Tp = 3,
C = 1.5, ps = 4, static channel and dynamic navigation path).

tracks camera popularity variations, it is able to perforateywell in the considered scenario,

but still it suffers from a simplistic coding scheme.

For the sake of completeness we also provide a comparisdn thé “RaDIO” algorithm
for the Ballet sequence with the following settings; = 1, Tp = 3, C = 1.5, andpg = 4
(see Fig. 7). A static channel and a dynamic navigation whin $ame model as above are
considered. We also simulated other settings and we olbtaimeilar results. Thus, for brevity
here we only provide one simulated setting. The results hosvis for two different levels of
temporal correlatiopr. Due to the iterative solving method, the “RaDIO” method hasduced
complexity, but does guarantee optimality [1]. This leadlsatloss of performance with respect

to the algorithm proposed in this paper that reaches thenapscheduling policy.

With the above results, we have shown that the proposeditigooutperforms competitor
scheduling ones, but it still suffers of large quality véioas over time. In the following,
we study the effect of including quality variations in thejettive function for the proposed
algorithm. Baseline algorithms are not investigated in fibldowing. As shown above, even
when the proposed algorithm aims at minimizing only the &g distortion, the baseline

algorithms cannot compete with our solution. The main reasothat no information about
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Figure 8. Average PSNR and quality variance vs. optiminagiarameten for Synthetic sequence for our scheduling algorithm

(Ta =4, Tp =1, ps = 2, static channel and dynamic navigation path).

users’ interactivity is considered. Thus, we do not expleesé algorithms to be able to compete
with our solution when the objective function further indks the quality variations over the

navigation paths.

C. Quality variations minimization

We are now interested in the behavior of the optimal schadytiolicy when the objective
function minimizes both the expected distortion and theeeigd variations of the quality over
the navigation paths. Thus, in the following we study thefqremnance of schedulers of both
the average (popularity-weighted) quality and the vamaatthe quality. The variation of the
guality is evaluated as in EqQ. (7), which computes a popytaveighted variance.

Fig. 8 depicts both expected quality and variance as funatiothe optimization parameter
A, which trades off average quality and quality variationghie objective function of Eq. (7),
for Ty =4, Tp = 1, ps = 2, and different levels of temporal correlation for the Swiit
sequence. A static channel and a dynamic navigation acgptdithe model of Fig. 5 are used
in these simulations. As expected, the largerthe more the variance becomes crucial in the
optimization; the quality variations get smaller at thecprof a reduced average quality. Similar

trends can be observed for the Ballet sequence.
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Figure 9. Average PSNR as function of the frame index oventbst likely navigation path for Ballet sequenge (= 0, ps = 2,

Ta=1,Tp =3, C = 1.5, static channel and dynamic navigation path).

To give a better understanding about the impact of a reduaddnce, we have evaluated the
temporal evolution of the quality over the most likely naatign path that starts from viewor
view 6 (see Fig. 9). It is worth noting that the quality perceivedhw = 0 is subject to important
fluctuations over time. The largey, the less these fluctuations till the case)of= 0.6, where
the quality variations are the smallest in these simulatidnis worth noting that limiting the
variations might result in keeping the average quality tamsat a low value. However, this is
still expected to lead to a quality of experience that isdydtian a highly varying image quality.
The case of Synthetic sequence is provided in Fig. 10 in ttimgeof 7, =1, T4y = 4, Tp = 1,
ps = 2, pr = 1, static channel, and dynamic navigation path. In the figueesivow the quality
over the most likely navigation path when starting from eliént views. It can be observed that
reducing the quality variations experienced over the ratiog path does not always lead to a
large quality. Starting from View and View4, the most likely path will be forced to remain at

a low-quality level but constant, allowing other paths todoastant at high quality level.

To give more intuitions on the distortion-variance tradaofdifferent challenging scenarios,
we now show the behavior of different navigation paths. Intipalar, we consider aniform

navigation, where each user have the same probability of displayingulrent view, or switching
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Figure 10. PSNR vs. frame number for Synthetic sequenceeirsetting ofTs = 1, Ta = 4, Tp = 1, ps = 2, pr = 1, static

channel, and dynamic navigation path.

to the left or right view. In this case the camera popularityi i)/ for all views at each time
instant. We then consider @on-uniform navigation, where each user has a probabiljtyof
displaying the current view and — p)/2 of switching to left or right view. Finally, we denote
by directional navigation the dynamic navigation considered before and shown in Fig/éhave
simulated these different navigation paths and observedoéiformance have been simulated
and carried out results are provided in Fig. 11 for the Sytidtsequence, withl'y =4, Tp =1,

ps =2, pr = 1, and a static channeC(= 2). We can observe that the uniform navigation has a
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Figure 11. Average distortion vs expected variance for thett®tic sequencelly = 4, Tp = 1, ps = 2, pr = 1, static
channel and dynamic navigation).

constant distortion-variance point far> 0. Moreover, the directional navigation as well as the
non-uniform navigation withlp = 0.6 also has a limited reduction of the mean variance when
A ranges from0).4 to 0.6. This is also given by the fact that a more directional navgepath
reduces the degree of freedom in the optimization, sinceesaaws are clearly dominant in the
possible switching from interactive users. A larger gaithwncreasing\ is observed for the
non-uniform navigation withp = 0.3, where there is more randomness about users’ interactivity

Finally, in Fig. 12, we provide the distortion experiencddeach image in views and time,
to show how this distortion changes depending on the passialigation paths. Results are
provided for both the Synthetic and Ballet sequences, With= 4, Tp = 1, ps = 2, pr = 1,
A = 0.6, a directional navigation path, and a static channel wite 1.5 andC' = 3 for Ballet and
Synthetic sequences, respectively. We can see that thestl@igtortion region follows the zig-
zag behavior of the camera popularity (depicted in Fig. §)a @onsequence of the optimization
of the popularity-weighted distortion in our schedulinga&ithm.

To conclude, we validate our results by comparing our mbdsled results with experimental
results. Note that in the above model-based results, weiaeathe average distortion (or the
associated PSNR) from the model in Eg. (4), while in the erpemtal results, the distortion

is evaluated after actual reconstruction of the Ballet saga from the received frames. In
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Figure 12. Distortion experienced per image, for each vied/@ach time instanfly =4, Tp = 1, ps = 2, pr = 1, A = 0.6,

static channel and dynamic directional navigation).
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Figure 13. Average quality vs expected quality variancetfier Ballet sequencelly = 1, Tp = 3, ps = 4, pr = 1, static

channel and static navigation path).
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Fig. 13, the distortion as a function of the mean variancerawiged for the Ballet sequence
and two different bandwidths wheh, = 1, Tp = 3, ps = 4, pr = 0 and both the channel
and navigation paths are static. For both model-based aperiexental results, the lower the
channel bandwidth the lower the quality, as expected siese Views can be scheduled at each
transmission opportunity for smaller channels. More gé&ngly, by increasing up to 0.6 we
can minimize the expected quality variance at the price dduced average quality. However,
while we experience a substantial reduction of the qualdyiance, the penalty in terms of
average quality is most of the time marginal for both the nhbdsed and experimental results.
Furthermore, we observe that the qualitative behavior efrttodel-based results is similar to
the experimental ones, validating the model consideredumpaper.

Finally, we note that the experienced PSNR in the experialgatults ranges betwedf.5
dB and23 dB, which are very low PSNR values. This is mainly due to thet fhat the system
is highly constrained with very low bandwidth and while sommages are received at very low
guality in favor of some other more important scheduled gapas shown in Table | and Table
Il. Table I compares the average PSNR to the PSNR experieoeedthe most likely path
(MLP) for the Ballet sequence in the scenariospot= 2, p, = 0, and dynamic navigation path
(directional navigation). Different channel bandwidtHues are considered in the case of static
channel. For all values of bandwidil, the MLP PSNR is always higher than the average one;
we also see that, by relaxing the constraints imposed in ghienzzation (i.e., increasing the
bandwidth), the quality increases. Finally, although fixithe optimization parameter = 0.6
reduces the mean PSNR with respectite= 0, the quality over the MLP is not necessarily
penalized. This is a consequence of the fact that largalues imposed in the optimization
leads to a scheduling strategy that reduces the oscilla@mal if possible maintain a constant
(and high) quality value over the MLP. Similar conclusiora de carried out from Table II,

where different navigation paths have been considered.

VIlI. CONCLUSIONS

We have investigated coding and scheduling strategies difniant correlated sources in
a multicamera system. In particular, we have proposed almate-distortion model able to
take into account the correlation level among cameras fiterdnt coding structures. Based on

this rate-distortion function, we have proposed a dynanaickpt scheduling algorithm, which
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MEAN PSNRVS MOST LIKELY PATH (MLP) PSNRFOR BALLET SEQUENCE IN THE SETTINGS Ofps = 2, p; = 0, STATIC

CHANNEL, AND DYNAMIC NAVIGATION PATH (DIRECTIONAL NAVIGATION ). EXPERIMENTAL RESULTS

C=2 C=25 C=3
Mean PSNR| MLP PSNR || Mean PSNR| MLP PSNR || Mean PSNR| MLP PSNR
A=0 25.9 29.3 26.5 30.3 29 31
A=0.6 25.7 29.2 26.3 30.9 28.9 31.4
Table Il

MEAN PSNRvVS MLP PSNRFORBALLET SEQUENCE IN THE SETTINGS O = 4, p; = 1, STATIC CHANNEL (C' = 2), AND

DYNAMIC NAVIGATION PATH . EXPERIMENTAL RESULTS

Non uniform Nav. p = 0.6) Uniform Nav.

Mean PSNR| MLP PSNR || Mean PSNR| MLP PSNR
A=0 25.4 26.4 25.4 26.4
A=0.6 25.7 27.8 25.9 27.3

opportunistically optimizes the transmission policy mhesm the channel capacity and source
correlation. The best scheduling policy minimizes the papty-weighted distortion while also
reducing the distortion variations along most likely natign paths experienced by potential
interactive users. Because of the reward and coding depeyndbat subsists among frames,
conventional solving methods cannot be adopted in our wafik.have then proposed a novel
trellis-based solving method that is able to decouple dégeinand independent DUs in the
trellis construction. This allows to reduce the computadiocomplexity while preserving the
optimality of the scheduling policy. Simulation resultybalemonstrated the gain of the proposed
method compared to classical resource allocation tecksiqgthis gain is due to the ability of
the proposed algorithm to dynamically adapt the transiisstrategy (and the coding structure
accordingly) to both the level of correlation experiencgaghbch camera and the interactivity level
experienced by potential users. We have also shown thattpeged scheduling optimization is
able to reduce the variations over the navigation path whembjective function is appropriately

designed.
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