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Abstract—Optimization of multimedia transmissions over
wireless channels should be aimed at maximizing the video
quality perceived by the final user. For transmission of video
sequences over an orthogonal frequency division multiplexing
(OFDM) system in a slowly varying Rayleigh faded environment,
we develop a cross-layer technique, based on a slice loss visibility
(SLV) model used to evaluate the visual importance of each
slice. In particular, taking into account the visibility scores
available from the bitstream, depending on the scenario, we
optimize the mapping of video slices within a 2-D time-frequency
resource block and/or the channel code rates, in order to better
protect more visually important slices. The proposed algorithm
is investigated for several scenarios, with different levels of infor-
mation about the channel available in the optimization process.
Results demonstrate that, for different physical environments and
different video sequences, the proposed algorithm outperforms
baseline ones which do not take into account either the SLV or
the CSI in the video transmission.

Index Terms—Slice loss visibility, channel coding, cross-layer
design, diversity, multimedia communications, orthogonal fre-
quency division multiplexing (OFDM).

I. INTRODUCTION

Since cross-layer optimization schemes can improve the

quality of experience (QoE) by optimizing the network archi-

tectures across traditional OSI stack layers, such techniques

have been under intense research as primary strategies for

adaptation to dynamic channel conditions [1]–[3]. A well-

performing cross-layer optimization design strongly depends

on an efficient QoE metric, that faithfully reflects the level of

quality experienced by the user [4]. This has led researchers to

investigate objective metrics able to assess the visual quality

of wireless video communication [5]. One approach is the

evaluation of a set of simple metrics which can provide a level

of priority of the encoded slices to be used in the optimiza-

tion problems. When fine-grain scalable video sequences are

considered, each bit of the encoded enhancement bitstream

within a frame is more important than the subsequent bit,
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and the level of priority is intrinsic in the encoding process.

By adopting unequal error protection (UEP), a more reliable

transmission is offered to the more important bits, and the

QoE can be improved compared with an equal error protection

(EEP) system [6]–[8].

For non-scalable video sequences, assigning priority levels

to portions of the compressed bitstream is more challenging

as it is not the simple case that earlier bits are more important

than later ones. In [9], the authors optimized a H.264 flex-

ible macroblock ordering (FMO)-based classification of the

macroblocks with a jointly optimal channel rate allocation.

The final goal was to exploit and improve the error resilience

features of an H.264/AVC codec, when video sequences were

transmitted over erasure channels. Rather than operating at

the source encoder, in [10], rate-compatible punctured con-

volutional (RCPC) code rate allocation was optimized for

non-scalable pre-encoded video sequences transmitted over

error-prone channels. The authors proposed a low-complexity

algorithm, which optimized the RCPC rate per packet using the

subgradient method to search in the dual domain, minimizing

the distortion of the video sequence transmitted over additive

white Gaussian noise (AWGN) channels. In both these works,

the mean square error (MSE) induced by a packet loss was

considered as the metric for the cross-layer optimization. As

in [10], we aim at optimizing the RCPC channel code rates for

non-scalably encoded video sequences. Our goal is to propose

a cross-layer technique to optimize the QoE metric, without

any change to the source encoder.

When dealing with QoE metrics, an important aspect is the

relation between the distortion metric and the packet losses

[11], [12]. This relation usually depends on many parameters

(e.g., the coding scheme, the bit rates and the network archi-

tectures), which are not always included in distortion metrics.

A great part of the effort to understand the visual impact of

packet losses has been focused on modeling the mean quality

of videos as a function of average packet loss rate (PLR)

[13]–[15]. However, PLR can provide wrong interpretations of

video quality since packet losses are perceptually not equal. In

[16], [17], the authors studied the problem of predicting packet

loss visibility for non-scalable compressed video, and they

proposed a metric able to predict the probability that a slice

loss is visible by a final user. The proposed slice loss visibility

(SLV) score can be viewed as priority level information for

non-scalably encoded video slices, which can be employed in

cross-layer optimization techniques. In [17], the SLV model

was used to design a policy for perceptual-quality based packet



discarding. An intermediate router in a congested network,

for example, might employ the SLV metric to decide which

packets should be dropped to minimize degradation in the

quality of the transmitted video streams.

In this paper, we aim at maximizing the QoE of a non-

scalable bitstream when the compressed video sequence is

transmitted over a frequency selective orthogonal frequency

division multiplexing (OFDM) network. Based on the infor-

mation available from the feedback channel and the application

layer, we propose a technique that jointly groups the encoded

bitstream into packets, optimizes the channel code rate for each

packet, and maps the encoded slices into the 2-D resource

block (RB). The proposed algorithm can be applied to a

multitude of scenarios, from point-to-point communication, in

which both channel state information (CSI) and SLV infor-

mation might be available at the transmitter, to a broadcasting

scenario, in which the CSI will not be available in the feedback

channel. This means that the mapping of the slices in the 2-D

RB will be deeply influenced by the availability of the CSI. At

the same time, based on the SLV and the physical environment,

the cross-layer algorithm might select a UEP or an EEP profile

as the best choice.

The main goals of this work are the following:

i) to demonstrate that the SLV model can improve the system

design and optimization;

ii) to provide a study from which a system designer is able

to select the best mapping and forward error correction (FEC)

profile based on the considered scenario.

iii) to examine the performance gain of three algorithms that

have increasing levels of complexity.

The remainder of this paper is organized as follows. In

Section II, we describe some technical preliminaries, including

basics of SLV and OFDM systems. In Section III, we discuss

the proposed cross-layer diversity approach, and the associ-

ated tradeoff issues. The theoretical problem formulation is

described in Section IV. In Section V, we provide simulation

results and discussion, and we conclude in Section VI.

II. PRELIMINARIES

In the following, we provide a brief introduction to the SLV

metric and a description of the system model.

A. Slice Loss Visibility Overview

We consider a non-scalable video encoder and assume that

each frame is divided into Ns slices (each slice consists of a

constant number of macroblocks), as depicted in Fig. 1. The

priority level of each slice is determined by the SLV model

which estimates the quality degradation the video experiences

when that slice is lost. The SLV model was introduced in [17]

as a bitstream-based metric for non-scalable compressed video.

Bitstream-based metrics predict video quality using packet

header information and limited information from the encoded

bitstream such as motion vectors, but do not involve a full

decoding or pixel-level reconstruction of the video source.

The authors conducted subjective tests in which the viewers’

task is to indicate when they observe a packet loss artifact.

From these tests, an SLV metric was proposed with the goal of
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Figure 1. Slice structure for the kth frame of a video sequence.

predicting whether a packet loss in the video stream is visible

to a viewer. Note that, in [17], one of the factors in the packet

loss visibility model is called “SpatialExtent” and it refers to

the spatial extent of the loss caused by the loss of this packet.

In our work, we use the visibility model to give us a score for

one slice at a time (we define a slice as one horizontal row

of macroblocks), in which case this factor is identical for all

slices, and the packet loss visibility model of [17] becomes our

SLV model. The proposed SLV scores provide priority level

information for non-scalably encoded video slices, which we

will employ in our cross-layer optimization techniques.

In our model, the ith slice of frame k is encoded into Lk(i)
bits and has a priority level Vk(i). The Vk(i) values range from

0 to 1, where Vk(i) = 0 means that the slice, if lost, would

produce a loss artifact glitch that would likely not be noticed

by any observer, and Vk(i) = 1 means that the loss artifact

would likely be seen by all users. So, each encoded slice is

characterized by the pair (Vk(i), Lk(i)), for i = 1, . . . , Ns and

k = 1, . . . , NF, where NF is the number of frames per group

of pictures (GOP).

B. System Model

The video sequences are transmitted over frequency-

selective OFDM channels, and we use a block fading channel

model to simulate the frequency selectivity [18]. In this model,

the spectrum is divided into blocks of size (∆f)c. Subcar-

riers in different blocks are assumed to fade independently;

subcarriers in the same block experience identical fades. As

illustrated in Fig. 2, we assume an OFDM system with an

overall system bandwidth WT, such that we can define N
independent subbands. Each subband consists of M correlated

subcarriers spanning a total bandwidth of (∆f)c. The total

number of subcarriers in the OFDM system is Nt = N ×M .

Often, the maximum achievable frequency diversity Df is

given by the ratio between the overall system bandwidth WT

and the coherence bandwidth (∆f)c.

In the time domain, the channel experiences slow fading,

so that a constant fade per packet is considered. Although

there is no time diversity to exploit by using channel codes,

coding gain can still be obtained, and a concatenation of

cyclic redundancy check (CRC) codes and RCPC codes are

applied to each transmitted packet. We assume that the fading

gain hi experienced by the ith subcarrier is distributed as a

complex Gaussian random variable with mean zero and vari-

ance σ2
h per dimension. We denote the instantaneous signal-

to-noise ratio (SNR) experienced by the ith subcarrier by

γi = |hi|
2Es/N0, i = 1, . . . , Nt, which will be constant over
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Figure 2. OFDM spectrum.

the whole subband (i.e., γi = γj if the ith and jth subcarriers

are within the same subband). Note that Es is the transmitted

symbol energy, and N0/2 is the two-sided spectral density of

the AWGN. The RB will experience a constant mean SNR,

which is denoted by γ = E
{

|h|2
}

Es/N0 = 2σ2
hEs/N0,

where E {·} denotes the statistical expectation (evaluated over

the fading).

C. Scenarios Considered

We now describe the possible scenarios considered in our

work and listed in Table I. In particular, we focus on the avail-

ability of instantaneous CSI and SLV parameters. We consider

all possible combinations of knowing the instantaneous CSI

and not the SLV, knowing the SLV and not the instantaneous

CSI, knowing both pieces of information, or knowing neither.

If one knows neither (Table line 0), the algorithm corresponds

to our baseline approaches (sequential and random) which are

described later.

In Fig. 3, a schematic description of the proposed algorithm

is depicted to show how the SLV and CSI information might

be employed in the optimization scheme. While a detailed

characterization of the cross-layer algorithm is provided in

the next section, the main point is that if the sender has at

least one of the two types of information, then the algorithm

can exploit the information. In particular, we consider two

types of exploitation: the first is UEP FEC (using different

RCPC channel code rates for different slices, or for different

subcarriers) and the second is slice-to-subcarrier mapping, in

which the algorithm maps the visually more important slices

to the better subcarriers. Note that the UEP FEC could, in

principle, make use of the information of either the SLV or

the instantaneous CSI, or both. That is, heavier error protection

could be provided to specific slices (because they are more

important) or to specific subcarriers (because they are not

reliable). In contrast, the slice-to-subcarrier mapping operation

requires both the SLV and instantaneous CSI information. If

the instantaneous CSI is available from the feedback channel,

the subcarriers of the RB can be ordered from the most reliable

to the least reliable, and if in addition the SLV information

is available, then the most important slices (highest SLV

parameter) can be allocated (mapped) to the most reliable

subcarriers.

So, lines 2, 3, 5 and 6 in Table I are marked as impossible

because the slice-to-subcarrier mapping can only be done if

you know both pieces of information. Line 1 of the Table

is skipped as we are not interested in the case where the

SLV is not known. Line 7 of the Table is skipped because,

knowing both pieces of information, it seems more sensible

to use the information for mapping (Line 8) or for both UEP

and mapping (Line 9). Accordingly, this paper considers the

scenarios corresponding to lines 4, 8, and 9 of the table, which

are referred to as Scenarios A, B, and C.

Scenario A covers channels such as a broadcast and/or

fast fading, where instantaneous CSI is not available. This

means that the “Subcarrier Ordering” step in Fig. 3 of the

optimization algorithm cannot be done. However, the SLV

information is known, and provides priority levels to the slices

that should be mapped in the RB. So we use UEP to ensure

that the most visible slices (i.e., slices which, if lost, are most

likely to produce a visible glitch) will be transmitted over

subcarriers protected with the lowest RCPC code rate.

In Scenarios B and C, we would like to see the gain of a

cross-layer optimization when both the SLV and the CSI are

available at the transmitter. This would be the case for point-

to-point communications experiencing slow fading channels.

In both Scenarios B and C, instantaneous CSI is exploited

to order subcarriers from best to worst. Scenario B is the

lower complexity algorithm, where the more important slices

(in order) are allocated to better subcarriers (in order). To keep

the algorithm simple, we do not consider UEP; all subcarriers

have the same RCPC code rate. In Scenario C, at the cost

of increasing optimization complexity, we investigate a joint

UEP profile-slice mapping optimization.

D. VQM versus SLV

The Video Quality Metric (VQM) is a standardized full-

reference method of objectively measuring video quality con-

sidering both coding artifacts and transmission errors [19]. It

measures the perceptual effects of a broad range of quality

impairments including blurring, jerky or unnatural motion,

global noise, block distortion, color distortion and packet loss.

It has been adopted by the ANSI as a U.S. national standard

and as an international ITU Recommendation and has been

shown to be better correlated with human perception than other

full reference video quality metrics. The output scores range

from 0 (best quality) to 1 (worst quality). In this work we use

VQM to evaluate the quality of our output video sequences.

Evaluating the average VQM score for a particular encoding

configuration requires passing the encoded video over many

simulated realizations of the channel, decoding the video,

and putting the resulting video, together with the original,

into the VQM metric calculation. As a design algorithm to

choose the best encoding configuration, this evaluation with

multiple realizations of the channel is time consuming. So

we also consider an approach in which the algorithm design

involves optimizing a weighted SLV score (which can be

done numerically, without channel realizations and decoding

operations) rather than optimizing for the VQM. However, it

is important to note that, even when the design of the encoding

configuration is based on weighted SLV, the final performance

evaluation is always based on VQM.

III. DESIGN ALGORITHM BASED ON OPTIMIZING VQM

The main steps of the proposed algorithm are applied to

each GOP of the video sequences. Since the number of bits



Table I
INVESTIGATED SCENARIOS AND ASSOCIATED OPTIMIZATION SCHEMES.

Available Information Algorithm includes

instantaneous CSI SLV FEC-UEP Slice/Subcarrier
Mapping

0 Baselines: sequential, random

1 X X Skip

2 X X impossible

3 X X X impossible

4 X X Scenario A

5 X X impossible

6 X X X impossible

7 X X X Skip

8 X X X Scenario B

9 X X X X Scenario C

in which a single frame is encoded might be considerably

different (e.g., the number of bits for an I-frame will be greater

than the number required for a B-frame), assuming a constant

RB for each frame would not make good use of available

resources. Instead, we adopt a fixed-sized 2D time-frequency

RB for each GOP. This cross-layer choice corresponds to a

very common approach in application-layer video rate control,

in which the number of bits allocated to individual frames is

allowed to vary, but the number of bits given to each GOP is

held roughly constant.

As illustrated in Fig. 3, the current GOP is processed

by a joint mapping/coding step. In our notation, NF frames

form a GOP; each frame is divided into Ns slices. After

the optimization algorithm, groups of slices are allocated to

packets. Then, each packet will consist of one or more slices

plus the FEC added by the RCPC code and the bits added by

the CRC code. It should be noted that information bits and

CRC/RCPC parity symbols would be interleaved in an actual

system. However, for illustration, we show the de-interleaved

version so that the relative amounts of parity symbols and

information symbols can be depicted. After channel coding,

packets have constant length (equal to Lm modulated symbols)

and will be assigned to a subcarrier. Then, for each RB, Nt

packets will be transmitted on Nt subcarriers.

Note that the mapping of the slices into the RB and

the channel code rate optimization are mutually dependent

processes. The best FEC profile for the RB depends on the

SLV parameters for the slices within each packet. On the

other hand, the mean SLV for a packet depends on how

many information bits get allocated to the packet, and thus

it depends on the channel code rates adopted for the RB.

This joint allocation/coding step is the focus of our work. We

propose an algorithm able to allocate the slices of each GOP

and evaluate the optimal RCPC profile by taking into account

the SLV, the channel model parameters, and either the

frequency diversity order (Scenario A) or the instantaneous

CSI (Scenarios B and C). The proposed method can be

described with the following steps.

Step 1: Slice Ordering and Grouping

We order all the NF ×Ns slices of the GOP and divide them

into Kv groups based on the SLV parameter. The first group

(Λ1) contains the most visible slices (i.e., the slices which, if

lost, are most likely to produce a visible glitch) and the last

one (ΛKv
) contains the least visible slices. After the ordering,

the kth slice will be denoted Sk and will be characterized by

the pair (Vk, Lk), then Vk ≥ Vk+1, ∀k ∈ [1, NF × Ns − 1].
The jth slice group Λj is defined as

Λj : Slice Vk s.t.

{

V ⋆
j ≤ Vk < V ⋆

j+1, ∀j 6= Kv

V ⋆
j ≤ Vk ≤ V ⋆

j+1, j = Kv,
(1)

with j = 1, . . . ,Kv, k = 1, . . . , NF ×Ns

where {V ⋆
j } are fixed thresholds such that V ⋆

j+1 > V ⋆
j ,

with V ⋆
1 = 0 and V ⋆

Kv+1 = 1. We consider equally spaced

thresholds in the range [0, 1], therefore V ⋆
j+1 = V ⋆

j + 1/Kv.

Note that the slice grouping will be applied in both

Scenarios A and C, while Scenario B might be considered as

a degenerate case in which Kv = 1, and Step 1 reduces to

slice ordering.

Step 2: Subcarrier Ordering

Information about the fading gain, if available, is exploited

in this step. The subcarriers of the 2-D RB are ordered

from the most reliable to the least reliable. Denoting by

γγγ = [γ1, γ2, . . . , γNt
] the SNR information available in the

feedback channel (Scenarios B and C), the subcarriers are

ordered in such a way that γsort,1 ≥ γsort,2 ≥ . . . ≥ γsort,Nt
,

where γγγsort = [γsort,1, . . . , γsort,Nt
] is the ordered SNR vector.

When Scenario A is considered, since no instantaneous CSI

is available at the transmitter, the subcarriers are not ordered.

Step 3: Mapping and RCPC code rate optimization

Slices within each group are given the same protection; we

assign a single RCPC code rate for each group. We seek the

best rate vector rrr∗ = [r1, r2, . . . , rKv
], where rj denotes the

RCPC code rate assigned to the slices within group Λj . That

is, all slices in the jth visibility group will be allocated to

packets encoded with a code rate rj . We use Ri to denote

the RCPC code rate for the ith subcarrier or packet. 1 As

1Since the CRC code will assign a constant number of bits per subcarrier,
from here onwards, in the optimization description we will only refer to the
RCPC channel code rate.
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Figure 3. Slice ordering and subcarrier mapping. Note that the CRC/RCPC parity symbols are interleaved with the information symbols in an actual system.

depicted in Fig. 4, where Step 3 is described in detail, if the

ith packet contains slices from group Λj , then Ri = rj .

Step 3 involves repeatedly cycling through the following

three phases:

a) Among all the possible FEC profiles, select a rate vector

rrr to be evaluated.

b) Based on both the information about the channel (either

instantaneous CSI or frequency diversity order, depending on

the scenario) and rrr, the slices of each group will be allocated

to subbands. For example, assuming that the group Λ1 needs to

be allocated to the RB, the first m subcarriers will be occupied

by the group Λ1, and each one of these m packets will be

protected with a RCPC code rate Ri = r1, for i = 1, . . . ,m
plus the CRC code. The number of subcarriers in which group

Λ1 is allocated has to meet the following constraint

∑

k:Vk∈Λ1

Lk(i) ≤ m× Lp × r1

where Lp = Lm log2(Mod), where Mod is the constellation

size of the adopted modulation (QPSK in our case, constant

for all the RB), and Lp × r1 is the number of information

bits per subcarrier. The first group will be allocated to the

first m subcarriers, and the other groups will be sequentially

allocated within the RB. Note that for Scenarios B and C, this

allocation choice allows us to map the most important slices to

the most reliable channels. For the case in which instantaneous

CSI is not available (Scenario A), we use simply a sequential

mapping. This step is considered for all Kv groups. It is

worth noting that the visibility model is applied on one slice

(one horizontal row of macroblocks) at a time. The slice is

then allocated to a position in the resource block. Wherever

possible, we try to allocate the entire slice in a given subcarrier,

but if it has too many bits, then it may spill over to another

subcarrier. In particular, if the first part of the slice is allocated

in the jth subcarrier, the remaining bits of the slice will be

allocated in the next subcarrier, i.e., the (j + 1)th one in the

SNR vector γγγ for Scenario A and the (j + 1)th one in the

ordered SNR vector γγγsort for Scenarios B and C. Moreover, if

the number of bits in the GOP is greater than the number of

information bits available in the RB, randomly chosen slices

from the least important group are dropped. We use the word

“dropped” or “discarded” to describe slices which are pre-

emptively dropped by the encoder because the RCPC code

rate profile does not allow all the information bits to fit in the

RB, whereas we use the word “lost” to describe slices which

are allocated to the RB but which fail to be decoded correctly

at the receiver. Both dropped and lost slices are concealed at

the decoder.

c) Once the slices are allocated within the RB, based on the

chosen FEC profile rrr, we evaluate the mean VQM score by
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simulating 1000 random realizations of the channel. The mean

VQM score is then compared with the best one, VQMbest.
2 If

VQM(rrr) < VQMbest, then the best VQM is updated.

The phases a, b, and c are repeated for all the possible

FEC profiles considered in the optimization process. With this

algorithm, the best FEC profile is chosen for each GOP of the

video sequence (GOP-by-GOP optimization). Alternatively, if

the final goal of the proposed method is to choose the RCPC

channel code rate profile able to maximize the mean quality

of the whole video sequence, Step 1 and Step 2 are repeated

for all the GOPs of the sequence. Then, for each rrr in Step

3a, each GOP is mapped into a RB (Step 3b), and then, the

VQM is evaluated for the whole video sequence (Step 3c). It is

worth noting that using the GOP-by-GOP optimization rather

than the whole video sequence optimization, one increases the

algorithm complexity but substantially decreases the latency

and increases the performance.

IV. OPTIMIZATION OF SLV SCORE

In the previous section, we considered an optimization

aimed at minimizing the VQM score. This implies that, for

each RCPC profile, we need to simulate many realizations of

the RB transmission, decode the received video sequences,

and evaluate the average quality of the received bitstream in

terms of VQM. A simpler optimization would be one in which

the best RCPC code rate is the one maximizing a weighted

SLV. Here we view SLV as an importance score, and we

want to maximize a quantity which takes into account the

importance of the slices being received, weighted by their

probability of being received. In this way, the mapping/coding

2As an initial value, we set VQMbest = 1.

optimization would involve a calculation involving the SLV

and channel characteristics, but would not require multiple

channel realizations and multiple decodings of the video

source.

When the channel coding optimization is based on the SLV,

and instantaneous CSI is available at the receiver, the problem

formulation is the following. This formulation is provided for

whole-sequence optimization, but it can be easily extended to

the GOP-by-GOP optimization. Using Btot to denote the total

number of bits which can be transmitted in each RB, we aim

to determine the best RCPC code rate profile. Consider N
i.i.d. subbands, each with M subcarriers, and packet size for

the jth subcarrier equal to lj bits before channel coding using

RCPC/CRC codes. The constraint on the bit budget/packet can

be written as
Nt
∑

j=1

lj +Bcrc

Rj

≤ Btot (2)

where Bcrc is the bit budget allocated in each packet for the

CRC codes, Rj is the channel code rate of the RCPC on the

jth subcarrier, and Btot is the total bit budget of the RB. The

slices, ordered by decreasing SLV, are characterized by the

pair (Vk, Lk). To describe the allocation process, we introduce

a mapping function αααj which allows us to know which

slice has been allocated to the jth subcarrier. In particular,

αααj =
[

a
(j)
1 a

(j)
2 . . . a

(j)
(NF×Ns)

]T

,with j = 1, . . . , Nt, and

a
(j)
k = 1 if the kth slice is allocated to the jth subcarrier,

and a
(j)
k = 0 otherwise. For Scenario B, the most important

slices are allocated to the most reliable subbands. This means

that the mapping function depends on the instantaneous SNR

experienced by the RB, i.e. αααj = αj(γγγ)αj(γγγ)αj(γγγ), ∀j ∈ [1, Nt],
where γγγ = [γ1, . . . , γNt

] is the SNR vector and γj is the

instantaneous SNR experienced by the jth subcarrier. Note

that the mapping function αααj depends not only on γj , but also

on the SNR vector, since the mapping function compares the

instantaneous SNR of the jth subcarrier with the instantaneous

SNRs of the other subcarriers. So, the bit budget constraint

in (2) can be written as

Nt
∑

j=1

LLL ·αααj(γγγ) +Bcrc

Rj

≤ Btot = Lp ×Nt (3)

where LLL = [L1, L2, . . . , LNF×Ns
].

Considering the constraint in (3), for the whole-sequence

optimization, the best RCPC profile is given by

rrr⋆(γ) s.t. max
rrr

{WSWSWSγ} (4)

where WSWSWSγ is the weighted SLV for the video sequence, for

a given mean SNR γ. We use Ngop to denote the number

of GOPs in the video sequence, and WSγγγ,l to denote the

weighted SLV score for the lth GOP of the video. Given

the vector of instantaneous SNRs per subcarrier γγγ, WSγγγ,l is

defined by

WSγγγ,l =

Nt
∑

j=1

VVV ·αααj(γγγ)·[1− pj(γj , Rj)] , ∀l ∈ [1, . . . , Ngop]



where VVV = [V1, V2, . . . , VNF×Ns
], γγγ = [γ1, . . . , γNt

], and

pj(γj , Rj) is the probability of losing the jth subcarrier, which

experiences an instantaneous SNR of γj and which has been

protected with a RCPC code of rate Rj .

Averaging WSγγγ,l over the fade vector γγγ, we obtain

WSl(γ), which is the weighted visibility score for the lth
GOP, for a specific mean SNR γ. Then, the optimization

problem in (4) can be formulated as

rrr⋆(γ) s.t. max
rrr







1

Ngop

Ngop
∑

l=1

WS l(γ)







(5)

= max
rrr







1

Ngop

Ngop
∑

l=1

Eγγγ







Nt
∑

j=1

VVV ·αααj(γγγ) · [1− pj(γj , Rj)]













given the overall bit budget constraint in (3).

V. RESULTS

We carried out simulations on videos of 10s duration, coded

at R = 600 kbps using the H.264/AVC JM codec with SIF res-

olution (352×240), and with Motion-Compensated Error Con-

cealment (MCEC) as used in [20], implemented in the decoder.

For brevity, we provide results for two sequences: “LowMot”,

and “HighMot”. “LowMot” is an almost static video, while

“HighMot” has higher motion and several scene changes. We

used the IBBP encoding structure with I-frames every 24
frames. There are Nt = 128 OFDM subcarriers in total. The

RCPC codes of rates Rrcpc =
{

8
8 ,

8
9 ,

8
10 ,

8
12 ,

8
16 ,

8
20 ,

8
24

}

, were

obtained by puncturing an Rc = 1/3 mother code with K =
7, p = 8 and generator polynomials (133, 165, 171)octal
with the puncturing table given in [21]. QPSK modulation

is considered and a slow, block fading channel is assumed.

Thus, each subcarrier j will experience a channel fading gain

γj that is constant for the whole packet duration. This means

that the experienced PLR is equal to the one experienced by

a conditional AWGN channel with γj and Rj as SNR and

RCPC code rate, respectively. In Table II, values of the PLR

are provided for several values of γ and for the set of RCPC

rates considered in our simulations. To evaluate the conditional

PLR provided in the table, for each given γ and channel code

rate, we simulate several channel realizations. We selected

the number of these realizations such that PLR values greater

than 10−6 can be evaluated with high precision. The packet

size after the RCPC/CRC coding was set equal to 588 bytes,

i.e., Lm = (588 · 4) QPSK modulated symbols, such that

Lm ×Ts ≈ 24/30s (to respect the constraint of 30 fps), where

Ts is the symbol period. Due to the imposed constraint, the

packet length after the RCPC encoding cannot be greater than

Lm modulated symbols. However, for some subcarriers, the

number of total bits allocated might be lower than the number

of bits that the subcarrier can support. In this case, we use zero

padding, in order to have all packets with the same length after

the channel coding. Results are provided in terms of the Video

Quality Metric (VQM) score.

For comparison, we consider two baseline algorithms: Se-

quential and Random. In both of these, we assume that slice

importance is not known, and so no packet is more important

than another. Thus, EEP is considered for the RCPC coding.

The Sequential algorithm sequentially allocates the slices of

each frame to the RB. This means that the first slice of the

first frame of the considered GOP will be allocated to the first

subcarrier. When no more information bits are available in

the first subcarrier, the algorithm starts allocating the current

frame to the next subcarrier. Once the slices of the first frame

of the GOP are allocated, the second frame is considered. The

Random algorithm allocates each slice of the GOP to a random

position of the RB.

For the visibility-based model in Scenarios A and C, we

used 6 visibility groups for the slices (i.e., Kv = 6) and

considered all possible combinations of RCPC code rates for

the 6 groups. In the plots which have RCPC code rate on the x-

axis, the x-coordinate of each plotted value represents the EEP

code rate for the random and sequential methods as well as for

the visibility-based Scenario B which also uses EEP. However,

for the visibility-based methods in the remaining scenarios

which use UEP, the x-coordinate represents the average rate

(that is, it is the ratio of the number of information bits to

the total bits for the whole sequence). Since a slow fading

scenario is considered, we take fnd = 10−4 throughout this

paper, where fnd is the normalized Doppler spread (i.e., its

inverse is the coherence time of the channel, expressed in units

of symbols). This choice means that there is no time diversity.

In the following figures, we illustrate the proposed channel

coding optimization under different fading environments, and

the gain that it can achieve in terms of VQM score, when

compared to baseline algorithms. We begin by studying the

three considered scenarios, providing results for the sequential,

the random and the visibility-based algorithm, for different

mean SNRs, for both the cases of GOP-by-GOP optimization

and whole-sequence optimization. The first results are for

the “HighMot” sequence, when the optimization algorithm

is aimed at minimizing the VQM score. Then we show

how the visibility-based method performs for different video

sequences. We show the optimization based on the weighted

visibility score for Scenario B, and show the optimized results

for different SNRs, different numbers of correlated subcarriers,

and numbers of total subcarriers.

We first compare the visibility-based and the baseline al-

gorithms for whole sequence optimization. Fig. 5 depicts the

VQM vs. the mean RCPC rate when “HighMot” is transmitted

over a system with SNR = 16 dB and (N,M) = (32, 4). The

diversity order experienced by the system in the frequency

domain is Df = 4. The visibility-based algorithms were

tested for all three scenarios. We observe that the best RCPC

profiles for the visibility-based algorithms (the best is the

one that produces the lowest VQM value) lead to VQM

scores which are better (lower) than the best VQM provided

by the sequential or random methods. For Scenario A, this

means that, even if no instantaneous CSI is assumed in the

optimization algorithm, there is a UEP level able to outperform

the baseline algorithms. In the literature, a VQM gain of 0.1
is considered to be a significant improvement, and the gain in

Fig. 5 is about 0.04, reached with the best UEP rate vector

rrr∗ = [8/18 8/12 8/9 8/9 8/9 8/9]. Note that Scenario A with

EEP results in the sequential algorithm. This means that the

best VQM achieved by the Scenario A is lower than or equal



Table II
VALUES OF p(γ,R), THAT IS THE PACKET LOSS RATE EXPERIENCED BY A CONDITIONAL AWGN CHANNEL WITH SNR EQUAL TO γ AND RCPC CODE

RATE EQUAL TO R.

P
P
P
P
PP

γ(dB)
R 8

8

8

9

8

10

8

12

8

16

8

20

8

24

2 1 1 1 1 0.89 0.12 5× 10−3

4 1 1 1 0.90 0.03 2× 10−4 4.8× 10−5

6 1 0.99 0.54 0.04 1.1× 10−4 < 10−6 < 10−6

8 1 0.06 6.3× 10−3 1.5× 10−4 < 10−6 < 10−6 < 10−6

10 0.98 2.5× 10−4 7.5× 10−5 < 10−6 < 10−6 < 10−6 < 10−6
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Figure 5. VQM vs. Rrcpc for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with SNR = 16 dB, (N,M) =
(32, 4). “HighMot” video is considered.

to the best VQM of the sequential algorithm. However, among

all the possible UEP profiles, some of them can lead to a VQM

worse than the one achieved by the EEP (i.e., the sequential

algorithm). For example, a UEP profile which includes ex-

cessive protection for the most important slices can force too

many of the unimportant slices to be dropped, resulting in

worse performance than EEP. However, the best UEP profile

always outperforms the EEP. This behavior is shown in the

figure for mean RCPC rates lower than 0.7. Taking into

account the instantaneous CSI in the algorithm (Scenarios B

and C), the gain experienced by the proposed method is about

0.2 in VQM score, compared to the baselines. Both Scenarios

B and C achieve the same best VQM value, which means that

the best UEP FEC profile for the system happens to reduce

to EEP (i.e., rrr∗ = [8/9 8/9 8/9 8/9 8/9 8/9 ]). This can be

understood by the fact that the instantaneous CSI used in the

optimization results in unequal protection to the transmitted

slices, and no additional UEP level in the channel coding is

required. Moreover, as expected, the case with instantaneous

CSI outperforms Scenario A (where only coherence bandwidth

information is used), with a noticeable gain of 0.17 in VQM

score. The best UEP profile also corresponds to a higher

average RCPC rate, and this leads to a reduction in discarded

slices.

We now provide results when the RCPC profile is optimized
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Figure 6. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized GOP-by-GOP, for systems with
(N,M) = (32, 4) and SNR = 16 dB.
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Figure 7. VQM vs. Rrcpc for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with SNR = 8 dB, (N,M) =
(32, 4). “HighMot” video is considered.

GOP-by-GOP. Fig. 6 compares the best VQM for each GOP

of “HighMot” achieved from the sequential, the random and

the visibility-based algorithm (all scenarios) for the same

system parameters of the previous figure, i.e., SNR = 16 dB

and (N,M) = (32, 4). As already observed, the proposed
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Figure 8. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized for the whole sequence, for systems
with (N,M) = (32, 4) and SNR = 8 dB.

algorithm achieves VQM values lower (better) than the ones

provided by the baseline algorithms, for all three scenarios.

However, here the improvement for some GOPs is very much

larger than those in the earlier figure. The visibility-based

algorithm in Scenario A outperforms the baseline ones by

more than 0.11 in VQM score (GOP 6), although the gain

was only 0.04 in VQM score when the RCPC profile was

optimized for the whole sequence. As in the previous figure,

knowing instantaneous CSI again produces an improvement

in performance, when compared to both baseline algorithms

and to Scenario A. Moreover, it should be noticed that, in the

GOP-by-GOP optimization, Scenario C outperforms B. For

example, for the 7th GOP, Scenario C achieves a VQM of

0.15, whereas Scenarios A and B achieve scores of 0.34 and

0.21, respectively. So, for the GOP-by-GOP optimization, UEP

optimization improves the performance, even if an unequal

level of protection has already been achieved by exploiting

knowledge of instantaneous CSI through subcarrier ordering.

Fig. 7 provides the VQM score vs. the mean RCPC code rate

when “HighMot” is transmitted over a system with SNR = 8
dB, fnd = 10−4, and (N,M) = (32, 4). Compared to

the system in Fig. 5, the orders of diversity are the same,

while the mean SNR is reduced. This reduction of reliability

leads to an increase in the FEC level of the best RCPC

code rate for the visibility-based methods. For Scenario A,

the best FEC profile for the visibility-based algorithm is

rrr∗ = [8/24 8/16 8/12 8/12 8/12 8/10], which leads to a gain

in terms of VQM score of 0.03. Due to the low SNR value, the

most visually important groups Λi are more heavily protected

than they are in the 16 dB case. This increasing FEC level in

the RB keeps the slice loss rate due to channel losses roughly

the same as it was for the system with mean SNR = 16 dB,

at the expense of an increase in the number of low-priority

slices being discarded prior to transmission. The remaining

scenarios experience an EEP of 8/12 as the best FEC profile,

which leads to a gain of 0.11 in VQM score, compared to the

baseline ones, and a gain of 0.07 with respect to Scenario A.
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Figure 9. Best VQM for each GOP of the “HighMot” sequence for visibility-
based and sequential algorithms optimized GOP-by-GOP, for systems with
(N,M) = (32, 4) and SNR = 8 dB.
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Figure 10. Best VQM for each GOP of the “LowMot” sequences for
visibility-based and sequential algorithms optimized GOP-by-GOP, for sys-
tems with (N,M) = (32, 4) and SNR = 16 dB.

Rather than providing results of the whole sequence opti-

mization in terms of mean VQM, in Fig. 8, the VQM score

for each GOP is provided for the “HighMot” sequence for

(N,M) = (32, 4), fnd = 10−4, and SNR = 8 dB. As

expected, for all the GOPs the visibility algorithms outperform

the baseline ones, and Scenario A leads to a VQM score per

GOP greater than Scenarios B and C for almost all the GOPs.

Moreover, even in these poor channel conditions, where the

average improvement for the whole sequence is limited for

all the scenarios, the gain of the visibility-based algorithm

over the sequential algorithm, for some individual GOPs, is

significant, i.e., the gain is up to 0.12 (0.2) in VQM score

for Scenario A (B and C). For the GOP-by-GOP optimization

(Fig. 9), the gain of the proposed algorithm is substantial, and

Scenario C using both UEP and subcarrier ordering achieves

a VQM better (lower) than all the other algorithms.
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Figure 11. Best RCPC rates for baseline algorithms and the visibility based
algorithm (Scenario B), aimed at optimizing both the weighted visiblity score
and the VQM of the whole video sequence. “HighMot” is transmitted over
systems with (N,M) = (32, 4) and variable mean SNRs.

Fig. 10 depicts the best VQM for each GOP of “LowMot”

for (N,M) = (32, 4) and SNR = 16 dB. Since, in the

whole-sequence optimization, Scenarios B and C lead to

close results, for clarity in the figures, we study Scenarios

A and B only, compared to the sequential algorithm. As

for the “HighMot” sequence, the visibility-based algorithms

achieve VQM lower (better) than the sequential method, and

Scenario B outperforms Scenario A. However, for the quasi-

static sequence “LowMot”, which has few visually important

slices, the gain is reduced for most of the GOPs.

After comparing the possible algorithms and scenarios, we

now provide results for the case in which the channel code rate

is optimized based on the weighted visibility rather than the

VQM score. With this aim, we consider the whole sequence

optimization for Scenario B, which has been selected due to

its simplicity (EEP only is required) and effectiveness. Fig.

11 depicts the best RCPC code rate vs. the mean SNR for

the visibility-based algorithm Scenario B (optimized based on

both the VQM and the weighted visibility), and the baseline

ones (optimized based on the VQM score). From the figure,

a close match between the two optimizing methods can be

observed. Except for γ = 6 and 8 dB, the two optimization

techniques lead to the same optimized design. This means that,

rather than evaluating the VQM score for each RCPC channel

code rate, we can simply evaluate the weighted visibility

score for each RCPC configuration and select the best channel

code rate. Note that the VQM evaluation requires simulated

transmission and decoding of each RB, while the weighted

visibility can be evaluated from (5), as detailed in the previous

section. We can also see in the figure that, for almost all the

mean SNR values, the best channel code rate for the visibility-

based algorithm in Scenario B is greater than the one which

achieves the best VQM value in the baseline algorithms. This

means that the proposed optimization in Scenario B allows the

system to substantially reduce the slice discarding.

In Fig. 12, the best VQM for “HighMot” is provided as a
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Figure 12. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence, for systems with (N,M) = (32, 4).
“HighMot” video and Scenario B are considered.
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Figure 13. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence for systems with (N,M) = (8, 16).
“HighMot” video and Scenario B are considered.

function of γ for systems with fnd = 10−4, and (N,M) =
(32, 4), when Scenario B is considered. For Scenario B, we

provide two optimization techniques: one based on minimizing

the VQM score and one based on maximizing the weighted

visibility. Note that for each γ value, we provided the best

VQM optimized over the whole video sequence. As expected,

the general behavior (common to all the algorithms) is that

the VQM decreases with increasing mean SNR (i.e., with

increasing channel reliability). More important, for all the

considered mean SNRs, Scenario B outperforms the baseline

algorithms, and the gain is up to 0.19 in VQM score (for

γ = 14 dB). It is worth noting that, for the comparison

of Scenario B optimized based on both the VQM and the

one based on the weighted visibility in Fig. 11, we observed

that the channel code rate selected as the best differs only

at γ = 6 and 8 dB. In Fig. 12, this difference in the
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Figure 14. VQM vs. γ for both visibility-based and baseline algorithms
optimized for the whole sequence for systems with (N,M) = (2, 64).
“HighMot” video and Scenario B are considered.
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Figure 15. VQM vs. number of total subcarriers for both visibility-based
and baseline algorithms optimized for the whole sequence for systems with
M = 4. “HighMot” video and Scenario B are considered.

optimization algorithms can be converted into a VQM score

gap. In particular, at γ = 6 and 8 dB, the algorithm based on

the weighted visibility is outperformed by the one based on

the VQM by only 0.005 in VQM score.

We now provide the performance of the proposed algorithm

when the optimization is aimed at maximizing the weighted

visibility score. We next consider the case of a variable number

of independent subbands, and we compare the visibility-based

algorithm for Scenario B with the baselines. Fig. 13 depicts the

system performance when (N,M) = (8, 16) and “HighMot”

is used for transmission. From the figure, it can be observed

that, even reducing the number of independent subbands

(which would represent in our model the number of degrees

of freedom we can exploit), the visibility-based optimization

in Scenario B, when compared to the baseline algorithms,

still achieves a large gain in terms of VQM. When only 2

independent channels are considered (Fig. 14), as expected,

due to the limited number of degrees of freedom offered by the

channel, the algorithms lead to almost the same performance.

Finally, in Fig. 15, rather than having the number of

subcarriers constant and equal to 128, the VQM as a function

of the total number of subcarriers is provided for systems with

M = 4 and SNR = 12 dB, for the “HighMot” sequence and

Scenario B. Observing the algorithm performance as a function

of the system bandwidth, we see that the visibility-based

method outperforms the sequential one. In particular, to reach a

given VQM value, Scenario B requires fewer subcarriers (i.e.,

smaller bandwidth) compared to the sequential case. For exam-

ple, a VQM value of 0.4 is reached with the system consisting

of 128 subcarriers for the visibility-based algorithm, whereas

278 subcarriers are required for the sequential algorithm, and

the capacity gain increases for lower VQM scores.

VI. CONCLUSIONS

We studied the optimization of channel coding in a 2-D

time-frequency resource block of an OFDM system, aimed at

maximizing the quality of experience when non-scalable com-

pressed video sequences are transmitted. We used a network-

based slice loss visibility (SLV) model to estimate the visual

importance of slices to be transmitted over a wireless channel,

and to provide the best level of protection to the video slices,

opportunistically mapped within the 2D RB. We created three

versions of the proposed algorithm, for three different scenar-

ios, characterized by a different level of CSI available in the

optimization process, and by different levels of complexity. In

all cases, the results demonstrated that the proposed methods

outperform the baseline algorithms considered in this paper.

In poor channel conditions, due to the high packet loss rates

and/or the large number of slices that need to be discarded

in order to fit the bitstream within the resource block, the

gain of the proposed algorithm is almost negligible, but it

increases with the improvement in channel conditions. When

instantaneous CSI is available from a feedback channel, the

proposed algorithm provides a considerable improvement in

the system performance (up to 0.2 in VQM score), demon-

strating the validity of the SLV model in the optimization

process. We also showed that, for the parameter values used

in these simulations, when instantaneous CSI is available and

the FEC profile is optimized for the entire video sequence, an

EEP profile is selected as the best profile. However, when the

channel coding is optimized GOP-by-GOP, UEP substantially

ameliorates the system design, at the expense of increasing

complexity. It was also illustrated that the proposed technique

is especially useful for video sequences with medium to high

motion content, which means in video sequences for which a

substantial portion of slices are visually important. Lastly, in

order to simplify the optimization process, the channel coding

scheme can be optimized for the weighted visibility score.

Results demonstrated the reliability of this measure in several

physical environments.
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