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Abstract—Link adaptation techniques are considered for mod-
ern and future wireless communication systems to cope with
quality of service fluctuations in fading channels. These tech-
niques require knowledge on the state of the channel updated
every coherence time of the process to be tracked, during which
a portion of resources is devoted to channel estimation instead
of data. In this paper we analyze fast and slow adaptive mod-
ulation systems with diversity and non-ideal channel estimation
under energy constraints. The framework enables to address the
following questions: (i) What is the impact of non-ideal channel
estimation on fast and slow adaptive modulation systems? (ii)
How to define a proper figure of merit considering both resources
dedicated to data and those to channel estimation? (iii) Does fast
adaptive always outperform slow adaptive techniques?

Index Terms—Adaptive modulation, multichannel reception,
channel estimation, fading channels, performance evaluation.

I. INTRODUCTION

The diffusion of high speed digital wireless communications

has increased the need of reliable high data rate communi-

cations in variable channel conditions. Adaptive modulation

techniques allow to maximize the spectral efficiency (SE)

in fading channels without compromising the performance

in terms of bit error probability (BEP) and bit error outage

(BEO) (see, e.g., [1]–[6]). The M -ary quadrature amplitude

modulation (M -QAM) achieves high data rate and it is widely

considered in adaptive modulation systems. In [3], for exam-

ple, power and rate were both adapted to channel conditions

for a M -QAM uncoded system. The gain derived from an

adaptive rather than a fixed transmitted scheme is reported,

together with the negligible channel capacity penalty that the

system shows when varying only the data-rate rather than both

rate and power. The fast adaptive modulation (FAM) technique

tracks instantaneous channel variations due to small-scale

fading; the receiver estimates the instantaneous signal-to-noise

ratio (SNR) and send a feedback to the transmitter with the

optimal constellation size and transmitting power to be used,

[1], [4]. Those parameters are tuned to exploit good channel

conditions by increasing the transmitted throughput but, at

the same time, to preserve the performance in case of bad

channel conditions. In [5], a slow adaptive modulation (SAM)

technique has been proposed, where modulation parameters

are adapted tracking the channel variations averaged over the
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small-scale fading (i.e., tracking large-scale fading); it has

been analyzed for systems employing diversity with ideal

channel estimation. It is worth noting that FAM leads to best

performance at the cost of a frequent channel estimation or

prediction and high feedback rate. With respect to FAM, the

SAM technique requires a reduced feedback rate and has lower

complexity.

Typical performance metrics for an adaptive communication

system are the BEP, the BEO (i.e., the BEP-based outage

probability [7]), and the SE. For a given target BEP, the SE

and BEO achieved by SAM are close to that of FAM and show

a significant improvement with respect to a fixed modulation

scheme.

For both FAM and SAM techniques, an important role is

played by the channel estimation. The effects of outdated

channel estimation are investigated for adaptive modulation

systems in [3]. Adaptive modulation systems with non-ideal

channel estimation for single- and multi-carrier systems with

FAM are analyzed in [3], [6], [8]–[10]. Channel estimation

techniques typically utilize resources that would be devoted to

data transmission (e.g., pilot symbols can be inserted during

the transmission of data symbols) thus sacrificing the SE.

Hence, it is important to define proper figure of merit able to

capture the trade-off between quality of service and resource

utilization depending on the amount of energy devoted to data

and pilots.

In this paper, we analyze slow and fast adaptive M -QAM

systems with diversity1 and non-ideal channel estimation. The

contribution is three-fold: (i) to define the achieved SE (ASE)

which enables to take into account the portion of transmitted

frame dedicated to data and pilot symbols; (ii) to analyze SAM

with diversity in the presence of non-ideal CSI under energy

constraints; (iii) to compare FAM and SAM under various

conditions and constraints.

The paper is organized as follows: in Section II the system

model and assumptions are presented, and in Section III the

performance is derived and a new metric which considers also

the resources utilized for channel estimation is defined. In

Section IV the performance is evaluated under constraints in

terms of BEP, BEO, and the new definition of SE. In Section

V numerical results are given with indications on how they

can be utilized by a system designer. Finally, our conclusions

are given in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider an adaptive modulation system (see Fig. 1)

with M -QAM squared constellation signaling in composite

1For the performance of subset diversity systems, see [11] and [12].
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Figure 1. Block scheme of the considered adaptive communication system (χ assumes different meanings depending on the adaptive modulation technique).

Rayleigh fading and log-normal shadowing over N -branches

multichannel reception with maximal ratio combining (MRC).

Independent, identically distributed (i.i.d.) fading and same

shadowing level over all branches, (i.e., microdiversity) is

considered.2 We denote hi the small-scale fading gain on the

i-th branch which is distributed as a complex Gaussian random

variable (RV) with mean zero and variance σ2
h per dimension

for all branches.

When a discrete variable-rate modulation scheme is consid-

ered, a set of J+1 constellation signaling {M0,M1, . . . ,MJ}
can be adopted. As an example, for digital video broadcasting

applications, M ∈ {4, 16, 64, 256}, then Mj = 4j+1 and

J = 3. The constellation size is chosen opportunistically

depending on the value of a quantity χ which is, respectively,

the instantaneous SNR γ in the case of FAM and the mean

SNR γ, averaged over small-scale fading, for SAM. Given

a target BEP P ⋆
b the required SNR for the modulation Mj

is χ⋆
j such that Pb(χ

⋆
j ) = P ⋆

b . The opportunistic modulation

is chosen by comparing the estimated SNR value in the

feedback with the SNRs required for each modulation to

satisfy the target BEP. When the SNR value falls in the region[
χ⋆
j , χ

⋆
j+1

)
the j-th constellation size Mj is adopted.

We consider a pilot symbols assisted modulation (PSAM)

scheme (see, e.g., [13]–[16]) where the transmitted frame

is composed by Ns data symbols (each with mean energy

Es) and Np pilot symbols for channel estimation (each with

mean energy Ep = εEs).
3 The mean SNR on each diversity

branch is γ = E
{
|h|2

}
Es/N0, where N0/2 is the two-sided

spectral density of the additive white Gaussian noise (AWGN)

and E {·} denotes the statistical expectation (here evaluated

over the small-scale fading). The shadowing is assumed log-

normal distributed where γdB = 10 log10 γ is a Gaussian RV

having mean µdB and variance σ2
dB. The channel estimator is

maximum-likelihood and fading channels over branches are

such that h = [h1h2 . . . hN ] is constant over a frame. The

estimated fading gain on the k-th branch is

ĥk = hk + ek (1)

where ek is a zero mean complex Gaussian RV with variance

2Since we consider microdiversity, in the following we will omit the branch
subscript in the notation of the mean SNR, averaged over small-scale fading.

3The frame is structured to transmit Np pilots within a coherence time of
the channel.

per dimension σ2
e . In [14] the σ2

e is derived as a function of

the energy of pilot symbols and noise spectral density as given

by

σ2
e =

N0

2NpEp

. (2)

For M -QAM adaptive modulation systems, the non-ideal

channel estimation affects both the transmitter side (in the

choice of the opportunistic modulation) and the receiver side

(in diversity combining and bit reconstruction). To adapt the

constellation size to the most updated channel estimation, tight

delay constraints should be met in the evaluation of the channel

state information (CSI) used at the transmitter side. It follows

that the channel estimate for the transmitter is typically less

accurate [3] than that at the receiver. On the contrary, the CSI

employed at the receiver side does not have such a tight delay

constraint. Then, an interpolation between past and future pilot

symbols can be harnessed at the receiver which results in a

more reliable CSI than the one at the transmitter side. In the

following we assume non-ideal CSI at the transmitter side and

an ideal CSI at the receiver side.4

III. PERFORMANCE METRICS WITH NON-IDEAL CHANNEL

ESTIMATION

For a given target BEP, typical performance metrics for

adaptive modulation systems are the SE and the BEO. We

evaluate them for multichannel communications with non-

ideal channel estimation at the transmitter. For each possible

constellation signaling, the SNR value required to reach the

target BEP is evaluated and compared to the estimated SNR

value χ̂ (i.e., in FAM (SAM) systems, γ̂T (γ̆) is compared to

the required instantaneous (mean) SNR that satisfies a target

instantaneous (mean) BEP). The mean SE and the BEO in

systems affected by channel estimation errors can be evaluated

from the probability density function (PDF) or the cumulative

distribution function (CDF) of χ̂, that we now evaluate for

FAM and SAM systems.

The performance of FAM systems depends on the estimated

4For the effects of delayed channel estimates (outdated channels) the reader
may refer to, e.g., [3], [10], here we focus on updated but erroneous CSI
feedback.
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instantaneous SNR at the combiner output γ̂T. For MRC

χ̂ = γ̂T =

N∑

k=1

γ̂k =

N∑

k=1

|ĥk|2Es/N0.

Both real and imaginary parts of ĥk are zero-mean Gaussian

distributed with variance σ2
h + σ2

e . Therefore, the PDF of the

estimated instantaneous SNR γ̂T, conditioned to γ, is a chi-

square distribution:

fγ̂T|γ(ξ) =
ξN−1

γNσ2N
t Γ(N)

exp

[
− ξ

γσ2
t

]
(3)

for ξ ≥ 0 and 0 otherwise, where σ2
t = 1/ρ2, and

ρ =

(
E

{
hkĥ

∗
k

}
− E {hk}E

{
ĥ∗
k

})

√
E

{
|hk − E {hk}|2

}
E

{∣∣∣ĥk − E

{
ĥk

}∣∣∣
2
}

=
E

{
hkĥ

∗
k

}

√
E

{
|hk|2

}
E

{∣∣∣ĥk

∣∣∣
2
}

=

√
σ2

h

σ2
h + σ2

e

=
Npε

Npε+
1
γ

(4)

is the evelope of the complex correlation between hk and

ĥk [14]. Note that, in (4), ε = Ep/Es and the second equality

follows from E {hk} = E

{
ĥ∗
k

}
= E {ek} = 0. From (3),

it is immediate to derive the marginal PDF and CDF of the

estimated instantaneous SNR.

For log-normal shadowing the PDF of the mean branch SNR

is given by (with ν = 10/ ln 10)

fγ(w) =
ν√

2πσdBw
exp

[
− (10 log10 w − µdB)

2

2σ2
dB

]
(5)

for w ≥ 0 and 0 otherwise.

The performance of SAM systems depends on the estimated

mean SNR χ̂ = γ̆ which is given by5

γ̆ = E{γ̂k} = 2(σ2
e + σ2

h )
Es

N0
= σ2

t γ = γ +
1

Npε
. (6)

From (5) and (6), the CDF of the estimated mean SNR results

Fγ̆(x) = Q

(
µdB − 10log10(x− 1

Npε
)

σdB

)
(7)

for x ≥ 1/(Npε) and 0 otherwise, where Q(x) =
∫∞
x

e−t2/2dt
is the Gaussian-Q function.

A. Bit Error Outage

The BEO is an important performance metric for digital

communication systems defined as the probability that the BEP

is greater than the target BEP [7], [17]–[19]

Po(P
⋆
b ) = P {Pb(χ) > P ⋆

b } . (8)

The system is in outage when even the constellation size M0,

which is the more robust, does not satisfy the target BEP.

For FAM and SAM, respectively, the exact BEP expression

is given by (9) and (10), reported at the bottom of this page

[20], [21] where

IN (γ) =
1

π

∫ π/2

0


 sin2(θ)

sin2(θ) + 3(2i+1)2

2(M−1) γ



N

dθ . (11)

In the case of ideal channel estimation, the BEO is given by

Po(P
⋆
b ) = Fχ (χ⋆

0) (12)

where χ = γT for FAM and χ = γ for SAM [5].

In systems with non-ideal CSI at the transmitter, the esti-

mated SNR χ̂ can be an underestimate or an overestimate of

the true value. The former case leads to a reduction of the

SE and the BEO, while the latter leads to an increase of the

SE and BEO. In particular, when χ̂ > χ, although the true

5Note that γ̆ = γ for ideal channel estimation.

Pb(γT) =
2√

M log2(
√
M)

log2(
√
M)∑

h=1

(1−2−h)
√
M−1∑

i=0

(−1)
⌊ i2h−1

√

M
⌋

×
(
2h−1 −

⌊
i2h−1

√
M

+
1

2

⌋)
Q

(
(2i+ 1)

√
3γT

(M − 1)

)
(9)

Pb(γ) =

∫ ∞

0

Pb(e|γT)fγT|γ(ξ)dξ

=
2√

M log2(
√
M)

log2(
√
M)∑

h=1

(1−2−h)
√
M−1∑

i=0

(−1)
⌊ i2h−1

√

M
⌋

×
(
2h−1 −

⌊
i2h−1

√
M

+
1

2

⌋)∫ ∞

0

Q

(
(2i+ 1)

√
3γT

(M − 1)

)
fγT|γ(ξ)dξ

︸ ︷︷ ︸
IN (γ)

(10)
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SNR would fall within the range for the j-th modulation, the

modulation Mj+1 might be adopted. In this case, the BEP can

be greater than the target BEP and the system is in outage.

Thus, the system is in outage when χ < χ⋆
0 or χ̂ > χ⋆

i

and χ ≤ χ⋆
i for all i. Therefore, for χ̂ = χ+∆χ, the outage

occurs for χ⋆
i −∆χ < χ ≤ χ⋆

i or χ < χ⋆
0 and the conditioned

BEO Po|∆χ results

{
Fχ(χ

⋆
0) +

∑J
j=1

[
Fχ(χ

⋆
j )− Fχ(χ

⋆
j −∆χ)

]
with ∆χ ≥ 0

Fχ(χ
⋆
0) otherwise.

(13)

For FAM systems, ∆χ = ∆γT is a RV whose PDF f∆χ (·) is

derived in Appendix and the unconditioned BEO is given by

Po =

∫
Po|∆χf∆χ(ξ)dξ . (14)

For SAM systems, we note from (6) that ∆χ = 1/(Npε) is

deterministic and

Po = Q(a0) +
J∑

j=1

[Q (aj)−Q (bj)] , (15)

where aj =
µdB − γ∗

j,dB

σdB

bj =
µdB − 10 log10(γ

∗
j − 1/(Npε))

σdB

.

As expected, by increasing Npε the channel estimation accu-

racy increases and the BEO approaches the one for ideal CSI.

Then, we compare the case of non-ideal channel estimation

with the ideal one, by evaluating the penalty on the target

median SNR for a given BEO which is defined as

∆µdB , µ̂dB,0 − µdB,0 (16)

where µ̂dB,0 and µdB,0 are the median SNR values that reach

the target BEO when the lowest constellation size is consid-

ered, respectively for non-ideal and ideal CSI.

B. Achieved Spectral Efficiency

The available SE is given by log2 MJ which would be

reached if channel conditions are such that the system is

always in service with the greater constellation size. In the

presence of non-ideal channel estimation and outage events,

the ASE might be lower than the available SE and its char-

acterization is important for system design. The mean SE

[bps/Hz] with ideal channel estimation is given by [5]

η =

J−1∑

j=0

M̃j

[
Fχ(χ

⋆
j+1)− Fχ(χj)

]
+M̃J [1− Fχ(χ

⋆
J )] , (17)

where M̃j = log2 Mj .

In the case of non-ideal channel estimation at the trans-

mitter, the SNR χ is replaced by the estimated one χ̂. The

insertion of pilot symbols occupies part of the resources that

could otherwise be utilized for data symbols. In each frame of

length Ntot symbols, Np pilot symbols and Ns = Ntot−Np data

symbols are transmitted. By denoting the fraction dedicated

to pilots and data as np = Np/Ntot and ns = Ns/Ntot,

respectively, we define the ASE as

η A , η ns = η
(Ntot −Np)

Ntot

. (18)

We define the mean spectral efficiency penalty as the ratio of

the SE evaluated in the ideal and that in the non-ideal CSI

case

∆η ,
η(ideal)

ηA

(19)

where η(ideal) is the spectral efficiency achieved without con-

straints and with ideal channel estimation, thus in that case

∆η = 1. We recall that in SAM systems, the coherence time

of tracked channel variation is greater than the one in FAM,

and for a given channel estimation quality (i.e., given Np and

ε) the portion of the frame dedicated to data symbols is greater

than the one for FAM, thus nFAM
s ≤ nSAM

s . Conversely, for a

given value of np, the given ns results in more accurate channel

estimation for SAM than for FAM.

IV. PERFORMANCE ANALYSIS UNDER CONSTRAINTS

In adaptive modulation systems with non-ideal CSI, the per-

formance strictly depends on the pilot scheme adopted. In the

following, we analyze the effects of the imposed constraints

and the pilot scheme design on the system performance.

In both FAM and SAM systems, for each adopted pilot

scheme, the following constraints are imposed




Np +Ns = Ntot

NpEp +NsEs = Etot.
(20)

Then, the energy dedicated to data depends on the adopted

pilot scheme as

Es =
E

Np

Ntot
(ε− 1) + 1

(21)

where E , Etot/Ntot. Note that the increasing of Npε leads to

a better channel estimation and to a lowering of Es, the two

situations have opposite effects on the system performance.

Consequently, even the exact SNR χ is a function of the pilot

scheme.

A. FAM Systems

From the above constraints, for FAM systems, the SNR χ =
γT can be expressed as

γT =

N∑

k=1

|hk|2
N0

E
Np

Ntot
(ε− 1) + 1

=
υT

Np

Ntot
(ε− 1) + 1

(22)

where υT ,
∑N

k=1 |hk|2E/N0. By substituting (22) in the

BEP expressions Pb(χ) reported in (9) and (10), the Pb results

a function of two parameters: Npε which characterizes the



5

pilot scheme design and υT which represents the SNR per

generic (pilot or data) symbol. Thus, the instantaneous BEP is

Pb (υT, Npε) = Pb (γT) |γT=
υT

Np
Ntot

(ε−1)+1

. (23)

Unlikely the SNR γT, υT does not depend on the pilot scheme,

but only on the mean energy over the frame, N0, and channel

conditions. Therefore, we will compare systems with different

pilot schemes for a given υT. When constraints are imposed,

υT is the SNR variable in the BEP expression based on which

the constellation size is chosen (for ε = 1, then υT → γT). It

means that the j-th SNR threshold (M = Mj) is defined as

υ⋆
T,j s.t. Pb (υT, Npε) = P ⋆

b . (24)

Due to the imposed constraints, a double effect of the pilot

assisted channel estimation is present: i) parameters Np and ε
affect the data energy, leading to an increase of the thresholds

levels υ⋆
T,j ; ii) the accuracy of the estimation in the feedback

channel depends on Np and ε. In particular, the feedback

estimated SNR is

υ̂T =

N∑

k=1

|ĥk|2
E

N0
.

When ideal systems (ideal CSI without constraints) are con-

sidered, υ̂T → γT.

In FAM systems with energy and symbols constraints, the

BEO can be evaluated from (8) and (13) for ideal and non-

ideal CSI, with χ = υT, χ⋆
j = υ⋆

T,j , ∆χ = ∆υT, and

Fχ (ξ) = FυT
(ξ′), where FυT

(ξ′) is the CDF of υT. Note that

the instantaneous SNR υT is still Rayleigh distributed. The

performance in terms of ASE can still be evaluated from (17)

and (18), with Fχ (ξ) = Fυ̂T
(ξ′). The CDF of υ̂T can be de-

rived from the marginal PDF of fυ̂T
(ξ) =

∫
fυ̂T|υ(ξ)fυ(w)dw,

where the conditional PDF is

fυ̂T|υ(ξ) =
ξN−1

υNσ2N
t Γ(N)

exp

[
− ξ

υσ2
t

]
, ξ ≥ 0

and 0 otherwise.

B. SAM Systems

In SAM systems, the same considerations of the FAM case

still hold, but based on quantities averaged over the small-scale

fading. The mean SNR is given by

γ =
E{|h|2}
N0

E
Np

Ntot
(ε− 1) + 1

=
υ

Np

Ntot
(ε− 1) + 1

(25)

where υ , E{|h|2}E/N0. In the degenerative case of ε = 1,

we have υ → γ. The mean BEP expression is given by

Pb (υ,Npε) = Pb (γ) |γ= υ

Np
Ntot

(ε−1)+1

(26)

and the j-th SNR threshold (M = Mj) is

υ⋆
j s.t. Pb (υ,Npε) = P ⋆

b .

In the case of non-ideal channel estimation, the mean SNR is

ῠ , E{|ĥ|2} E

N0
= υ +

1

Ntot

+
1− np

Npε︸ ︷︷ ︸
∆υ

. (27)

When ideal systems (ideal CSI without constraints) are con-

sidered, ῠ → γ.

For ideal CSI systems, the BEO is still evaluated from (8)

and (12), with χ = υ, χ⋆
j = υ⋆

j and Fχ (ξ) = Fυ (ξ
′), where

Fυ (ξ
′) is the CDF of υ. For log-normal shadowing, υdB is

Gaussian with mean µ′
dB and variance σ2

dB, and υ is a log-

normal RV with CDF given by6

Fυ(w) = Q

(
µ′

dB − 10 log10(w)

σdB

)
. (28)

For non-ideal CSI systems, the BEO can be derived from (13)

and (27)

Po = Q(a0) +

J∑

j=1

[Q (aj)−Q (bj)] , (29)

where aj =
µ′

dB − υ⋆
j,dB

σdB

bj =
µ′

dB − 10 log10

(
υ⋆
j − 1

Ntot
− 1−np

Npε

)

σdB

.

The performance in terms of ASE can still be evaluated

from (17) and (18), with χ = υ, χ⋆
j = υ⋆

j and Fχ (ξ) = Fῠ (x)
given by

Fῠ(x) = Q

(
µ′

dB − 10 log10(x− 1
Ntot

− 1−np

Npε
)

σdB

)

for x ≥ (1/Ntot) + (1− np)/Npε and 0 otherwise.

V. NUMERICAL RESULTS

We now present numerical results in terms of ASE and BEO

for both FAM and SAM systems with Gray code mapping.

We assume coherent detection of M -QAM with N -branches

MRC. Composite Rayleigh fading and log-normal shadowing

channels is considered with both ideal and non-ideal channel

estimation.7 For non-ideal channel estimation, the ASE is

evaluated by (18), with a target BEP of 10−2 and a maximum

BEO of 5% (typical values for uncoded systems). We denote

by K the ratio between the frame lengths with SAM and FAM

(i.e., the ratio of the coherence time), for small- and large-scale

fading, as

K =
NSAM

tot

NFAM
tot

.

We assume NFAM
tot = 100 symbols and K = 1000 [22]–[24].8

For a mobile terminal, the coherence time of the fast fading

is inversely proportional to the maximum Doppler frequency:

6When ε = 1, µ′

dB
= µdB, while for ε 6= 1, the median SNR penalty

becomes ∆µdB , µ̂′

dB,0
− µ′

dB,0
.

7Without loss of generality, we assume σ2

h
= 1/2.

8For realistic shadowing and fading channels [23], [25]–[28], K can be
greater. Thus, the gain of the SAM compared to the FAM can be even higher
than what shown in this section.



6

20 25 30 35 40 45
µ

dB

3

4

5

6

7

8
 η

A
[b

/s
/H

z]

FAM, N
p
=2

FAM, N
p
=6

SAM, N
p
=2

SAM, N
p
=6

Fixed Mod, M=16
Fixed Mod, M=64
Fixed Mod, M=256

B
E

O
>

5%

Figure 2. ASE for SAM and FAM systems with non-ideal channel estimation:
Mmax = 256, dual-branches MRC, maximum BEO 5%, P ⋆

b = 10−2, ε = 1,

NFAM
tot = 100, K = 1000 , and σdB = 8. Comparison with fixed modulation

systems (M = 16, 64 and 256).

with a carrier frequency of 900 MHz, the coherence time is

about 72 ms and 4 ms for a mobile speed of 3 km/h and

50 km/h, respectively. On the other hand, the coherence time

of the shadowing is proportional to the coherence distance

(e.g., 100-200 m in a suburban area and tens of meters in

an urban area [29]). Assuming a coherence distance of 100
m, this results in a coherence time of about 120 × 103 ms

and 7.2 × 103 ms at 3 km/h and 50 km/h, respectively. This

would lead to K = 1600÷ 1800. Assuming a symbol period

of 66µs [30], NFAM
tot = 60 ÷ 1000 symbols in a coherence

time. It is worth noting that, the comparison between FAM

and SAM can be made assuming a constant number of pilot

symbols Np or a constant portion of pilot symbols within each

frame np. In the former case, the channel estimation quality

will be the same for both FAM and SAM, while the portion

dedicated to the data symbols will be greater in SAM systems,

it means that nSAM
s = (1 − nSAM

p ) = (1 − (nFAM
p /K)) >

(1−nFAM
p ) = nFAM

s . Otherwise, by assuming the same portion

of pilot symbol np for both SAM and FAM, nFAM
s = nSAM

s

while NSAM
p > NFAM

p , leading to a better channel estimation

for SAM. In the following results, we consider a constant Np

value.

In Fig. 2 the ASE of FAM, SAM, and fixed modulation

systems is reported as a function of the mean SNR with

N = 2, Mmax = 256, ε = 1 (i.e., Ep = Es), and σdB = 8.9

For non-ideal channel estimation, SAM can outperform FAM,

for both Np = 2 and 6, which confirm the importance of the

analysis for design in practical systems. In particular it can

be noticed that the lowest median SNR over which the BEO

requirement is satisfied becomes advantageous for SAM as

the channel estimation accuracy increases (i.e., Np increases).

Then, by increasing Np within the frame, the crossing point

beyond which SAM outperforms FAM is reduced. Note also

that, for both Np = 2 and 6, the SAM achieves almost the

same performance. The reason is that the portion of pilot

9For fixed modulation systems, that does not require a feedback, ideal CSI
is assumed.
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b
= 10−2, ε = 1, σdB = 8, and

NSAM
tot = 200. Results are evaluated for both ideal and non-ideal channel

estimation.

symbols inserted within the frame of K × NFAM
tot symbols is

almost constant: in SAM stystems, np varies from 2×10−5 to

6× 10−5, while in the FAM ones, it varies from 2× 10−2 to

6× 10−2. Moreover, it should be noticed that both FAM and

SAM preserve a considerable gain in terms of ASE compared

to the fixed modulation schemes. Only for considerably high

µdB values, the fixed modulation system with ideal channel

estimation and M = 256 can outperform the adaptive modu-

lation systems.

The comparison between FAM and SAM schemes is shown

in Fig. 3 in terms of both ASE and BEO for both ideal and non-

ideal channel estimation. The systems are compared for several

maximum modulation values (Mmax = 4, 16, 64, and 256),

pilot schemes (Np = 2, and 6, and ε = 1), and for σdB = 8 and

µdB = 20, and 30. For ideal channel estimation, by increasing

the Mmax value, the ASE increases while the BEO is constant

to the value for M = 4, and the FAM system outperforms

the SAM one in terms of ASE. Conversely, when non-ideal
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NSAM
tot = 200.

channel estimation is considered, due to the overestimation of

the SNR in the feedback, the BEO increases accordingly with

the maximum modulation parameter. In particular, the FAM

systems have a non negligible increasing of the BEO value. For

example, for µdB = 30 dB, Mmax = 16, and Np = 6, a FAM

system experiences a BEO of 10−2, despite the 3.5 × 10−3

experienced by the SAM system.

In Fig. 4, the ASE as a function of µdB is reported for

SAM systems with MRC (N = 2 and 4 branches), Mmax =
256, ε = 1, σdB = 8, and several values of Np. Here, we

consider NSAM
tot = 200 symbols, to emphasize the effect of

non-ideal CSI and pilot insertion on the system performance.

The tradeoff between channel estimation quality and ASE can

be observed in the figure, where for the considered system,

Np = 2 provides a sufficient quality estimation, with ASE

greater than that for Np = 4 and 6.

The effect of pilot energy (i.e., the effect of ε) is considered

in Fig. 5. In the figure, the median SNR penalty ∆µdB as a

function of ε is reported for SAM systems with dual-branches

MRC receivers, Mmax = 256, NSAM
tot = 200 symbols, target

BEO of 5% and various Np values. The numerical values

reported represent the ASE evaluated for ε = 0.5 (i.e., Ep =
Es/2). Low median SNR penalty leads to performance close

to the ideal case. In particular, for each Np, an ε value

that minimizes the penalty can be obtained. By increasing ε
the channel estimation accuracy increases, while the symbol

energy might decrease.

In Fig. 6 we provide performance of SAM systems for

various Ntot values (i.e., several frame lengths). In particu-

lar, we compare the systems performance in terms of ASE

(Fig. 6(a)) and in terms of BEO (Fig. 6(b)) as function of

np for SAM systems with Mmax = 256, four-branches MRC,

ε = 1, σdB = 8, µdB = 20 and 25. Fig. 6(a) shows the ASE

vs. np when Ntot equals 102, 103, and 104. For low np the

system with the lowest number of pilot symbols (i.e., the

system with Ntot = 102) outperforms the others. From (6),

it can be noticed that, the lower the Np, the higher the ∆γ.

It is worth noting that, the overestimation of the mean SNR

achieves an ASE higher than the ideal systems, but it leads to

an increasing of the BEO, as it can be evaluated from (15).

This drawback is depicted in Fig. 6(b), where the BEO as a

function of np is provided. The greater the Np, the greater

the ∆γ and thus the greater is the BEO. For example, when

µdB = 25 and np = 0.01, the system with Ntot = 102 (and

thus Np = 1) achieves a BEO of 2×10−2 despite the 5×10−3

and 3.5 × 10−3 experienced by the systems with Ntot = 103

and 104, respectively.

Finally, in Fig. 7, we provide a comparison between FAM

and SAM performance in terms of ASE penalty in (19), for

systems with dual-branches MRC, Mmax = 256, target BEO

5%, P ⋆
b = 10−2, σdB = 8, NFAM

tot = 100 and K = 1000.

The ASE penalty needs to be minimized, and in particular,

∆η approaches 1 for systems with ηA that tends to η(ideal). For

both FAM and SAM, the penalty increases accordingly with
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the number of pilot symbols within each frame. In addition, it

is noticeable that the penalty on the ASE for SAM is almost

always lower than that of FAM.

From the above results, the system designer can obtain

the minimum value of the median SNR for specified target

BEP, BEO, and ASE. Since the median SNR is tied to the

propagation law and location of the user, one can design the

wireless system (e.g., cell size, and power levels for cellular

systems) that fulfills the requirements.

VI. CONCLUSIONS

We analyzed fast adaptive modulation (FAM) and slow

adaptive modulation (SAM) systems with multichannel re-

ception and non-ideal channel estimation under energy con-

straints. An appropriate figure of merit for the evaluation of the

achieved SE (ASE) is defined. It takes into account the tradeoff

between channel estimation and data reconstruction for a

given total amount of energy per frame. The mathematical

framework enables a system designer to evaluate the amount

of energy and resources to be devoted to channel estimation for

given target bit error probability and outage. Numerical results

show that for some system configurations, SAM systems,

despite the lower feedback rate, can outperform the FAM

systems. This gives a different prospective for the design of

adaptive communication systems.

APPENDIX

BIT ERROR OUTAGE IN FAM SYSTEMS

For FAM systems the ∆χ = ∆γT is the RV resulting from

the difference of two correlated chi-square distributed RVs

∆γT = γ̂T − γT = ∆h
Es

N0

where

∆h =

N∑

n=1

(
|ĥn|2 − |hn|2

)
.

and ρ2 = σ2
h/(σ

2
h +σ2

e ) = γ/(γ+(Npε)
−1) is the normalized

correlation. As reported in [31], the PDF of ∆h can be

expressed as (30) at the bottom of the page, where σ2
1 = σ2

h ,

σ2
2 = σ2

h + σ2
e , and

γ− =

[(
σ2
2 − σ2

1 + 4σ2
1σ

2
2

(
1− ρ2

))2]1/2

σ2
1σ

2
2 (1− ρ2)

α± = γ− ± σ2
2 − σ2

1

σ2
1σ

2
2 (1− ρ2)

.

Thus, the PDF of ∆γT, conditioned to γ results

f∆γT|γ(ζ) = f∆h(ξ)|ξ=∆γT2σ2
h
/γ

2σ2
h

γ
. (31)

The unconditioned PDF of the mean SNR can be written as

f∆γT
(ζ) =

∫ ∞

−∞
f∆γT|γ(ζ)fγ(ν)dν . (32)

Knowing the distribution of ∆γT, the unconditioned BEO for

FAM systems can be evaluated.
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