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Abstract

Multiple connected devices sharing common wireless ressumight create interference if they access the channelltaim
neously. Medium access control (MAC) protocols generadlyutate the access of the devices to the shared channelitsitmal
interference. In particular, irregular repetition slott&LOHA (IRSA) techniques can achieve high-throughput perfance when
interference cancellation methods are adopted to recower €ollisions. In this work, we study the finite length perfance for
IRSA schemes by building on the analogy between successisdarence cancellation and iterative belief-propagmatn erasure
channels. We use a novel combinatorial derivation baseth@miatrix-occupancy theory to compute the error probghdlitd we
validate our method with simulation results.

I. INTRODUCTION

When networked devices share common wireless resourges sinterference might be experience. Medium access aontr
(MAC) strategies need to properly control users transimis$d limit this interference [1]5[3]. However, in future merks a
massive number of devices will be connected to the Intemgt,(Internet of Things and machine-to-machine commtinics)
and MAC protocols need to be more and more distributed. Randltted ALOHA (SA) with successive interference
cancellation (SIC) strategies, for example, have recegaiyed attention because they do not require coordinatiod,they
are able to recover from interfering signals.

Bipartite graphs are a useful framework to study random MAGtsgies or, more generally, transmission of successive
signals from several sources in different time slots. Whages in the bipartite graph are randomly generated, the/sinalf
belief propagation (BP) decoding is usually performed gstytically, i.e., for an infinite number of sources and tinlets
Finite length analysis has been investigated when edgesademly selected from the transmission time slots, as dlse of
finite length analysis for LDPC codes| [4]. However, the reeetase in which the source nodes randomly create the edges is
still an open topic that we address in this work.

In this work, we consider random SA with SIC strategies asithé target application, where each source sends infoomati
to a central base station (BS) in time slots that are unifpiselected at random independently from the other soureeke®s
sent in the same time slot from different users interferergreach others and cannot be immediately decoded. Howd@er, S
strategies are able to mitigate the effect of these colisihrough iterative message-passing techniques andeecorrupted
data at the decoder. Within this framework, we study the diegpperformance of BP schemes in finite length settings,eham
for small MAC frame size. Within a MAC frame, each source dols a transmission probability distribution that drives th
replication rate of the sources, hence the performanceeafybtem. Our objective is to compute the decoding errorginitity,

i.e., the probability of not decoding correctly the soumrt®imation. We first introduce a combinatorial derivatidritee packet
collision probability using the matrix occupancy framewoThen, we evaluate iteratively the decoding error prolitgdy
studying the number of collisions that can actually be nesby interference cancellation. The proposed analysgast but

it has a computational complexity that grows with the MACnfisize. We therefore show how achieve an approximated but
still accurate analysis at a reduced computational costulaiion results validate our study in different transrioisssettings
with small MAC frames.

In the seminal work ofi[5], a key connection has been drawwéen SIC strategies in irregular repetition slotted ALOHA
(IRSA) and the iterative BP decoder of erasure codes on grafihis has opened the possibility to apply theory of rateles
codes to IRSA schemes and analyze their performance [6whith is essential to optimize users’ transmission sirate.g.,
transmission probability) [8]. These works are mainly feed on deriving asymptotic system performance for large M&@
frames. They however cannot be easily applied in optimizespurce allocation strategies in actual IRSA schemedh@srs
in [8]. To the best of our knowledge, only the works [ [9], [li@vestigated finite-length performance analysis for IRSA
scheme. Both look at the average stopping sets and derivger bound on the error probability in IRSA. These bounds
have low computational complexity but they are not necdgstight for very small MAC frames. In our work, we rather
derive a semi-analytic analysis for finite length IRSA sckepwhich permits to compute error probabilities exactgrefor
small frames.
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Fig. 1. Transmission example of IRSA strategy with a MAC feasomposed of four slots. Souréesends the source packgf. There are three users
attempting a transmission according to the degree vetter [2, 2, 3].

Il. SYSTEM MODEL

We consider a system éfsources that communicate with a common BS. The IRSA straseipe adopted MAC protocdl[5].
We assume the time axis to be discretized in MAC frames, eat¢hose composed of time slots. Within a MAC frame,
each source transmitsreplicas of the source packet as depicted in Fid.]1. The distinct time slots used for transmission
are selected uniformly at random among thotal available slots. The replication radeis randomly selected by each user
following the transmission probability distributioh = [A4,...,Ap,, .|, whereA, is the probability that a user transmifs
replicas, andD,,... is the maximum number of allowed packet replicas per MAC fahVithin a MAC frame, each source
selects its replication rate independently from the otheexling to replication vector (named in the foIIowing asree degree
vector)d = [dy,...,dx], di € {1,..., D} that is experienced with probabiliti (d) Hl 1 Pa(dy) = ]'[z 1 A,

Each realization ok sources accessing the time slots of a MAC frame can be desidipak x ¢ binary matrixM = (m;; ),
calledcollision matrix, with rows and columns corresponding to users and slotpentisely. We haven,; = 1 if the ith user
transmits in thejth slot, andm,; = 0 otherwise. The collision matrid associated with the example in Fig. 1 is given by

101 0
M=|0 1 0 1
01 1 1

The weight of a colummn; in M is given bny:1 m;; and it represents the number of packets sent in the timej situs,
columns with unity weight, e.g[100]”, represent singleton slots that allow an immediate degpdfrthe message. On the
contrary, columns with a weight greater than one, ¢140]”, represent slots in which messages collide and cannot betlgir
decoded. Collided messages can however be recovered bytrat€gges. If packets are sent by two users in the same tiote sl
but one of them can be recovered from a singleton slot, therséitond packet can be decoded by interference cancelation.
For example, message in M is recovered from the first slot, which is a singleton one.ilwanceling the message from
the other interfering messages we obtAlf = [0000;0101;011 1] and messaggs can also be decoded. As long as one
singleton slot is experienced, the iterative decoding @segroceeds. If the SIC process resolves all collisioms) tio source
packets are lost within the MAC frame of interest. If the Sldgess stops before completion, it leaves packets unddcode
and the SIC process fails.

In this work, we are interested in evaluating the probabiit failure in the SIC process, i.e., the probability thataclet
is lost when transmitted through the IRSA protocol. We dertbts packet loss rate (PLR) by, and it can be written

k
P=Y % Py (u) 1)
u=2

where Py (u) is the probability of having: unrecovered packets whénusers transmit over a frame ofslots with degree
distribution A. We condition to a given degree distribution vector as feio

PL_ZZ Pr(u | d) P(d)

dEDuQ

k
_ZZ P(u|d) []Aa @)
deD u=2 =1

For the sake of notation, we omit the dependency of the pdokstprobabilities or{k, t).



with D denoting the set of all the possible packet repetition wvecatiowed by the distributiod. Denoting byD the number
of possible replication rates, i.e., replication rateshwit; > 0, |D| = D*. In the next section, we compute the PR for
small MAC frame size.

IIl. FINITE LENGTH PERFORMANCE
A. Matrix-Based Formulation

Because of the source independence, collision matriceg@ualent in terms of PLR upon permutations (both across
rows or columns). We can therefore study the IRSA perforraanc only looking at the column vectors which are present
within a given matrixM. This is possible exploiting the combinatorial matrix-opancy theory[11], dealing with sets of balls
randomly assigned into groups of bins. Random access charoidems can be viewed as occupancy problems by consglerin
packets and slots as balls and bins, respectively. The nuafliEns with only one ball, for example, represents the nemb
of singleton slots.

In more details, le€ = {c1,ca,..., ¢/} be the set of all possible column vectors that can be presemt,iwith column
cq = [cgl), cg”, e cfzk)]T taking values in{0, 1}*. Let us then define theccupancy vector n = [ne,, ne,, - - - ; Ne,c, ] associated
with a matrixM as a vector that shows how many times each colunmtismpresent inM. Note that for the sake of notation,
we omit the dependency aof from C. Specifically,n., is the number of times the colume, is present in the matrix of
interest. For example, defining = [1 0 0]7,c, = [0 1 1]7, andez = [1 0 1], the occupancy vector associated wikh is

n= [ncl =1, ne, =2, neg =1, Ny oy = 0] .
Finally, we defineC; C C as the subset of column vectors with weighfc,) = 25:1 cff) =1, and(C;; C C; as the subset
of column vectors with weight and¢; = 0. It is worth noting that each occupancy vector correspondsltiple collision
matrices that are equivalent in terms of PLR.
We are now interested in finding conditions under which arupaocy vector represents a collision matrix in the cask of
sourcest time slots, and degree vectdr First, we impose that exactlycolumns are present in the matrix:

S e, =t ®)

Then, we impose that the degree vector is respected. Thiagribat an occupancy vector is feasible if it leads to a matrix
which exactlyd; entries are non-zero in thh row of the collision matrix. This translates in the follmg set of constraints

Doz

Y » diy i=1,...,k 4)

=1 qicq€C;

SinceCy has only one column vector (i.e., the vector with Blentries) and’,_, hask possible column vectors (i.e., each
vector with only one out of: null entry), we can impose the abo¥et 1 constraints —[({8) and14) — by properly evaluating
the occupancy of thé + 1 column vectors inC;, andCi_;. Let us denote bya the reduced occupancy vector, defined as
the column vectors with weight at mokt— 2. Formally,n = [ncq]cqeé, with ¢ = C \ Cx—1 UCk. We can then decompose
any occupancy vector as = [n f(n,d)], with f(n,d) representing the occupancy of tket 1 column vectors inC;, and
Ck—1. Thesek + 1 unknownf(n,d) = [fi(n,d),..., fr+1(n,d)] are derived by imposing the constrainf$ (3) abd (4). If
fi(h,d) > 0,Vi, then the occupancy vectgii f(n,d)] is a feasible one for the transmission settifgs, d). We defineZ(n)

an indicator function such th&t(n) = 1 if [a f(i,d)] is a feasible one for the transmission settifgst, d), andZ(n) =0
otherwise.

B. Packet Loss Probability
Equipped with the matrix-occupancy representation, weeoaress the error probabilit# (v | d) in @) as

P(u|d) = ZQu [ f(i,d)]) P(a] d)

where P(n|d) is the probability of experiencing an occupancy vedioff (nn, d)], whenk users transmit over slots given the
repetition vectord. The indicator functior,,(k, n) returnsl if the the SIC process with a collision matrix associatechwit
stops atu undecoded packets and retuthstherwise. We compute both terms below.

The probabilityP(nn|d) is zero if Z(n) = 0, otherwise it is evaluated as the ratio between the numbeolt§ion matrices
with occupancy vectop f(n,d)] and the total number of collision matrices in the same trassion settings. The former is
given by the following multinomial coefficients

t!
=

[T ne,! Hfz( d)!

cqel




while the total number of collision matrices that can be eigreed under the settings:,¢,d) is H;?:l (dt) from the
independency of the sources. This leads to '

e, (] b itz =1
P(na|d) = [T eyt 11 fi(ad)! )

qué =

0, otherwise

We then derive),, (k, n) iteratively. We consider thgth iteration of the decoding process, whérej packets are undecoded,
andn@® = [nY) n{), .. ] is the occupancy vector of the collision matrix at tjth decoding step. Note that = n(® is the
occupancy vector before the decoding process starts. Ajtthigeration of the decoding process, one message is deadgd
if there exists at least one weighteolumn vector, i.e., ifc € C; s.t. nfﬂ) > 0.

If the condition is satisfied, then the decoder can procee¢degmext step. At the decoding iteratigr- 1, there arek — j — 1
undecoded packets and the occupancy vector of the collisiainix is denoted byn*+1). The latter is derived recursively
from n). Let us consider the column vector with theth entry being non-zero, i.ec, € C \ UiCi,m, and let us denote by
c™) its complementary inn a column vector equal to but with them-th entry set to zero. For example,df= [11001],
thenc® = [10001). Then, in the case in which the-th element of¢; hasny) > 0, n+1 can be written frorm(@) as
follows

néﬂ(;)l) — 71537) + ng(zn) Ve eC \ Ulcl,m
e -
nG+D Z () Ve € {UiCrm \ ©™} ©6)

We thus recursively evaluate the indicator functi@p as

If there are no weight-one columns in the collision matrhe tlecoder terminates at iteratiprwith £ — ;7 undecoded packets
and @, becomes
_ 1, k—j=u
Qu(k —jn) = ®)
0, otherwise

Finally, denoting by\ the set of reduced occupancy vectérsuch thatZ(n) = 1, the decoding error probability ofl(2)

results in .
! Ay
P SRS Okl faa)) ———f—— [ ©
deD u=2 = heN [T ne,! II fi(R,d)! =1 (di
cqel i=1

We now comment on the complexity of the proposed semi-aicalystudy. Both the combinatorial and iterative stepgin (9
are performed over all possible degree vectbrs D and all possible reduced occupancy vectars N. The cardinality of
D and \ is given respectively by

|D| = D* and [N < (C+§_ 1>

with ¢ = Zﬁ;é (fl) The upper bond onV| is derived as follows. We first recall thét is the dimension of the reduced
occupancy vectoh and that the entries ai need to satisfy[{3). Looking at the problem éaballs into R bins, the number
of possible combinations of the reduced vecto(cié‘ﬁ‘l). Among these, only the reduced occupancy vectors thafys#is
belong to.

It is worth noting that the cardinality oD and A/ both scales withk and ¢. However, the probability of experiencing
a given reduced vector and a given degree vector can be emsiled from [[2). Therefore, an approximated PLR can be
evaluated by performing the iterative proced@g(k, n) only for the most likely reduced vectors. This substantiatiduces

the computational complexity while preserving accuracy.

IV. NUMERICAL RESULTS

We now provide the simulation results to validate the preposolution in finite-length systems, i.e., with small siz&M™
framest € [4,7]. We consider different settings with sources and time slots. For eaclik,t) pair we consider different
transmission probabilities, i.e., different degree distions A(z), following [5]. For each of these scenarios, we evaluate the
decoding error probability froni19). Then, for eadliz), we generate 000 realizations of collision matrices and simulate the
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Fig. 2. Comparison of the theoretical and simulation restdt different(k,t) pairs in the case of = 6 and A(z) = 0.2z + 0.522 + 0.3z*.

TABLE |
k=4,t=6, A(z) = 0.2522 + 0.7523.

u  Pr[U =] theory Pr[U = u]sim
2 0.140730 0.141390
3 0.130158 0.130110
4 0.094203 0.093460
Pr, 0.262186 0.261738

IRSA protocol and the SIC decoding with belief propagatiod ave evaluate:/k. We then average this ratio over tihe00
realization to evaluate the average loss probability.

We now provide simulation results in terms of normalizedbtlghput, defined ag¢l — P )k/t. This metric is usually
adopted to evaluate the performance of MAC strategies adileittly reflects the error probabilit¥;, . In Fig.[2, we provide
the normalized throughput as a function of the traffic= &/t for a scenario witht = 6 and A(z) = 0.2z + 0.5z + 0.3z%.
Results are provided for both simulation results and th@aeones, namely the finite length analysis proposed is Work
and the asymptotic analysis derived [in [5]. We also provideapproximated solution (labeled MLV — most likely vectors)
where the iterative evaluation ¢, in (@) is performed only over the occupancy vector with a pitmlity P(d) > 1073, The
results show a weak match between asymptotic theory andrthéagions results, from here the need for finite length ysial
From the results, we also observe a good match between famtgh theory (both exact and approximated) and simulgtions
showing the accuracy of our study. The model is validated alsthe results provided from Tablé I, where we provide the
final packet loss raté’;, but also a partial performance of the decoding process {fe.probability of stopping the decoding
step atu unknown denoted byr[U = u]). The good match between theory and simulation is confirmebese experiments.

Finally, in Table[1l we compare our analysis with the asyntigtanalysis of([[5] and the finite-length analysis [of [9]. Wees
that, especially for small value of the traffic netwark the asymptotic analysis is far away from the actual perforoe, and
that our study is more precise than [9] especially for largkies of the traffic networks. This accuracy comes at a price of
a large computational complexity. Because of the compjeittor, [9) might be too expensive to evaluate for reaiMiAC
frames (hundreds of time slots). However, in Tdble 1l we obséhat the approximated solution MLV nicely scales witle th
MAC frame without significantly affecting the accuracy.

V. CONCLUSIONS

We carried out an evaluation of the IRSA performance in fifdtegth settings, using combinatorial theory and matrix-
occupancy theory. Simulation results validate the derigadlysis for small MAC frames and show the improved match
between theory and simulation results with respect to tat sif the art performance studies.
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