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Abstract 

The increasing incidence of autism suggests a major environmental influence.  Epidemiology 

has implicated many candidates and genetics many susceptibility genes. Gene/environment 

interactions in autism were analysed using 206 autism susceptibility genes (ASG’s) from the 

Autworks database to interrogate ~1 million chemical/gene interactions in the comparative 

toxicogenomics database. Any bias towards ASG’s was statistically determined for each 

chemical. Many suspect compounds identified in epidemiology, including 

tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene , heavy metals, 

valproate, acetaminophen, SSRI’s, cocaine, bisphenol A, phthalates, polyhalogenated 

biphenyls, flame retardants, diesel constituents , terbutaline and oxytocin, inter alia showed a 

significant degree of bias towards ASG’s, as did relevant endogenous agents (retinoids, sex 

steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected 

endocrine disruptors (over 100) selectively targeted ASG’s including paraquat, atrazine and 
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other pesticides not yet studied in autism and many compounds used in food, cosmetics or 

household products, including tretinoin, soy phytoestrogens , aspartame, titanium dioxide and 

sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals 

and these same genes play an important role in barrier function and control of respiratory 

cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants 

also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by 

bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and 

behavioural research is warranted to determine the relevance of large number of suspect 

candidates whose addition to the environment, household, food and cosmetics might be 

fuelling the autism epidemic in a gene-dependent manner.  

Key words: Autism; gene/environment; pesticides, heavy metals, pollutants; pregnancy 

Introduction 

According to the Center for disease control (CDC) 

http://www.cdc.gov/ncbddd/autism/data.html the USA incidence of autism spectrum 

disorders rose 2.2 fold from 2000  to 2010  [1]. In the UK, a five-fold increase in autism in 

the 1990’s , reached a plateau in the 2000’s up to 2010 [2]. This increased prevalence is 

likely partly due to environmental influences, of which there are many candidates.  Many 

chemical classes or specific chemicals related to autism have been reviewed by Rossignol or 

Sealey and co-authors [3,4]. These include pesticides, heavy metals, diesel, particulate 

matter,   and other traffic and air or smoking  pollutants, as well as Bisphenol A, phthalates , 

solvents and polychlorinated or polybrominated biphenyls found in household objects such as 

feeding bottles, fragrances or flame retardants.  Certain drugs used in pregnancy, including 

valproate, selective serotonin reuptake inhibitor antidepressants (SSRI’s), acetaminophen, 

dexamethasone, terbutaline oxytocin and prostaglandins have also been linked to the 

http://www.cdc.gov/ncbddd/autism/data.html
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development of autism. These and other environmental risk factors are referenced in Table 1, 

which also includes details of animal studies related to autism, where available. Evidently 

certain compounds have been more extensively studied and further work is needed for many.  

It should also be appreciated that, as in genetic studies, replication is a problem in 

epidemiology, but also that gene/environment interactions may partly explain some 

disparities (i.e. compound X affects autism if it influences, or is influenced by susceptibility 

gene(s) products Y, Z etc., or gene Y shows association only if compound X is relevant). This 

is exemplified for paraoxonase 1 (PON1) variants, which metabolise organophosphate 

pesticides. PON1 is associated with autism in US studies, where organophosphate use is 

extensive, but not in Italy where organophosphate use is low [5].  

Autism related genes are preferentially expressed prenatally in the frontal cortex suggesting 

that an inherent genetic susceptibility may be confined to this period [6] . Many of these 

compounds are endocrine disruptors which have been linked to a variety of diseases, 

including autism, attention hyperactivity deficit disorder, obesity and diabetes, whose 

incidence has increased in recent decades. Their annual burden of health cost in the European 

Union has been estimated at over 100 billion Euros [7,8] . 

A number of compounds detailed in Table 1, or related compounds have also been shown to 

produce autism-relevant behavioural effects in laboratory models when administered 

prenatally, although not all have been studied. These include pesticides, fungicides  or 

herbicides (atrazine, chlorpyrifos, cypermethrin, the DDT metabolite 

Dichlorodiphenyldichloroethylene (DDE), endosulfan,  linuron, prochloraz, procymidone, . 

tetrachlorodibenzodioxin and vinclozolin)  heavy metals (aluminium, cadmium, lead, 

arsenate, manganese, or mercury)  bisphenol A and phthalates and other pollutants  

(perfluorooctanoic acid, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, 

butylparaben, polychlorinated and polybrominated biphenyls (flame retardants) and 
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particulate matter) as well as dexamethasone, fluoxetine, terbutaline, thalidomide and 

valproic acid .Others such as  Rotenone and fungicides (pyraclostrobin, trifloxystrobin, 

famoxadone or fenamidone) as well as fluoxetine, carbamazepine and venlafaxine, or 

valproate also produce transcriptome changes consistent with autism (See Table 1 for 

references). 

Genes associated with autism are catalogued at the Autworks database using a confidence 

score  derived from analysis of the Genotator association database [9,10] . 206 genes are 

regarded as prime autism susceptibility candidates and these genes and network analyses are 

available at the autworks site from the Wall lab at Harvard University 

http://tools.autworks.hms.harvard.edu/gene_sets/580/genes .   

This same set of genes has recently been shown to be localised and enriched in many barriers 

including the blood brain barrier, as well as skin, intestinal, placental and trophoblast barriers. 

Several also play an important role in relation to respiratory cilia that sweep noxious particles 

from the airways. These barrier-related genes are thus in a position to modify the access of 

numerous environmental agents to the blood and brain and their role in respiratory cilia is 

relevant to particulate matter and airborne pollutants [11].   

Given the strength of the various environmental associations with autism, and its increasing 

prevalence over recent years, it is possible that the environmental influences that target these 

genes may afford clues as to the combined and conditional causes of autism.  

Epigenetic changes have been observed in autism, and these too may be related to 

environmental agents [12,13] as reported for Bisphenol A and heavy metals (see Table 1) and 

for flame retardants and other endocrine disruptors, including soy formula and 

phytoestrogens such as genistein  [14-16] and also for other nutritional agents such as 

Vitamin D and folic acid[17-19]. However, epigenetics is not the subject of this study, which 

http://tools.autworks.hms.harvard.edu/gene_sets/580/genes
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is limited to the 206 autism-related polymorphic genes reported from gene association 

studies.   

Chemical influences on the 206 Autworks susceptibility genes (ASG’s) were analysed using 

the Comparative Toxicogenomics Database (CTD) [20]  which records over 1 million 

interactions between diverse chemicals and genes or proteins. Previous work using this 

database has already shown a link between autism or other disease-related genes and 

environmental risk factors [21]. For example, asthma has been linked with p,p'-DDT, and 

autism with o,p'-DDT, both metabolites of the organochlorine insecticide 

dichlorodiphenyltrichloroethane (DDT)[22]. 

 The results suggest that the toxicogenomic effects of many chemicals associated with autism 

selectively target the ASG’s, showing a close relationship between genes and environment. 
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Table 1 

Compounds that have been implicated in autism in epidemiological studies, or where 

different blood, hair or tissue levels have been reported. Where available, relevant animal 

studies are also noted. 
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Herbicides  Human studies Animal studies  

2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD : Agent orange defoliant 

contaminant) 

Breast milk 

concentrations 

associated with autism 

in 3 year old 

Vietnamese children  

[23]. Dioxin toxicity, 

including TCDD, also 

related to autism and 

neurodevelopmental 

problems in a follow-up 

Vietnamese study. [24]  

Dioxin and 

polychlorinated 

biphenyl maternal  

blood levels also related 

to autistic traits in a 

German study [25].     

polychlorinated 

dibenzo-p-dioxin 

exposure during the 

brain growth spurt — 

extending from the third 

trimester of pregnancy 

to age 2 related to 

autism: Reviewed in [3] 

relatively low doses of four  

endocrine disruptors , 

atrazine (10mg/kg), 

perfluorooctanoic acid 

(0.1mg/kg), bisphenol-A 

(50 µg/kg), 2,3,7,8-

tetrachlorodibenzo-p-dioxin 

(0.25 µg/kg) alone or 

combined in a mixture, 

from gestational day 7 until 

weaning produce 

behavioural toxicity , which 

for mixture effects was 

predominantly seen in male 

mice offspring [26]. 

 

Pesticides At sub-cytotoxic concentrations, Rotenone and 

fungicides (pyraclostrobin, trifloxystrobin, 

famoxadone or fenamidone) produce transcriptional 

changes in mouse cortical cultures in vitro that are 

similar to those seen in brain samples from humans 

with autism, ageing or neurodegeneration (Alzheimer's 

disease and Huntington's disease)[27]. 

Residential proximity to acephate and oxydemeton-

methyl and pyrethroids, neonicotinoids, and 

manganese fungicides linked to poorer 

neurodevelopment in children ( Center for the Health 

Assessment of Mothers and Children Of Salinas 

(CHAMACOS) study).  [28] 

Dichlorodiphenyltrichloroethane 

(DDT) 

metabolite  

metabolite: 

Dichlorodiphenyldichloroethylene = 

(DDE) 

Farm families exposed 

to pesticides show an 

increased  autism 

incidence : Reviewed in 

[3] 

High doses of endocrine 

disrupting mixtures, (di-n-

butylphthalate, 

diethylhexylphthalate, 

vinclozolin, prochloraz, 

procymidone, linuron, 

epoxiconazole, and DDE) 

or  (bisphenol A, 4-

methylbenzylidene 

camphor, 2-ethylhexyl 4-

methoxycinnamate, and 
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butylparaben), when 

administered prenatally to 

rats have been shown to 

modify the expression of 

genes related to 

glutamatergic function, the 

migration and pathfinding 

of GABAergic and 

glutamatergic neurones and 

of autism-related genes in 

the offspring [29].      

Dicofol (Organochlorine) Exposure during 

pregnancy linked to 

autism in the offspring: 

Reviewed in [3] 

None found 

Endosulfan (Organochlorine) Exposure during 

pregnancy associated 

with autism : Reviewed 

in [3] 

Endosulfan or cypermethrin 

( (0.1 or 0.5mg/kg) 

administered orally to 10 

day old mice subsequently 

altered the levels of brain 

protein relevant to brain 

development, and produced 

neurobehavioral 

abnormalities manifested as 

altered adult spontaneous 

behaviour and ability to 

habituate to a novel home 

environment. These effects 

persisted for several months 

[30]. Supported by in vitro 

and in vivo studies in mice 

showing deleterious effects 

on pre and postsynaptic 

dopamine,GABA and 

glutamate function in the 

frontal cortex  [31] 

Chlordan (Organochlorine mix of 

cis- and trans nonachlor) 

Maternal blood or urine 

sample levels of trans-

nonachlor associated 

with subsequent 

childhood autistic 

behaviour  (Health 

Outcomes and 

Measures of the 

Environment) Study 

(Cincinnati, Ohio) [32] 

None found 

Chlorpyrifos  Umbilical cord plasma 

levels  linked to autism 

in the offspring:  

Reviewed in [3]. 

Chlorpyrifos ( on 

gestational days 14-17 at 

the sub-toxic dose of 6 

mg/kg) induces relevant 
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Proximity to 

organophosphates at 

some point during 

gestation was associated 

with a 60% increased 

risk for autism, which 

was higher for third-

trimester exposures or 

second-trimester 

chlorpyrifos application 

[33]. 

behavioural effects in mice 

offspring when 

administered during 

pregnancy , showing male 

preference and [34] 

increases brain markers of 

oxidative stress in the 

offspring  in a  strain (gene) 

- and age-dependent manner 

[34-36] 

Organophosphates and pyrethroids This study linked 

combined rather than 

individual exposure to 

diverse pesticides, 

globally showing 

association with autism 

[33].  The most 

abundant of which was 

chlorpyrifos (20.7%), 

followed by acephate 

(15.4%), and diazinon 

(14.5%). Of the 

pyrethroids, one-quarter 

of the total was 

esfenvalerate (24%), 

followed by lamda-

cyhalothrin (17.3%), 

permethrin (16.5%), 

cypermethrin (12.8%), 

and tau-fluvalinate 

(10.5%). Of the 

carbamates, 

approximately 80% 

were methomyl or 

carbaryl, and of the 

organochlorines, 60% 

of all applications were 

dienochlor. 

Paraoxonase (PON1) 

variants associated with 

autism are less able to 

metabolise diazinon [5]’ 

High urinary 

concentrations of the 

pyrethroid metabolite,  

3-Phenoxybenzoic acid,  

observed in autistic 

children [37].). 

(For cypomethrin, See 

endosulfan above) 

Heavy metals  Gestational exposure to 
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heavy metals in drinking 

water, from the first day of 

pregnancy to day 10.5 

(cadmium, 10 parts per 

million (ppm); lead, 

300 ppm; arsenate, 0.5 ppm; 

manganese, 10 ppm;  

mercury, 20ppm) or 

valproic acid (600 mg/kg 

i.p. on gestational day 8.5 

produces multiple 

behavioural , 

neurodevelopmental-related 

abnormalities that persist 

into adulthood in male mice 

offspring , effects that are 

accompanied by epigenetic 

changes in gene 

methylation [38] 

Aluminium  Elevated hair 

concentrations of 

aluminium, arsenic, 

cadmium, mercury, 

antimony, nickel, lead, 

and vanadium observed 

in autistic children 

[39].Aluminium 

concentrations also 

elevated in urine 

samples [40]. Autism 

incidence correlated 

with the use of 

aluminium adjuvants in 

vaccines across several 

countries [41]. The use 

of polybrominated 

diphenyl ethers, 

aluminium adjuvants, 

and the herbicide 

glyphosate have 

increasing trends that 

correlate positively to 

the rise in autism (not 

the case for lead, 

organochlorine 

pesticides or vehicular 

emissions)[42]. 

The prenatal administration 

of aluminium to mice in 

“vaccine-relevant amounts” 

produces weight gain and 

reduced exploratory activity 

in the light/dark test box in 

male and female adults (6 

months) and reduced open-

field activity in male mice 

[43].  

Antimony High hair levels found 

in autistic children 

[39,44] 

None found 
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Arsenic Autism prevalence 

linked to proximity to 

industrial facilities 

releasing arsenic, lead 

or mercury [45].  high 

levels of mercury, lead, 

arsenic, antimony and 

cadmium in hair 

samples of autistic 

children [44] 

See heavy metals and 

epigenetic effects  (above) 

[38] 

Cadmium Retrospective air levels 

in  birth areas related to 

autism in 2 year old 

children:  Reviewed in 

[3] 

See heavy metals and 

epigenetic effects  (above) 

[38] 

Chromium Living in areas with 

higher air levels of 

styrene and chromium 

during pregnancy 

associated with 

increased autism risk ( 

National Air Toxics 

Assessment , 

Pennsylvania USA [46]:   

Higher urinary 

Chromium  levels in 

children with autism 

(Turkish study)[47] 

None found 

Copper High serum copper 

levels in autistic 

children and/or low 

Zn/Cu ratio observed in 

several studies [48-51] 

Increased copper levels lead 

to local zinc deficiencies in 

mice.  Prenatal copper 

overload reduces 

ProSAP/Shank protein 

levels in the brain and 

decreases the expression of 

the N-methyl-D-aspartate 

receptor subunit (GRIN1), 

thus influencing a pathway 

in excitatory synapses 

associated with autism [52] 

Iron Low prenatal iron levels 

associated with autism 

[53]: Low iron levels 

also observed in autistic 

children [54,55]  

Adult offspring from iron-

deficient rat dams show 

deficits in pre-pulse 

inhibition of acoustic startle 

and in passive avoidance 

learning [56] . 

Lead Birth residence air 

levels associated with 

autism : Reviewed in 

[3]. Data from 4486 

See heavy metals (above) 

[38] 



12 
 

autistic children 

residing in 2489 census 

tracts in five sites of the 

Centers for Disease 

Control and 

Prevention's Autism and 

Developmental 

Disabilities Monitoring 

Network showed a 

potential link between 

ambient lead 

concentrations and 

autism prevalence and 

that exposure to 

multiple metals (lead, 

arsenic mercury) may 

have synergistic effects 

on autism 

prevalence[57]. 

Manganese  Perinatal exposure to 

lead, manganese, 

mercury, nickel, diesel 

particulate, methylene 

chloride, and the overall 

metal score associated 

with autism [58] 

Birth residence air 

levels of manganese 

chloride  associated 

with autism  Reviewed 

in [3].  poorer 

neurodevelopment in 

children linked to 

manganese-containing 

fungicides[28]. A 

synergistic effect of 

blood manganese 

concentrations and  

glutathione transferase 

(GSTP1) 

polymorphisms has 

been observed in 

relation to autism risk 

[59]  

See heavy metals (above) 

[38] 

Mercury Birth residence air 

levels associated with 

autism: Reviewed in [3] 

See heavy metals (above) 

[38] 

Molybdenum High hair levels found 

in autistic children 

[39,44] 

None found 
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Nickel High birth residence air 

levels: Reviewed in [3]:  

In four studies, weak 

associations were found 

for nickel and autism 

spectrum disorder 

(Review) [60].  

None found 

Tin Higher urinary levels of 

lead, thallium, tin , and 

tungsten in autistic 

children [61] 

None found 

Tungsten  Higher urinary levels of 

lead, thallium, tin , and 

tungsten in autistic 

children [61] 

None found 

Vanadium Elevated hair 

concentrations of 

aluminium, arsenic, 

cadmium, mercury, 

antimony, nickel, lead, 

and vanadium observed 

in autistic children [39] 

None found 

Zinc  Zinc deficiency and 

copper excess and/or 

low Zn/Cu ratio have 

been observed in autism 

in several studies  [48-

51,62-64]   

Prenatal zinc 

supplementation attenuates 

autistic-like behaviour in 

animal models of autism 

[65,66] 

Air Pollution   

1,3-butadiene  Exposure during 

pregnancy associated 

with autism [67]  

None found 

Carbon monoxide Exposure in children 

during previous 4 years 

linked to autism : 

Reviewed in [3] 

None found 

Diesel particulate and diesel Birth residence air 

levels linked to autism: 

Reviewed in [3]. 

Perinatal exposure to 

diesel has been 

associated with autism, 

particularly in male 

children [58]. 

 Exposure to diesel exhaust 

particles during pregnancy 

and nursing in mice 

increases locomotor activity 

and repetitive behaviours in 

the offspring, which did not 

show deficits in social 

interactions or social 

communication [68].  Mice 

acutely exposed to diesel 

exhaust (250-300μg/m3 for 

6h) show microglia 

activation, increased lipid 

peroxidation, and neuro-
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inflammation, particularly 

in the hippocampus and the 

olfactory bulb. Adult 

neurogenesis was also 

impaired. In most cases, the 

effects of were more 

pronounced in male mice 

[69]. 

Formaldehyde Exposure during 

pregnancy associated 

with autism [67] 

None found 

Methylene chloride Birth residence air 

levels linked to autism : 

Reviewed in [3] and 

[70] 

None found 

Nicotine (smoking) ADHD symptoms and 

autistic traits scores 

have been associated 

with elevated levels of 

regular smoking; 

cannabis use; and 

nicotine, alcohol, and 

cannabis use disorders 

[71] . Perinatal or 

prenatal smoking has 

been associated with 

autism [72-75], 

although in adulthood, 

lower smoking levels 

have been observed in 

adulthood [76]  

None found 

Nitric oxide Air pollution linked to 

autism incidence [77] 

None found 

Nitrogen dioxide (NO2) Birth residence air 

levels  linked to autism: 

Reviewed in [3].  NO2 

levels during gestation 

or during the first year 

of life related to autism 

[78] .  Child exposure to 

Ozone, carbon 

monoxide,  NO2, and  

SO2 in the preceding 1 

year to 4 years increases 

the risk of diagnosis for 

autism spectrum 

disorders (Taiwan) [79] 

None found 

Nitrous oxide (N2O) ? A review has shown that 

exposure to N2O, even at 

non-toxic doses, can  
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modulate central 

neurotransmission and 

targets many neural 

substrates directly 

implicated in 

neurodevelopmental 

disorders, including the 

glutamatergic, opiate, 

cholinergic, and 

dopaminergic systems [80]. 

Ozone Exposure in children 

during previous 4 years 

associated with autism : 

Reviewed in [3] Child 

exposure to Ozone, 

carbon monoxide,  NO2, 

and  SO2 in the 

preceding 1 year to 4 

years increases the risk 

of diagnosis for autism 

spectrum disorders 

(Taiwan) [79] 

None found 

particulate matter <2.5 μm (PM2.5) 

particulate matter <10 μm (PM10) 

 

There appears to be a divergence 

between North American and 

European studies (perhaps related to 

different levels/types of pollution?) 

Birth residence air 

levels linked to autism: 

Reviewed in [3].Meta-

analysis: PM2.5 and 

NO2 exposure during 

pregnancy associated 

with increased risk of 

autism. Ozone exposure 

during the third 

trimester also weakly 

associated (Canada) 

[81].  Prenatal and 

postnatal exposures to 

PM2.5 and to a lesser 

extent nitrogen oxides 

are associated with 

increased risk of autism 

(literature review) [82].  

Higher maternal 

exposure to PM2.5 

during pregnancy, 

particularly the third 

trimester associated 

with greater risk of a 

child with autism 

spectrum disorder 

(USA) [83]: Also seen 

for PM10 in the third 

Lateral ventricular 

dilatation observed in 

young male mice exposed 

to ultrafine particles 

(<100nm) (a phenomenon 

also seen in autism and 

schizophrenia). Glial 

activation was also 

observed  [88].  Such 

exposure also induced 

inflammation/microglial 

activation, reductions in 

size of the corpus callosum 

(CC) and associated 

hypomyelination, aberrant 

white matter development 

and/or structural integrity 

with ventriculomegaly 

(VM), elevated glutamate 

and excitatory/inhibitory 

imbalance, increased 

amygdala astrocytic 

activation, and repetitive 

and impulsive behaviours 

[89]. 
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trimester (USA) [84].  

PM2.5 and PM10 also 

associated with autism 

during gestation (USA) 

[78]. Ozone and PM 2.5 

air levels as well as 

nitric oxide and 

nitrogen dioxide in area 

of birth residence 

related to autism (USA) 

[77].  The effects of air 

pollution may be gene-

dependent: the MET 

receptor tyrosine kinase 

rs1858830 CC genotype 

and air pollutant 

exposure may interact 

to increase the risk of 

autism spectrum 

disorder(USA) [85] . 

 

Early life exposure to 

low levels of nitrous 

oxides or PM10 from 

road traffic does not 

appear to increase the 

risk of autism spectrum 

disorders  (Swedish 

study and a large 

European study 

)[86,87]. 

 

Quinoline  Birth residence air 

levels  linked to autism: 

Reviewed in [3] 

None found 

Smoking Several, but not all 

studies have implicated 

prenatal or perinatal 

parental smoking with 

autism in children 

[72,73,90-94].  

Maternal passive 

smoking during 

pregnancy has been 

associated with 

children’s autistic 

behaviour [95] 

None found 

Styrene  Birth residence air 

levels associated with 

autism: Reviewed in [3] 

None found 
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and [70]. Living in 

areas with higher air 

levels of styrene and 

chromium during 

pregnancy associated 

with increased autism 

risk [46] 

Sulphur dioxide SO2 Exposure in children 

during previous 4 years 

linked to autism: 

Reviewed in [3]:  Child 

exposure to Ozone, 

carbon monoxide,  NO2, 

and  SO2 in the 

preceding 1 year to 4 

years increases the risk 

of diagnosis for autism 

spectrum disorders 

(Taiwan) [79] 

None found 

Trichloroethylene Retrospective air levels 

in birth areas associated 

with autism in 2 year 

old children:  Reviewed 

in [3] and [70] 

None found 

Vinyl Chloride Retrospective air levels 

in birth areas related to 

2 year old autistic 

children:  Reviewed in 

[3] 

None found 

Parental occupational exposure 

Xylene  Reviewed in [3]. In a 

study relating risks for 

autism in children 

related to in utero 

exposure to monitored 

ambient air toxins from 

urban emissions in Los 

Angeles county , autism 

incidence was increased 

in relation to  1,3-

butadiene, meta/para-

xylene , other aromatic 

solvents, lead,  

perchloroethylene, and 

formaldehyde [67].  

Exposure to lacquer, 

varnish, and xylene 

occurred more often in 

the parents of children 

with ASD compared to 

None found 
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the parents of 

unaffected children 

(CHARGE study) [96]. 

Others   

Bisphenol A  Exposure during the 

brain growth spurt — 

extending from the third 

trimester of pregnancy 

to age 2 linked to 

autism  Reviewed in 

[3]. Higher bisphenol A 

and metabolite urine 

levels also reported in 

autistic children [97]. 

Children with autism 

spectrum disorder had 

significantly increased 

serum mono-(2-

ethylhexyl)-phthalate , 

di-(2-ethylhexyl)-

phthalate , and 

bisphenol A  

concentrations 

compared to healthy 

control subjects [98] 

Following gestational 

exposure to BPA (400-

μg/kg ) in rats,  male but not 

female offspring  had 

increased numbers of 

neurons and glia in layers 

5/6 of the medial prefrontal 

cortex in adulthood [99]. 

BPA exposure during 

gestation has long lasting, 

transgenerational effects 

(epigenetic) on social 

recognition and activity in 

mice.  Brains from embryos 

(embryonic d 18.5) exposed 

to BPA had lower gene 

transcript levels for 

estrogen receptors, 

oxytocin, and vasopressin. 

The effects on vasopressin 

expression persisted into the 

fourth generation, at which 

time oxytocin was also 

reduced but only in males 

[100-102]. 

Perchlorate Levels in drinking water 

linked to autism: 

Reviewed in [3] 

None found 

Phthalates Exposure during 

pregnancy related to 

autism: Reviewed in 

[3]’ PVC flooring ( a 

source of airborne 

phthalates)  in parent’s 

bedroom associated 

with childhood autism 

[103]. 

Children with autism 

spectrum disorder had 

significantly increased 

serum mono-(2-

ethylhexyl)-phthalate , 

di-(2-ethylhexyl)-

phthalate , and 

bisphenol A  

concentrations 

Endocrine disrupting 

mixtures, (di-n-

butylphthalate, 

diethylhexylphthalate, 

vinclozolin, prochloraz, 

procymidone, linuron, 

epoxiconazole, and DDE) 

or  (bisphenol A, 4-

methylbenzylidene 

camphor, 2-ethylhexyl 4-

methoxycinnamate, and 

butylparaben), when 

administered prenatally to 

rats have been shown to 

modify the expression of 

genes related to 

glutamatergic function, the 

migration and pathfinding 
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compared to healthy 

control subjects [98] 

of GABAergic and 

glutamatergic neurones and 

of autism-related genes in 

the offspring [29].      
Diethyl phthalate and Di-

butylphthalate 

Among autism and 

development delay 

boys, higher indoor dust 

concentrations of were 

associated with greater 

hyperactivity-

impulsivity and 

inattention [104]. 

[di-(2-ethylhexyl) phthalate 

metabolites: (5-OH-MEHP [mono-

(2-ethyl-5-hydroxyhexyl) 1,2-

benzenedicarboxylate] and 5-oxo-

MEHP [mono-(2-ethyl-5-oxohexyl) 

1,2-benzenedicarboxylate) 

Higher urinary 

concentrations in 

autistic children [105]. 

Decreased Diethylhexyl 

Phthalate 

glucuronidation in 

autistic children [106]. 

Polychlorinated biphenyls (PCB) Exposure during the 

brain growth spurt — 

extending from the third 

trimester of pregnancy 

to age 2 related to 

autism Reviewed in [3]. 

High serum levels of 

PCB’s in banked 

second trimester 

maternal samples 

associated with an 

increased risk of autism 

(particularly so for 

PCB138/158 and 

PCB153 ) [107]. 

Polychlorinated biphenyl 

perinatally exposed rats 

show significantly impaired 

social recognition as 

indicated by persistent 

conspecific-directed 

exploration by juvenile 

animals regardless of social 

experience [108].  PCB-95 

(2,2',3,5'6-

pentachlorobiphenyl) 

induces dendritic growth  in 

primary rat hippocampal 

neurons [109]. 4-OH-

2',3,4',5,6'-

pentachlorobiphenyl and 

bisphenol A  inhibit the 

thyroid hormone-dependent 

dendritic development of 

Purkinje cells. 4-OH-

2',3,3',5',6'-

pentachlorobiphenyl, 4-OH-

2',3,3',5,5',6'-

hexachlorobiphenyl, 4-OH-

2,2',3,4',5,5',6-

heptachlorobiphenyl, 

progesterone and 

nonylphenol promoted the 

dendritic extension of 

Purkinje cells in the absence 

of thyroid hormone [110]. 

Polybrominated diphenyls (flame 

retardants) 

polybrominated 

diphenyl ether-28 

Global hypomethylation of 

adult brain DNA was 
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 (Flame retardants) (PBDE-28) or trans-

nonachlor maternal 

blood or urine sample 

levels associated with 

subsequent childhood 

autistic behaviour [32].  

Exposure during the 

brain growth spurt — 

extending from the third 

trimester of pregnancy 

to age 2 has been 

associated with autism 

(Reviewed in [3]).  The 

use of polybrominated 

diphenyl ethers, 

aluminium adjuvants, 

and the herbicide 

glyphosate have 

increasing trends that 

correlate positively to 

the rise in autism (not 

the case for lead, 

organochlorine 

pesticides or vehicular 

emissions)[42] 

observed in female 

offspring perinatally 

exposed to low 

concentrations of  2,2',4,4'-

tetrabromodiphenyl ether 47 

(BDE47) which coincided 

with reduced sociability 

(study in mutant MECP2 

dams) [111]. BDE49  ( 

2,2',4,5'-tetrabromodiphenyl 

ether ) also inhibits 

mitochondrial electron 

transport at Complex IV 

and V at nanomolar 

concentrations in  brain 

mitochondria and in 

neuronal progenitor striatal 

cells [112]    

Soy infant formula  Data from the Simons 

Foundation Autism 

Research Initiative 

Simplex Collection 

(1949 children) 

suggested an 

association between the 

use of Soy infant 

formula and certain 

behavioural aspects of 

autism [113]  

None found 

Benzo(a)pyrene (Polycyclic 

aromatic hydrocarbon) 

Impacts cognitive development in children who have 

been exposed in utero and impairs learning in animal 

models [114] 

Drugs used in pregnancy or to 

induce or delay labour. 

  

Acetaminophen (paracetamol) Maternal use during 

pregnancy and in 

perinatal periods 

associated with autism 

in the offspring [115]: 

Use after measles-

mumps-rubella 

vaccination also 

associated with autism 

None found 
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in  children of 5 years 

of age or less [116].   

Prenatal acetaminophen 

exposure was associated 

with a greater number 

of autism spectrum 

symptoms in males and 

showed adverse effects 

on attention-related 

outcomes in male and 

female children. 

(Spanish birth cohort 

study including 2644 

mother-child pairs 

recruited during 

pregnancy)[117]. 

Antibiotics Maternal influenza 

infection was associated 

with or prolonged 

episodes of fever 

increased the risk of 

infantile autism. The 

use of various 

antibiotics during 

pregnancy was a 

potential, but relatively 

weak risk factor for 

Autism spectrum 

disorders/infantile 

autism [118] .It has 

been suggested that 

exposure to antibiotics 

may be related to 

deleterious effects on 

the microbiome [119]   

None found 

Selective serotonin re uptake 

inhibitors (Percentage use in the test 

group comprised 44% fluoxetine, 

21% sertraline, 19% paroxetine, 8% 

citalopram, and 8% escitalopram) 

Prenatal use in the first 

trimester associated 

with autism 

development in boys 

[120].  

Fluoxetine has also 

been shown to alleviate  

serious and pervasive 

repetitive behaviours in 

the clinic in later life 

[121] 

Psychoactive compounds 

are also environmental 

pollutants and mixtures can 

be found, at low 

concentrations, in drinking 

water. At such 

concentrations, a mixture of   

fluoxetine, carbamazepine 

and venlafaxine, or 

valproate produce 

expression changes in genes 

related to neuronal growth, 

development and 

regulation, and to autism in 

SK-N-SH neuroblastoma 
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cells  [122]. Neonatal 

fluoxetine administration in 

rats impairs motor 

coordination in neonates 

and decreased social 

behaviour in both juvenile 

and adult offspring [123] 

Terbutaline β2-adrenergic receptor 

agonist, used as a tocolytic (anti-

contraction medication) to delay 

preterm labour for up to 48 hours 

Terbutaline exposure 

for >2 days during the 

third trimester 

associated with a  

fourfold increased risk 

for autism spectrum 

disorders (not observed 

with albuterol) [124] 

In rats, maternal stress 

during pregnancy, or 

terbutaline administration to 

the neonates, on postnatal 

days 2-5  resulted in 

autistic-like behaviour in 

the offspring 

(stereotyped/repetitive 

behaviour and deficits in 

social interaction or 

communication[125]. 

Newborn rats treated with 

terbutaline (10 mg/kg) daily 

on postnatal days 2 to 5 or 

PN 11 to 14 showed a 

robust increase in 

microglial activation on 

postnatal day 30 in the 

cerebral cortex, as well and 

in cerebellar and 

cerebrocortical white 

matter. hyper-reactivity to 

novelty and aversive stimuli 

was also observed [126].  

Oxytocin Labour induction or 

augmented labour 

associated with an 

increased risk of 

subsequent autism 

(exogenous oxytocin 

and prostaglandins) 

[127]. Oxytocin also 

has reported benefits in 

the treatment of autism 

later in life, although 

meta-analysis of 12 

randomized controlled 

trials suggested little 

consistent effect [128].  

Oxytocin plays a generally 

beneficial role in sociability 

in animal models [129,130]. 

Autism related behaviour is 

observed in oxytocin or 

oxytocin receptor knockout 

mice [131]. 

Prostaglandins: Pharmacological 

methods  for labour induction  

mainly include dinoprostone 

(prostaglandin E2: PGE2 ) or 

Labour induction or 

augmented labour 

associated with an 

increased risk of 

PGE2 modulates cerebellar 

development in the early 

postnatal period in rats and 

alters sensory threshold and 
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misoprostol (a prostaglandin E1 

analogue) 

subsequent autism 

(exogenous oxytocin 

and prostaglandins) 

[127]. PGE2 plasma 

levels increased in 

autistic patients [132] 

social behaviour in juvenile 

males but not females 

[133]. 

Thalidomide  Prenatal use also 

associated with autistic 

features [134-136] 

The prenatal administration 

of thalidomide in rats 

produces   abnormal 

serotonergic neuronal 

differentiation and 

migration and behavioural 

effects partly consistent 

with autism [137,138]  

Valproate Maternal exposure 

during pregnancy 

associated with autism 

(reviewed in [139-141] 

Valproate exposure in both 

rats and mice leads to 

autistic-like behaviour in 

the offspring, including 

social behaviour deficits, 

increased repetitive 

behaviour, and deficits in 

communication [141]. 

Other drugs 

Cannabis ADHD symptoms and 

autistic traits scores 

have been associated 

with elevated levels of 

regular smoking; 

cannabis use; and 

nicotine, alcohol, and 

cannabis use disorders 

[71] 

None found 

Cocaine Maternal use in the 

perinatal period 

associated with autism 

[142] 

None found 

dexamethasone Reduced 

dexamethasone 

suppression in autistic 

patients [143] 

Dexamethasone treatment  

during pregnancy in mice ( 

gestational days 16-19 ) 

increases  astrocyte density 

in the adult offspring 

Substantia nigra and ventral 

tegmental area  in both 

males and females and 

increases  tyrosine 

hydroxylase 

immunoreactivity in these 

areas in both sexes, but with 

a more pronounced effect 

on Tyrosine hydroxylase 
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positive cell density in 

females [144]. 

Ethanol  Prenatal use associated 

with autism [135,145] 

In utero exposure of mouse 

progeny to alcohol or 

methamphetamine causes 

postnatal 

neurodevelopmental deficits 

. mediated partly  by 

oxidative stress [146]. 

Methamphetamine Case report of autism 

related to prenatal 

exposure [147] 

In utero exposure of mouse 

progeny to alcohol or 

methamphetamine causes 

postnatal 

neurodevelopmental deficits 

. mediated partly  by 

oxidative stress [146]. 
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Methods 

206 Autworks autism susceptibility genes (ASG’s) 

http://tools.autworks.hms.harvard.edu/gene_sets/580/genes  [9] were analysed. Gene 

definitions are provided in supplementary File 1. Members of this gene set are highlighted in 

bold when they appear in the text. The gene symbols (applicable to human genes and mouse 

or rat homologues) were uploaded to the Comparative Toxicogenomics Database (CTD) [20] 

http://ctdbase.org/ . All interactions are referenced at CTD and can be accessed by uploading 

the gene symbols from the Autworks dataset.  The results were downloaded and the number 

of ASG’s and the total number of genes (autism and others) affected by each chemical or the 

number of chemicals affecting each autism gene were curated manually. Chemicals were 

broadly classified into groups (e.g. pesticides, metals, endocrine disruptors). Singletons 

(chemicals affecting only one gene) were ignored.  Many clinical and research drugs were 

returned, but are not treated in this paper.  

All chemicals possess a unique CAS registry number, from the American Chemical society 

Chemical Abstracts Service  http://www.cas.org/content/chemical-substances  allowing 

cross-referencing between CTD data and compounds in other databases. Overlaps were 

identified using the Venny tool http://bioinfogp.cnb.csic.es/tools/venny/  [148] . 

The databases used for such classification, based largely on overlapping CAS numbers, 

included The TEDX List of Potential Endocrine Disruptors http://endocrinedisruption.org/  ; 

The EU list of endocrine disruptors http://eng.mst.dk/topics/chemicals/endocrine-

disruptors/the-eu-list-of-potential-endocrine-disruptors/ ,the  NIST Polycyclic Aromatic 

Hydrocarbon  (PAH) Structure Index http://pah.nist.gov/ ,the  national toxicity program from 

the US department of health http://ntp.niehs.nih.gov/index.cfm  and the United States 

Environmental protection agency databases http://www.epa.gov/ .Persistent organic 

http://tools.autworks.hms.harvard.edu/gene_sets/580/genes
http://ctdbase.org/
http://www.cas.org/content/chemical-substances
http://bioinfogp.cnb.csic.es/tools/venny/
http://endocrinedisruption.org/
http://eng.mst.dk/topics/chemicals/endocrine-disruptors/the-eu-list-of-potential-endocrine-disruptors/
http://eng.mst.dk/topics/chemicals/endocrine-disruptors/the-eu-list-of-potential-endocrine-disruptors/
http://pah.nist.gov/
http://ntp.niehs.nih.gov/index.cfm
http://www.epa.gov/
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pollutants (POPs) are as defined by the Stockholm convention 

http://chm.pops.int/Home/tabid/2121/mctl/ViewDetails/EventModID/871/EventID/514/xmid/

6921/Default.aspx . 

Compounds in cigarettes are defined by the Federal drug administration 

http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm2977

86.htm and the Tobacco Products Scientific Advisory Committee list of harmful or 

potentially harmful components in tobacco and/or tobacco smoke  [149]. 

Compounds found in diesel exhaust are listed at Wikipedia 

http://en.wikipedia.org/wiki/Diesel_exhaust and at the United States department of labor 

Partial List of Chemicals Associated with Diesel Exhaust 

https://www.osha.gov/SLTC/dieselexhaust/chemical.html  

Lists of chemicals in cosmetics, foods and pharmaceutical preparations were obtained from 

the National Research Council (US) Steering Committee on Identification of Toxic and 

Potentially Toxic Chemicals for Consideration by the National Toxicology Program [150], 

the UK Food standards agency listing EU approved food additives http://www.food.gov.uk/ 

and from the International fragrance association 

http://www.ifraorg.org/en/ingredients#.U_w5JWNWpZx . Food ingredients were also 

interrogated at FooDB http://foodb.ca/compounds a project from the Canadian Metabolomics 

Innovation Centre.  Food additives are also listed at GSFA online 

http://www.codexalimentarius.net/gsfaonline/additives/index.html from the Joint FAO/WHO 

Expert Committee on Food Additives (JECFA) and from the List of Indirect Additives Used 

in Food Contact Substances from the US Food and drug administration 

http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=iaListing and the EAFUS 

list (Everything Added to Food in the United States) 

http://chm.pops.int/Home/tabid/2121/mctl/ViewDetails/EventModID/871/EventID/514/xmid/6921/Default.aspx
http://chm.pops.int/Home/tabid/2121/mctl/ViewDetails/EventModID/871/EventID/514/xmid/6921/Default.aspx
http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm
http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm
http://en.wikipedia.org/wiki/Diesel_exhaust
https://www.osha.gov/SLTC/dieselexhaust/chemical.html
http://www.food.gov.uk/
http://www.ifraorg.org/en/ingredients#.U_w5JWNWpZx
http://foodb.ca/compounds
http://www.codexalimentarius.net/gsfaonline/additives/index.html
http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=iaListing
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http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing&displayAll=t

rue  . 

The Consumer Product Information Database (CPID 

http://whatsinproducts.com/contents/about_cpid/1  was use for ingredients found in 

household products. Chemicals in household products were identified using the National 

Institute of health Household Products database http://householdproducts.nlm.nih.gov/cgi-

bin/household/search . 

It is important to appreciate that the only selection criteria were the 206 autism genes which 

were sent to forage chemical interactions in an extensive toxicogenomics database, and that 

the compounds returned are essentially unbiased by any other factor. However, certain 

compounds, such as dioxins, pesticides or heavy metals have been more intensively studied 

than others, due to their known toxic effects, while other relatively new chemical additions to 

the environment have been subject to less scrutiny. The total number of genes affected by 

each compound is therefore shown on each figure to allow appreciation of such effects. 

Gene enrichment analysis. 

The ASG’s, selected by Autworks by confidence score based on Genotator, number 206 

(0.77% from a human genome of 26,846 protein-coding genes). There were 10,766 unique 

chemicals in CTD, with 1,002,333 curated interactions (2015 data). If a chemical affects N 

genes, one would expect an equal proportion of ASG’s (0.77%) to be contained within this 

gene set (Expected = N*(206/26846)). Chemical bias towards the ASG’s is reflected by 

observed/expected ratios >1 and the corresponding p value derived from the hypergeometric 

probability test, which was corrected for false discovery [151], with a final cut-off at P<0.05.  

Most results are illustrated graphically. For individual compounds the data are illustrated by 

http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing&displayAll=true
http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=eafusListing&displayAll=true
http://whatsinproducts.com/contents/about_cpid/1
http://householdproducts.nlm.nih.gov/cgi-bin/household/search
http://householdproducts.nlm.nih.gov/cgi-bin/household/search
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N autism genes affected/total number of genes affected by the compound, followed by the 

fold enrichment and p values (e.g. Methionine (69/3724: 2.41 fold: P= 2.E-12). 

Results 

67861 chemical/gene interactions affected the ASG’s. 4428 compounds affected 1 or more 

ASG’s. 6338 chemicals did not interact with any autism gene.  The number of ASG’s 

targeted by each chemical varied from 1 to 141 (Tetrachlorodibenzodioxin). The number of 

chemicals affecting each autism gene ranged from 0 to 1669. 760 compounds with significant 

enrichment values affected ≥5 ASG’s; 372 ≥10; 109 ≥25; 29 ≥50 ; 6 ≥100 . Enrichment 

values (observed/expected ASG’s per total number of genes affected by each compound) for 

these significant chemicals, where the number of ASG’s targeted > 5 ranged from 1.4 to 97.7.  

No chemical interactions had been curated for HTR3C, KLF14, RP1L1 or ZNF778  

Genes affected by compounds implicated in autism (Fig 1) 

Of the named pollutants implicated in autism (see Table 1) 45 showed enrichment values at P 

< 0.05 (all except Nickel, diethyl phthalate, Nitrogen Dioxide and Vinyl Chloride) 

Compounds with the most significant enrichment scores were pesticides (diazinon, 

chlorpyrifos, Dichlorodiphenyldichloroethylene (DDE: a DDT metabolite) and 

cypermethrin), and metals (arsenic, zinc, mercury and cadmium) Other highly significant 

pollutants included the flame retardant PCB-153, nitric oxide, Bisphenol A, benzo(a)pyrene, 

particulate matter and ozone (Fig 1).   

Figure 1.  The number of ASG’s (where N>=5) affected by pesticides, herbicides, heavy 

metals and other named pollutants implicated in autism (left axis). The enrichment ratio and 

the total number of genes affected by each compound are shown after each compound name. 

For example Diazinon affects 274 genes in total, 30 of which are ASG’s, yielding an 
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enrichment value (observed/expected) of 14.26. (Diazinon (14.26|274). FDR corrected p 

values are shown on the right hand Y axis, which is set at a maximum of p=0.05. TCDD= 

Tetrachlorodibenzodioxin. DDT = dichlorodiphenyltrichloroethane: DDE= Dichlorodiphenyl 

Dichloroethylene (DDT metabolite). DIEH Phthalate = Diethylhexyl Phthalate , PCB-153 

=2,4,5,2',4',5'-hexachlorobiphenyl; PCB-138  =2,2',3',4,4',5-hexachlorobiphenyl (Both PCB’s 

are flame retardants). 

3-phenoxy benzoic acid (pyrethroid metabolite), Dicofol , Sulphur Dioxide, Chlordan , 

acephate ,cyhalothrin, quinoline, 3-xylene  and 1,3-butadiene overlaps were also significant 

but affected less than 5 ASG’s (not shown) . 

 

Drugs with the most significant enrichment scores included SSRI antidepressants (fluoxetine, 

sertraline, paroxetine, citalopram); thalidomide, drugs of abuse (cocaine, methamphetamine, 
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and ethanol); nicotine, steroid drugs (dexamethasone and hydrocortisone) and drugs used to 

induce (Dinoprost, misoprost, oxytocin) or prevent (terbutaline) labour in pregnancy, as well 

as thalidomide, acetaminophen, thimerosal and valproate (Fig 2). There have been multiple 

conflicting studies relating to the risks and benefits of Thimerosal containing vaccines, which 

have resulted in its withdrawal in many countries [152]. Thimerosal was removed from 

childhood vaccines in the USA in 2001. 

http://www.cdc.gov/vaccinesafety/Concerns/thimerosal/index.html . 

Thimerosal affects 8 autism genes (GSTM1, IL6, MAPK1, MAPK3, PTK2, RFC1, SLC1A1 

and TNF) and its relatively minor enrichment effects (compared to many industrial and other 

pollutants) may well be limited to those with particular polymorphisms in this set. It should 

be noted that recent meta-analyses do not support a significant effect of thimerosal in relation 

to autism [153,154] and that the rise in the incidence of autism has continued since its 

withdrawal[155].  79 other compounds significantly oriented their effects towards > 10 

ASG’s, 39 >20 ASG’s and 16 > 30 ASG’s and these are likely of greater concern. 

Together, these results show that many industrial, agrochemical and household pollutants or 

drugs implicated in autism target multiple ASG’s. One evident interpretation is that 

polymorphisms therein may modify sensitivity to autism-related chemicals. This is discussed 

in a later section. Using a similar experimental approach Kauchik et al constructed a 

protein/protein interaction (PPI) network of autism related genes and found that the effects of 

drug mixtures (environmental contaminant concentrations of carbamazepine, venflaxine and 

fluoxetine) or clinical concentrations of valproate on gene expression in fish brains or in 

human neuronal cell cultures tended to target the same networks as those identified in the 

autism PPI interactome [156]. 

Figure 2. 

http://www.cdc.gov/vaccinesafety/Concerns/thimerosal/index.html
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The number of ASG’s affected by drugs implicated in autism (left axis), and p values (right 

axis). The enrichment ratio and the total number of genes affected by each compound are 

shown after each compound name. First batch = SSRI antidepressants, second = drugs of 

abuse, third = drugs used during labour, fourth =others. 

 

 

 

 

 

Other pesticides, fungicides and herbicides 
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Many pesticides, other than those reportedly related to autism (see Fig 1), are used 

agriculturally or in the home, often together or at different seasons. 41 of these targeted 

multiple autism genes (P< 0.05) (Fig 3). In the various classes, Cycloheximide, Maneb, 

Vinclozolin and mancozeb were the most significant fungicides; Paraquat, Cyanazine, 

Atrazine and herbimycin the most significant herbicides and Methoxychlor, Dieldrin, 

Endosulfan and chlorpyrifos oxon the highest scoring insecticides.  

Figure 3.  

The number of ASG’s affected by diverse pesticides (left axis), and p values (right axis). The 

enrichment ratio and the total number of genes affected by each compound are shown after 

each compound name. The compounds are divided by class: “Others” includes diverse broad-

spectrum pesticides and Cyanimide, which is widely used in agriculture to promote uniform 

opening of buds, early foliation and bloom in fruits. Metdithocarb= methyldithiocarbamate. 
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.

 

 

Other metals  

For the most part, other metals significantly orienting their effects towards the ASG’s were 

salts of those already shown in Fig 1 (arsenic, zinc, cadmium, mercury, lead, copper, 

aluminium) (not shown) ). Asbestos, Crocidolite (28/682: 5.4 fold: p= 2.1E-12) is blue 

asbestos, a product linked to many cancers but not studied in relation to autism. The metals 

also included the highly toxic tributyltin (10/228: 5.7 fold: p=2.45E-05), a suspected 

carcinogen, cobaltous chloride (49/3281: 1.95 fold: p= 4.92E-06. Titanium dioxide (50/3449: 

1.8 fold: p=8.3E-06) and silicon dioxide (37/2789: 1.7 fold: p=0.0006) are included in the 

EAFUS and cosmetics lists and treated in these sections.  
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Poly-halogenated biphenyls, flame retardants, bisphenols and phthalates . 

4 known flame retardants (all polybrominated biphenyls) and 12 polychlorinated biphenyls 

showed significant enrichment values in relation to the ASG’s as did several bisphenols and 

phthalates (Fig 4). During the revision of this paper, high serum levels of PCB-153 and PCB-

138 in banked maternal second trimester serum samples were shown to be related to 

increased autism risk [107]. Both are enriched in ASG’s (Fig 4). 

Figure 4.  

The number of ASG’s affected by diverse polyhalogenated biphenyls, bisphenols and 

phthalates (left axis) and p values (right axis). The enrichment ratio and the total number of 

genes affected by each compound are shown after each compound name. Flame= Flame 

retardants. Methoxyacetic acid is a di(2-methoxyethyl) phthalate metabolite. PBDE-47 

=2,2',4,4'-tetrabromodiphenyl ether; PDBE =pentabromodiphenyl ether; PBDE 209 

=decabromobiphenyl ether; HBCD hexabromocyclododecane; PCB-153 =2,4,5,2',4',5'-

hexachlorobiphenyl; 24-TCB =2,4,2',4'-tetrachlorobiphenyl; PCB 138  =2,2',3',4,4',5-

hexachlorobiphenyl; PCB-28  =2,4,4'-trichlorobiphenyl; PCB-95  =2,2',3,5',6-

pentachlorobiphenyl; PCB 104  =2,2',4,6,6'-pentachlorobiphenyl; 4-OH-PeCB1  =2',3,3',4',5-

pentachloro-4-hydroxybiphenyl; PCB 101 =2,4,5,2',5'-pentachlorobiphenyl; PCB-126  

=3,4,5,3',4'-pentachlorobiphenyl; PCB 180 =2,2',3,4,4',5,5'-heptachlorobiphenyl; PCB 52 

=2,5,2',5'-tetrachlorobiphenyl; PCB-77  =3,4,3',4'-tetrachlorobiphenyl; DGEBA   =bisphenol 

A diglycidyl ether ; TBBPA =tetrabromobisphenol A; DEHP =Diethylhexyl Phthalate; 

MEHP =mono-(2-ethylhexyl|phthalate; DBP =Dibutyl Phthalate 
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Persistent organic pollutants (POP) and Polycyclic aromatic hydrocarbons (PAH). 

Several of these compounds, already recognised for their toxicity in many domains 

significantly targeted the ASG’s (Fig 5). A large number of genes were targeted by 2,3,7,8-

Tetrachlorodibenzodioxin and Benzo(a)pyrene.  

Figure 5. The number of ASG’s affected by diverse Persistent organic pollutants (POP) and 

Polycyclic aromatic hydrocarbons (PAH). (left axis), and p values (right axis). The 

enrichment ratio and the total number of genes affected by each compound are shown after 

each compound name. DDT =dichlorodiphenyltrichloroethane;  TCDD = 2,3,7,8-
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Tetrachlorodibenzodioxin; 9,10-DM-benzan = 9,10-Dimethyl-1,2-benzanthracene; 7,8-

DHBPO = 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide. 

 

 

 

 

 

 

Endocrine disruptors 

138 compounds within this class significantly oriented their effects towards 5 or more autism 

genes, 79 > 10 genes, 39 >20 genes, 16 > 30 genes (P<0.05). Many of these compounds are 
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in the EAFUS list or in food, as plant constituents (e.g. phytoestrogens) or contaminants (e.g. 

alkylphenols). Many are also found in cosmetics or household products and these classes are 

coded for in Fig 6. Several of these compounds, for example pesticides, heavy metals, 

bisphenols and phthalates, have already been treated above and are not included in Fig 6.  

The highly significant endocrine disruptors also include several used in cosmetics including 

bisphenol A, nonylphenol, Butylated Hydroxytoluene, Butylated Hydroxyanisole, beta 

Carotene, 4-propylphenol, Styrene, acetyl methyl tetramethyl tetralin, 4-cresol, 4-

ethylphenol, Resorcinol, Phenol, Ethylene Glycol, Propylparaben and n-hexane. Several 

plant-derived phytoestrogens, flavones/flavonoids, selectively target these genes (Apigenin, 

daidzein, Genistein, kaempferol, Luteolin, naringenin, resveratrol and quercetin). They are 

common components of food supplements, including baby milk, follow-ons, and soy formula 

[157-159].    They are generally regarded as potentially beneficial in a number of conditions 

including cancer, type 2 diabetes, obesity, coronary heart disease, metabolic syndrome, and 

neurodegenerative diseases. (e.g. resveratrol [160]). Phytoestrogens stimulate estrogen 

receptors, alpha and beta  and many are endowed with antioxidant, and pro-apoptotic effects 

[161], while some may also have pro- or anti-angiogenic effects [162]. Certain isoflavones 

inhibit thyroperoxidase activity and may thus influence the thyroid receptor. These processes 

are important in relation to placental physiology and/or to neurodevelopment  [163,164,164] . 

Endocrine disruptors, including Bisphenol A and polychlorinated biphenyls , but also  dietary 

phytoestrogens are known to affect neurodevelopment in rodents [163,165] Luteolin and 

quercetin have been reported to reduce autism symptoms in a small clinical trial [166].  

However, such compounds are not bereft of toxicological effects. For example neonatally 

administered genistein in mice later reduces female fertility and embryo implantation [167]. 

It is also embryotoxic in rats and synergises with Bisphenol A in this respect [168,169]. Pre- 

or perinatally administered phytoestrogens can also have deleterious effects on animal 
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behaviour. For example adult male mice perinatally exposed to daidzein show significantly 

less exploration and higher levels of anxiety and aggression [170]. Genestein given to rat 

dams during late pregnancy and early lactation  affects  the differentiation of brain structures 

as well as changes in anxiety and aggressive behaviour in the male offspring 

[171].Phytoestrogens can be found in pregnant women's serum and amniotic fluid during 

pregnancy and soy  ingestion increases amniotic fluid phytoestrogen concentrations in female 

and male foetuses [172] . The use of Soy infant formula has indeed been linked to Autistic 

behaviour in one study [113].  

These endocrine disruptors also include Sodium Fluoride, which is added to domestic water 

supplies for dental health in many countries. NaF decreases fertility in female rats, via 

decreases in serum estradiol and progesterone levels and the uterine expression of the follicle 

stimulating hormone receptor. It also increases uterine estrogen receptor alpha (ESR1) and 

progesterone receptor and luteinising hormone receptor protein expression levels (400;401). 

In mouse Leydig tumor cells NaF decrease the mRNA expression of steroidogenic acute 

regulatory protein (STAR) and a cytochrome P450 (CYP11A1) which catalyses the conversion 

of cholesterol to pregnenolone, the first rate-limiting step in the synthesis of steroid hormones 

(402). When given to pregnant rats, NaF decreases the activity levels of testicular 

steroidogenic marker enzymes (3beta hydroxysteroid dehydrogenase and 17beta 

hydroxysteroid dehydrogenase) in the 90 day old male offspring (403). Dietary NaF also 

decreases the serum levels of free and bound triodothronine and thyroxine in rats (404) 

NaF also decreases the expression of CYP1A2 in mouse spermatozoa (405). CYP1A2 

metabolises polycyclic aromatic hydrocarbons, dioxins, polychlorinated dibenzofurans, 

polychlorinated biphenyls, and acetaminophen (406).  NaF thus possesses endocrine 

disrupting properties and an ability to affect the metabolism of a number of environmental 

agents implicated in autism.  
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Figure 6. The number of ASG’s affected by diverse known (first batch) and potential (second 

batch) endocrine disruptors. N ASG’s =left axis, p values =right axis). The enrichment ratio 

and the total number of genes affected by each compound are shown after each compound 

name. Also appended are compounds found in Food (plant constituents or contaminants (F), 

the EAFUS list of food additive (E), Cosmetics (C) and household objects (H). Myco = 

mycotoxin; BDPB = 1,4-bis(2-(3,5-dichloropyridyloxy))benzene; BHA = Butylated 

Hydroxyanisole; BHT= Butylated Hydroxytoluene;  

 

Components of cigarette smoke or diesel exhaust. 

Many chemicals found in diesel and/or cigarette smoke significantly targeted a number of 

ASG’s (Fig 7). Their effects must be considered as cumulative. 
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These data suggest a relationship between the cumulative effects of smoking or diesel 

toxicants and ASG’s. In relation to diesel and traffic pollution, a recent review has 

highlighted air pollution as a contributory factor to both neurodevelopmental and adult 

neurodegenerative disorders [69]. 

 

Figure 7: The number of ASG’s affected by compounds found in cigarette smoke or diesel 

exhaust or in both. N ASG’s =left axis, p values =right axis). The enrichment ratio and the 

total number of genes affected by each compound are shown after each compound name. 
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Endogenous compounds targeting the autism genes.  

Neurotransmitters, hormones and key endogenous signalling and other metabolites are the 

agents through which genes and environmental factors act to influence pathology and 

behaviour. By inference, pollutants that target the same genes/proteins as those related to 

endogenous messengers must interfere with their function. As shown below, many of the 

endogenous agents that target autism genes clearly relate to autism pathology and behaviour.  

Autism genes are targeted by relevant hormones and transmitters (Fig 8). 

Compounds with the most significant enrichment scores (tretinoin (=all-trans retinoic acid), 

melatonin, progesterone and estradiol) demonstrate a key influence of retinoids and sex 

hormones that is relevant to the suspected role of environmental endocrine disruptors in 

autism [173] and to the important role of melatonin in autism [174,175]  Many other 

hormones (thyroxine, triiodothyronine, corticosteroids, calcitriol (1,25-dihydroxyvitamin D3, 

the hormonally active metabolite of vitamin D, and testosterone )) also showed significant 

enrichment scores. Low vitamin D status during pregnancy or childhood has also been 

associated with autism [176]. Severe maternal hypothyroxinaemia during early pregnancy has 

also been linked to an increased incidence of autism in the offspring [177]. 

The highest scoring neurotransmitters were serotonin , dopamine and noradrenaline, which is 

generally consistent with current views on the import of these agents in autism pathology and 

symptomatology [174,178,179]. Sphingosine-1-phosphate (S1P) plays an important role in 

oligodendrocytes and in myelination [180]. Aberrant myelination, greater than expected for 

their age in left and right medial frontal cortex and less than expected in the left temporo-
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parietal junction has been noted in autistic children and  high serum levels of S1P have been 

reported in a metabolomics study of autistic subjects [181].As recently reviewed, oxytocin 

has both beneficial and deleterious effects in autism. While its use to induce labour has been 

linked to the subsequent development of autism in the children, it can also help in relation to 

the social skills in autistic patients [182] .   

Also of interest is an endogenous aryl hydrocarbon receptor (AHR) ligand ( 2-(1'H-indole-3'-

carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). [183] .  AHR is a xenobiotic sensor 

and the target of dioxins, persistent organic pollutants, polycyclic aromatic hydrocarbons, 

polychlorinated biphenyls, organochlorine pesticides and endocrine disruptors  [184,185], 

many of which are the top chemicals targeting the autism genes [186-188]. There appear to 

have been no studies relating AHR to autism.  

Calcium is directly relevant to 3 calcium channels CACNA1C, CACNA1G, CACNA1H in the 

autism gene set. Voltage sensitive calcium channels play an important role in neural function. 

They are also expressed in the placenta and trophoblast and play an important role in the 

delivery of calcium to the foetus [189,190].Heavy metal cations, particularly lead and 

mercury, are potent calcium channel blockers but can also permeate these channels, gaining 

access to the cell [191]. 

Figure 8: The number of ASG’s affected by Hormones (first batch) and transmitters (second 

batch: including cations and second messengers). (N ASG’s =left axis, p values =right axis). 

The enrichment ratio and the total number of genes affected by each compound are shown 

after each compound name. 

 (ITE = 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester. Galactosamine is 

included as it is a constituent of some glycoprotein hormones (follicle-stimulating hormone 

and luteinizing hormone). 
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Other endogenous compounds targeting autism genes 

These are grouped by general function in Fig 9. They include compounds related to oxidative 

stress and folate/methionine/homocysteine metabolism which play key roles in autism [192-

195]  as do cholesterol and fatty acid metabolism [196-199] or inflammation [200-203].. 

Several bile related compounds appear in this figure. Bile acids act as nutrient signalling 

hormones and activate a number of nuclear receptors and G-protein coupled receptors 

including a specific bile acid receptor GPBAR1 which regulates intestinal barrier structure via 

modification of epithelial tight junctions [204]. Many of the ASG’s are implicated in barrier 

function and intestinal permeability increases (leaky gut) have been reported in autism 

[11,205]. No studies relating bile acids to autism were found in Pubmed, but this area appears 

to be of interest. 
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It is important to note that compounds generally considered as beneficial in relation to autism 

also target autism genes (see discussion caveats). These include folic acid (see above) , 

glutathione and its precursor acetylcysteine which has reported benefits in the treatment of 

autism and related psychiatric disorders [206] as might vitamins [207,208] . 

Thioctic acid or alpha-lipoic acid is an essential coenzyme for α-ketoglutarate and pyruvate 

dehydrogenase and thus an obligate requirement for energy production[209].  Lipoic acid 

protects against the effects of Bisphenol A or Bi-n-butyl phthalate on testicular mitochondrial 

toxicity [210,211]. In various other models it also protects against the toxic effects of 

acetaminophen [212], acrolein [213], cyclosporine [214], indomethacin [215], paraquat [216] 

and rotenone [217] as well as cypermethrin [218], dimethoate, glyphosate and zineb 

[219],chrysene [220] lindane [221] and Tetrachlorodibenzodioxin [222]. Lipoic acid and 

other antioxidants have also been used in the clinical management and prevention of heavy 

metal intoxication [223]. The targeting of autism genes by this product may  thus reflect 

beneficial rather than deleterious effects and, in particular, lipoic acid protects against a large 

number of toxicants that target autism genes and which have been implicated in the disorder.  

It has not been analysed in epidemiological studies or tested in the clinic, and blood or tissue 

levels do not appear to have been measured in pregnancy, neonates or autistic children.  

The effects of some fatty acids and carnitine are also oriented towards the ASG’s.  Faecal 

levels of acetic, butyric, other short chain fatty acids and ammonia are increased in autistic 

children, related to microbiome alterations  [224,225]. Reduced serum carnitine and linoleic 

acid levels and modified  omega3/omega6 fatty acid ratios have also been noted in autism 

[226]. 

Figure 9: The number of ASG’s affected by diverse endogenous compounds (N ASG’s =left 

axis, p values =right axis). The enrichment ratio and the total number of genes affected by 
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each compound are shown after each compound name. The compounds are organised in 

relation to their general function. 
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Food additives and compounds in cosmetics targeting the autism genes (Fig 10) 

70 compounds in the EAFUS list targeted >5 autism genes (P<0.05) .The interactomes of 

several compounds which might be considered beneficial (folic acid, methionine, ascorbic 

acid, niacin and oleic acid) were significantly enriched in autism genes. (Methionine 

(69/3724: 2.41 fold: P= 2.E-12); Folic Acid (68/3635: 2.44 fold: P=2.03E-12); Ascorbic Acid 

(24/561: 5.6 fold: p=4.52E-11); Niacin (12/136: 11.5 fold: P=2.58E-09); Oleic Acid (6/85: 

9.2 fold: p=0.0001). 

 Ammonium chloride, the highest scoring compound, derived from burning coal is also used 

as a flavour enhancer. Ammonium hydroxide in brine solutions is used as a meat tenderiser 

(363) and is also widely used in food processing to increase pH, while ammonia gas is used 

to kill bacteria in ground beef (364).  NH4Cl might be considered as a potential by-product of 

such procedures due to reaction with salt or gastric hydrochloric acid.  No reports in relation 

to autism could be found. However NH4Cl (Fig 11) increases the permeability of 

cerebrovascular pial venular capillaries [227] and that of the blood brain barrier to creatine 

[228] and increases gastric permeability to hydrogen ions [229]. It is also an expectorant used 

in cough medicines and is able to increase the beat frequency of respiratory cilia [230].   No 

relationships with autism or neurodevelopment have been reported. Given the barrier and 

ciliary  function of many autism genes [11], it is perhaps this aspect rather than 

neurodevelopmental criteria that provides such a high score.   

It is not practical, given space limitations, to discuss all of these compounds whose 

relationships with autism or to barrier function remain to be analysed. There are several 

however that are perhaps of more interest than others due to their extensive use (aspartame, a 
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constituent of over 6000 food products) or as anticaking agents that are also constituents of 

widely used sunscreens (Titanium dioxide , silicon dioxide, and zinc oxide).  

Aspartame acts via sweet taste receptors TAS1R2 /TAS1R3 [231] and also activates transient 

receptor potential heat and inflammation sensitive channels (TRPV1). These are involved in 

metallic taste perception as they are also activated by copper, zinc and iron sulphates [232]. 

TAS2R1, within the autism gene set, is a bitter taste receptor. Recent evidence suggests that 

such receptors, also found in areas outside the mouth, may activate defensive mechanisms 

against noxious chemicals including cytokine and immune systems.  In the human lung, 

TAS2 receptors are expressed in the cilia that sweep harmful chemicals, particles, and 

microbes from the airways [233]. TAS2 receptor activation in nasal cells results in the 

secretion of antimicrobial peptides, an effect inhibited by TAS1R2 /TAS1R3 sweet activation 

[234]. Thus, aspartame, excessive glucose and other sweet substances activating TAS1 

receptors would be expected to inhibit the clearing of pathogens and noxious chemicals 

stimulated by TAS2 receptor activation.  

Microbiome profiling has shown that low-dose aspartame, which has also been implicated in 

the development of obesity and metabolic disease, increases total bacteria, the abundance of 

Enterobacteriaceae and Clostridium leptum in diet-induced obese rats. It also increases the 

serum levels of the short chain fatty acid propionate [235].High levels of faecal 

enterobacteria and Clostridial families have also been reported in autism [236]. The 

intracerebroventricular administration of propionate in rats induces behavioural and 

pathological signs that are relevant to autism [237-240]  . 

Titanium and silicon dioxide (silicon dioxide (37/2789 : 1.7 fold p=0.0006: not on figure) are 

used, often in nanoparticle form, in a large number and variety of commercial products 

including pigment colours, anti-bacterial and other pharmaceutical components, ultraviolet 
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radiation scavengers (sunscreens), as well as in cosmetics. Both are also food additives used 

as anticaking agents or colorants [241,242]. Their risks are generally uncharacterised in 

epidemiological studies although they are manufactured and used worldwide in large 

quantities [243]. Zinc oxide is also used as a sunscreen. 

Titanium dioxide nanoparticles are internalised by human neuronal SHSY5Y cells and induce 

dose-dependent cell cycle alterations, apoptosis, and genotoxic effects that appear to be 

unrelated to oxidative damage [244].  In contrast, in human epidermal cells, they reduce 

glutathione and increase lipid hydroperoxide and reactive oxygen species levels, leading to 

genotoxicity via oxidative DNA damage [245]. Titanium nanoparticles also suppress 

angiogenesis [246,247]. 

Both titanium and silicon dioxide nanoparticles cross the placental barrier in mice and can be 

found in foetal liver and brain following maternal administration. Such treatment results in 

smaller uteri and foetuses [248]. Titanium dioxide nanoparticles accessing the nasal or 

pulmonary route are also translocated to the brain or the systemic circulation and thence to 

other organs [249]. The prenatal administration of titanium dioxide nanoparticles in rats 

increases frontal cortical and neostriatal dopamine levels in the offspring [250] and modifies 

the expression of neurodevelopmental genes in the brains of the young offspring in mice 

[251] .  Both silicon and titanium dioxide nanoparticles activate inflammatory cascades in 

microglia and the supernatants collected from the treated microglia are cytotoxic to PC12 

neuronal cells [252]. Titanium dioxide nanoparticles are also internalised by microglial cells 

resulting in an inhibition of cell adhesion and an overproduction of superoxide [253].  

Beta-ionone (EAFUS/cosmetics) is also formed in animals by beta-carotene oxygenase 2 

(BCO2) which converts  betacarotene  to β-10'-apocarotenal and β-ionone, en route to the 

synthesis of Vitamin A [254]. It does not activate retinoid receptors RARA or RARB [255] but  
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binds to a retinol binding protein, beta-lactoglobulin B,  involved in the oral delivery of 

retinol to neonates [256]. It is a potent inhibitor of a mouse retinal dehydrogenase (raldh4: 

human homologene = ALDH8A1). These enzymes catalyze the dehydrogenation of retinal 

into retinoic acids,  which are required for embryogenesis and tissue differentiation [257].  

Fig 10. Compound on the EAFUS list that target the ASG’s The maximum left and minimum 

Y axes are truncated for clarity (NH4Cl affected 119 autism genes : p= 7.78E-44). BHT = 

butylated hydroxytoluene; PTCH = protocatechuic acid (a major metabolite of antioxidant 

polyphenols found in green tea.) TMP= tetramethylpyrazine. Compounds also found in 

cosmetics are appended with C and those in household products with H. 

 

Cosmetic ingredients targeting autism genes. 
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Several of these are also in the EAFUS list (see above) and may be used in both as solvents 

or fragrances and only those specific to cosmetics or not dealt with above are shown in Fig 

11. In relation to cosmetics it has recently been reported that many perfumes are mutagenic at 

femtomolar concentrations [258]. They also reduce arginine vasopressin receptor and 

oxytocin receptor positive   neurons in male neuroblastoma cells, but not in female cell lines. 

In both male and female neuroblastoma cells fragrances (1 in 1 million dilutions of the shelf-

marketed product, all ingredients included) also induced neuronal proliferation, central 

chromatolysis, enlargement of the neuronal cell body, shortening or abnormal increase and 

thinning of axonal length, syncytia formation, or selective neurotoxicity [259]. 

Tretinoin, (all-trans retinoic acid) is the highest scoring compound. It is used for acne and as 

an anti-ageing component in face creams [260] and is available, without prescription, on 

many websites. Tretinoin treatment in pregnant rats results in postnatal mitochondrial 

complex 1 dysfunction in the cerebellum of the offspring [261] and has also been shown to 

increase levels of fear and anxiety in offspring [262]. Gestational treatment also results in a 

delayed appearance of the cerebellar righting reflex and reduces open-field activity in the 

offspring. In addition the offspring  show impaired motor coordination and motor learning 

ability coupled with a reduction in the cerebellar size and impairment in the cerebellar 

foliation profile [263,264]. A 3 day exposure to 2.5 mg/kg tretinoin (gestational days 11-13) 

produces a 10% reduction in weight of cerebellum at 4 weeks of age, not accompanied by 

other malformations [265]. In rats treated with retinoic acid at gestational day E10, the 

foetuses show structural changes similar to humans with Arnold-Chiari malformation, 

including downward displacement of the cerebellum to just above the foramen magnum and 

compression of the developing medulla into a small posterior fossa [266]. A recent MRI 

study has commented on the co-existence of Chiari malformation with some paediatric 

autism patients [267]. The targeting of the cerebellum by tretinoin is particularly relevant 



53 
 

given that cerebellar abnormalities are a consistent feature of autism [268-270]. The transfer 

of retinoic acid across pig skin is increased by exposure to particulate matter containing 

polycyclic aromatic hydrocarbons [271]. 

Brief details of some of the other high-scoring compounds are shown below. 

Acetovanillone inhibits the free radical superoxide generator NADPH oxidase [272] . The 

activity of this enzyme is decreased in granulocytes and lymphocytes of autistic children 

contributing to a spectrum of mitochondrial malfunction in these cases [273,274].   

Patchouli alcohol decreases cell growth in MCF7, BxPC3, PC3, and HUVEC cells and 

downregulates histone deacetylase HDAC2 in human colorectal cancer cells [275]. HDAC2 is 

a valproate target also forming a complex with the Rett syndrome gene MECP2 [276,277]. 

Limonene is an inhibitor of protein farnesyl transferase (FNTA FNTB) and protein 

geranylgeranyl transferase (PGGT1B) [278]. Farnesylation is essential for embryonic 

development [279] and Farnesyl and geranylphosphate play a role in angiogenesis in human 

umbilical endothelial cells [280,281].  Limonene is metabolised by cytochrome p5450’s 

CYP2C9 and CYP2C19 [282] both of which metabolise progesterone, while testosterone is a 

substrate for CYP2C19 [283]. 

Nonylphenol is a persistent endocrine disruptor used in home maintenance products that is 

also ubiquitous in foodstuffs for babies and toddlers commercially available in Germany 

[284] and in many other foods including human breast milk in Europe [285,286]. 

Nonylphenol and other compounds including dioxins, polychlorinated biphenyls, 

organochlorine pesticides, bisphenol A, and phytoestrogens have also been detected in 

umbilical cords and cord sera in Japan [287].  
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The role of these and many other compounds, alone or as mixtures more relevant to shelf 

products, in relation to autism remains to be further characterised. 

 Figure 11. The number of ASG’s affected by compounds in cosmetics (N ASG’s =left axis, 

p values =right axis). The enrichment ratio and the total number of genes affected by each 

compound are shown after each compound name. The presence of these compounds in food 

(F), the EAFUS list (E), nutraceuticals (N) or household products (H) is also indicated. a-

Tocopherol = alpha-Tocopherol; BHA= Butylated hydroxyanisole; DeNitros = 

Diethylnitrosamine ; PMP= phenylmethylpyrazolone; PIC= phenethyl isothiocyanate; TBHQ 

= 2-tert-butylhydroquinone. 

 

Compounds affecting barriers or respiratory cilia. 
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As previously reported [11], many of the autism genes in this set are involved in barrier 

functions across several different boundaries (blood/brain, skin, intestinal and placental) and 

also in the control of respiratory cilia that clear the airways of noxious particles. Evidently, 

environmental chemicals have to traverse such boundaries. In addition, some also have 

deleterious effects on barrier or cilia function.  

Several pesticides (malathion and lead acetate , Chlorpyrifos  or a combination of the insect 

repellent, DEET (N,N-Diethyl-meta-toluamide) and permethrin) are able to disrupt the blood 

brain barrier  in animal models [288] and nicotine and smoking disrupt brain 

microvasculature and the blood brain barrier[289]. Long-term air pollution in cities relates to 

neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, 

ultrafine particulate deposition, and accumulation of beta-amyloid in children and young 

adults  [290].   Air pollution also disrupts epithelial and endothelial barriers and triggers 

autoimmune responses involving tight junction and neural autoantibodies [291]. 

Nanoparticles from aluminium, silver or copper increase spinal cord pathology after trauma, 

an effect correlated with breakdown of the blood-spinal cord barrier [292]. NH4Cl increases 

the permeability of pial venular capillaries to Lucifer Yellow, as does histamine .[227]. The 

transfer of retinoic acid across pig skin is increased by exposure to particulate matter 

containing polycyclic aromatic hydrocarbons [271]. 

With regard to respiratory cilia, cigarette smoke decreases beat frequency and cilia length is 

reduced in healthy smokers. Long-term exposure to cigarette smoke leads to reduced 

numbers of ciliated cells in mice [293,294]. A combination of cigarette smoke and alcohol 

also decreases ciliary beat frequency in bovine primary ciliated bronchial epithelial cells 

[295]. Chlorocresol, a disinfectant, decreases ciliary beat frequency in human nasal epithelial 

cells [296] , and the insecticide deltamethrin provokes respiratory ciliary damage in rats [297] 

. The fungicide benomyl and its metabolites, butyl isocyanate and carbendazim, decrease 



56 
 

ciliary beat frequency in canine tracheal epithelial tissue [298] . Progesterone inhibits cilia 

beat frequency in human lung and cultured primary human airway epithelial cells, an effect 

inhibited by 17beta-estradiol [299]. No effects could be found in relation to endocrine 

disruptors, although they might be expected to exert effects in relation to those of these 

steroid hormones. Ciliary function is also compromised by vanadium, vanadium-rich oil-fired 

fly ash and cadmium [300,301]. As noted above, bitter taste receptors increase cilia function, 

and these are inhibited by sweet taste receptors activated by aspartame and glucose.   

Such deleterious effects are likely to modify the intake of many other compounds. 

 

Ecological pollution and bioaccumulation. 

Many compounds used in cosmetics or as food additives can be directly absorbed or ingested 

and pesticide sprays and volatile compounds inhaled.  While the concentrations of some may 

well be too low to elicit direct toxicity individually, a further problem relates to the disposal 

of multiple products down drains or in waste dumps from where they can seep into the air 

and water tables. For example, a recent study relating to fragrances in the Venice lagoon  

showed that the total concentrations of multiple ingredients , at different times, varied from ~ 

30ng/litre to > 10μg/litre  in polluted canals during low tide [302]. Such compounds can be 

concentrated by the food web (bioaccumulation). and contraceptive ingredients, drugs, 

pesticides , endocrine disruptors  and other pollutants have been found in marine 

invertebrates or in fish, at levels which have demonstrable effects on endocrine function 

[303-305]. Compounds in pesticide sprays, such as nonylphenol, can also travel long 

distances [306]. Such compounds exist in multiple permutations in relation to environmental 

contamination. The effects of the various compounds, as illustrated in the figures above, 

apply to individual compounds, but the real life situation involves multiple ingredients in 
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food or cosmetics and diverse mixtures of environmental pollutants with additive effects. The 

enrichment of autism genes in the effects of these compounds must therefore be viewed in 

this context. In an American study in 2011,  certain polychlorinated biphenyls, 

organochlorine pesticides, perfluorinated compounds, phenols, polybrominated diphenyl 

ethers (flame retardants), phthalates, polycyclic aromatic hydrocarbons, and perchlorate were 

detected in 99-100% of pregnant women [307].This ecological problem applies to 

agrochemical and industrial pollutants and likely to hundreds of biologically active 

compounds in food, cosmetic, drug and household products. Concerns about these products 

in relation to autism and other neurodevelopmental and cognitive disorders has recently been 

raised in The TENDR Consensus Statement, a call to action to reduce exposures to toxic 

chemicals [308].   

Caveats: There are numerous caveats. Firstly, this is a comparison of two lists of gene 

symbols, with no indication of weight (relative importance in relation to specific genes or 

processes) or directionality (i.e. does the compound activate or inhibit, or are the effects on 

binding, transcription or phosphorylation, etc.), although these can be found within CTD and 

in the literature for any interaction of interest. The question of dosage and timing is also 

important when comparing human and animal studies. However, the enrichment data and 

those of certain animal studies (For example the use of mixtures of endocrine disruptors 

[26,29]see Table 1) suggest that “overall toxicological burden” may be a more relevant 

comparison. This type of enrichment applies to toxicant chemicals, but also to those that 

might be beneficial (e.g. folic acid, lipoic acid, or glutathione), or a mixture of both (e.g. 

Oxytocin, where prenatal use is associated with risk and later use with benefit).In many 

cases, for example pesticides, heavy metals, bisphenol A, phthalates, valproate, etc.), a link to 

autism is supported by epidemiology and/or by animal studies in relation to development (see 

Table 1) . Related compounds not yet studied in autism, particularly atrazine and other 
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pesticides, blue asbestos or known endocrine disruptors can hardly be considered as benign. 

Other compounds, for example aspartame, titanium dioxide or sodium fluoride, do possess 

endocrine disrupting or other toxic effects relevant to neurodevelopment.    As stated on the 

CTD website, such data can be used for hypothesis testing. It is impossible to predict whether 

any uncharacterised compound plays a causal role in autism, but these data can at least 

provide a long list worthy of further investigation in epidemiological and animal studies.  

For all of the suspect compounds, replication in epidemiological and neurodevelopmental 

studies is essential to verify any causal effect in relation to autism. Meta-analysis studies 

support the involvement of particulate matter or ambient air pollution in relation to autism in 

North American [81,309] but not European studies [87] and for the prenatal uses of SSRI’s 

[310] or Vitamin D deficiency in autistic patients [311]  but the diverse methodologies used 

to measure timing and exposure have rendered clear conclusions difficult for these and others 

such as phthalate esters [312]. These problems are confounded by the gene/environment 

interactions raised in this study (i.e. compound X may contribute to autism but only in 

individuals with gene variants that allow it to do so). Environmental pollution also involves 

exposure to multiple airborne, ingested or contact toxins whose effects may be cumulative 

and where individual blame is difficult to dissect.     

Discussion 

The specific question posed by this type of analysis is not whether any compound affects 

autism genes/proteins, but whether it affects more autism genes than would be expected from 

the overall toxicological profile of that compound. If such is the case, one might assume that 

there is a particular relationship between genes and environment that suggests that the genetic 

polymorphisms, as well as disrupting key autism pathways related to pathology, also affect 

the ability of certain toxicants to exert their effects via the same genes or proteins. One might 
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therefore expect that many of these genes, also related to barrier function, modify the 

absorption, metabolism, excretion or physiological effects of the toxicants. In several cases, 

this has been shown to be the case, and certain autism polymorphisms do affect these 

parameters[3,11], although this has not been tested for all of the many genes or chemicals 

involved.    

In relation to these questions, several hundred compounds selectively target multiple 

members of this particular group of 206 genes. 6338 unidentified compounds in CTD did not 

affect any autism gene, while the effects of many others were not significant, showing a 

degree of specificity. Within this group of significant compounds are the majority of the 

compounds suspected to be implicated in autism including pesticides, heavy metals, and 

industrial pollutants, Bisphenol A and phthalates , flame retardants, and several drugs , 

fluoxetine and other SSRI’s, as well as acetaminophen, valproate and certain drugs used in 

labour. This exercise also returned all of the general classes of compounds suspected to be 

implicated in autism, including particulate matter and other components of diesel exhaust,   

polyhalogenated biphenyls, polycyclic aromatic hydrocarbons, persistent organic pollutants 

and endocrine disruptors. The endogenous hormones and transmitters targeting these genes 

are also highly relevant to endocrine disruption and to the key transmitters related to autism 

(retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, and serotonin) and to the 

processes implicated in pathology (compounds related to oxidative stress, 

folate/methionine/homocysteine, inflammation or myelination). Many more compounds were 

identified, which due to the cumulative nature of many of these exposures, might also play a 

role. Overall, these data show that this type of enrichment analysis can identify key 

compounds reported to be involved in autism. Some of the other compounds also targeting 

the autism genes clearly possess relevant toxic effects, (e.g. other pesticides, titanium 

dioxide, tretinoin or aspartame). However, overall enrichment may reflect beneficial and 
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deleterious effects and such a list can really only suggest compounds worthy of consideration 

in epidemiological and toxicological studies, particularly during pregnancy and in relation to 

neurodevelopment and autism.  Given the multiplicity of compounds potentially involved, 

many with different solvent requirements and diverse assay techniques and sensitivities, it 

might also be useful to establish autism blood and tissue banks and research consortia along 

the lines now used in genome-wide studies, to adequately quantify such a large variety of 

chemicals.       

Many of these compounds are considered safe by government authorities, but no regulatory 

toxicological studies could have taken into account the possibility that toxicity might be 

determined by the same genes that govern susceptibility to autism. This problem could 

perhaps be addressed using a range of compounds and banked stem cells or tissues from 

autistic patients or their parents to analyse whether toxicant properties differ in autism cells. 

A large number of chemicals relate to many autism genes suggesting that the two act in 

concert and that the rise in the incidence of autism is likely to be chemically driven, in a 

gene-dependent manner. In this study relating chemicals or environment to genes, it seems 

that genes and environment are indissociable and that the susceptibility genes themselves 

may constitute one of the strongest arguments for a causal effect of the environment, as it is 

towards their products that multiple environmental influences are selectively directed, and via 

the agency of the gene products that the pathology must be induced, or the toxic products 

allowed to pass or act.  

There appears to be no known reason to suppose that the same genetic variants did not exist 

in the population prior to the autism epidemic, but a modified environment might have 

rendered them more relevant to autism. This is akin to the classical population genetics 

example of the peppered moth. The genes controlling its mottled colouring originally 

conferred protection from birds, due to camouflage on similarly marked tree bark. Such trees 
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were blackened by industrial soot pollution, and the same genes now conferred a high risk of 

predation  [313], a situation reversed by clean air acts in the UK and USA [314].   

The solution to autism prevention may thus similarly reside in the detection, avoidance and 

removal of the pollutants, a task involving the development of stricter and more appropriate 

toxicological and environmental controls at governmental level worldwide,  as already 

proposed in the recent TENDR Consensus Statement (Targeting Environmental Neuro-

Developmental Risks) [308].    
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