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Abstract

Density fluctuations in liquid water are at the heart of numerous phenomena as-

sociated with hydrophobic e↵ects such as protein folding and the interaction between

bio-molecules. One of the most fundamental processes in this regard, is the solva-

tion of hydrophobic solutes in water. The vast majority of theoretical and numerical

studies examine density fluctuations at the short length-scale focusing exclusively on

spherical cavities. In this work, we use both first principles and classical molecular

dynamics simulations to demonstrate that density fluctuations in liquid water can de-

viate significantly from the canonical spherical shapes. We show that regions of empty

space are frequently characterized by exotic, highly asymmetric shapes that can be

quite delocalized over the hydrogen bond network. Interestingly, density fluctuations

of these shapes are characterized by Gaussian statistics with larger fluctuations. An

important consequence of this is that the work required to create non spherical cavities

can be substantially smaller than that of spheres. This feature is also qualitatively

captured by the Lum-Chandler-Weeks theory. The scaling behavior of the free energy

as a function of the volume at short length scales is also qualitatively di↵erent for the

non-spherical entities. We also demonstrate that non spherical density fluctuations are

important for accommodating the hydrophobic amino acid alanine and are thus likely

to have significant implications when it comes to solvating highly asymmetrical species

such as alkanes, polymers or bio-molecules.
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1 Introduction

Hydrophobic e↵ects and hydrophobic interactions have significant implications in determin-

ing the structure, dynamics, aggregation and subsequently the function of bio-molecules in

aqueous environments .1–4 This is at the heart of important physical and chemical processes

in biophysics such as protein folding and the aggregation of bio-molecules. One of the most

fundamental and studied processes in this regard is the accommodation of hydrophobic so-

lutes in water. From the point of view of thermodynamics, the first step of hydrophobic

solvation involves determining the reversible work required to create an empty space or

cavity in the hydrogen bond (HB) network. Understanding the microscopic and molecular

ingredients of hydrophobic solvation has been the subject of numerous theoretical as well as

experimental studies.5–11

Over the last few decades, there have been several theoretical and computational studies

examining the molecular signatures of hydrophobicity.6,12–16 An aspect of this problem that

has consistently emerged is how solvent density fluctuations are altered in close vicinity to a

hydrophobic surface.17–20 In particular, the statistical mechanics of cavity (a connected re-

gion of empty space within the water network) formation and how this changes as a function

of the size of the hydrophobic solute, has been shown to be a good measure of hydropho-

bicity. At the same time, the properties of density fluctuations provide a microscopic link

between the small and large length scale hydrophobic e↵ects where in the latter regime the

thermodynamics is driven by the surface energy of interface formation.7,20

For the most part, cavities in water are treated as highly idealized spherical objects. In

this context, quantities such as the excess chemical potential for inserting a cavity in water,

as used in the information theory for hydrophobic e↵ects ,21 examine the number density

fluctuations that occur within spherical regions. There have been recent studies examining

the nature of density fluctuations (i.e. the geometrical and thermodynamical properties

of regions of empty space forming within the water network) for non-spherical geometries

such as cubes, cuboids and cylinders.22,23 The solvation thermodynamics of non-spherical
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shapes has also been explored with morphometric thermodynamics24 and scaled-particle

theory.25 However, these shapes are still idealized as they do not capture the actual shapes

that emerge from microscopic inhomogeneities and molecular roughness that characterizes

regions of free space in the HB network. Sulimov and co-workers examined the cavitation

free energies of organic molecules consisting of di↵erent sizes and shapes with molecular

dynamic simulations and found that for systems with an e↵ective radii less than 7 Å the

computed free energies appeared to exhibit a linear dependence in the volume.26 Recently

Pettitt and co-workers have examined the e↵ects of geometry and chemistry on hydrophobic

solvation of hydrocarbon molecules and found that hydrophobic theories built on assuming

a simple linear dependence of the free energy of solvation on the surface area or volume were

not consistent with their findings from simulations.27 This evidence calls attention to the

need of furthering our understanding of hydrophobic interactions in order to improve the

current hydrophobic models.

In this work, we re-visit the statistical properties of short length scale density fluctuations

using molecular dynamics (MD) simulations of liquid water and show that the thermody-

namics of the creation of realistic, non-spherical cavities in water is qualitatively di↵erent

from that of spheres. In particular, we employ the Voronoi-Delaunay method28 to charac-

terize the regions of empty space within the water network. The resulting Voronoi-Delaunay

voids (VDV) are characterized by a much richer diversity of morphologies when compared

to the spherical cavities (SC) typically employed to investigate hydrophobicity at the molec-

ular level. The VDV are highly non spherical and rather than being localized in one region

of the network, can often be spread across several solvation shells. The VDV we identify

are subsequently used to examine the statistics of number density fluctuations as has been

done previously for SC. We find that VDV are essentially less hydrophobic than SC since the

work required to create them is substantially smaller compared to a SC of the same volume.

Interestingly, the density fluctuations associated with VDV are well described by Gaussian

fluctuations. Furthermore, the di↵erence between the density fluctuations of SC and VDV
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is also qualitatively captured by the Lum-Chandler-Weeks (LCW) Gaussian field theory.5

The microscopic fluctuations associated with hydrophobicity below the 1 nm length scale

for the VDV are more nuanced than the picture built on the analysis of only SC leading to

very di↵erent behavior in the transition from short-to-long length scale hydrophobic e↵ects.

The presence of asymmetric and exotic shapes in bulk water are a generic feature since we

find that they are found not only in DFT-based ab initio water, but also in two other water

models, TIP4P-Ew29 and, as illustrated in the Supporting Information (SI), the MB-pol

model.30–32 For processes that do not involve the dissociation of water, MB-pol is probably

the most realistic model of molecular H2O.

Understanding the density fluctuations of VDV has deep implications for water sur-

rounding and in proximity of ions, rough molecular systems such as amino-acids, proteins

and interfaces in general. Their branched and highly asymmetric character makes them good

candidates for accommodating realistic small chemical systems. Here, we illustrate the pos-

sibility of these e↵ects by examining the properties of the VDV that enclose the hydrophobic

amino-acid alanine, in water. Similar to that of bulk water, the VDV distribution that en-

gulfs alanine is highly asymmetric and requires less work to create than a SC of the same

volume. The role of molecular roughness of both hydrophobic and polar organic molecules

as manifested through the density fluctuations of VDV is an important future direction to

explore in the area of hydrophobic e↵ects.

2 Computational Details

2.1 Molecular Dynamics Simulations

Most of our analysis of both VDV and SC relies on the use of AIMD trajectories of periodic

cubic liquid water boxes consisting of 128 water molecules. These simulations have recently

been used to understand defect correlations in the HB network.33 The reader is referred to

the original paper for simulation details, however, we mention briefly that both the SC and
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VDV involved an analysis of 4 independent AIMD simulations with a total simulation length

of 64ps using the BLYP functional with Grimme’s dispersion corrections. These simulations

were thermostatted at 300 K. It should be mentioned that obtaining large statistical samples

of VDV is computationally expensive and the smaller AIMD systems make this process

tractable. We were obviously concerned about whether the small system sizes and short

simulation times would bias the density fluctuations and particularly the VDV statistics

associated with p0 which is the probability to find zero waters within the cavity as described

in detail later. Classical MD simulations of a large (4096 molecules) model of bulk water

have thus also been performed via the MD code LAMMPS.34 Re-constructing the VDV for

this big system is computationally prohibitive and hence VDV sampled from the AIMD

simulation were used to examine p0 obtained in the larger simulations. As explained in

the manuscript, obtaining quantitative agreement with previous studies requires the use of

classical MD simulations.

For the classical MD, water molecules have been modeled using the TIP4P-Ew29 rigid

water model. The density of water has been enforced to reproduce that of the AIMD simula-

tions used in this work (0.0334 mol/Å3), resulting in a cubic simulation box of length equal

to 49.68 Å. The time step for the integration of the equations of motion and the coupling

constant of the Nose-Hoover thermostat have been set to 2 and 1000 fs respectively. The

system was equilibrated at 270 K for 10 ns since the melting temperature for the TIP4P-Ew

water model is Tm ⇠ 244 K. The 105 configurations used to accumulate statistics for both

the SC and VDV (labeled SCT4 and VDVT4 for this system throughout the rest of the paper)

have been extracted every 0.2 ps from a production run 20 ns long.

As alluded to in the introduction, we also performed some analysis on water trajectories

at 300 K using the MB-pol potential.30–32 These simulations consist of 216 water molecules

in a periodic cubic box of side length equal to 18.65 Å. Analysis of results obtained from

MB-pol are shown in the SI (see e.g. Fig. S8).
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a)

b)

Figure 1: Typical shape of a) small (⇠50-100 Å3) and b) large (⇠150-250 Å3) VDV as found
within a 128-mol model of ab initio water at room temperature. While small VDV tend
to be rather spherical and compact, larger ones often display rather complex, non-spherical
shapes. Red dotted lines in panel b) highlight the bottlenecks (see text) within the large
VDV. The inset in panel b) (top right) depicts a single water molecule on the same scale.
The volume of the VDV is 88 and 249 Å3 in panels a) and b) respectively.

2.2 Voronoi Voids

Our goal in this work was to determine the realistic shape and volume of regions of empty

space within the water network. One popular approach used when dealing with bubble nu-

cleation and cavitation in general 35,36 is to use grid-based methods where the simulation box

is partitioned into three-dimensional regular cells usually of cubic shape. Volume elements

that do not contain any atoms within them are subsequently connected to obtain the regions

of empty space in the system. Despite the usage of these structured37 grids due to their

computational convenience, these probes are not related to the topological features of the

atomic/molecular network, and as such, they usually cannot deal accurately with di↵erent

atomic/molecular species for example, characterized by di↵erent van der Waals radii. Most

importantly, taking into account highly non-spherical cavities by means of structured grids

characterized by uniform cells size is often a challenging task as the volume elements have
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to be reduced down to a very small size, which in turn can lead to nonphysical pathways

between di↵erent cavities.

For clarity, we remark that the analysis of the VDV we report here is distinct from

evaluating the properties of Voronoi polyhedra of water which has been reported several

times in the literature .38,39 In fact, our analysis explicitly accounts for the atomistic structure

of water molecules since the Voronoi S-network is a generalization of the Voronoi-Delaunay

tessellation for multicomponent (or polydisperse) systems, namely ensembles of atoms having

di↵erent radii.

In this work, we adopt instead a flexible and robust approach based on the 3D Voronoi

S-network proposed by Medvedev et al.28,40 as implemented in the VNP program.41 This

methodology has been extensively employed to investigate cavities (or Voronoi-Delaunay

voids, VDV) within a number of systems, including molecules in solutions42 and complex in-

terfaces.43 We have also recently applied this particular framework to elucidate the emergence

of nano cavities in seminconducting glasses44 and to characterize the molecular mechanism

of proton di↵usion in water.45 The 3D Voronoi S-network is a clever approach that builds

upon the actual topology of the system, resulting in an unstructured three dimensional grid

capable of taking into account the complex, non spherical shapes of empty regions in a HB

network.

Here we review some of the essential concepts and refer the reader to the works by

Medvedev et al. for details. In a polydisperse system, atomic volumes are delimited by

the Voronoi S surfaces (VS surfaces). A VS surface is defined as the geometric locus of

points equidistant from the surfaces of two atomic spheres instead of from their centers. VS

surfaces are no longer planes as for Voronoi polyhedra but hyperboloids and their intersection

gives rise to curved edges (VS channels) and vertexes (VS vertexes). An interstitial sphere

with radius RI , tangent to neighbor atoms, is associated with each VS vertex while each

VS channel is characterized by the radius R0
B of the largest test particle moving along that

channel. The network of VS vertexes interlinked by VS channels can be used to distinguish
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interatomic voids and resolve connected cavities. In fact, a natural way of defining voids is

through the value of the radius (RP ) of a test particle (probe) that can be put in the given

void. Thus, voids are the parts of the interatomic space that are accessible for a given probe

(i.e. RI � RP , RI criterion). On the other hand, if a probe can move along an S-network

bond (i.e. pass through a bottleneck) then both VS vertexes connected by that VS channel

belong to the same cavity. Thus, if the extent of the bottleneck (represented by the radius

R0
B of the largest test particle that would fit into it) is greater than a certain threshold RB

(which we refer to as bottleneck radius hereafter), the two regions are considered connected

(i.e. R0
B � RB, RB criterion).

In our simulations, RP has been set to 1.20 Å since the Van der Waals radii of the

hydrogen and oxygen atoms is 1.52 and 1.20 Å respectively while RB has been set to

1.1 Å. The choice of RB and RP is important as they influence the number, the size and

even the morphology of the VDV. In a previous work45 we have extensively investigated

di↵erent choices of RB and RP leading to meaningful VDV characterized by bottlenecks

of size comparable to that of a water molecule and quite often even larger (see for example

Fig. 1b). This is because the bottlenecks have to be larger than RB ·2 = 2.2 Å, an extent large

enough to accomodate the hydrogen-hydrogen distance for a water and methane molecule,

which is of the order of 1.65 and 1.75 Å respectively. In addition, as in Ref.,45 we have

checked that our results are consistent within a reasonable interval of values for both RB

and RP . In particular, we have chosen RB and RP carefully to avoid very large volumes of

empty spaces and very exotic VDV networks characterized by several bottlenecks, possibly

percolating through the whole of the water network. As a result, the di↵erences between

VDV and SC reported in this work are likely to be even more pronounced in reality.

To compute the volume of voids, the space encompassed by the Voronoi S surfaces of the

probe particles is calculated numerically through a local mesh, dense enough to minimize

the residual below a threshold. Such voids are then eventually merged if they belong to

the same cavity domain, according the the RB criterion, giving rise to an arbitrarily shaped
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cavity.

2.3 Cavity and Void Statistics

One of the central quantities discussed in this work is the probability P (n) of observing

n solvent centers (oxygens atoms in this case) within a SC or a VDV of a given volume.

Such a probability has been obtained for a given SC or VDV by averaging n over 105

configurations coming from either ab initio or classical simulations. For each configuration,

we have positioned the SC or VDV under analysis at the center of the simulation box and

subsequently counting the number of oxygens that can be found within it. In this way, we

have constructed the P (n) reported in Fig. 3. While this process is straightforward for the

SC as has been done in several previous studies,21 handling the VDV requires special care.

There is no ambiguity in the calculation of the VDV volume, as the geometrical definition

of the VDV is unique once the system topology as well as the RB and RP parameters have

been specified.

In order to probe whether a solvent center lies within the VDV or not, we have constructed

for each VDV a corresponding 3D polyhedron, taking advantage of the alpha shape46 con-

struction available in MATLAB.47 Such an object leads to a very fast computation of P (n),

as it allows to establish quickly whether a point (in our case, an oxygen atom) lies or not

within the alpha shape, and thus within the VDV. The alpha shape construction for each

VDV is not unique and depends on the alpha radius R↵, which in turn controls the level of

detail of the alpha shape, or in other words how tightly the latter fits with respect to the

original set of points (in our case, the vertexes of the Delaunay simplexes involved in the

VDV). Thus, the choice of R↵ a↵ects the volume as well as the surface area of the resulting

alpha shapes, that is, of the 3D polygons by which we represent the VDV in order to compute

P (n). Hence, for each VDV we have determined R↵ so that the volume of the corresponding

alpha shape is consistent with the volume of the actual VDV within an accuracy of +/- 5Å3.

We have also checked that di↵erent values of R↵ lead to very similar results in terms of the
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predicted surface area, introducing an uncertainty of - at most - 5%, far too small to have

any e↵ect on the results reported in this work.

In order to extract the excess chemical potential �µ for SC/VDV formation, we have

fitted each P (n) with a normal distribution PGauss(n):

�µ = �kBT lnPGauss(n = 0) (1)

Here, kB is the Boltzmann constant, T is the temperature, and PGauss(n = 0) is the value

of P (n) for n = 0. Consistent with previous theoretical and numerical studies, the P (n)

distributions for the SC are well described by Gaussian fluctuations. Perhaps more surprising,

is that the larger asymmetric VDV are also characterized by Gaussian statistics.

3 Results and Discussion

3.1 Voronoi-Delaunay Voids (VDV) vs Spherical Cavities (SC):

Structural Properties

In order to build our intuition on the results and discussions to follow, we begin by discussing

the structural properties of the regions of empty space we are going to consider, described

either in terms of spherical cavities (SC) or Voronoi-Delaunay voids (VDV). To this end, we

illustrate in Fig. 1 two di↵erent VDV obtained from an ab initio molecular dynamics (AIMD)

simulation of liquid water. Details of the MD simulations and the procedure employed to

extract the VDV from the water network are discussed in Section 2. Note that while the

surface of the VDV has no analytic representation, it provides a convenient and robust

numerical way to quantify the space enclosed by the VDV. Small (50-100 Å3) VDV such as

the one depicted in Fig. 1a are typically rather spherical and compact. In contrast, large

(150-250 Å3) VDV such as the one shown in Fig. 1b can be characterized by quite exotic

shapes that deviates significantly from spherical symmetry. These morphologies emerge
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Figure 2: a) Cumulative distribution function (CDF) of the volume of VDV and SC within
the 128-mol model of ab initio water at room temperature. b) Before-After plot for the
VDV volume (left stack) and the volume of the largest SC one can build by sitting on the
baricenter of the correspondent VDV (right stack). Points and segments for which VDV
volume is smaller than SCV DV volume are depicted in blue, while points and segments for
which VDV volume is larger than SCV DV volume are depicted in red. c) Asphericity of VDV
as a function of volume. Reference values for di↵erent regular shapes are also reported: SC,
TH, CUB and LCUB refer to sphere, tetrahedron, cube and asymmetrical cuboid. d) Surface
area SA as a function of volume for SC and VDV.

from the spontaneous fluctuations in the HB network, and in some cases they extend across

several solvation shells. While some of these large regions of empty space encompass just one

convex polyhedron (see Fig. 1a), in many situations their branched shapes originate from the

existence of bottlenecks (see Fig. 1b). It should be noted that in most cases these channels

connecting two regions of empty space are wide enough to accommodate at least one water

molecule. One can imagine how such branched VDV could provide the right ingredients
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to accommodate elongated shapes of molecules such as branched alkane chains and small

peptides.

The VDV shown in Fig. 1b already illustrate that there are likely to be regions of empty

space that are much larger in volume and surface area than those one would predict looking

exclusively at SC within the same water network. To see this more quantitatively, we show in

Fig. 2a the cumulative distribution function (CDF) of the volume of SC and VDV within the

water network that are observed from spontaneous thermal fluctuations at room temperature.

While the probability of finding SC of volume > 100 Å3 is basically zero, fat tails in the

CDF for the VDV indicates the presence of sizable regions of empty space up to 200-250 Å3.

For the SC, a volume of 250 Å3 corresponds to a SC with radius of about 4 Å. Needless to

say, larger SC can possibly form in water, but cannot be found within the relatively short

times scale of our ab initio molecular dynamics (AIMD) simulation.

Probing the density fluctuations in water focusing exclusively on the SC does not capture

the complexity of the underlying network originating from the molecular roughness and

inhomogeneities in the 3D-structure of the hydrogen bond network. One way to see this is

to look for SC that can form within non-spherical VDV. This is seen in Fig. 2b where we

report the volume of the VDV (left stack) against the volume of the largest SC (SCV DV ,

right stack) that can be built by sitting on the center of mass of the corresponding VDV.

Firstly, we see that small (⇠50-100 Å3) VDV are slightly smaller (dotted blue segments

pointing upward from the VDV to SCV DV ) than the corresponding SCV DV . This is because

the surface of a SC exactly touches the closest atom with respect to its center of mass, while

the Voronoi construction upon which the VDV are built implies that some space around the

atoms is excluded according to the vdW radius of each atomic species. This feature holds for

small VDV characterized by a fairly spherical shape. On the other hand, larger (⇠150-250

Å3) VDV possess a much larger volume (solid red segments pointing downward) with respect

to the corresponding SCV DV . This is because large VDV are characterized by branched, non

spherical shapes including bottlenecks which cannot be captured by SC.
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Yet another probe into the complexity of the shape of the VDV is their asphericity which

can be quantified using the following expression:48

⌘ =
S3
A

36⇡V 2
(2)

where SA is the surface area of the VDV and V its volume. A scatter plot of ⌘ against the

volume of the VDV is reported in Fig. 2c together with the reference values for a regular

sphere (SC), a regular tetrahedron (TH), a cube (CUB) and a very asymmetrical cuboid

(LCUB) characterized by an edge ten times larger then the other two sides. One can clearly

see that shapes of larger VDV in the HB network deviate significantly from idealized objects.

In particular, a number of large VDV feature an asphericity value far greater than the most

common regular polyhedra, including the elongated shape of LCUB. This is due to the fact

that the realistic regions of free space in the hydrogen bond network as probed by the VDV

consist of highly corrugated objects characterized by a very large surface area as shown in

Fig. 2d. Details about the calculation of the surface area of the VDV are included in Section

2.

In summary, our results up to this point show that the creation of the asymmetric and

aspherical voids is a feature that is present in both DFT water and also the classical poten-

tial TIP4P/EW. As indicated earlier, we also repeated some of our analysis of the cavities

using MB-pol which indicates that the formation of the VDV is a generic property that is

independent of the type of water model.

4 VDV vs SC: Density Fluctuations and Thermody-

namics of Solvation

As alluded to earlier, one of the most important signatures and studied properties for un-

derstanding hydrophobicity are density fluctuations in bulk water21 and near hydrophobic
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interfaces.49 In this context, one often looks at the reversible work �µ required to create a

region of empty space within the water network. This free energy cost, often referred to as

the excess chemical potential is related to the probability P (n) of finding n solvent centers

(in our case: oxygen atoms) within that particular empty region via the following relation:

�µ = �kBT lnP (n = 0), (3)

where kB is the Boltzmann constant, T is the temperature of interest and P (n = 0) is the

probability of finding zero solvent centers within the cavity. Further details can be found in

the Computational Details section. Given the abundance of highly non-spherical VDV with

di↵erent shapes in the HB network, we now move on to understanding the thermodynamics

of their creation.

4.1 Gaussian Fluctuations for VDV

As described in more detail in the Computational Details section, constructing the VDV is

quite computationally intensive and hence it is only feasible to extract these from the smaller

AIMD simulations. Obvious concerns when using AIMD are the short simulation times (⇠102

ps) as well as the small system sizes (128 water molecules), for converging properties such as

the P (n). For this reason, we have computed the P (n) by probing the density fluctuations

from classical MD simulations as well. The classical simulations allow for the accumulation

of statistics over ⇠104 ps for large (4096 water molecules) simulation boxes. Indeed, while

AIMD and classical MD provide the same qualitative picture (as shown in Fig. 3c), we will

see that the classical simulations provide a description of the thermodynamics of solvation for

SC in quantitative agreement with previous studies .21 We thus report in Fig. 3) the P (n)

obtained from the classical simulations using VDV that were extracted from the AIMD

simulations. More details on this can be found in Section 2.

The P (n) shown in Fig.3 show that the density fluctuations associated with VDV are
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Figure 3: Probability P (n) of observing n solvent centers (n oxygens) within VDV (V DVT4)
and a corresponding SC (SCT4) of the same volume. Statistics has been accumulated over 105

configurations of a 4096-mol model of TIP4P/Ew water. Panels a) b) and c) report P(n) for
selected VDV of 46, 97 and 198 Å3 respectively, together with insets showing the VDV shape
as approximated via the alphaShape construction (see the Computational Details section).
We also report in panel c) (right side) the P(n) obtained for the same VDV and SC (V DV
and SC respectively) but calculated using 105 configurations of a 128-mol model of BLYP
water (see Section 2).

characterized by softer tails to both lower and higher n when compared to the P (n) obtained

for an SC of the same volume. This implies that P (n = 0) for the VDV is larger than what

we observe for SC. In other words, Eq. 3 tells us that the free energy cost needed to create a

VDV of a given size can be substantially smaller than that required to form a SC. It is worth

stressing that this particular trend holds for the entire range of VDV volumes examined. In

the SI (see Fig. S1 and Fig. S2) we report the P (n) for VDV and SC obtained from AIMD

and classical simulations for some more SC and VDV.

Having assessed the properties of P (n) for SC and VDV, we now turn our attention to

the behavior of �µ as a function of an e↵ective length scale. The LCW theory predicts a

characteristic length-scale behavior to the excess chemical potential for hydrophobic hydra-

tion. In particular, the theory predicts that at short length scales, the chemical potential

is roughly proportional to the volume for spherical cavities. This feature is also captured

by information theory and numerical simulations by Hummer and co-workers.21 At longer
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length-scales, �µ is proportional instead to the surface area.6

In order to construct a similar analysis for the VDV, we need to provide a measure for

its characteristic length. For the sake of simplicity, we define the length-scale of the VDV

as the radius required to generate a SC with the same volume. As we will see later, this

e↵ective radius underestimates how delocalized the VDV are over the network. This feature

will be illustrated more explicitly later in the text. Fig. 4a shows �µ obtained from both the

AIMD and classical simulations. Interestingly, the excess chemical potential characteristic

of VDV is consistently lower than that of the SC with the same volume - the work required

to create a VDV in this short-length scale regime is lower by about 10 � 15kJ/mol. This

feature is independent of the system size and simulation time since it is found in both AIMD

and classical simulations. As mentioned earlier, our results from the classical simulations are

in better agreement with the an earlier study (see data of Hummer at al. shown in Fig 4a).

Our earlier results show that the density fluctuations associated with SC or VDV are well

characterized by Gaussian statistics. Within this assumption, one can write50 an analytic

expression for �µ as:

�µ ⇠ kBT ·

⇢2wV
2

2�V
+ kBT ·

ln(2⇡�V )

2
(4)

where ⇢w, V and �V are the water density, the volume of the VDV/SC and the variance

of P (n) for that particular VDV/SC respectively. The second term of Eq. 4 depends loga-

rithmically on �V , so that it is often neglected. In the SI (Fig. S4a) we show that indeed

the inclusion of such a term does not change the qualitative trend that sees VDV having a

substantially lower �µ if compared to SC of the same volume. Gaussian statistics of the

P (n) as observed for both the SC and VDV rationalizes the trends observed in �µ shown

in Fig. 4. For SC, �V ⇠ V ,7 so that �µ ⇠ kBT · ⇢2wV . However, for the VDV examined

here �V ⇠ V ↵ with ↵= 1.07±0.01 which in turn leads to a lower �µ for VDV compared to

that of the corresponding SC. Although the change in the value of alpha is small, we will

see later that the di↵erence in the behavior of �µ/SA for SC and VDV can be rationalized

17



a) b)

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4

�µ
kJ

 m
ol

1

r [nm]

Hummer et al.
VDV

SC
VDVT4

SCT4
VDVLT4

SCLT4

0

5

10

15

20

25

30

0.2 0.3 0.4

�µ
/ S

A
kJ

 m
ol

1
/ [

nm
2 ]

r [nm]

Figure 4: a) Excess chemical potential �µ as a function the radius r of SC and VDV. For
VDV, r is defined as the radius of a sphere with exactly the same volume as the VDV. Note
however that �µ has been obtained from the P(n) calculated using actual VDV with shapes
like those depicted in Fig. 1 and Fig. 3. We also show�µ for the same SC and VDV evaluated
within 105 configurations of a 16384-mol model of TIP4P/Ew water (SCT4 and VDVT4, see
text). The excess chemical potential for a large VDV found within the TIP4P/Ew model
and its corresponding SC are labeled as V DVLT4 and SCLT4 (see text for details). Data for
SC reported in the work of Hummer et al.21 are also reported. b) Excess chemical potential
divided by surface area as a function of volume for SC and VDV. Data for the same SC
and VDV evaluated within 105 configurations of a 16384-mol model of TIP4P/Ew water
(SCT4 and VDVT4, see text) are also reported, together with the result obtained for a large
VDV found within the TIP4P/Ew model and its corresponding SC, labeled as V DVLT4 and
SCLT4. The subscript LT4 correspond to the largest VDV that was found by performing
the Voronoi analysis on the TIP4P/Ew simulations.

by the subtle di↵erences in the exponents such as ↵ within the Gaussian theory. See the SI

for more details on how the �V scales with the volume for SC and VDV (see Fig. S4b).

4.2 VDV vs SC: Behavior of �µ/SA

The preceding analysis shows that the thermodynamics of VDV formation is quite di↵erent

from that of SC. From an intuitive point of view, one way to rationalize this behavior is

that the larger amounts of free space associated with VDV originate from the inherent

3D-architecture of the HB network which naturally creates regions of depleted density in

water, as we shall see later. This creates small vapor-like tunnels or bottlenecks as seen in

Fig. 1b which result from connected smaller regions of depleted density. On the other hand,
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the construction of large spheres requires a much larger localized depletion of density. To

appreciate the e↵ect of the di↵erences between VDV and SC on the length-scale dependence

to the hydrophobic e↵ect, we recall that the surface area of the VDV exhibits a much stronger

volume dependence than that showed by the SC as reported in Fig. 2d. For instance, VDV

of about 200 Å3 can have a surface area twice as large as the SC of the same volume. This

feature has critical consequences with respect to the excess chemical potential per unit area,

�µ/SA, reported for both VDV and SC in Fig. 4b. In the case of SC, the �µ/SA that has

to be paid in order to create larger regions of empty space in the water network increases

linearly with the radius of the SC consistent with previous observations from information

theory and molecular simulations.21 In contrast, despite having a much larger surface area,

creating large VDV costs less energy and �µ/SA for the VDV is basically constant on the

length-scale quantified by their e↵ective-radii.

Without employing any sophisticated sampling methods like those developed by Patel and

co-workers22,23 to probe larger length-scales of realistic VDV, we cannot conclusively say how

�µ/SA approaches the macroscopic surface tension. However, the value of �µ/SA we obtain

for VDV is ⇠6 kJ mol�1/nm�2 which is roughly 15% of the macroscopic surface tension of

the air-vapor interface and 26% of the e↵ective surface tension reported for idealized shapes

by Patel and co-workers.22 It is clear from the preceding analysis that the short-length scale

behavior of hydrophobic e↵ects for VDV is quite di↵erent from that of SC and that the

details of the shape and geometry of hydrophobic cavities will play an important role in how

abruptly the short-to-long hydrophobic behavior occurs.

4.3 VDV vs SC: LCW Theory

Molecular simulations by Hummer and co-workers have demonstrated that small length

scale density fluctuations in liquid water are remarkably Gaussian.21 Indeed, the results

reported in Fig. 3 indicate that the P (n) for both SC and VDV can be well described by

Gaussian fluctuations. According to the LCW framework, density fluctuations at long and
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Figure 5: Probability P(n) of observing n solvent centers (n oxygens) within VDV (VDVT4)
and a corresponding SC (SCT4) of the same volume. Statistics has been accumulated over
105 configurations of a 4096-mol model of TIP4P/Ew water. The results obtained within
the Gaussian approximation (see text) for VDV (VDV,G) and SC (SC,G) are also reported
as dotted lines.

short wavelengths, corresponding to the emergence of large and small cavities within the

water network respectively, are treated separately: while a purely Gaussian description is

su�cient to deal with small (i.e. sub-nanometer scale) cavities, the thermodynamics of

larger regions of empty space is dominated by the macroscopic surface tension. As such,

the large distortions of the density field associated with the occurrence of such large cavities

are typically resolved by coarse-graining the water network on a lattice.23 This approach

requires only the experimentally determined bulk pair correlation function and macroscopic

surface tension as inputs, and is capable of dealing with density fluctuations involving very

di↵erent length scales.51

In order to understand whether LCW theory is capable of describing the highly non-

spherical density fluctuations resulting in the formation of the VDV, we compare in Fig. 5

the P (n) for selected SC and VDV we have obtained from the Gaussian fits of the atomistic

simulations (SC/VDVT4, obtained in the same fashion to those reported in Fig. 3), with those

calculated from LCW theory using only the Gaussian contribution (labeled SC/VDV,G. See

Refs. 23 and 51 for further details). Fatter tails in the P (n) for VDV,G with respect to

SC,G can be observed for all the SC/VDV considered, in agreement with the SC/VDVT4

data. Thus, LCW theory confirms that the free energy cost needed to form a VDV of a given
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volume can be significantly lower than that required to create a SC of the same volume. Thus

the di↵erence in thermodynamics observed for SC and VDV is essentially encoded by the

fluctuations underlying the pair correlation function of liquid water.

We note that although LCW theory predicts fatter tails of the VDV distributions com-

pared to SC, the agreement with the numerical simulations is not quantitative - in fact, the

errors appear to be slightly larger for the SC than the VDV. The origin of these di↵erences

is associated with errors originating from numerical integration and discretization .23,51 In

earlier studies, it was also shown that the long-wavelength lattice fluctuations were impor-

tant for spheres of radii larger than 0.5 nm. In order to assess whether lattice fluctuations

improve the characterization of the P(n) for the larger more delocalized VDV, distributions

were constructed including the lattice contribution. Although there is some indication that

doing so improves the P (n) for the VDV, lattice fluctuations do introduce large errors due

to the small length scales of the SC/VDV considered in this work and hence we focus on

only qualitative trends (see the SI for more details).

5 The HB Network in Proximity of VDV

Our analysis alluded to the delocalized nature of the VDV across the HB network. It is

interesting to examine whether these features result in any significant disruption of the HB

network. One way to probe this is to examine certain topological properties in water such as

the deviation of the water molecules enveloping a VDV from local tetrahedrality. In order to

quantify this, we examined both the in-degree (the number of HB being accepted by a water

molecule) and the out-degree (the number of HB being donated) of water molecules that are

within 2 Å of the vertices of the Voronoi-polyhedra enclosing the VDV. A similar analysis

was recently performed on bulk water looking at defect correlations in the network.33 In this

study, it was found that independent of the choice of the water model, most water molecules

in bulk water accepted and donated two HB and that thermal fluctuations result in defects
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that cluster together. For the water molecules enveloping the VDV, the notion of their origin

emerging from natural fluctuations is reinforced. In fact, the distributions of the in and out

degrees show that most of these waters are tetrahedral - there is no signature of an increase

in the number of defect water molecules such as over or under-coordinated water molecules

compared to bulk water (see Fig. S5 in the SI).

The presence of the large VDV in the network can also be probed through the lens of other

topological parameters. In liquid water, it is well known that local tetrahedrality results in

the presence of closed rings having specific directional correlations leading subsequently to

medium-range water wires.52 The extended VDV can be viewed as resulting from the specific

correlations of the arrangement of rings with di↵erent sizes in the 3D-network. In order to

examine this in more detail, we studied the radial density distributions between the center of

mass of rings enveloping the VDV. As we did earlier for the defect distributions, rings were

identified for water molecules within 2 Å of the vertices of the Voronoi-polyhedra. Fig. 6a

shows the radial densities obtained between all 5, 6 or 7 membered rings enveloping large

VDV indicating correlations extending up to ⇠ 8 Å. The 3D stacking of the closed rings and

their corresponding fluctuations are not unique or exclusive to the immediate environment

around a VDV. To see this more clearly, Fig. 6b illustrates the radial densities between the

same sized rings, now averaged over all the rings in the water network. The distributions

are indeed quite similar and reinforce the notion that the VDV are formed by the inherent

correlations of the 3D HB network. The 3D-stacking of closed closed rings in the network

essentially provides an intuitive way to understand how the VDV form.

These findings suggest that the creation of even significantly large (⇠ 250 Å3) VDV does

not require a sizable disruption of the HB network. It would be interesting in future studies

to examine how the formation of larger idealized shapes such as spheres or cuboids alter

properties such as the distribution of rings as well as local topological defects associated

with the coordination of water molecules.
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Figure 6: Radial density distribution between the center of mass of 5-, 6- and 7-membered
a) closed rings enveloping the VDV (depicted in the central inset) and b) closed rings in the
whole of the water network. The solid red, dotted blue and dashed green curves correspond
to the 5-5, 6-6 and 7-M radial distributions.

6 VDV vs SC: Solvation of Hydrophobic Solutes

Understanding the role of density fluctuations in the creation of VDV around hydrophobic

solutes and proteins is beyond the scope of the current study. However, as hydrophobic

interactions are of paramount importance in important physical and chemical processes in

biophysics such as protein folding and the aggregation of bio-molecules, we wanted to assess

the role of non-spherical VDV in solvating a realistic hydrophobic molecule. In particular,

the comparison of �µ for VDV vs SC naturally occurring in bulk water (see Sec. 4.1 and

e.g. Fig. 4), shows that the excluded volume contribution to the solvation energy is very

sensitive to the shape. Here we focused on the hydrophobic amino-acid alanine - using AIMD

simulations of a single alanine residue in water, we determined the volume and surface area

of the VDV in the water network identified after the residue is removed. The VDV identified

was then used to examine whether it would naturally emerge from fluctuations in bulk water,

as we did before, as well as to understand how the thermodynamics of their formation would

compare with an SC of the same volume.

The VDV volume distribution peaks at about 100Å3 with a rather broad distribution

ranging between 60 � 200Å3 (see SI Fig. S6a). Similar to those in bulk water, the VDV

enveloping alanine are highly asymmetric with much more exotic shapes than that inferred
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corresponding SC of the same volume) created by removing the alanine molecule from the
water network. Results are averaged over ⇠103 configurations. The inset depicts a frequent
situation where the presence of the alanine molecule produces a VDV that is substantially
larger than the size of the molecule itself.
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from SC. Based on using the volume, surface area and asphericity measures (reported in

the SI, see Fig. S6b and Fig. S6c), these VDV fall within the range of those naturally

occurring from thermal fluctuations in bulk water. It is indeed interesting to see that the

natural fluctuations of the HB network in bulk water, such as the one depicted in the inset

of Fig. 7, create the appropriate excluded volume to accommodate the hydrophobic amino

acid alanine.

Similar to what was shown for bulk water, the excess chemical potential for the VDV is

smaller than the SC by about 5-10 kJ/mol, as illustrated in Fig. 7a. Note that �µ has been

obtained using the same set of 105 configurations of a 4096-mol model of TIP4P/Ew water

employed for the P (n) reported in Fig. 3 (VDV/SCT4). Fig. 7b shows �µ/SA for the VDV

and SC - once again, the scaling behavior is very di↵erent as observed earlier for the cavities

in bulk water. For the VDV, �µ/SA is essentially flat over the volume range explored and

takes on a numerical value very close to that observed earlier in bulk water, which is a

small fraction of the macroscopic surface tension of the air-water interface. Thus, intrinsic

molecular roughness of the realistic shapes that enclose the alanine residue increases the

importance of surface area in hydrophobic solvation at short length scales. Due to the small

simulation box sizes used to analyze these e↵ects, we cannot make quantitative statements

about the VDV in the water network outside of the amino acid. However, an examination of

the fluctuations around alanine shows that there are rather large asymmetric VDV regions

extending from the hydrophobic moiety as seen in the inset of Fig. 7. This evidence is far

for being trivial: the fact that even a small hydrophobic molecule such as the alanine residue

considered here is capable of originate regions of empty space extending well beyond the

neighboring water molecules suggests that larger objects such as proteins can substantially

alter the topology and the thermodynamics of density fluctuations in liquid water.
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7 Discussion and Conclusions

One of the most important cornerstones of hydrophobic e↵ects is its sensitivity to the under-

lying length scale of the associated hydrophobic solute. At short length scales, a combination

of both analytic theories and numerical simulations have shown that Gaussian statistics ac-

curately characterize density fluctuations. On the other hand at larger length scales, the

thermodynamics of hydrophobic solvation is driven by interface formation. The vast ma-

jority of theoretical studies in this area focus on the formation of idealized spherically SC.

The work (�µ) required to create a SC grows as the volume and hence �µ/SA grows as the

radius of a sphere (see Figure 2 of Ref. 7).

In this work, we re-visited the picture that has been constructed for the behavior of

short length scale density fluctuations built upon focusing exclusively on SC. The shape of

hydrophobic solutes has been shown to be important for example in anion binding in the

context of understanding Hofmeister chaotropes53 as well as in the solvation of hydrocar-

bons27 and other organic molecules.26 A key message of this work is that the molecular

shape of voids in water has important implications on the physics of hydrophobic solvation.

In particular, we extract an exotic mixture of VDV that are formed by natural fluctuations

of the HB network using a Voronoi analysis. The regions of excluded volume in the water

network are highly asymmetric and can extend over rather large regions of the HB network.

The molecular origins of these features are shown to come from inherent features of the 3D

network of water such as the stacking of closed rings across several hydration shells. Den-

sity fluctuations of the VDV are well characterized by Gaussian statistics. An interesting

consequence of this is that the variance associated with these fluctuations is larger for VDV

compared to SC of the same volume. Thus, despite having a much larger surface area than

spheres of the same volume, the work required to create VDV is much smaller.

The scaling behavior of �µ/SA is qualitatively di↵erent for the VDV compared to SC.

On the length scales currently probed from spontaneous thermal fluctuations, �µ/SA is

e↵ectively constant. The origin of this behavior appears to be well explained by the Gaussian
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theory: the larger width of the P (n) for VDV results in �µ ⇠ kBT · ⇢2wV
� with � < 1. At

the same time, the surface area of the VDV also has a non-trivial volume dependence. In

particular for SC, the surface area scales exactly as V2/3, while for the VDV, our numerical

simulations suggest that the surface area grows as V0.82±0.01 (see the SI for more details - Fig.

S4c). Subsequently, �µ/SA grows as V1/3 and V0.10±0.014 for SC and VDV respectively (see

Fig. S5a and b). As indicated earlier, the exponents we extract here provide a qualitative

way to rationalize the di↵erence in the thermodynamics of scaling behavior of SC vs VDV

within using the Gaussian theory. The physics of short length-scale density fluctuations in

water are clearly di↵erent for SC and VDV. Given that the VDV we examine represent those

that are most easily formed, our results probe the lowest boundary in the space of�µ/SA and

volume or e↵ective radius. It is likely that there will exist other types of VDV covering the

thermodynamic region between SC and the VDV. Our results also pose interesting challenges

for theory to predict the solvation of hydrophobic solutes that go beyond exclusively concave

or convex shapes. In this work, we focused on density fluctuations at ambient conditions

only - it is clear that exploring the properties of VDV across the phase diagram of water

would be an important and interesting extension of this study in the future.

Our focus in this work is on the characterization of static properties of the VDV. An

obvious question of interest is on the lifetime of the VDV. Qualitatively, based on visual

inspection, small VDV of volume ⇠ 50-80 Å3 survive for less than a ps. However, larger

VDV of volume greater than 150 Å3 can survive for timescales of up to 5 ps. During

these time windows, the shape and volume of the VDV will obviously change. It will be

interesting in the future to come up with more quantitative measures of the lifetime of VDV

of di↵erent size and shape and perhaps more interestingly, develop experimental probes

of SC and VDV in water. Besides its obvious interest in fundamental chemical physics of

hydrophobic e↵ects in bulk water, understanding the properties of VDV has deep implications

on the solvation of solutes in general. For instance, we have showed in a previous work45

that proton transfer in liquid water can be promoted by the occurrence of particular VDV,

27



capable of facilitating an umbrella-like flip of the hydronium. In turn, this peculiar inversion

mode of the charged species alters the free energy barrier for proton transfer. While it is

clear that providing a detailed understanding of the role of VDV in the solvation of realistic

amino acids as well as in processes such as protein folding and ion solvation is beyond the

scope of this work, we attempted to shed some light on this for the hydrophobic amino

acid alanine. Interestingly, the natural fluctuations of the HB network create VDV that

would accommodate the excluded volume region needed for alanine. It will be interesting

to examine these features for other amino acids as well as molecules with di↵erent types of

branching and roughness. Furthermore, it will also be interesting in the future to re-visit

the analysis of density fluctuations around proteins and near hydrophobic and hydrophilic

interfaces that have typically been probed using idealized spheres.49
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We provide supplementary information about:

• The probability P (n) of finding n solvent centers within spherical cavities (SC) and

Voronoi-Delaunay Voids (VDV)

• The lattice model results with respect to SC and VDV

• The scaling exponent of the excess free energy of solvation as a function of volume and

surface area

• The structural properties of the water network in the neighborhood of the VDV

• The statistics of VDV as obtained for the solvation of alanine in water

• VDV and SC in MB-pol water

P (n) for SC and VDV: Raw Data and Gaussian Fits

In Fig. S1 and Fig. S2 we show the probability P (n) of observing n solvent centers (oxygens

atoms in this case) within a SC or a VDV of a given volume. We present the data obtained by

using configurations coming either from ab initio or classical molecular dynamics (see main

text), together with the corresponding Gaussian fittings. The results refer to the selected

voids discussed in the main text (Fig. 5). While small di↵erences in the P (n) exist between

the ab initio (128-molecule, ⇠101 ps) and the classical (4096-molecule, ⇠104 ps) data, VDV

consistently display softer tails with respect to the correspondent SC.

The Lattice Model

As discussed in the main text, including lattice fluctuations1,2 on top of Gaussian contri-

butions when dealing with density fluctuations of small length scales results in substantial

errors. This is shown in Fig. S3, where we compare the P (n) we have directly obtained from
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Fig. S1: Probability P (n) of observing n solvent centers within a SC or a VDV of a given volume,
here represented by the radius (r, purple labels) of a sphere of the same volume. Left and right panels
refer to the results obtained by ab initio and classical molecular dynamics simulations respectively.
The discrete values of P (n) (points) have been fitted by Gaussian distributions (lines), also reported.

our molecular dynamics simulations (VDV/SC
T4) with those calculated taking into account

both the Gaussian and the lattice contribution (VDV/SC,GL). While the qualitative trend

of VDV displaying softer P (n) tails compared to SC still holds, significant discrepancies

between VDV/SC
T4 and VDV/SC,GL can be observed.
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here represented by the radius (r, purple labels) of a sphere of the same volume. Left and right panels
refer to the results obtained by ab initio and classical molecular dynamics simulations respectively.
The discrete values of P (n) (points) have been fitted by Gaussian distributions (lines), also reported.

Gaussian Statistics: Scaling Exponents

In the hypothesis that Gaussian statistics is su�cient to describe both SC and VDV, the

following expression for the excess free energy �µ holds:3S4
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Fig. S3: Probability P(n) of observing n solvent centers (n oxygens) within VDV (VDV
T4) and

a corresponding SC (SC
T4) of the same volume. Statistics has been accumulated over 105 con-

figurations of a 4096-mol model of TIP4P/Ew water. The results obtained within the Gaussian
approximation plus the lattice contribution (see text) for VDV (VDV,GL) and SC (SC,GL) are
also reported as dotted lines.

�µ ⇠ k
B

T ·

⇢2
w

V 2

2�
V

+ k
B

T ·

ln(2⇡�
V

)

2
(1)

where ⇢
w

, V and �
V

are the water density, the volume of the VDV/SC and the variance of

P (n) for that particular VDV/SC respectively. The second term of Eq. 1, which depends

weakly (logarithmically) on �
V

, is more often than not neglected. In addition, for SC

�
V

⇠ V ,4 so that �µ
SC

⇠

kBT

2 · ⇢2
w

V . The latter expression has been used to obtain

the data fit (SC
T4,nolog) reported in Fig. S4a. Note that including the second term of Eq. 1,

so that �µ
SC

⇠

kBT

2 · [⇢2
w

V + ln(2⇡V )], results in a data fit (SC
T4,log in Fig. S4a) in very

poor agreement with our values of �µ. As for VDV, the scaling exponent for �
V

is unknown.

Thus, we have fitted the excess free energy of the VDV using the following expression:

�µ
V DV

⇠ k
B

T ·

⇢2
w

V 2

2V ↵

(2)

The result is reported in Fig. S4a. We have obtained ↵=1.07±0.01, slightly larger than

↵
SC

=1. At this point, one can also compute directly �
V

as the variance of the Gaussian

distributions by which we have fitted the P (n) for SC and VDV with (see Fig. S1 and Fig. S2).

As shown in Fig. S4b, �
V

for SC and VDV are in very good agreement with �SC

V

= V and
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have been considered. Statistics has been accumulated over 105 configurations of a 4096-mol model
of TIP4P/Ew water. a) Excess free energy �µ as a function of the volume for SC (diamonds)
and VDV (triangles). The data fits obtained by means of Eq. 1 with (SC/VDV

T4,log) or without
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T4,nolog) the logarithmic contribution (see text) are also reported.. b) Variance of P (n)
(�

V

), obtained from the Gaussian fit of P (n) for SC (diamonds) and VDV (triangles), as a function
of volume. The scaling trends �SC

V

⇠ V (dotted, light blue line) and �V DV

V

⇠ V 1.07 (solid, magenta
line) are also reported. c) Surface area S

A

as a function of volume for SC and VDV. The scaling
trends SSC

A

⇠ V 2/3 (solid line) and SV DV

A

⇠ V 0.82 (dotted line) are also reported.

�V DV

V

= V 1.07 respectively. We also report in Fig. S4c the scaling trend of the surface area

S
A

as a function of the volume of SC and VDV. Note the much stronger dependence for

VDV if compared to SC. Finally, in Fig. S5 we illustrate the volume dependence of �µ/S
A

for VDV vs SC, including the scaling exponents as obtained from the above expressions for

�µ(V ) and S
A

(V ).

Structural Properties of the Water Network around VDV

In Fig. S6 we report the in-degree (the number of HB being accepted by a water molecule)

and the out-degree (the number of HB being donated) of water molecules that are within 2 Å

of the vertices of the Voronoi-polyhedra enclosing the VDV. Looking at the distributions of

the in and out degrees suggest that most of these waters are tetrahedral - there is no signature

of an increase in the number of defect water molecules such as over or under-coordinated

water molecules.

S6



0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300

�µ
/ S

A
kJ

 m
ol

1
/ [

Å2 ]

Volume [Å3]

Hummer et al.
VDVT4

SCT4
VDVLT4

SCLT4

a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300

�µ
/ S

A
kJ

 m
ol

1
/ [

Å2 ]

Volume [Å3]

SCT4

~V1/3

VDVT4

~V0.1

b)
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have been considered. Statistics has been accumulated over 105 configurations of a 4096-mol model
of TIP4P/Ew water. a) �µ/S

A

as a function of volume for VDV vs SC. The volume dependencies,
as obtained from the scaling exponents discussed in the text and depicted in Fig S4, are reported in
panel b).

a) b)

Fig. S6: Probability density distribution of a) in-degree and b) out-degree water molecules that are
within 2 Å of the vertices of the Voronoi-polyhedra enclosing the VDV.

VDV Statistics for the Solvation of Alanine

In Fig. S7 we show the probability density distribution functions of volume, surface area and

asphericity for the VDV created by removing the alanine molecule from the water network.
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of the VDV created by removing the alanine molecule from the water network. Results are averaged
over ⇠103 configurations of a 128-mol model of BLYP water.
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mol model of MB-pol water at room temperature and pressure. b) Surface area S
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as a function
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refer to sphere, tetrahedron,
cube and asymmetrical cuboid. d) Excess chemical potential �µ as a function the radius r of SC
and VDV - as obtained from the MB-pol trajectory. For VDV, r is defined as the radius of a sphere
with exactly the same volume as the VDV. Note however that �µ has been obtained from the P(n)
calculated using actual VDV with shapes like those depicted in Fig. 1 and Fig. 3 - main text.

VDV and SC in MB-pol water

We report in Fig. S8 some additional information about VDV and SC as obtained within a

80 ps long molecular dynamics trajectory at ambient temperature and pressure employing

the MB-pol model of water.5–7 216 water molecules have been used, sampling the NVT

ensemble. We do not report the computational details in full as Fig. S8 is included with the

only intent to provide further evidence that our findings do not depend on the particular

water model chosen.
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