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Abstract: Current computational and mathematical tools are demonstrating the high value of 
using systems modeling approaches (e.g. Quantitative Systems Pharmacology) to understand 
the effect of a given compound on the biological and physiological mechanisms related to a 
specific disease. This review provides a short survey of the evolution of the mathematical 
approaches used to understand the effect of particular cholesterol-lowering drugs, from 
pharmaco-kinetic (PK) / pharmaco-dynamic (PD) models, through physiologically based 
pharmacokinetic models (PBPK) to QSP. These mathematical models introduce more 
mechanistic information related to the effect of these drugs on atherosclerosis progression 
and demonstrate how QSP could open new ways for stratified medicine in this field.  
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1. INTRODUCTION 

 It is no secret that the pharmaceutical industry is facing enor-
mous challenges in terms of their efficacy to convert fundamental 
R&D into drugs. The empirical approach of hypothesis generation 
and testing has proven successful over the last half-century; result-
ing in tremendous increases in productivity and rates of approval 
for new drug applications at the Food and Drug Administration [1]. 
However, the truth is that given the poor conversion ratio between 
‘potential’ targets into products, the difficulty in finding new targets 
for therapies and the increasing cost required to develop new drugs, 
the development and standardization of new tools and novel meth-
ods that take into account a larger, fuller, more challenging contex-
tual setup for drug design, i.e., a ‘systems’ approach, where a sur-
rogate closer to the biological organism can be interrogated, its 
complexity better captured and analysed, have become pressing. 
This is an area where ‘in-silico’ tools have a significant role to play, 
as modelling and simulation allows numerical testing of diverse 
potential scenarios, avoiding the immense costs of testing in-vitro 
or in-vivo scenarios that are by their own nature ‘risky’ and highly 
likely to fail. The need to produce these novel, risk-absorbing 
methodologies is evidenced by the emergence of Quantitative Sys-
tems Pharmacology (QSP), an approach that integrates knowledge 
coming from multiple disciplines including drug pharmacology, 
systems biology, physiology, mathematics and biochemistry. 

 QSP can even be used to better understand how certain, ap-
proved and successful drugs affect some patient groups in some 
ways and not others, which is in fact a case of patient stratification 
after treatment. It makes economic and medical sense to optimize 
the number of ‘interventions’ (drug administrations) to those pa-
tients that effectively need them, for whom these drugs will make a 
difference, still minimizing secondary or polypharmacology effects.  
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7JE, London, UK; Tel: +44-0-2076793928; Fax: +44-0-2073880180;  
E-mail: c.pichardo@ucl.ac.uk 

Statins are a case in point. Hailed as ‘wonder drugs’, they have had 
much publicity and undeniable success but have also created no 
small amount of controversy [2, 3]. While statins are considered 
‘safe’ in general, each individual statin has its own safety profile. 
For example, Baycol (cerivastatin) was removed from the market in 
2003 due to an unfavorable risk-benefit profile [4].  

 Statins are the most widely-prescribed drugs in the world [3]. 
And yet, the fact that a statin is ‘safe’ (no toxicity) and ‘working’, 
understood as the lowering of cholesterol levels in blood, is a 
‘check’ still quite far removed from the clinical endpoint, which is 
in the end, the one that matters. Is this patient going to die of a 
myocardial infarction due to plaque blockage/break-up even under 
this statin? Is this patient at risk because of all the medication 
he/she is taking together with his/her statin? Can we make it safer 
for patient X to take statins if we optimize and personalize dosage? 
In terms of efficacy, these are the questions that matter. An interest-
ing medical fact is that highly obtrusive plaque (95% stenosed or 
so) can be perfectly asymptomatic and some plaques well before 
reaching a significant clinically meaningful threshold can become 
unstable and break-up. It is very difficult to assess via imaging 
alone which plaques are unstable; atherosclerotic plaques are a 
challenging imaging target and as of today many of the currently 
available imaging tools for clinical use still provide minimal infor-
mation about the biological characteristics of plaques, because they 
are limited with respect to spatial and temporal resolution. Moreo-
ver, many of these imaging tools are invasive [5]. Preventive 
screening is not really a cost-effective or practical option. So, the 
question remains: is statins treatment for each patient effective? If 
so, by which measure? Can statins be effective if the dose is in-
creased or combined with other drugs? The ‘effectiveness’ of the 
treatment is linked to each individual’s plaque development and the 
characteristics of each patient. This is what stratified medicine is 
about. 

 In this paper, we will review the (successful) story of statins 
and how computational models using different modelling tech-
niques have evolved and been used to understand specific aspects 
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of the drug, to treat patients better, to assist in costly drug-design 
decisions, to understand intervariability and finally why a QSP 
approach to understand their effect on atherosclerosis as the next 
step, is still important in the context of personalized treatment and 
stratified medicine. 

1.1. Atherosclerosis 

 Atherosclerosis, the main cardiovascular disease (affecting 
large arteries), is the primary cause of heart disease and stroke ac-
counting for about 50% of all deaths in developed countries [6]. 
Over the past three decades much progress has been made to under-
stand the molecular dynamics of cholesterol mechanisms and the 
development of atherosclerotic plaque. What was once viewed as 
an inevitable consequence of ageing is now understood to be a 
chronic inflammatory condition that can be converted into an acute 
clinical event by plaque rupture and thrombosis [7]. Atherosclerosis 
is a long-term, progressive, multifactorial disease, characterized by 
the accumulation of lipids and fibrous elements in the large arteries. 
Atherosclerotic disease progresses in stages, with multiple changes 
in the arterial wall. Early lesions are mainly subendothelial accumu-
lations of foam cells, which are the result of macrophages uptake of 
low-density-lipoprotein cholesterol (LDL-C); in time, they will 
become more fibrotic in nature. The initiation occurs when LDL-C 
molecules penetrate the endothelial barrier triggering an inflamma-
tion/immune response within the arterial wall.  

 The disease is systemic and spans decades, with the first visible 
atherosclerotic lesions (also called the ‘fatty streak’) appearing in 
different anatomical sites, first in the aorta, then the coronaries, 
finally the cerebral arteries, in around 40 years.  

The disease has molecular, cellular, metabolic, genetic and envi-
ronmental factors associated to increased risk. To compound to its 
complexity, blood flow dynamics also play a crucial role in the 
development of plaque, with preferred sites of lesion formation 
within the arteries depending on mechanical stimuli on the arterial 
wall as these affect endothelial behaviour and its capacity to pre-
vent LDL-penetration [6]. Fig. (1) presents a schematic explanation 
of this process. 

 

 

Fig. (1). Atherosclerosis: A Simplified Diagram. 

 

 It is quite straightforward to see the clinical and industrial inter-
est to develop or optimise cholesterol-lowering drugs since the 
clinical manifestations of the disease are life defining at best, with 
huge cost implications national health systems. In the next section 
we will focus our review on two types of cholesterol lowering 
drugs: statins and proprotein convertase subtilisin/kexin type 9 
(PCSK9) inhibitors. 

 

 

 

1.2. Cholesterol-Lowering Drugs, Some Definitions 

1.2.1. Statins 
 Statins are inhibitors of HMG-CoA reductase (3-hydroxy-3-
methyl-glutaryl-CoA reductase) which is the rate-controlling en-
zyme of the main metabolic, nicotinamide adenine dinucleotide 
(NADH) dependent, pathway for the production of cholesterol (me-
valonate pathway). Inhibition of the reductase causes upregulation 
of LDL receptors (LDLR) in the liver, which increases the catabo-
lism of plasma LDL and lowers the plasma concentration of choles-
terol thus reducing the risk of cardiovascular diseases (i.e. athero-
sclerosis) [8, 9].  

1.2.2. PCSK9 Inhibitors 
 PCSK9 is an enzyme playing an important role in lipoprotein 
metabolism. Some evidence has suggested that decreasing the lev-
els of PCSK9 reduces LDL-C levels, decreasing the risk of devel-
oping cardiovascular diseases. The PCSK9 mechanism of action is 
believed to be related to its binding to LDLR on the surface of the 
cell shifting the equilibrium to lysosomal-dependent degradation 
rather than recycling LDLR from the endosome to the cell mem-
brane, which suggests PCSK9 function can be quite significant in 
targeting LDLR degradation [10]. 

1.3. In Brief: Mathematical Modelling in Pharmacology 

1.3.1. PKPD Modelling 
 Pharmacokinetic (PK) modelling is based in the application of a 
classical mass balance to quantify (and understand) the absorption, 
distribution and elimination of a drug in the body after a given dose. 
The simplest (and probably most used) approach in PK modelling is 
considering the volume of the studied species (e.g. mouse, rat, dog, 
human, etc.) as a well-stirred constant volume, normally associated 
to the blood or plasma volume where the drug is going to be dis-
tributed after a specific dose (some graphical examples are shown 
in Figs. 2, 3 and 4). Under these assumptions, a PK model can be 
written based on Ordinary Differential Equations (ODEs) describ-
ing the mass balance of the drug:  

Accumulation of Drug in the Body = 

   Input of Drug - Elimination of Drug              (1) 

   dDrug/dt = Dose – Kel Drug                          (2) 

Where Dose will depend on how the dose is administered (e.g. in-
travenous, oral, etc), which can depend on the volume of distribu-
tion of the drug and Kel represents the kinetic rate constant related 
to the elimination (or clearance) of the drug. PK models could in-
clude additional compartments in order to consider specific physio-
logical mechanisms or additional non-linearities that one compart-
ment model cannot capture from the original data. 

 Pharmacodynamics models are related to mathematical models 
used to estimate the effect of a drug on a given species, which can 
include secondary (or adverse) effects and/or specific biomarkers. 
Classical examples of PD models are based on sigmoidal functions, 
assuming the drug has a threshold (or saturation limit) when having 
an effect in a specific biomarker for example. Thus, making use of 
the information about the temporal variations of drug using a given 
PK model a PD model can be written using the classical hill equa-
tion (or Emax model):  

          Effect = (Emax Drugn)/(EC50n + Drugn)               (3) 

Where Effect represents the magnitude of the effect produced by a 
given amount of Drug; Emax is the maximal effect produced by the 
drug; EC50 is the concentration of drug producing half of the 
maximal effect and n is the hill coefficient. 
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1.3.2. PBPK Modelling 
 As mentioned previously, simple PK models (e.g. 1-2 com-
partments) can be used to replicate dynamic data of a drug in the 
body, however if additional physiological mechanisms are needed 
in the model in order to understand specific links of the drug with 
the physiology, additional compartments need to be added to this 
initial PK approach. This is probably the main motivation of 
Physiologically-Based Pharmacokinetic (PBPK) models. 

 A PBPK model is basically a multi-compartmental PK model 
where each of the compartments represents real tissue and physio-
logical volume (e.g. organs). An example of this kind of models is 
shown in Fig. (5). 

The initial (and simplest) PBPK models consider these physiologi-
cal volumes to be homogenous. However, more advanced models 
describe specific organs and tissues (e.g. gut, liver) with more de-
tails in order to provide a more realistic representation of these 
organs. 

 A general mathematical representation for PBPK models can be 
written based on the mass balance of the drug for a given compart-
ment, as shown in equation (4):  

[dDrug/dt]i = [Input Drug]i – [Output Drug]i + [Transformation]i              (4) 

Where i refers to a given compartment (organ) in the model; Input 
drug and Output drug represent the drug entering or being elimi-
nated in this compartment and Transformation is any process re-
lated to the transformation (e.g. metabolism) of the drug in this 
compartment. 

1.3.3. Quantitative Systems Pharmacology 
 PBPK approaches clearly demonstrate the utility of incorporat-
ing additional physiological mechanisms for the quantification of 
drug pharmacokinetics. Applying the same approach to understand 
the effect of the drug in a specific biomarker or disease progression 
led us to the development of new emergent mathematical models 
combining the classical concepts of PKPD and Systems Biology or 
Quantitative Systems Pharmacology (QSP). 

 Under this perspective, QSP models are also based on the de-
velopment of mathematical models based on ODEs representing 
biological/physiological mechanisms of a given disease in conjunc-
tion with biochemical interactions of specific biomarkers and a 
quantitative model the drug under study. The differential equation 
of the drug could take the form of any PK model (e.g. equations 2 
or 4). The rest of the QSP model will describe the dynamics of the 
different biomarkers associated to the disease, which could be rep-
resented with equation (5):  

[dBioMj/dt]i = [Input BioMj]i – [Output BioMj]i + [Transformation of BioMj]i 

(5) 

Where i refers to a given compartment in the QSP model (e.g. cell, 
organ, etc.); Input BioMj and Output BioMj represent the biomarker 
entering or being eliminated in this compartment and “Transforma-
tion” is any process related to the transformation (e.g. metabolism) 
of the biomarker in this compartment. 

2. CATCHING-UP AFTER MORE THAN THREE DECADES 

OF RESEARCH: FROM PKPD TO QSP MODELS 

 It might seem odd now, but as recently as the 1980s, there was 
debate in the medical community about whether cholesterol was 
really a cause of coronary arterial disease (CAD). In fact, results of 
the Coronary Primary Prevention Trial conducted from 1973 to 
1983 were the first to conclude that lowering low-density-
lipoprotein (LDL) cholesterol and total blood cholesterol can re-
duce the incidence of CAD and heart attacks in men at high risk [4]. 
The birth of the first commercial statin (lovastatin) in 1987 paved 
the way for a number of successful statins to come to market since 
then. However, these very first drugs were not tested (at least for 
bioavailability) using pharmacokinetic (PK) / pharmacodynamics 

(PD) approaches [11]. Model-based approaches have entered the 
scene later to study in more detail the mechanisms of cholesterol-
lowering drugs using mathematical modelling. The following sub-
sections give a brief introduction to the work based on this  
approach. 

2.1. PK/PD Models of Statins: Characterizing Drug Behavior 

 Our own search has revealed relatively few papers dealing di-
rectly with the mathematical modelling of statins’ mechanisms. The 
work of Faltaos et al. [12], already in 2006 appears as one of the 
oldest ones, quite far down the road if we take the late 1980s/early 
1990s as the period in which the first statins came to market. Other 
search terms, involving simulation or numerical modelling for ex-
ample, do not really yield results older than this. In their paper, 
Faltaos et al. [12] develop a relatively simple model to dynamically 
describe LDL-Cholesterol (LDL-C) after treatment with three dif-
ferent statins: atorvastatin, simvastatin and fluvastatin. The model 
was a based on a physiologically indirect-response model, describ-
ing the effect of statins as the inhibition of LDL-C production and 
additionally increasing LDL-C clearance in a dose-dependent pat-
tern. Assuming the statins inhibit HMG-CoA in hepatocytes, two 
compartments were proposed in this model, one representing the 
hepatocyte and another one to model the effect on the circulating 
LDL-C. The main observation from this study was that the three 
molecules had a similar inhibitory effect on LDL-C synthesis, how-
ever the authors could find some differences on how these drugs 
affect LDL-C clearance when using an Emax (maximum effect) 
model, showing a dependency of the administered drug dose. Addi-
tional analyses showed no effect of gender, body weight, body sur-
face area, age, calories/day, sugar/day, lipids/day, hyperlipidaemia 
types and waist/hip circumference, on the pharmacodynamic  
parameters.  

 Only a few years later, a more sophisticated approach was pro-
posed by Kim et al. [13], using a population PK/PD approach to 
study simvastatin based on the prediction of dose-response relation-
ship of the drug in patients with hyperlipidaemia. The model was 
developed using data from twenty-seven healthy volunteers with a 
40 mg daily dose of simvastatin for 14 days. The PKPD model was 
proposed for simvastatin and its active metabolite (simvastatin acid) 
and a turnover model was used to describe the change in LDL-C 
levels (Fig. 2). The model was validated comparing the simulated 
dose-response relationship of simvastatin with similar data reported 
in the literature. A similar approach was used by Oh et al. [14], this 
time to develop a model of the effect of atorvastatin on the time-
course of LDL-C profiles, where an indirect response model con-
sisting of production in hepatocyte and elimination from plasma 
stimulated by atorvastatin was calibrated and validated in a popula-
tion of dyslipidemic patients and non-patient volunteers. Around 
the same period, Yang et al. [15] used population PD analyses to 
describe the dose-response relationship of rosuvastatin with mean 
values of LDL-C reduction (%) from dose-ranging trials. The inter-
esting angle of this work is that baseline LDL-C and race were 
analyzed as the potential covariates but also, model robustness was 
evaluated using the bootstrap and data-splitting methods, and 
Monte Carlo simulations were performed to assess the predictive 
performance of the PPD model with the mean effects from the one-
dose trials. 

2.2. PK/PD Models for other Cholesterol-Lowering drugs: Sup-

porting Drug Design During Phase 2 Dose Selection 

 An interesting application of modelling in drug design in this 
context is presented in 2015 by Budha et al. [16]. They developed a 
PK/PD model for RG7652 (see Fig. 3), a fully humanized mono-
clonal antibody targeting human PCSK9. RG7652 prevents degra-
dation of the hepatic LDL-C receptors by blocking PCSK9 binding 
and thereby resulting in efficient LDL-C uptake by hepatocytes. 

 



6906    Current Pharmaceutical Design, 2016, Vol. 22, No. 46 Pichardo-Almarza and Diaz-Zuccarini 

 
 
 
 
 

 

Fig. (2). PKPD model of Simvastin [12, 13]. 

 
 After evaluating the pharmacokinetics RG7652 and data fitting 
from a Phase I study (healthy subjects) where both PK and LDL-C 
profiles for this population were successfully described, the model 
simulation results provided useful insights and quantitative under-
standing for the selection of Phase 2 study doses in patients with 
coronary heart disease. This paper describes the successful use of 
modelling and simulation as tools for drug dosage but perhaps 
more interesting, the capacity of models to provide a better grasp of 
the mechanisms behind a certain behavior, condition or effect.  

Fig. (3). PKPD Model for a PCSK9 inhibitor [16]. 

2.3. Simulation of Combined Therapies: Dose-Response Models 

and Quantitative Decision-Making 

 Mandema et al. [17] used a dose-response model to evaluate the 
product profile of gemcabene, a lipid-altering agent (which inciden-
tally, never made it to market) alone and in combination with a 
statin. The model estimates the lipid effects (LDL-C and HDL-C); 
adverse effects, such as persistent alanine aminotransferase eleva-
tion and myalgia; and for tolerability issues, such as headache, for 5 
of the currently marketed statins, ezetimibe, gemcabene, and the 
combination of ezetimibe or gemcabene with a statin. After evalua-
tion, authors found out that gemcabene had almost no effect when 
combined with atorvastatin. The authors also evaluated the impact 
of treatment with a combination of a statin with gemcabene or 
ezetimibe on coronary artery disease, using additional analyses to 
predict the risk reduction relative to placebo or compared with other 
statin treatments on the basis of the lipid effects. This work is a 
prime example of quantitative decision-making as it facilitated a 
quick decision to stop development of the drug, saving millions of 
US dolars to the Company in R&D and expensive clinical trials.
 
 Work from Vargo et al. [18] used a PKPD model derived from 
a literature-based meta-analyses to evaluate a fixed-dose combina-
tion (FDC) of ezetimibe and atorvastatin for the treatment of dyslip-
idemia, under a combined dose range. Their results encourage the 
use of computational modeling to estimate dose-response relation-
ships and predicting their clinical equivalence, which could have a 
beneficial impact on lowering cost/timelines through effective man-
agement of resources/studies, and predicting the effectiveness of 
new dosage formulations allowing to reduce the number of addi-
tional clinical efficacy trials in regulatory settings. 

2.4. Using PK/PD Models to Improve/Understand Treatment: 
Investigating the Effect of Compliance and Chronological  
Dosing 

 Aoyama et al. [19] developed a study defining the PK/PD 
model of rosuvastatin in order to predict its response, using simu-

lated plasma mevalonic acid (MVA) concentration in various dos-
age regimes (or ‘scenarios’) such as poor compliance and morning 
and evening dosage. They calculated the MVA concentration-time 
curves for 24 h in the steady state and they simulated the reduction 
ratio of baseline levels from the 0.33-3.0-fold value of each PK 
parameter estimate. They found out that chronological dosing had 
an effect and suggested that the parameters of the PK/PD model 
could be used to determine the effective rosuvastatin dosage, pro-
viding useful clinical information in practice. 

 The model from Wright et al. [20] (Fig. 4) explored the influ-
ence of simvastatin dosing time, variable compliance and circadian 
cholesterol production on the reduction of low-density lipoprotein 
(LDL). This study used a modified version of the model of Kim et 
al. [13] previously described (Fig. 1) where a model for circadian 
LDL production was incorporated into the PKPD model. By using 
stochastic simulation techniques, they reduced LDL from baseline 
at different dose levels daily for 30 days, also varying dosing time 
(8.00 a.m.), evening (22.00 p.m.), a combination of time-
administration and failure to fully adhere (evening with reduced 
compliance) and evening administration for a hypothetical bioe-
quivalent generic. The final conclusion of this work was that differ-
ences were overall negligible between day/night dosage, whatever 
small differences were negated when having variable compliance 
and there was no significant difference with the bioequivalent ge-
neric.  

 

Fig. (4). PKPD Model of Statin: Evaluating the effect of chronological time 
in dosing and compliance on MVA (mevalonic acid) levels in plasma [19]. 
Note that the arrow associated with Kin is not straight as this model considers 
that the rate of production of MVA is variable (expressed as a function of 
chronological time). 

2.5. Improving PK/PD Models: Developing PBPK Models  

2.5.1. Understanding the Pleiotropic Effect of Statins 
 The use of PBPK (Physiologically Based Pharmacokinetic) 
models is continuously increasing to support drug development and 
regulatory submissions due to the possibility of using this approach 
to predict drug concentrations in blood and specific tissues. Given 
that PBPK models are an extension of (simpler) PK models, it is 
probable that using PBPK approaches provides a better understand-
ing of the PD of a drug and patient variability due to PD aspects or 
drug disposition to the site of action. 

 As an example of the use of PBPK models for statins, Rose et 
al. [21] modelled the liver concentrations of rosuvastatin (see Fig. 
5). This model in particular, studied the effect of the uptake (nor-
mally dependent on different genotypes) by OATP1B1 (organic 
anion transporting polypeptide 1B1) transporters on the PD re-
sponse. Given the additional physiological mechanisms added to 
this model, one of the main outcomes from this was the possibility 
to give an explanation to the disconnection between different poly-
morphisms of OATP1B1 and their effect on plasma concentrations 
of rosuvastain and cholesterol synthesis. 
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Fig. (5). Simplified Diagram of a PBPK model: Understanding the Plei-
otropic effect of Statins [21]. 

 

2.5.2. PBPK Models for Safety Assessment of Statins 
 Another PBPK model of statins was proposed by Lippert et al. 
[22]. Their aim was to provide a modeling platform where physio-
logical and pharmacological knowledge combined with pre-clinical 
and clinical data would allow prediction of adverse events related to 
drug exposure. This modeling approach seems particularly relevant 
to evaluate different dosing scenarios, test new compounds or 
evaluate the effect on high-risk populations. They applied the ap-
proach to model simvastatin and pravastatin for a special population 
having a particular genotype leading to an increased risk of devel-
oping myopathy. Fig. (6) shows a simplified diagram of the PBPK 
model used in this study and the workflow for model-based safety 
assessment. 

2.5.3. A Discussion: from PBPK to QSP 
 PBPK has become an established methodology within the 
Pharmaceutical industry together with PK/PD models and over the 
past decade, a significant number of publications have appeared in 
the literature [23]. One clear advantage of PBPK with respect to 
PK/PD, is that although PBPK models are built using a similar 
mathematical framework to PK/PD, they are parameterized using 
known physiology and consist of a larger number of compartments, 
which correspond to the different organs or tissues in the body. 
These compartments are connected by flow rates that parallel the 
circulating blood system. PBPK models, like the more empirical 
models, provide estimates of common PK parameters, e.g., clear-
ance, volume of distribution, and effective half-life [24]. However, 
because of their own nature and description, being more physio-
logically orientated, they provide a quantitative mechanistic frame-
work by which scaled drug-specific parameters can be used to pre-
dict the plasma and, importantly, tissue concentration-time profiles 
of new drugs, following i.v. or oral administration [24]. 

 This been said, mathematical modelling within the pharmaceu-
tical industry has been advancing at increasing speed and a newly-
emerging field, ‘Quantitative Systems Pharmacology’ (QSP) is on 
the rise, with fundamental differences to its predecessors, which 
make-up for some of their shortcomings. Although PBPK is 
mechanistic in nature, it is still reliant on concepts familiar to 
PK/PD in many cases with no direct biological or physiological 
meaning and an extra-layer of interpretation is necessary. Systems 
Pharmacology’s attempt is to open-up these models to characterize 
through quantitative analysis and following fundamental biology 
principles “the dynamic interactions between drug(s) and a biologi-
cal system to understand the behaviour of the system as a whole, as 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

 

 

(B) 

Fig. (6). (A) Simplified diagram of the PBPK Model for Safety Assessment 
of Statins. (B) Model-based Workflow for Safety Assessment [22]. 

 

opposed to the behaviour of its individual constituents; thus, it has 
become the interface between PKPD and systems biology. It ap-
plies the concepts of Systems Engineering, Systems Biology, and 
PKPD to the study of complex biological systems through iteration 
between computational and/or mathematical modelling and experi-
mentation” [25].

 Before moving onto some recent examples, it is important to 
highlight that this level of complexity is significantly higher when 
compared to PK/PD or PBPK and one key issue with QSP is that 
models heavily rely on the modeller’s skill and understanding of 
basic biological mechanisms and from a purely practical point of 
view, there are no standard approaches, software or ontologies 
currently available. 

3. QSP MODELS OF CHOLESTEROL-LOWERING DRUGS 

3.1. QSP as Modelling Tool to Test the Effect of Combined 
Therapies on Cholesterol Levels 

 Gadkar et al. [26]�developed a QSP model of the mechanisms 
of action of statin and anti-PCSK9 therapies predicting changes on 
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LDL-C for different treatment protocols and patient subpopulations 
using the Simbiology software (Mathworks, Natick, MA) (Fig. 7). 
Some clinical data was used to validate the proposed mechanistic 
interactions, which were described in detail, through the simulation 
of virtual subjects. Starting from the description of a ‘healthy’ or 
‘normal’ subject, numerous parameterizations representing different 
virtual subjects were used to describe ‘virtual populations’. Explo-
ration of alternate parameterizations via virtual subjects is an im-
portant aspect of research in mechanistic QSP models [27, 28] as 
these alternate parametrizations can offer insight into the system 
and the source of variability. It is important to mention that systems 
models typically include numerous parameters that are not 
uniquely identifiable but still, many of these parameters demon-
strate inter-subject variability. However, the potential impact of this 
variability and uncertainty can be addressed by exploring alternate 
parameterizations that recapitulate higher level behaviors of interest 
[26]. As the authors very well explain, “virtual population variabil-
ity addresses not only inter-patient variability, but also alternate 
mechanistic hypotheses and parameter uncertainty, the virtual 
population variability does not correspond directly to clinical vari-
ability”, which is absolutely at the core of QSP. Models are used as 
tools to explore a highly uncertain model and parameter space and 
they can be used as sophisticated tools to test hypotheses and our 
own understanding of the drug mechanism in interaction with the 
system, not only for quantification. Finally, as an outcome of their 
work, their simulations predict a slightly better reduction in LDL-C 
when a combined therapy of PCSK9 inhibitor and statins is admin-
istered compared to the monotherapy.  

3.2. QSP and Multiscale Modelling to Understand the Effect on 

Atherosclerosis Progression: Towards Stratified Medicine 

 The Association of the British Pharmaceutical Industry defines 
stratified medicine as “the tailoring of medical treatment to the 
individual characteristics of each patient. It does not literally mean 
the creation of medicines or medical devices that are unique to a 
patient, but rather the ability to classify individuals into stratified 
subpopulations that differ in their susceptibility to (or severity of) a 
particular disease or their response to a specific treatment” [29]. 
This means that preventive or therapeutic interventions can then be 

concentrated on those who will benefit, sparing expense and side 
effects for those who will not.  

 Focusing this time on the effect of the drug on atherosclerosis 
progression and not only on lowering cholesterol levels, a step 
further in the study of the pharmacology of cholesterol-lowering 
drugs was proposed by Pichardo-Almarza et al. [30]. This com-
pletely novel QSP approach, in-between two different worlds 
(PK/PD and Systems Biology) used the mathematical model as a 
vehicle to understand the PK of Simvastatin and its effect on LDL 
and atherosclerotic plaque evolution and vascular remodeling, 
which is the clinical endpoint. The multiscale approach adopted 
describes the most important biological/physiological mechanisms 
related to atherosclerotic plaque progression combined with the 
effect of blood flow conditions and how this has an impact on the 
LDL and Monocytes penetration in the arterial wall. Simulations of 
a virtual population composed of 1000 patients with different 
physiological characteristics and simulated during 20 years showed 
the sensitivity of the plaque growth and statin response to different 
physiological conditions (e.g. characteristics of the blood flow and 
the geometry of the artery) and was able to simulate each patient’s 
trajectory defined by quantifying the effect of the drug and adher-
ence to regime on plaque volume. The model was validated through 
comparison of the results of the virtual population against well-
known clinical trials [31, 32]. This novel approach opens up the 
way to use QSP for predictive modelling in individual patients, 
although there is obviously much work to be done. Fig. (8) shows a 
diagram summarizing the different parts of this QSP model. 

CONCLUSION 

 Great and encouraging progress has been made in the modelling 
and simulation of the pharmacology of cholesterol-lowering drugs, 
and their effect on cardiovascular diseases. With the emergence of 
QSP, the combined effort of multidisciplinary teams around the 
world is making it possible to develop new and improved multis-
cale approaches that lead to a better understanding of atherosclero-
sis and its treatment. By focusing on the clinical endpoint, QSP has 
also the potential introduce a seismic change in our understanding 
of the relationship between drugs and disease, and not only the 
relationship of the drug to an organ or surrogate biomarker. We 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). QSP model to evaluate a combined therapy [26]. 
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have provided examples of how computational models in QSP have 
proved to be extremely valuable to understand the pharmacokinet-
ics and immediate pharmacodynamics effect of the drugs whilst 
additionally showing how they could be extremely useful to under-
stand the behavior of a patient population under specific conditions 
(i.e. patients in a clinical trial) and the dynamics of the disease pro-
gression according to drug administration efficacy and patient be-
havior.  

 Moreover, with an ageing population and a global pandemic of 
overweight and obesity, cardiovascular diseases are and will still be 
a major cause of mortality and morbidity for years to come; the end 
to this situation is not really in sight and the stakes are as high as 
ever. With new knowledge, increaseing access to high quality data 
and computing power, QSP for cardiovascular diseases looks like 
an excellent target area in which to develop stratified medicine right 
now. 
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