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Abstract Tests for positive selection have mostly been

developed to look for diversifying selection where change

away from the current amino acid is often favorable.

However, in many cases we are interested in directional

selection where there is a shift toward specific amino acids,

resulting in increased fitness in the species. Recently, a few

methods have been developed to detect and characterize

directional selection on a molecular level. Using the results

of evolutionary simulations as well as HIV drug resistance

data as models of directional selection, we compare two

such methods with each other, as well as against a standard

method for detecting diversifying selection. We find that

the method to detect diversifying selection also detects

directional selection under certain conditions. One method

developed for detecting directional selection is powerful

and accurate for a wide range of conditions, while the other

can generate an excessive number of false positives.

Keywords Positive selection � dN/dS � Directional
selection � Diversifying selection

Introduction

When a new mutation arises in a population, the mutation

can be advantageous, deleterious, or effectively neutral,

with a sufficiently small effect on the organisms fitness that

its fate depends on genetic drift. When organisms are well

adapted to their environment, mutations with large

advantages are rare. Under these conditions, the deleterious

mutations are mostly eliminated from the population while

some fraction (* 1
2Ne

for diploid organisms with effective

population size Ne) of the neutral mutations become fixed,

so that most accepted mutations are neutral or nearly

neutral (Kimura 1983). This situation is considered puri-

fying selection. There are situations, however, where the

organisms are not so well adapted. An organism may have

changed environments and has to adapt to its new cir-

cumstances. A pathogen might have switched host species

and needs to adapt to the new host species’ cellular factors.

Sometimes new opportunities arise, such as following a

gene duplication event, where one of the gene copies can

gain a new function while the other maintains its previous

function. When such situations occur, there may be a sig-

nificant possibility of advantageous mutations. The

advantageous mutations can be strongly selected for so that

the majority of the fixed mutations are adaptive even if

most mutations are deleterious or neutral. This situation is

called positive selection. In the situations mentioned above,

where the organism is adapting to a new environment or to

new opportunities, the positive selection would be char-

acterized as directional selection, as new rare alleles will

be favored that better adapt the organism to its new situ-

ation. After this process is completed, the organism may

become well adapted to its new environment, and purifying

selection will resume (dos Reis 2015).
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Under certain circumstances, however, this adaptation

may never finish, resulting in continued positive selection.

An example is the interactions between a pathogen and the

immune system of its host. The pathogen will be under

strong selection to make mutations that prevent detection

from the hosts’ immune system, resulting in fixed muta-

tions that interfere with this detection. Once these muta-

tions are accepted, however, the immune system is under

strong selection for mutations that enable the pathogens to

be detected. If the host is successful in combating the

evasions of the pathogens, the pathogen will once again

experience selection for new escape mutations. There is a

competition, an arms race, between pathogen and host,

where both sides are under selection to counter the changes

of the other. This phenomenon, first proposed by Van

Valen (1973), was named the ‘‘Red Queen Effect’’ after the

character in Lewis Carroll’s Through the Looking-Glass

and What Alice Found There (Carroll 1871). Situations

such as this are called diversifying selection, as it is gen-

erally the new rare mutants that are selected.

Identification of positive selection can provide important

information about a protein’s function, interaction partners,

and physiological context, as well as insights into the

processes of adaptation, pathogen host shifts, and neo- and

sub-functionalization. Of the two types of positive selec-

tion described above, directional selection and diversifying

selection, it has been easier to detect diversifying selection.

Because of the constant selection of advantageous muta-

tions in both host and parasite, there is an elevated rate of

fixation of mutations. If we assume that the selection is

acting mostly on the expressed proteins rather than directly

on the genetic material, this will result in a higher fixation

probability for non-synonymous mutations. If synonymous

substitution are neutral, we can use the synonymous sub-

stitution rate as an internal reference and consider the ratio

of the relative rates of non-synonymous (dN, Ka) and syn-

onymous substitutions (dS, Ks), a measure referred to as

dN/dS, Ka/Ks, or x. When all mutations are neutral (such as

in a pseudogene), mutations that change the protein

sequence will have the same fixation probability as those

that do not, dN� dS, and x� 1. Under conditions of

purifying selection, mutations that change the amino acid

sequence are more likely to be deleterious and thus not

accepted, while synonymous mutations would be neutral.

As a result, dN \ dS, and x\1, as is observed for most

proteins. If positive selection is sufficiently strong that it

dominates the background purifying selection, non-syn-

onymous mutations may actually be more likely to be fixed

than synonymous neutral mutations. Under these condi-

tions, it is possible to observe dN[dS, and x[ 1. The first

observations of such diversifying selection were in adap-

tive immune system proteins such as the major histocom-

patibility complexes (Hughes and Nei 1988, 1989) and

immunoglobulins (Tanaka and Nei 1989). These were

followed a few years later by similar observations in

pathogens (Bonhoeffer et al. 1995; Hughes and Hughes

1995; Endo et al. 1996). The success of these studies

resulted in many considering positive selection to be

equivalent to diversifying selection.

Many situations, however, do not fit the diversifying

selection paradigm. Often we are interested in the process

of adaptation where the red queen effect is absent, such as

the previously mentioned cases of migrations, environ-

mental shifts, host shifts, and gene duplication. We would

expect that these instances of directional selection would

result in a burst of non-synonymous substitutions during

the interval of adaptation, resulting in an increased value of

dN/dS. In fact, there are numerous examples where dN/dS
ratios have been used to identify periods of directional

selection (Endo et al. 1996; Messier and Stewart 1997).

(Interestingly, many of these examples involve genes

involved in reproduction, where other forms of competition

exist). Such approaches are possible when many locations

are under sufficiently strong selection on a short branch,

which may not reflect common situations (Hughes 2007).

One important limitation is that the sites that are under

strong directional selection during these periods are also

likely to be under strong purifying selection at other

times (Messier and Stewart 1997), making it less likely that

there would be sufficiently many non-synonymous substi-

tutions during the episodic directional selection to generate

dN/dS[ 1 (dos Reis 2015).

An alternative approach to identifying directional

selection is to look for significant changes or differences in

the selective constraints. A number of methods have been

developed including looking for an overabundance of large

changes in physicochemical properties (Woolley et al.

2003) and detecting sustained or transient changes in

substitution rates (Knudsen and Miyamoto 2001; Dorman

2007; Creevey and McInerney 2002; Gu 2006). While

simultaneously identifying the sites and branches where

this change of selection occur is extremely difficult, in

many biological investigations (including migrations,

environmental shifts, host shifts, and gene duplications) the

branch of the phylogenetic tree is known or can be

hypothesised; when this is the case, more complicated

substition models can be implemented. Methods have been

developed that consider changes in the preferences for

specific amino acids, such as modifying codon models of

diversifying selection to include enhanced substitution

rates to prefered amino acids (MEDS) (Pond et al. 2008;

Murrell et al. 2012) and implementing a sitewise depen-

dent codon based mutation selection model with explicit

changes in selective constraints (swMutSel) (Tamuri et al.

2009; dos Reis et al. 2011; Tamuri et al. 2012). The hope

was that approaches specifically designed for detecting
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specific changes in selection would be more accurate and

powerful in these cases than methods designed for diver-

sifying selection such as dN/dS. There is evidence that this

is true; Murrell et al. compared the ability of MEDS to

characterize sites of directional selection in the develop-

ment of HIV-1 drug resistance compared with a model of

episodic diversifying selection; most locations were better

fit by the MEDS model (Murrell et al. 2012).

We consider the case where the branch under episodic

directional selection is known. We first use simulated data

to characterize the relative accuracy and statistical power

of a dN/dS ratio method [as implemented in the PAML

software package (Yang 2007)] for detecting directional

selection, and how that compares with approaches based on

detecting and characterizing the changes in selection that

accompany directional selection as implemented in

swMutSel (Tamuri et al. 2014) and MEDS (Murrell et al.

2012). We then compare the ability of PAML, swMutSel

and MEDS to detect directional selection in the develop-

ment of HIV-1 drug resistance, extending the comparison

by Murrell et al. (2012).

Results

Comparisons with Simulated Data

As discussed in the introduction, although dN/dS methods

such as PAML (Yang 2007) were designed to analyse

diversifying selection, they are commonly used to detect

directional selection. We first created a set of simulated

data under a population genetic model where the substi-

tution rate of locations is obtained using probability of

fixation under Wright–Fisher mutation-selection model (as

described in (Tamuri et al. 2012) and included in swMut-

Sel) and analyzed the ability of PAML (Yang 2007) to

detect directional selection. 16 and 256 taxa symmetric

bifurcating trees were created, where each branch was the

same length d, with d ¼ f0:01; 0:1; 0:2; 0:5; 1:0g where the

values represent the average number of nucleotide substi-

tutions per codon expected under neutral selection (the 16

taxa tree is shown in Fig 1). DNA sequences of 500 codons

evolved according to an evolutionary model where most

locations evolved under purifying selection, with a fixed

percentage of locations (h ¼ f1; 5; 10; 20%g) undergoing

directional selection. This was implemented by having a

change of selection at these locations occurring at the

midpoint of a specified branch, chosen so that 1/4 of the

taxa had the different selective constraints. The first anal-

ysis involved modeling these locations as a conserved

alanine up to the change of selection, followed by a con-

served valine on the downstream branches after this

change. This corresponds to an infinitely large shift in

selection at this point. (An alanine to valine substitution

results from any C to T transition in the second codon

position).

The PAML site model analyses involve two steps

(Nielsen and Yang 1998). The first is the comparison of

two models using the likelihood ratio test (LRT), where

one model allows the possibility that some sites are

evolving with positive selection i.e., dN/dS� x[ 1, where

this condition is assumed to persist throughout the phylo-

genetic tree. If there is statistical support for the presence

of positive selection, a Bayes Empirical Bayes (BEB)

analysis is done to identify the corresponding sites. Alter-

natively, the presence of episodic positive selection is

investigated using the ‘‘branch-site model’’ (Yang and

Nielsen 2002); the branch on which the change in selection

occurs is labeled the ‘‘foreground branch’’, and the two

stage analysis (LRT followed by BEB) is used to find sites

that undergo positive selection at this branch, where the

model assumes purifying or neutral selection at these sites

along the remaining background branches on either side of

the foreground branch.

In all of the simulations, the site model analysis resulted

in either insufficient support for the presence of positive

selection (as indicated with the likelihood ratio test), or in

the few cases where such support was present, no sites

were identified through the BEB analysis. Because of this,

we will restrict our analysis to the results obtained with the

branch-site model.

Table 1 shows the results obtained for the 256 taxa tree.

PAML was able to identify directional selection when there

were a large number of sites undergoing a change in

selective along short branches [the positive results required

Fig. 1 16 taxa. The branches with altered selective constraints are

shown in red; the change in selection occurs at the midpoint of the

branch connecting one quarter of the taxa to the rest of the tree. Data

was simulated as described in Tamuri et al. (2012), with a fraction (h)
of the sites in the protein evolving under different selective

constraints in the two different parts of the tree. The connecting

branch was labeled as the foreground branch in the branch-site

analysis of PAML (Yang 2007) (Color figure online)
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short branches in order to reduce the number of non-syn-

onymous changes occuring under neutral or slight purify-

ing condition (dos Reis 2015)]. Although PAML was able

to detect the presence of positive selection when there were

long branches with few sites (LRT), PAML was unable to

determine which sites were under directional selection

(BEB).

The number of 256-taxa trees that could be studied was

limited by computational resources. To see the repro-

ducibility of the data, we also performed analyses of 16

taxa trees, with 100 different sets of simulated data for each

set of parameter values, the results of which are shown in

Table 2. The results obtained with PAML are similar to the

analysis of the 256-taxa trees: PAML can detect when a

large number of sites undergo a large change in selective

along short branches. In all cases the number of false

positives was limited (\5%).

We next analyzed a set of simulated data, again with 256

taxa symmetric bifurcating trees. (Trees, simulated data,

and analysis results are contained in Online Resource 1).

Rather than having otherwise conserved amino acids

replaced at a specific point on the tree, we instead con-

sidered an adjustable degree of directional selection. For a

fixed percentage of locations (h ¼ f1; 5; 10; 20%g), we let

the equilibrium frequencies of alanine and valine switch

between pA ¼ exp Sð Þ
1þexp Sð Þ, pV ¼ 1

1þexp Sð Þ and pA ¼ 1
1þexp Sð Þ,

pV ¼ exp Sð Þ
1þexp Sð Þ: scaled selective coefficient S ¼ 2Nes, where

Ne is the effective chromosomal number and s is the dif-

ference in fitness corresponding to the two amino acids,

represents the magnitude of the change of selective pres-

sure, so that S ¼ 0 corresponds to no change in selection,

with pA ¼ pV ¼ 0:5 throughout the tree, while S ¼ 1 cor-

responds to a shift from pA ¼ 0:788; pV ¼ 0:212 to

pA ¼ 0:212; pV ¼ 0:788. The sequence logo representing

the equilibrium frequencies for a set of illustrative sites is

shown in Fig. 2.

Running time for PAML for these runs was approxi-

mately 4 h on a single core processor; multiple replications

are recommended to ensure convergence, resulting in an

average running time of approximately 24 h for each

dataset. For the datasets with varying fitnesses, the per-

formance of PAML decreased considerably, as is shown in

Table 3. There were relatively few cases when the LRT

indicated the presence of positive selection, and the occa-

sions when this occurred for the longer branches seem to

have been spurious—similar results were obtained with

S ¼ 0, that is, when positive selection was absent. In these

situations, the BEB analysis did not identify specific sites

seemingly under positive selection. There were only three

conditions were specific sites were correctly identified,

corresponding to many locations (h ¼ 0:2) with strong

changes in selection (S ¼ 5; 10) along short (but not the

shortest) branches. The short branches are required in order

for there to be sufficiently few non-synonymous substitu-

tions expected under neutral selection, while the shortest

branches were too short for the adaptive substitutions, even

when highly advantageous, to take place.

We next compared the sensitivity and false positive rate

of PAML, MEDS (Pond et al. 2008; Murrell et al. 2012)

and swMutSel (Tamuri et al. 2009; dos Reis et al. 2011;

Tamuri et al. 2012), the latter two tools constructed

specifically to detect directional selection. Both programs

are time intensive, with running times of approximately 1

week on a single core processor for each dataset. swMutSel

models the selective constraints at each site individually,

both assuming uniform equilibrium frequences throughout

the tree and separate equilibrium frequencies on either side

of the change in selection, using a LRT to evaluate the

evidence for a shift in selection. Figure 2 shows the

Table 1 Results of PAML branch-site model analysis of 256 taxa

tree with infinite fitness change

d h

0.01 0.05 0.1 0.2

0.01 – – (100/0.7) (100/0.5)

0.1 – – – (100/4.0)

0.2 – – – –

0.5 (0.0/0.0) – – –

1.0 (0.0/1.0) (0.0/1.0) – –

Data sets where PAML could not detect the presence of positive

selection using the LRT are shown by a ‘‘–’’. The percentage of sites

undergoing positive selection that were identified, as well as the

percentage of other sites that were misidentified, is shown for data

sets for which the LRT indicated positive selection

Table 2 Results of PAML branch-site model analysis of 16 taxa trees

with infinite fitness change

d h

0.01 0.05 0.1 20

0.01 – – (87/87/ 0.4) (100/100/0.4)

0.1 – – – (57/57/2.8)

0.2 – – – (7/7/0.3)

0.5 – – – –

1.0 – – – –

100 identical data sets were created for each set of parameter values.

Data sets where PAML could not detect the presence of positive

selection with the LRT are shown by a ‘‘–’’. The percentage of data

sets where positive selection was identified, the percentage of sites

undergoing positive selection that were identified, as well as the

percentage of other sites that were misidentified, is shown where there

are data sets for which the LRT indicated positive selection
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estimated equilibrium frequences for a set of illustrative

sites for S ¼ 10 and d ¼ 0:1.

Figure 3 shows the sensitivity of these three approaches,

measured as the number of true positives (TP) divided by the

total number of true positives and false negatives (FN) or
TP

TPþFN
. Figure 4 shows the false positive rate for these meth-

ods. The overall performance of the three approaches, quan-

tified by theMatthews coefficient (Matthews 1975), is shown

in Fig. 5. (Numerical values are available in Supplementary

Table S1). PAML was successful at finding many of the

correct sites when there were many sites (large h ¼ 0:2)

undergoing large changes in selective constraints (large

S ¼ 5:0; 10:0) when the branch lengths were small

(d ¼ 0:1; 0:2). In contrast, swMutSel consistently out-per-

formed PAML, especially when few locations underwent

changes in selection (small h), for longer branch lengths

(larger d), and under certain conditions, significantly weaker

changes in selection (smaller S). PAML does have more false

positives under the conditions where it has the highest sensi-

tivity (i.e. shorter branch lengths, larger S , larger h), although
the false positive rate for both PAMLand swMutSel, under all

conditions, is quite low (\5%). MEDS seems to identify

positive episodic selection in a broad range of parameter

values, but with extremely high false positive values ([60%).

Overall performance is, as a consequence, poor (Fig. 5).

We can investigate the performance further by consid-

ering illustrative Receiver Operating Characteristic (ROC)

plots for the three approaches, shown in Fig. 6, as well as

the area under the ROC curve (AUC) values for all of the

simulations shown in Fig. 7. (Numerical values are avail-

able in Supplementary Table S1). Consistent with the

results presented in Fig. 5, PAML does well for large

changes in selection across many sites along a branch that

is short but not too short (Fig. 6d). PAML also seems to

perform well discriminating between the two types of sites

when positive selection is rarer (such as in Fig. 6b),

although the conservative choice of p value in these cases

prevents identification of such sites. MEDS seems to be

able to discriminate between sites under and not under

directional selection when the difference in selection is

very weak (Fig. 6a) and when the branches are short,

although the peformance is compromised by overly high p

values in the former cases. When the change in selection is

strong and branch lengths are longer, MEDS often per-

forms substantially worse than random (Fig. 6b). The

performance of swMutSel is good to excellent across these

various datasets.

One noticeable thing about the false positive rate of

MEDS is that as the branch length increased, the false

positive rate was higher. Figure 8 shows the average false

positive rate at each of the branch lengths (d), averaged

over the twenty simulated data sets. The data indicate a

strikingly linear relationship between the average false

positive rate and the branch lengths (R2 ¼ 0:99487). This

Fig. 2 Top Sequence logo representing the equilibrium frequencies

of the various amino acids at a set of illustrative sites. Sites 4, 18, and

27 (highlighted in yellow) are simulated with a shift in selective

constraints, with S ¼ 1:0; equilibrium frequences before and after the

change in selection are shown on top and bottom, respectively.

Bottom Equilibrium frequencies for these sites as estimated by

swMutSel (d ¼ 0:1). Sites identified as under positive selection

highlighted in blue; the separate equilibrium frequencies for the

branches before and after the change in selection are shown on top

and bottom, respectively. Sites 4 and 18 represent true positives, site

17 a false positive, and site 27 a false negative. Logos were generated

using WebLogo (Crooks et al. 2004) (Color figure online)
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result suggests that MEDS should be restricted to datasets

that have very short branch lengths.

Comparisons with Drug Resistance Data

Simulations are useful for analyzing positive selection

detection methods in that the parameters defining the

evolutionary process can be specified, and the ‘‘correct’’

answers are known. It is also important to test the methods

on real data, even if comparisons may be more difficult and

the results more anecdotal. We tested the ability of dif-

ferent approaches to detect sites in HIV undergoing posi-

tive selection for drug resistance, a test developed by

Murrell et al. (2012). We applied PAML, MEDS, and

swMutSel to three viral proteins, protease, integrase, and

reverse transcriptase, to see how well they detected the

substitutions identified as indicative of drug resistance,

while not identifying the locations that are not associated

with drug resistance. The results are summarized in

Table 4. The specific sites found for protease, integrase and

reverse transcriptase can be found in Supplemental

Tables S2, S3, and S4, respectively.

All three methods did equally well with the integrase,

swMutSel and PAML did equally well on the protease,

while PAML did significantly better than either other

method on the reverse transcriptase. MEDS did signifi-

cantly worse than the other methods on the protease. In

general, none of the methods had a high rate of false

Fig. 3 Sensitivity of PAML, MEDS and swMutSel on simulated data.

The green bars represent the sensitivity (fraction of sites undergoing

directional selection correctly detected) of PAML, the red bars

represent the sensitivity of MEDS and the blue bars represent the

sensitivity of swMutSel. The range of values are from light (S ¼ 0.5)

to dark (S ¼10). For the PAML results, the sensitivity shown is from

the combinations that passed the LRT and the number of correctly

predicted sites using the BEB analysis (Color figure online)

Fig. 4 False positive rate of PAML,MEDS and swMutSel on simulated

data. The green bars represent the false positive rate (fraction of sites

undergoing purifying selection misidentified as under positive selection)

of PAML, the red bars represent the false positive rate ofMEDS and the

blue bars represent the sensitivity of swMutSel.Colors and shades are as

in Fig. 3. For the PAML results, the false positive rates shown are from

the combinations that passed the LRT and were misidentified using the

BEB analysis. For bothwith PAMLand swMutSel, the false positive rate

is quite low (\5%) (Color figure online)

Fig. 5 Comparative performance of PAML, MEDS and swMutSel on

simulated data, as measured by the Matthews Coefficient (Matthews

1975). Colors and shades are as in Fig. 3. The Matthews correlation

coefficient is equal to one for a perfect predictor and zero for a

random predictor, while values less than zero indicates performance

worse than random. The poor performance of MEDS is a result of the

large false positive rate shown in Fig. 4 (Color figure online)
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positives; the highest was a 6% rate obtained with MEDS

on the protease data set. This indicates that, with a lack of

data, the methods tend to be conservative.

In addition, the locations that are not involved in the

development of drug resistance could be under other forms

of positive selective pressure, such as compensating for

drug resistance mutations. The results are also limited in

ways that impact the relative abilities of the various com-

putational approaches.

This is not a perfect test: the drug resistant genes depend

upon the specific antiviral drugs taken by the patient, which

also varies historically and by location, so it is not clear

that a site associated with the development of drug resis-

tance was in fact under directional selection. In addition,

there may be selection for drug resistance, or other types of

selective pressure, acting on other sites. The development

of drug resistance often results in a number of changes at

different sites, including changes at some sites that are

compensatory for changes at others. This is favorable for

those methods (such as PAML) which are sensitive to the

number of such sites, as illustrated in the results on syn-

thetic data. There are often a number of possible amino

acids substitutions that can occur at a site that assists in

drug resistance. For instance, either a K219Q or K219E

substitution in the reverse transcriptase gene is associated

with resistance to nucleoside reverse transcriptase i inhi-

bitors (nRTIs). Methods such as MEDS which assume a

selective change to a specific amino acid are disadvantaged

in these situations. Conversely, swMutSel is designed for

situations where there are lineages both before and after the

directional selection. In this dataset, there is generally only

one sequence for each patient following the use of

antiretroviral drugs. As a result, the continued pattern of

change that helps to identify the new selective constraints

is absent, compromising the accuracy and power of

swMutSel.

Fig. 6 Receiver Operating Characteristic (ROC) plots of PAML

(green), MEDS (red) and swMutSel (blue) for illustrative simulations.

Dashed green line indicates where the data as analysed by PAML did

not pass the LRT. Dots represent performance for a p value of 0.05

(Color figure online)

Fig. 7 Comparative performance of PAML, MEDS and swMutSel on

simulated data, as measured by the 2 AUC - 1, where AUC is the

area under the curve of the ROC plot (see Fig. 6).Colors and shades are

as in Fig. 3; cross-hatching indicates where PAML indicates inade-

quate evidence for the existence of positive selection. 2 AUC - 1 is

equal to one for a perfect predictor and zero for a random predictor,

while values less than zero indicates performance worse than random

(Color figure online)

Fig. 8 Branch length against the average false positive rate on

simulated data. The average was taken over the twenty simulated data

sets at each branch length
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Discussion

The first methods for detecting positive selection focused

on diversifying selection, such as during pathogen—host

co-evolution. The evolutionary dynamics of these situa-

tions resulted in a continued elevated rate of amino acid

change, which could be detected based on the over-abun-

dance of non-synonymous substitutions. Under these cir-

cumstances, it is both difficult and less important to

characterize the nature of the changes, as this nature

evolves as the interactions between pathogen and host

changes.

With the awareness of the importance of episodic

directional selection, a few methods have been developed

that explicitly model the changes in selective constraints at

specific sites. The MEDS approach modifies the PAML

model by assuming that there is a shift in the propensity for

a single unknown amino acid. The swMutSel method, by

contrast, uses a mutation selection model where there is a

arbitrary difference in propensities for all of the different

amino acids. Given the larger number of adjustable pa-

rameters, it is important that the performance be evaluated

for both stimulated and real data (Rodrigue 2013).

In agreement with previous results (Tamuri et al. 2009;

dos Reis et al. 2011; Tamuri et al. 2012), we find swMutSel

to be both effective and conservative. swMutSel does

exceptionally well in the situations for which it was

designed—when there is information available about the

evolutionary dynamics both before and after the change in

selection. Under different conditions, such as in the HIV

drug resistance data, swMutSel still performs effectively,

although not as well as PAML. While PAML was not

created to look for directional selection, the results of our

tests on drug resistance mutations in HIV indicate it is

capable of finding it under certain circumstances, such as

when there are numerous sites undergoing convergent

changes in multiple lineages. Adding a specific form of

directional selection to the PAML model, as in MEDS,

seems to decrease the effectiveness, especially when the

change in selection is strong.

Of the three methods examined, both swMutSel and

PAML have acceptable false positive rates (\5%) in all

cases. In contrast, for the simulated data, MEDS generates

an extremely high rate of false positives, exceeding 60% in

some cases. A possible explanation is that the null model in

MEDS assumes that the equilibrium distribution of amino

acids is the same at all sites, an assumption that is

increasingly seen as unrealistic. MEDs false positive rate

seems to increase with the length of the branches. This

suggests why MEDS does not generate an excessive

number of false positives in the HIV drug resistance

analysis—the episodic directional selection occurs at the

tips of the branches.

Methods

Models

Most models of detecting molecular positive selection are

based on comparing the number or rate of non-synonymous

changes to that of synonymous changes. This model is

implemented in a number of programs, including the

widely used program PAML (Yang 2007). In PAML, the

rate matrix Q for substitutions between the various codons

are calculated using

qij ¼

0; multiple changes in a codon;
pj; synonymous transversions;
jpj; synonymous transitions;
xpj; non-synonymous transversions;
xjpj; non-synonymous transitions

8
>>>><

>>>>:

ð1Þ

where j is the transition/transversion ratio, pj is the equi-

librium frequency of codon j and x ¼ dN
dS
, the ratio of the

rates of non-synonymous and synonymous substitu-

tions (Nielsen and Yang 1998). A value of x[ 1 indicates

positive selection is occurring along the sequence, while

x\1 indicates purifying selection. In order to demonstrate

positive selection, the program calculates the likelihood of

the observed sequences resulting from two models of

Table 4 Fraction of sites found by MEDS, PAML and swMutSel for

the HIV drug resistance dataset, divided into known sites (K) that

have been observed to be affected by drug resistance

mutations (Wensing et al. 2014), and unknown sites (U) that have

not been so identified, as well as the Matthews correlation

coefficient (Matthews 1975)

Protein Length Number of sequences PAML MEDS swMutSel

K U M K U M K U M

Protease 99 122 0.14 0 0.31 0.14 0.06 0.19 0.19 0.02 0.32

Integrase 288 295 0.45 0 0.67 0.45 0.004 0.61 0.45 0 0.67

Reverse transcriptase 335 476 0.52 0.007 0.65 0.39 0.02 0.49 0.39 0.01 0.49

The best performing measure for each protein, based on the Matthews correlation coefficient, is shown in bold. (Insignificant differences are

ignored). The length and number of sequences used in the analysis has been included
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evolution, only one of which allows for the possibility of

x[ 1. The appropriate likelihood ratio test (LRT) is used

to decide if there is significant support for some locations

evolving under positive selection. In such a case, the Bayes

empirical Bayes test (Yang et al. 2005) can be used to

estimate which sites are undergoing positive selection.

As discussed in the introduction, dN/dS is expected to be

useful for diversifying selection, but its accuracy and

power for detecting directional selection is unclear, an

important consideration as directional selection is perhaps

more common during evolution (Hughes 2007). The

HyPhy package (Pond et al. 2005) includes a model for

directional selection (MEDS) which has been tested on

drug resistance data for HIV sequences with some suc-

cess (Murrell et al. 2012). For this method, the substitution

rate is modeled similarly to Eq. 1 except the nucleotide rate

parameters are in a more general form and are a function of

the nucleotide frequencies rather than the codon frequen-

cies, a modification that yields less bias in dN/dS esti-

mates (Spielman 2015). In addition, directional selection is

represented by a weighting term xT that increases the rate

of substitutions to a target amino acid T and decreases the

rate of substitutions away from this target

qij ¼

0; multiple changes in codon;
hði; jÞapj;k; AAðiÞ ¼ AAðjÞ
hði; jÞbpj;k; AAðiÞ 6¼ T ;AAðjÞ 6¼ T;

AAðiÞ 6¼ AAðjÞ
hði; jÞbpj;kxT ; AAðiÞ 6¼ T ;AAðjÞ ¼ T

hði; jÞbpj;k=xT ; AAðiÞ ¼ T ;AAðjÞ 6¼ T

8
>>>>>><

>>>>>>:

ð2Þ

where h ði; jÞ is the exchangeability between codons i and j,

pj;k represents the equilibrium frequency of the nucleotide

at position k of codon j, where k indicates the position of

the base substitution, and AA(i) is the amino acid encoded

by codon i. The statistical support for a value of xT [ 1

indicates the presence of directional selection. As the target

amino acid is not known a priori, all twenty amino acids

are considered, with the maximum difference in likelihood

used to identify the most likely target residue. Note that the

implementation based on a target amino acid represents a

special case of directional selection where the selection

shifts towards a specific amino acid (rather than a number

of possible amino acids), and cannot represent relaxation of

selective constraints.

Tamuri, dos Reis, and Goldstein developed a different

sitewise codon based mutation selection model (swMutSel)

for detecting changes in selective constraints (Tamuri et al.

2014) based on the codon models introduced by (Halpern

and Bruno 1998). (swMutSel is available from https://

github.com/tamuri/swmutsel.) In this model, the rate of

substitution of codon i to codon j is equal to the product of

a mutation rate based on the Hasegawa, Kishino and Yano

(HKY) substitution model (Hasegawa et al. 1985) and the

fixation probability derived by Kimura for the corre-

sponding change of amino acid (Kimura 1983). For a

change of a single base in the codon at position k in the

sequence,

qkij ¼ mjnpj;k
Sj;i;k

1� e�ðSj;i;kÞ
ð3Þ

where m is a scaling factor, j is the transition/transversion

ratio, n is one or zero depending upon whether the base

change is a transition or transversion, and scaled selection

coefficient Sj;i;k ¼ 2Ne mj;k � mi;k

� �
, where mi;k and mj;k are

the Malthusian fitnesses of the amino acids corresponding

to codons i and j in position k, respectively. The rate of

substitution between codons that differ by more than one

base is assumed to be zero. Unlike other methods which

have one Q matrix for the entire sequence, swMutSel has a

Q matrix for each site, requiring 19 adjustable parameters

per site [fFi;kg for each amino acid, where one value can be

set to zero], in addition to the base frequencies, transi-

tion/transversion ratio, and tree branch lengths which are

the same for all sites. This high level of parametrization

requires a much higher amount of data than other methods,

which limits this approach to situations were many

sequences are available. The use of the likelihood ratio test

automatically accounts for the additional adjustable pa-

rameters for the model representing a change in selection.

PAML, MEDs, and swMutSel are all able to model

episodic changes of selection. In PAML and MEDS, one

can specify a set of branches (the foreground branches)

that are allowed to evolve with some locations charac-

terised by x[ 1 or xT [ 1. This would be appropriate if

diversifying selection occurred on only part of the tree, or

directional selection induced a burst of non-synonymous

substitutions along a specific branch or clade. swMutSel

attempts to detect directional selection by modeling the

evolution on both sides of the shift in conditions, and

seeing whether there is support for a a corresponding

change in selective constraints. In swMutSel, one first

assumes as a null hypothesis that there is no change of

selection in the tree, so the data is fit to a single set of rate

matrices of the form of Eq. 3. The tree is the divided up

into different parts corresponding to different evolutionary

contexts, for instance, between a virus evolving in different

hosts, and the sequence data is modeled by a set of rate

matrices, where each location k in each context is assigned

to a different rate matrix. Each site is evaluated indepen-

dently using the likelihood ratio test or parametric boot-

strapping to determine if the data at that site justifies

rejection of the null hypothesis of no change in selection. A

change in selection is interpreted as directional selection at

that location. Given the flexibility of the rate matrix of

Eq. 3, the change can be either in the magnitude of
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selection (relaxed selection, increased selection) or the

nature of the constraints (e.g., preference for hydrophylic

residues changing to a preference for aromatic residues).

Comparisons with Simulated Data

The tests of PAML, MEDS, and swMutSel were performed

on the results of simulations of a 500 codon length protein

based on Eq. 3 as modeled in swMutSel (Tamuri et al.

2012). The majority of locations were simulated using site-

specific parameters estimated for two sets of proteins, a

secreted alkaliphilic lipase estA (example: embl DQ250714)

and DNA binding protein (embl CAG40984). The simula-

tions were performed with symmetric bifurcating trees of 16

and 256 taxa of the type shown in Fig. 1, where every branch

was the same length d. A change in selective constraints

representing directional selection occurred at a fixed fraction

of sites (h) at the midpoint of the branch connecting one

fourth of the taxa to the rest of the tree. The simulations were

analyzed using the three different approaches. PAML and

MEDS incorporate tree branch-length optimization proce-

dures as part of their analysis. The swMutSel analysis used

estimated branch-lengths as derived from PAML.

Comparison with HIV Drug Resistance Data

HIV drug resistance data was taken from (Murrell et al. 2012)

which was originally tested on theMEDSmethod included in

HyPhy. These data consist of sequences from three different

proteins. The first set contains 122 protease sequences, the

second contains 295 integrase sequences, and the third con-

tains 476 reverse transcriptase sequences. Each of these

datasets have an associated phylogenetic tree used in the paper

with foreground branches labelled. The branch lengths of

these trees have been re-estimated using the various methods,

and the same foreground branches have been used for testing

both the branch-site model of PAML and swMutSel.
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