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HIGHLIGHTS 24 

 Critical illness is a state of extreme physiological stress. 25 

 Physiological stress is also encountered in austere environments. 26 

 Cellular and molecular responses determine adaptation to austere 27 

environments. 28 

 Lessons learnt from survival of extreme environmental conditions may 29 

benefit critically ill patients.  30 

 31 

ABSTRACT 32 

The harshest environment that many people will ever face is the critical care 33 

unit, where pathology can stress homeostatic mechanisms beyond their limits, 34 

leading to multiple organ failure and death. Our understanding of the biology 35 

that underlies this catastrophic process remains limited. There is significant 36 

variation in survival between individuals with apparently similar severity of 37 

organ dysfunction and it is difficult to predict which patients will weather the 38 

storm. Survival may be influenced by as yet undiscovered innate adaptive 39 

mechanisms that determine an individual’s ability to tolerate physiological 40 

stress.  Identifying favourable phenotypes, and the molecular machinery 41 

underlying them, could yield new therapeutic targets to improve outcome in 42 

life-threatening illness. Unfortunately, the complexity of critical illness makes it 43 

difficult to elucidate subtle adaptive mechanisms that could favour survival 44 

during stress. However, comparisons can be drawn between the stress of 45 

critical illness and that imposed by austere environments. The Earth is 46 

comprised of a wide range of different physical environments, each of which 47 

challenges homeostasis. Whilst technological advances have played a 48 
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significant role in our capacity to survive in austere environments, biological 49 

adaptation and evolutionary change have been crucial. Studying human 50 

responses to environmental stressors such as heat, cold, hypoxia and 51 

microgravity has taught us a great deal about innate human adaptation, from 52 

the system to the cellular level, and the field continues to expand. Translating 53 

this to the pathophysiological stress of critical illness could offer alternative 54 

approaches to the current practice of intensive care medicine. 55 

 56 
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 60 

BACKGROUND 61 

The human body possesses complex mechanisms to ensure that multiple 62 

systems, from micro to macro, oscillate around their natural set point, and this 63 

is referred to as homeostasis. Deviation from the set point represents 64 

physiological stress, and can lead to cell damage and death.  Survival during 65 

physiological stress rests on the ability to adapt, and adaptation may occur at 66 

the system, organ, tissue and cellular level [1].  Critical illness occurs when 67 

the body fails to compensate for severe pathophysiological stress, brought 68 

about by illness or injury.  Much remains unknown about the precise 69 

mechanisms that lead to multiple organ failure and death, and more 70 

understanding is required to reduce mortality and morbidity from critical 71 

illness. 72 

 73 
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ADAPTATION AT THE SYSTEM VERSUS THE CELL LEVEL? 74 

We are often able to observe the response to a stressor at the system level.  75 

Such phenotypic responses tend to counter the disturbance, in an attempt to 76 

shield the cells from potential harm.  Although invaluable in surviving a 77 

temporary perturbation, such global responses may fail to buffer an excessive 78 

or indefinite onslaught.  They incur an energetic cost or physiological strain, 79 

which ultimately limits their effectiveness as a survival strategy.  For example, 80 

a rise in core temperature may be counteracted by an increase in sweat rate 81 

(in order to protect the cells from heat stress), but this response will ultimately 82 

result in dehydration and cardiovascular collapse. The greater the disturbance 83 

to homeostasis, the greater the potential devastation wreaked by the 84 

response to correct it.  This conflict is a fundamental dilemma in critical care 85 

medicine, where we attempt to support homeostasis at the system level, by 86 

targeting ‘normal’ values for measures such as global oxygenation or 87 

haemodynamics. Although this can yield improvements in outcomes during 88 

the acute phase of illness [2], once critical illness is established, such 89 

strategies may no longer convey benefit [3]. There is uncertainty regarding 90 

the range of physiological values that should be targeted in these patients 91 

without causing more harm than good [4]. The significant variability in 92 

outcomes for patients with apparently similar disease burden and treatment 93 

implies that survivors of physiological stress possess superior adaptive 94 

mechanisms, conferred by genetic variation or previous exposure to stress. 95 

Identifying survivor phenotypes, and the molecular pathways underlying their 96 

expression may yield targets for therapeutic intervention during critical illness.  97 

Distinguishing such phenotypes in critically ill patients is challenging. They 98 
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may be subtle and easily obscured by the multitude of variables influencing 99 

outcome in these patients, including age and co-morbidity, the character and 100 

duration of critical illness, and the effects of medical interventions.  Limited 101 

inferences can be drawn from using animal models of critical illness to 102 

distinguish such phenotypes, as the responses can be very different to those 103 

seen in humans [5].  An alternative translational approach is to study healthy 104 

humans in extreme environments as an experimental model of physiological 105 

stress [6].  106 

 107 

AUSTERE ENVIRONMENT MODEL OF ADAPTATION TO 108 

PHYSIOLOGICAL STRESS 109 

Without behavioural and technological intervention, human survival is 110 

confined to a narrow range of environmental conditions, based on the 111 

environment in which we originated (the East African Rift). Approximately 3.5 112 

million years ago, early humans walked on land and were subject to tropical 113 

temperatures, the Earth’s gravitational field, barometric pressure associated 114 

with relatively low elevations, and Earth’s geomagnetic field (the 115 

magnetosphere) [7] (Figure 1). Changes in any of these external conditions 116 

will challenge homeostasis [8].  Thus when humans explore new and austere 117 

environments, both on Earth and beyond its boundaries, they are exposed to 118 

physiological stress, to which they must either adapt or succumb.  Like their 119 

counterparts in the critical care unit, healthy individuals show a significant 120 

degree of variation in their ability to tolerate environmental stress [9], and 121 

perhaps some survival mechanisms are common to both scenarios. An 122 

austere environment experimental model offers an approach to further our 123 
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understanding by avoiding the multitude of confounding variables in the 124 

critical care unit.  Studies at high altitude revealed the existence of 125 

physiological acclimatisation to hypoxia within individuals over brief periods of 126 

time [10] and genetic adaptation in high altitude populations over hundreds of 127 

generations [11].  Harnessing these processes may offer an alternative 128 

therapeutic approach to treating the tissue hypoxia commonly seen in critical 129 

illness. Studies of environmental stress have drawn attention to adaptation at 130 

a cellular and molecular level, in addition to the more easily observable 131 

system responses that we currently monitor and target in critical care units. It 132 

is apparent that homeostatic pressures are sensed at a cell level and trigger a 133 

host of cytoprotective responses that preserve function and survival of the 134 

cell, and the organism as a whole [12]. Exploiting cellular adaptation may be 135 

a novel strategy for promoting survival during pathophysiological stress, but 136 

doing so requires improved understanding of how this process occurs in intact 137 

humans, rather than in petri dishes or animal models alone. 138 

 139 

Here we review the manner in which different forms of environmental stress 140 

threaten survival and how humans adapt to them over time.  We propose that, 141 

by improving understanding of what determines survival during exposure to 142 

external stressors, from heat to hypoxia, studies of humans in austere 143 

environments have the potential to transform the practice of critical care 144 

medicine. 145 

 146 

ADAPTATION TO HEAT STRESS 147 
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Excessive heat threatens survival through protein dysfunction and 148 

denaturation. Once membrane p2umps fail, ion gradients dissipate and cells 149 

lose the ability to produce energy or generate the signals vital for survival, 150 

resulting in loss of cell integrity and activation of cell death pathways. This 151 

triggers a systemic inflammatory response that culminates in multi-organ 152 

failure [13, 14]. To protect against this, the acute systemic response to a rise 153 

in core temperature (due to internal or external processes that alter the 154 

balance of heat generation and dissipation) diverts blood flow to the 155 

peripheries to increase heat loss to the environment. If ambient temperature 156 

exceeds 37oC, the only way to lose heat is through sweat production. 157 

However, this compensation occurs at the cost of intravascular volume 158 

depletion and cardiovascular instability if fluid is not replaced. Above a body 159 

temperature of 40-41oC the neurones that coordinate the systemic response 160 

are themselves compromised and compensation fails, leading to heat stroke 161 

and death [15].  162 

Tolerance to heat stress varies between individuals [16], with the elderly and 163 

newborn being particularly vulnerable [17]. Individual tolerance to heat stress 164 

can be improved by repeated exposure to sub-lethal temperatures. This is 165 

known as heat acclimation, and requires two to six weeks of continuous or 166 

intermittent heat exposure to be effective [18]. The process increases 167 

exercise capacity of individuals in hotter environments and can double the 168 

time to reach a state of physical exhaustion [19].  Acclimated individuals can 169 

tolerate higher core temperatures and experience less cardiovascular strain 170 

during exercise.  Athletes, whose muscles regularly reach temperatures of 171 

44C during intense exercise [20], are capable of tolerating core temperatures 172 
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of 39.5 – 40C for short periods [21], while untrained individuals demonstrate 173 

heat exhaustion at 38C [19].  Despite having higher sweat rates, 174 

intravascular volume and cardiovascular stability is preserved through 175 

minimisation of salt loss in sweat and urine [22]. Native populations of hot 176 

environments, such as the Bushmen of the Kalahari desert, have enhanced 177 

exercise capacity in hot conditions compared to non-natives, and maintain 178 

lower core temperatures despite paradoxically lower sweat rates [23]. This 179 

implies that they possess alternative thermoregulatory mechanisms, perhaps 180 

genetically determined, that counteract the rise in core temperature while 181 

circumventing the physiological strain of dehydration.  182 

 183 

Part of the heat acclimation process may be occurring at a cellular level. Heat 184 

stress activates a set of constitutively expressed transcription factors, which 185 

regulate the expression of heat shock proteins (HSP) [20]. HSPs protect the 186 

cell from impending heat-induced injury by various mechanisms: scavenging 187 

free radicals, eliminating harmful metabolic products and acting as molecular 188 

chaperones. For example, HSP72 and HSP90 bind to damaged polypeptides 189 

and restore their native structure or assist in their disposal, preventing 190 

aggregation within the cell [24]. This defence strategy can also be activated 191 

by other forms of stress common in critical illness, from energy depletion to 192 

hypoxia [25]. The cellular heat shock response is reduced in the elderly [26], 193 

who are notably more susceptible to the effects of physiological stress. As 194 

such, it represents a potential target for protecting cellular and organ function 195 

without correcting systemic physiological values [27]. One method of 196 

activating this response is though exercise training, which, when it generates 197 
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a sustained increase in body temperature by 1-2oC, can activate a cellular 198 

acclimation responses [24].  This may account for part of the enhanced 199 

physiological reserve observed in physically fit individuals (in addition to their 200 

superior cardiorespiratory function). Cell adaptation may also be triggered 201 

pharmacologically: a molecular activator called BCP-15 increases expression 202 

of HSP72 and improves inflammation and metabolic homeostasis in a rat 203 

model of type 2 diabetes [28].  In the future, administration of such agents 204 

could offer a means of preserving cell integrity and function during critical 205 

illness. In situations where future pathophysiological stress can be predicted, 206 

such as planned major surgery, programmes of exercise or heat acclimation 207 

could be employed to prime the cytoprotective response. There is a need for 208 

further clinical research in this area, which has the potential to extend the 209 

supportive therapy in critical care beyond modification of systemic responses. 210 

 211 

ADAPTATION TO COLD STRESS 212 

The physiological stress of cold exposure occurs through progressive slowing 213 

of vital chemical reactions; the Arrhenius principle states that metabolic rate 214 

will halve for every 10oC decrease in temperature. Diminished activity of ion 215 

channels reduces the rate at which excitable cells can conduct impulses and 216 

death may result from central nervous system dysfunction or cardiac 217 

arrhythmia.  [29] To protect cells against these effects, the body has an acute 218 

systemic response to restore the core temperature: minimising heat loss 219 

through peripheral vasoconstriction and increasing heat generation by 220 

shivering. Below 35oC, the function of the tissues coordinating the systemic 221 

response to cold is impaired, and body will cool to the ambient temperature.  222 
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Like sweating, shivering comes at a physiological cost – in this instance, the 223 

increase in energy requirements.  However, prolonged or repeated cold 224 

exposure results in habituation: with toleration of lower core body 225 

temperatures and shivering triggered at lower temperatures (Macari Dauncey 226 

and Ingram 1983).  Accepting mild core hypothermia to preserve energy is 227 

also seen in native residents of cold environments, such as the circumpolar 228 

Lapps and Inuit [30–32].  Korean ama divers, who are regularly immersed in 229 

10 oC water during the winter, undergo a drop in core temperature to 35 oC 230 

and have a significantly higher shivering threshold than non-divers {Park and 231 

Hong, 1991, #65005}. Survival at this new set point may be facilitated by 232 

increased cellular defences, reminiscent of cellular acclimatisation to heat 233 

stress.  The molecular pathways involved in the cell response to cold stress 234 

are less well described than those for heat.  Repeated cold water immersion 235 

in winter swimmers results in increased expression of antioxidants [34], which 236 

may play a role in this. Specific cold shock proteins have been identified in 237 

mammalian cells [35], while cold exposure also increases expression of 238 

“heat” shock proteins [36–38], demonstrating that the cell may have a general 239 

response to different forms of stress.   240 

 241 

It may be possible to utilise the phenomenon of cross-adaptation (whereby 242 

repeated exposure to one form of environmental stress also results in 243 

adaptation to a different one) to improve clinical outcomes. Subjects exposed 244 

to repeated episodes of cold water immersion demonstrate modification of 245 

their autonomic response to subsequent exposure to hypoxia [39].  Although 246 

prehabilitation prior to unexpected critical illness is not usually feasible, a 247 
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significant proportion of patients classified as high risk prior to major elective 248 

surgery go on to develop postoperative complications which can spiral into 249 

critical illness and multiple organ failure [40].  Heat or cold-acclimatisation 250 

programmes, by upregulating cell protective mechanisms, could enhance 251 

tolerance prior to a planned episode of stress, such as major surgery, and 252 

potentially improve outcomes in these patients.  Furthermore, the systemic 253 

stress response to surgical trauma, which has been blamed for adverse 254 

outcomes following surgery, including: cardiovascular instability, ischaemia, 255 

fluid overload, hyperglycaemia, wound infections and thromboembolism [41], 256 

has many direct parallels with the acute response to cold exposure. Repeated 257 

controlled exposure to cold blunts the acute response, resulting in reduced 258 

circulating levels of catecholamines, cortisol and glucose on subsequent 259 

exposure to cold [42, 43], and further study is required to discover if such a 260 

programme could improve outcomes after surgery. 261 

 262 

ADAPTATION TO HYPOXIA 263 

Mitochondria require a continuous supply of oxygen to meet up to 98% of the 264 

body’s energy demands through the process of oxidative phosphorylation. 265 

Tissue hypoxia therefore results in cellular energetic failure, as well as cell 266 

damage through oxidative stress, by increasing the generation of reactive 267 

oxygen species [44]. As barometric pressure declines on ascent to high 268 

altitude (Figure 2), the commensurate decline of oxygen partial pressure 269 

(PO2) reduces the pressure gradient for oxygen diffusion across the alveolar-270 

capillary membrane resulting in hypoxaemia and reduced convective oxygen 271 

delivery. The acute response to environmental hypobaric hypoxia restores 272 
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oxygen delivery, by increasing cardiac output (mainly via an increased heart 273 

rate) and raising the arterial oxygen saturation of haemoglobin through 274 

augmented minute ventilation [45]. At the highest point on Earth (8848m), 275 

atmospheric pressure and PO2 are one third of that at sea level [46] and 276 

sudden exposure to this degree of atmospheric hypoxia leads to 277 

unconsciousness and death within minutes [47]. In contrast, with repeated 278 

exposure to sub-lethal levels of hypoxia, humans undergo acclimatisation that 279 

make it possible to summit Mount Everest, in some instances even without 280 

supplemental oxygen. System level acclimatisation to sustained hypoxaemia 281 

consists of increased minute ventilation, heart rate and haemoglobin 282 

concentration, which restore arterial oxygen content to sea level values up to 283 

altitudes of 7100 m [48]. As with other environments, the extent to which 284 

acclimatisation at the system level can support survival is ultimately limited. 285 

Increases in cardiac output and minute ventilation are energy inefficient in a 286 

situation where oxygen is scarce [49]. Also, an inexorable rise in haemoglobin 287 

concentration will limit oxygen delivery through viscosity-related restriction of 288 

microcirculatory blood flow [50, 51].   289 

 290 

Beneath the surface, however, a myriad of cellular changes occurs in 291 

response to hypoxia, preparing cells for an impending oxygen drought. At 292 

altitude we have observed skeletal muscle atrophy [52], down-regulation in 293 

the production of proteins and autophagy [53]; down-regulation of 294 

mitochondrial biogenesis and decreased expression of electron transport 295 

chain complexes [54]; decreased cardiac phosphocreatine / ATP ratio; and 296 

insulin resistance that correlates to the degree of oxidative stress [55]. All of 297 
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these point towards a state of cellular quiescence, which minimises energy 298 

utilisation. This phenotype may resemble what we see in critical illness [56, 299 

57], yet it is customary in current practice to push the metabolic pendulum in 300 

the opposite direction, pouring oxygen, blood, fluids and inotropic agents into 301 

stressed patients. Using the model of high altitude acclimatisation to 302 

understand how cellular networks in healthy subjects are modified to tolerate 303 

hypoxic stress could drive a shift in this practice, towards support of a 304 

hibernation state during critical illness. 305 

 306 

The importance of adaptations at the distal end of the oxygen cascade is 307 

further emphasised by studies of native high altitude populations. Tibetans 308 

have occupied high altitude for the longest period of time (at 4500m for up to 309 

20,000 years) and arguably represent the pinnacle of human hypoxic 310 

adaptation. As such their cellular phenotype may represent a target to be 311 

emulated therapeutically in order to improve outcomes in the critically ill. 312 

Contrary to popular belief, Tibetans do not exhibit a raised haemoglobin 313 

concentration at high altitude [58], but instead have enhanced function of the 314 

peripheral microcirculatory-mitochondrial unit.  Their capillary density and 315 

microcirculatory blood flow is higher, in conjunction with elevated levels of 316 

nitric oxide products (such as nitrate, nitrite and nitroso proteins) in peripheral 317 

blood [59, 60]. They may also have more efficient mitochondrial metabolism, 318 

demonstrated by greater maximal oxygen consumption normalised to 319 

mitochondrial volume, despite lower mitochondrial density [59]. Some light 320 

has been shed on underlying molecular mechanisms, with a suggestion that 321 

Tibetans undergo a metabolic switch away from the more oxygen-expensive 322 
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substrates, preferring carbohydrate over lipid oxidation [61]. They possess 323 

enhanced cellular defences against oxidative stress, with reduced lipofuscin 324 

accumulation in muscle at high altitude [62]. Superior adaptive mechanisms 325 

appear to have a genetic basis, with natural selection demonstrated in many 326 

genes involved in the hypoxia inducible factor (HIF) pathway, which is 327 

responsible for sensing and coordinating the response to hypoxia in almost 328 

every living creature on earth [63]. Hypoxia stabilises the HIF heterodimer, 329 

which moves to the nucleus and activates the transcription of genes with 330 

hypoxia response elements in their promoter regions, regulating production of 331 

proteins such as erythropoetin and vascular endothelial growth factor. HIF 332 

also reduces the expression of peroxisome proliferator-activated receptor 333 

alpha (PPARα), and this pathway may mediate enhancements in metabolic 334 

efficiency, through downstream actions on fatty acid oxidation and 335 

mitochondrial coupling [64]. 336 

 337 

ADAPTATION TO MICROGRAVITY 338 

Microgravity is a form of environmental stress for astronauts on board the 339 

international space station (ISS); it results from orbiting the Earth in 340 

continuous free-fall.  However, prolonged six degree head-down tilt in a 341 

supine individual mimics almost all of the cardiovascular and musculoskeletal 342 

disturbances of microgravity [65], and many can be observed in bedbound 343 

critically ill patients.  Unlike thermal and hypoxic stress, the effects of 344 

microgravity do not impose a defined limit on human survival, even after 468 345 

days in space [66].  Interestingly, in this case, it is the adaptation itself (to the 346 

stressor imposed by the new environment) that results in almost complete 347 
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incapacitation of the astronaut on return to Earth.  The negative 348 

consequences of adaptation to weightlessness could be easily overlooked 349 

during the storm of other active insults affecting critically ill patients, but 350 

observing this phenomenon in otherwise healthy astronauts highlights the 351 

magnitude of the problem. Understanding the mechanisms underlying this 352 

“mal-adaptation” could prove to be extremely valuable in future active 353 

promotion of recovery and rehabilitation, and studying space travellers may 354 

be the best approach for doing so [65]. 355 

 356 

In a microgravity environment, the hydrostatic pressure difference between 357 

the upper and lower extremities (90 mmHg increase from head to foot) 358 

normally created by the Earth’s gravitational force while in the upright position 359 

is abolished and body fluid shifts upwards from the lower extremities. This is 360 

misinterpreted by baroreceptors as an increase in overall fluid volume, driving 361 

an inappropriate diuresis. Plasma volume and cardiac output progressively 362 

decline with time spent in microgravity, with stroke volume decreasing by up 363 

to 30% [67]. On Earth, every time we stand, the gravity-induced drop in blood 364 

pressure is compensated for by the baroreceptor reflex. In the absence of this 365 

trigger during months in space, baroreceptor sensitivity becomes blunted and 366 

vagal-cardiac activity decreases [68] {Nyhan et al., 2002, #90805} and this has 367 

been associated with endothelial dysfunction {Coupé et al., 2009, #10917}. 368 

The same problems compound prolonged critical illness, resulting in 369 

orthostatic intolerance, which can significantly impede rehabilitation [69].   370 

  371 
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Bone and muscle are dynamic structures, continually remodelling in response 372 

to changing mechanical loads. Diminishing gravitational force interferes with 373 

osteoblast/osteoclast activity and results in bone demineralisation, with the 374 

greatest impact on the weight-bearing bones [70]. On the international space 375 

station (ISS), bone mineral density has been shown to decline by 1% per 376 

month and full recovery from a four-month mission takes years [71].  The 377 

mechanism is not fully understood, but we know that weightlessness results in 378 

calcium loss {Michel et al., 1976, #2783}, and that the demineralisation can be 379 

abated by inhibitors of osteoclast-mediated bone resorption [72]. Astronauts 380 

also suffer a substantial loss of muscle mass and power [73]. Postural 381 

muscles are particularly sensitive and undergo a dramatic loss in type I (slow 382 

twitch) fibres. Studies in rats following a 16 days in space revealed a pathway 383 

for the degradation of these proteins. Supplementation of their diet with the 384 

antioxidant, cysteine, reduced oxidative stress, protein ubiquitination and 385 

muscle loss [74, 75]. Microgravity also leads to atrophy of cardiac muscle, 386 

resulting in diastolic dysfunction, orthostatic intolerance, and increased 387 

incidence of arrhythmia in long-term space residents [76]. 388 

 389 

The devastating deconditioning of physically fit astronauts in microgravity 390 

mirrors the effects of prolonged passivity in critical illness [77]. Given the 391 

multitude of active insults afflicting these patients, it is easy to overlook the 392 

insidious development of orthostatic intolerance or the silent but relentless 393 

wasting of bone and muscle. It has been shown that 92% of critically ill 394 

patients undergo bone hyper-resorption after only one month [78] and muscle 395 

wasting can reach rates of up to 2% per day [79]. The molecular mechanisms 396 
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underlying these processes may be obscured by pathological processes in 397 

critical illness, but studying otherwise healthy human explorers of the most 398 

alien environment of all may assist in the search for targets for therapeutic 399 

intervention. 400 

 401 

CLINICAL CONUNDRUMS AND NEW PARADIGMS 402 

Pathophysiological stress threatens human survival during critical illness and 403 

multiple organ failure. Harnessing innate biological responses to stress, which 404 

are more complex and elegant than any current manmade intervention, may 405 

be the future of critical care medicine. The difficulties we face are: 406 

understanding the myriad of responses to disease, determining which are of 407 

potential therapeutic value, and how best to support such a multifaceted state 408 

effectively. With regard to the latter our traditional approach has been to 409 

intervene at the system or organ level, to maintain measures such as global 410 

oxygenation or haemodynamics within a ‘normal’ range, defined by that seen 411 

in health.  However, meeting such targets in patients with established critical 412 

illness has not been consistently associated with improved outcomes and 413 

striving to achieve them may be associated with harm, either through 414 

bystander effects of the methods used [80] or the tendency towards supra-415 

normalisation of values. Thus we have already started to see a relaxation of 416 

target parameters, with permissive anaemia, hypercarbia and hypoxaemia, in 417 

some cases improving outcomes [81–84].   418 

 419 

It may be that the optimal physiological milieu that fosters health and 420 

regeneration in critically ill patients is different from that in the unstressed 421 
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subjects on which current ‘standard’ targets are based. We may need to 422 

reconsider what constitutes ‘normal’ in this cohort and begin to develop and 423 

evidence base to define future targets. However, determining which 424 

phenotypes are associated with better outcomes, and are thus worth 425 

supporting through medical intervention, is hindered by the mass of 426 

confounding factors that influence survival in the context of critical illness.  427 

Observations of how humans grow and thrive under profound and prolonged 428 

environmental stress may guide us.  Acclimatisation and genetic adaptation to 429 

different environmental extremes often appear to involve a resetting of 430 

homeostasis to a new set point, which could thus represent valid alternative 431 

approach to emulate in our attempts to promote survival during the sustained 432 

stress of critical illness.  We are now beginning to recognise the importance of 433 

the role of innate intracellular mechanisms, such as the HSP and HIF 434 

systems, in sensing and defending against stress.  The field of chronobiology, 435 

in which the timing of molecular events within the cell are co-ordinated by 436 

global rhythms, is now emerging as a significant factor influencing physiology 437 

in critical illness [85].  These ancient cytoprotective responses remain 438 

untapped by current clinical interventions.  Animal models may help to further 439 

our understanding in this field, but they are notoriously unrepresentative of the 440 

human response in some conditions [5]. Humans exposed to physiological 441 

stress in laboratories or in the field could provide a more robust model, in 442 

which the translation to critical illness is more direct.  The phenomenon of 443 

cross-adaptation, in which acclimatisation to one form of stress (such as heat) 444 

can improve tolerance to another (such as hypoxia), through activation of a 445 

common adaptive pathway, may represent an new strategy for pre-446 



 19 

habilitation, and although difficult to utilise in unpredicted critical illness, it 447 

could improve outcomes prior to predictable episodes of stress, such as high 448 

risk surgery, the complications of which commonly lead to critical illness and 449 

multiple organ failure. Finally, understanding the molecular mechanisms 450 

underlying the “mal-adaptation” to sustained exposure to microgravity, the 451 

consequences of which are problematic during recovery and rehabilitation, 452 

appear to be of increasing importance.  Space medicine has not just 453 

highlighted the extent of deconditioning produced by weightlessness, 454 

independently of disease, but the investment in technology and pharmacology 455 

to circumvent this problem during prolonged spaceflight could have a direct 456 

application in critical care units [86].  457 

 458 

CONCLUSION 459 

New insights into how the human body adapts to physiological stress in 460 

austere environments may provide the key to promoting survival during critical 461 

illness.  The practice of intensive care, traditionally limited to intervention at 462 

the system and organ level to achieve phenotypes seen in health, may one 463 

day extend to harnessing the innate cytoprotective response. 464 
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FIGURES 753 

 754 

Figure 1. The main physiological constraints determining human survival on 755 

Earth.  756 

 757 

 758 
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Less than a sixth of the Earth’s surface can be permanently inhabited; the rest 759 

is either covered by water or lies outside the tolerable zones of pressure and 760 

temperature. Away from the Earth's surface, gravity and the protective effect 761 

of the magnetosphere are dramatically diminished. 762 

 763 

 764 

 765 

Figure 2. The decline in barometric pressure (PB) on ascent to altitude.  PB 766 

determines the oxygen partial pressure at any given altitude.  767 
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 770 

The summit of Mt Everest (8848m) is close to the limit of human tolerance to 771 

hypoxia and the Armstrong limit line is the altitude at which free water 772 

spontaneously vaporises.  773 
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