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ABSTRACT: The accurate prediction of the binding affinities
of ligands to proteins is a major goal in drug discovery and
personalized medicine. The time taken to make such
predictions is of similar importance to their accuracy,
precision, and reliability. In the past few years, an ensemble
based molecular dynamics approach has been proposed that
provides a route to reliable predictions of free energies based
on the molecular mechanics Poisson−Boltzmann surface area
method which meets the requirements of speed, accuracy,
precision, and reliability. Here, we describe an equivalent
methodology based on thermodynamic integration to
substantially improve the speed, accuracy, precision, and
reliability of calculated relative binding free energies. We
report the performance of the method when applied to a diverse set of protein targets and ligands. The results are in very good
agreement with experimental data (90% of calculations agree to within 1 kcal/mol), while the method is reproducible by
construction. Statistical uncertainties of the order of 0.5 kcal/mol or less are achieved. We present a systematic account of how
the uncertainty in the predictions may be estimated.

1. INTRODUCTION

The free energy change associated with the binding of a lead
compound or drug with a protein target, also referred to as the
binding affinity, is a key property of interest in drug discovery
as it correlates with the potency of possible drug candidates.
The reliable prediction of binding affinities is important in drug
discovery as well as in personalized medicine where it can be
used to support clinical decision making. The free energy and
its associated error need to be predicted within a span of a few
hours in order to be useful in such real world applications.
Several in silico methods are available in the literature for

calculating binding affinities. All these methods are based on
classical molecular dynamics which is used to determine free
energy and other macroscopic properties. Among them are so-
called “exact” free energy methods which, through the use of a
thermodynamic cycle, allow the determination of the relative
binding affinity of two ligands. It is common in these methods
to refer to a variable, λ, which describes the (unphysical) path
taken to transform one ligand into another. Two categories of
such have been developed; λ dynamics1,2 in which λ is a
dynamic variable and thermodynamic properties for multiple
states are simultaneously evaluated in a single simulation and
methods where separate simulations are run at fixed λ values
and analyzed using formalisms such as free energy perturbation
(FEP),3 thermodynamic integration (TI),4,5 Bennett accept-
ance ratio (BAR),6 or multistate Bennett acceptance ratio
(MBAR).7 The double decoupling method8,9 can, in principle,

be used to calculate absolute binding affinities. In this method
the free energy changes of decoupling the ligand from the
solvent in one case and the binding site of the solvated receptor
in the other are computed with their difference providing the
absolute binding affinity. Another set of methods is referred to
as “approximate” as they depend on underlying approximations.
The empirically based linear interaction method (LIE)10−12 and
the molecular mechanics Poisson−Boltzmann surface area
(MMPBSA)13 methods fall in the latter category.
The first macromolecular free energy calculations were

performed about three decades ago.14−16 Thereafter, with the
increase in speed of computers, the methods have been
increasingly applied for calculating protein−ligand binding
affinities within the academic community. Unfortunately,
however, as we have emphasized in recent years,17 “one-off”
molecular dynamics simulations are not reproducible so most
reported results lack scientific credibility. The lack of
reproducibility of such an approach based on calculating free
energy by performing just one MD simulation was further
emphasized by Wright et al.18 who showed that two
independent MD simulations of HIV-1 protease bound to
inhibitors with identical initial structure and force field
parameters can produce binding affinities varying by up to 12

Received: October 5, 2016
Published: December 8, 2016

Article

pubs.acs.org/JCTC

© XXXX American Chemical Society A DOI: 10.1021/acs.jctc.6b00979
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00979
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jctc.6b00979&iName=master.img-000.jpg&w=239&h=130


kcal/mol. Such variations can be much larger for more flexible
ligands.19

The free energy is a thermodynamic property. Statistical
mechanics provides the prescription for calculating such
macroscopic quantities as ensemble averages of microscopic
states. A theoretical discussion has been provided by Coveney
and Wan.20 Unfortunately, essentially all approaches described
in textbooks and the research literature calculate these
macroscopic properties from the time average of a single
“long” duration trajectory. The key point is that, for systems
which exhibit an equilibrium thermodynamic state, the
microscopic dynamics must be at least mixing in the language
of ergodic theory, hence chaotic.20 No single trajectory can
describe the behavior adequately. Various recent published
works indeed demonstrate compellingly that multiple short
simulations yield much more accurate binding affinities than a
single long simulation.19,21−25 A new method, namely
“enhanced sampling of molecular dynamics with approximation
of continuum solvent (ESMACS)”, based on ensemble
averages, has been shown to produce precise and reproducible
absolute binding affinity predictions.17−19,26−30

There has been very limited application of “exact” free energy
simulation methods in industrially based drug discovery.
Recently, the FEP/REST method of binding affinity calculation
has been proposed by Wang et al.31 and applied to a large set of
protein−ligand combinations, attracting interest within the
pharmaceutical industry. Aldeghi et al.32 described a method to
calculate absolute binding affinities based on alchemical
transformations, albeit with scope restricted to a small number
of molecules binding to a rigid active site. An independent
trajectory TI (IT-TI) method25,33 has been reported where
multiple independent trajectories were found to improve the
accuracy of free energy changes calculated using TI.
The purpose of the present paper is to describe a new

method called thermodynamic integration with enhanced
sampling (TIES) which yields reproducible, accurate, and
precise relative binding affinities. Based on the direct calculation
of ensemble averages, it allows us to determine statistically
meaningful results along with complete control of errors. It
should be mentioned that the accuracy of the potential
parametrizations used may also have substantial impact on
the accuracy of results.34 However, in the present paper, the
systems studied are known to be well described by the potential
parametrizations chosen.
For successful uptake in drug design and discovery, reliable

predictions of binding affinities need to be made on time scales
which influence experimental programmes. For applications in
personalized medicine, the selection of suitable drugs needs to
be made within a few hours to influence clinical decision
making.35 Therefore, speed is of the essence if we wish to use
free energy based calculation methods in any of these areas.
With TIES, it is possible to make predictions on time scales
which meet these requirements. With sufficient computer
resources available, TIES is currently able to calculate accurate,
precise, and reproducible binding affinities for a set of
alchemical transformations within about 8 h of wall clock time.
This paper is organized as follows. Section 2 contains the

underlying theory. In section 3, the methodology, a detailed
error analysis of the distribution of free energies produced by
our ensemble simulations, and the required automation tools
used are described. The results are reported in section 4
followed by the discussion of a few special cases in section 5;
section 6 presents our conclusions.

2. THEORY
Thermodynamic integration (TI) is well-known in the
literature.4,5,36,37 The relative binding affinity of two ligands
L1 and L2 is calculated by considering an alchemical
transformation between them connected through intermediate
states defined by introducing a coupling parameter λ, such that
at λ = 0 the system corresponds to ligand L1 (initial state) and
at λ = 1 the system corresponds to ligand L2 (final state). The
total energy of the system is taken to be its potential energy
(V). The energy of the system can be defined as

λ λ λ λ λ= − +V V Vx x x( , ) (1 ) ( , ) ( , )1 2 (1)

where V1 and V2 are the potential energies of ligands L1 and L2
calculated using a chosen molecular mechanics force field. The
derivative of the energy with respect to λ is used to compute
the free energy difference as follows

∫ λ
λ

λΔ = ∂
∂ λ

G
V x( , )

dalch
0

1

(2)

where ⟨···⟩λ denotes an ensemble average in state λ. Such an
ensemble at each λ window is generated using a single MD
trajectory in most cases. By contrast, TIES uses an ensemble
MD simulation approach as described in detail in the following
section.
The thermodynamic cycle approach is employed to calculate

the relative binding affinities ΔΔG between these two ligands
associating with a protein using the following equation

ΔΔ = Δ − Δ = Δ − ΔG G G G Galch
aq

alch
bound

1 2 (3)

where ΔG1 and ΔG2 are the binding free energies of ligands L1
and L2, respectively. ΔGalch

aq and ΔGalch
bound are the free energy

differences associated with the alchemical transformation of
ligand L1 into L2 in free and bound states, respectively.

2.1. Ensemble Based Thermodynamic Integration. As
noted, most published TI calculations have been based on
performing a single MD simulation at each λ-window. The
derivative of the potential energy with respect to λ, ∂V/∂λ, lies
at the heart of the binding affinity so computed by numerical
quadrature (eq 2). However, to calculate a reliable free energy
change the derivative at each λ-window must be accurate,
precise, and reproducible. An intrinsic problem with approaches
based on single MD trajectories is that they sample but one
instance from a Gaussian random process and are not as such
reproducible; most authors have overlooked the need to
compute macroscopic averages by ensemble averaging (or they
assume that their one-off MD trajectories provide the
equivalent via the ergodic theorem).20 Some authors have
recognized the advantage of using ensembles over single
trajectory calculations in such free energy calcula-
tions,21−25,33,38−42 but a systematic approach has been lacking.
At the same time, the problem of unreproducible results is

removed by computing ensemble averages. Ensemble averaging
provides us with the means to quantify uncertainty and hence
to control errors. In TIES, multiple “replica” MD simulations
are performed at each λ-window, where all replicas have
identical initial conditions other than their initial velocities,
which are drawn randomly from a Maxwell−Boltzmann
distribution. The set of multiple replica simulations constitute
an ensemble simulation whose size is the number of replica
simulations performed. Thus, we can compute an ensemble
average of ∂V/∂λ values for each λ-window. Examples of the
frequency distribution of this ensemble of potential energy
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derivatives are shown in Figure 1; these are all well described by
a Gaussian distribution, just as we have reported for all
ensembles of MD simulations in recent publications.17−19,26−30

This means that the integral in eq 2 should properly be
interpreted as a stochastic integral. The average of all the
potential energy derivatives at each λ-window is the value which
is used for calculating the integral of ∂V/∂λ with respect to λ
using a numerical method (e.g., the trapezoidal rule) to finally
arrive at the alchemical free energy change ΔGalch (eq 2).

3. METHOD
In this section, we describe the biomolecular systems studied
and the standard TIES protocol. The ensemble size,
intermediate λ values, and simulation length in this protocol
have been arrived at after careful statistical analyses which are
described in section 3.4. The complete end-to-end execution of
our protocol is facilitated using tools described in section 3.5.
As we shall see, the standard protocol is applicable to most of
the ligand−protein systems studied here, although there are
situations in which it needs to be modified.
3.1. Ligand−Protein Systems Studied. In this work, we

have applied TIES to calculate the relative free energies of a
large set of ligands bound to five different target proteins
(Figures S1−S5 of the Supporting Information). They belong

to different classes of protein including kinase and phosphatase
with diverse functions in the human body and are important
targets for a wide range of therapies. Myeloid cell leukemia 1
(MCL1) is a member of the Bcl-2 family of proteins. It is
overexpressed and amplified in various cancers and promotes
the aberrant survival of tumor cells that otherwise would
undergo apoptosis.43 Protein tyrosine phosphatase 1B
(PTP1B) is a negative regulator of the insulin and leptin
receptor pathways and thus an attractive therapeutic target for
diabetes and obesity.44 The serine protease thrombin is an
established target for the prevention of cardiovascular
diseases.45 Selective targeting of tyrosine kinase 2 (TYK2) is
considered as a potential treatment of inflammatory diseases,
such as psoriasis and inflammatory bowel diseases (IBD).46,47

Aberrant control of cyclin-dependent kinase 2 (CDK2) is a
central feature of the molecular pathology of cancer.48 The
ligand transformations studied include chemical group
modifications in which up to 10 heavy atoms are changed. In
other recent work, we have applied TIES to studies of
bromodomain and pan-TrkA inhibitors.29,30

3.2. Model Building and Simulation Setup. In the
present paper, we study five different target systems (see Figure
2) using TIES. The starting structures for each of them were
downloaded from the Protein Data Bank (PDB)49 with the

Figure 1. Normalized frequency distribution of ensembles of ∂V/∂λ values for 4 different intermediate alchemical states (λ = 0.2, 0.4, 0.8, 0.9) for the
transformation from ligand L1Q to ligand LI9 binding to CDK2 shown as open red circles. Gaussian distributions with the same mean and standard
deviation are shown in blue.
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corresponding PDB IDs as 1H1Q for CDK2, 2ZFF for
thrombin, 2QBS for PTP1B, 4HW3 for MCL1, and 4GIH for
TYK2. For thrombin, 2ZC9 PDB was chosen as the starting
structure to study the transformation of unsubstituted benzyl-
amine to meta-substituted benzylamide where a water molecule
initially present in the S1 pocket of thrombin is displaced by the
appearance of a meta-chlorine atom (see section 5 for details).
For each of these biomolecular systems, a set of around 10
ligand pairs was chosen. The structures of the ligands were
downloaded from the Supporting Information of an open
access article.31

TIES currently uses a dual topology scheme.50 The
disappearing part of the system (which exclusively belongs to
the initial state) and the appearing part of the system (which
exclusively belongs to the final state) are defined simulta-
neously. The hybrid potential energy function (eq 1) is set in
such a way that the disappearing and appearing parts do not
interact with each other. For an alchemical transformation from
ligand L1 to ligand L2, the hybrid structure file is prepared by
appending the coordinates of the appearing set of atoms from
L2 to the structure file of L1 after making sure that their
common parts are well aligned. The partial atomic charges for
the hybrid ligand are derived from the partial atomic charges on
the individual ligands such that the common atoms have
identical charges, taken to be the average of their charges in the
individual ligands. The charges on disappearing and appearing

parts are adapted accordingly by reparametrizing the ligands
after constraining the charges on the common atoms to their
new values. The set of atoms to be considered as part of the
common region in the hybrid ligand is selected such that their
overall charges in the individual ligands do not differ by more
than 0.1 e and, in addition, each atom satisfies this criterion.
These criteria ensure that the common region of the two
ligands is indeed chemically identical in both the ligands within
the convergence limit of 0.1 e. It should be noted that one or
both of these criteria may need to be relaxed in the presence of
highly charged or polar groups in the ligands.
The complexes of target protein and hybrid ligand were

solvated in an orthorhombic water box with buffer width of 14
Å. Counterions were added to neutralize the system electro-
statically. The AMBER ff99SB-ILDN force field51 was
employed in all our simulations for protein parameters. Ligand
parameters were produced using the general AMBER force field
(GAFF).52 The restrained electrostatic potential (RESP)
method was used to calculate partial atomic charges using
Antechamber (AmberTools 12) after geometry optimization by
Gaussian03 for all ligands. The package NAMD 2.953 was used
for all the molecular dynamics simulations with three-
dimensional periodic boundary conditions. The systems were
maintained at a temperature of 300 K and a pressure of 1 bar in
an NPT ensemble using the standard NAMD protocol of
Langevin dynamics (with a damping coefficient of 5 ps−1) and a

Figure 2. Structures of all five target proteins (ribbon representation) studied in each case shown bound to a ligand (blue, in stick representation):
(a) cyclin-dependent kinase 2 (CDK2); PDB: 1H1Q, (b) protein tyrosine phosphatase 1B (PTP1B); PDB: 2QBS, (c) myeloid cell leukemia 1
(MCL1); PDB: 4HW3, (d) tyrosine kinase 2 (TYK2); PDB: 4GIH, and (e) thrombin; PDB: 2ZFF. Structures of all ligands (which are all drawn
from congeneric series) are provided in the Supporting Information.
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Berendsen barostat (compressibility of 4.57 × 10−5 bar−1 and a
relaxation time of 100 fs). A time step of 2 fs was used. van der
Waals contributions were perturbed using linearly varying λ
across the full range (0 to 1). A soft core potential54,55 was used
for the van der Waals interactions to avoid divergent potential
energy due to the sudden appearance of atoms close to the end
points of the alchemical transformation, often called “end point
catastrophes”. Moreover, the electrostatic interactions of the
disappearing atoms were linearly decoupled from the
simulations between λ values of 0 and 0.55 and completely
turned off beyond that, while those of the appearing atoms
were linearly coupled to the simulations from λ value 0.45 to 1
and completely extinguished otherwise.
A total of 13 λ-windows were used for all TIES calculations.

An ensemble simulation of size 5 was performed at each λ-
window. For each replica, energy minimization followed by 2 ns
long equilibration was performed using the protocol defined in
a previous publication.56 Production runs for each replica were
4 ns long. While the coordinates were recorded every 10 ps,
∂V/∂λ values were recorded every 2 ps. The choice of 4 ns for
the simulation length and 5 for the ensemble size is based on
the uncertainty quantification and error analysis discussed in
section 3.4. The protocol mentioned here is a general
recommendation, but there may be cases where one may
wish or need to adjust it. The key point is that the ensemble
size should be chosen such that the results are converged, and,
hence, one may need to increase the ensemble size at different
λ-windows to handle particular cases. Figure 3 exhibits the
TIES workflow indicating the core counts and wall clock time
required for a typical TIES calculation. Given a sufficiently
powerful machine, it is possible to complete a TIES calculation
using the protocol described in this work (2 ns equilibration
followed by 4 ns of production simulation) within 8 h or less.
For any given system the turnaround time will depend on both
the number of atoms in the system of interest and the available
number of cores (in many cases GPUs can provide a further
increase in performance). The scalability of TIES calculations
allows us to calculate relative free energies for multiple
alchemical transformations concurrently. These require the
same wall clock time as that for a single calculation simply by
scaling up the required resources accordingly.57

3.3. Stochastic Integration and Error Propagation.
The relative binding affinity of two ligands, ΔΔG, is given by
the difference between free energy changes associated with the
alchemical transformation of one ligand into another in free and

bound states, ΔGalch
aq and ΔGalch

bound, respectively, as per eq 3.
These two terms are given by the integral of the ensemble
average of ∂V/∂λ, eq 2. As earlier discussed, the potential
energy and hence its λ-derivative behave like Gaussian random
variables (Figure 1), and so each point in the integrand has an
underlying Gaussian distribution. The integral of a Gaussian
random process is itself a Gaussian random process with
variance given by the convolution of the variance of all the
points used to evaluate it.58 Therefore, we interpret the integral
in eq 2 in terms of stochastic calculus. We calculate the
ensemble average of the potential derivative as the average of its
values from all five replicas of our ensemble simulation, where
the individual value for each replica is taken to be the average
potential derivative over the whole simulation length. The
integral is calculated numerically using the mean potential
derivative at each λ value. The error, σλ, for a λ window is taken
to be the bootstrapped standard error of the mean of the λ-
derivatives from all replicas. The variance of alchemical free
energy changes ΔGalch

aq and ΔGalch
bound and the variance of the final

relative binding affinity are calculated as

∑σ σ λ= Δλ ( )1/2
2 2 2

(4a)

σ σ σ= +2
1
2

2
2

(4b)

The sum of the ΔΔG predictions for a set of ligand
transformations forming a closed thermodynamic cycle is often
referred to as the “hysteresis” of the cycle. Owing to the finite
uncertainties associated with such ΔΔG predictions, the
hysteresis always deviates from its theoretical value of zero
and hence is one way of assessing the accuracy of the
predictions.27 It is noteworthy that on repeating all the
calculations one may get a different value for the hysteresis,
and hence the value of such hysteresis has an accompanying
uncertainty similar to that of the ΔΔG predictions. Wang et
al.’s recently published FEP/REST method attempts to
artificially correct the ΔΔG predictions made by shifting their
values so as to remove the associated hysteresis.31 However, the
benefit of doing this is debatable given that in their
methodology there is an uncontrolled uncertainty associated
with each prediction; furthermore the approach may distribute
a large error arising in one prediction over the entire
thermodynamic cycle, thereby distorting other correct
predictions. TIES based predictions of free energy changes
do not exhibit significant hysteresis as adequate sampling at

Figure 3. TIES protocol requiring 5 replica simulations at each λ window. For a single alchemical transmutation, 13 λ-windows are used amounting
to 65 molecular dynamics simulations in total. The number of cores and wall clock time employed on a Cray XC30 supercomputer are displayed on
the right side of the figure.
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each λ-window in combination with stochastic integration
minimizes it. Table S6 of the Supporting Information lists the
sets of ligands forming closed cycles in the transformations
studied here along with the corresponding values of hysteresis.
All but one of them have hysteresis values lying within the
uncertainty range. The set of ligands L32,L42,L38 binding to
MCL1 as listed in Table S6 of the Supporting Information is an
example where the large error in just one prediction (for the
transformation L38-L42) leads to the large value of hysteresis
in the closed cycle formed by them.
3.4. Uncertainty Quantification and Error Analysis.

The TIES protocol has three adjustable parameters: the
ensemble size, individual replica simulation time, and the set
of λ values to be selected. In this work, we have chosen the
ensemble size to be 5 and the simulation length to be 4 ns.
Here we provide the justification for these choices which are
made on the basis of an analysis of the variation of error with
both of these parameters. Figure 4a shows the variation of TIES
error with the ensemble size in each λ window keeping the
simulation length fixed to 4 ns at each lambda window. We
performed an ensemble of 105 replicas at each λ-window for
the transformation of ligand L1Q to ligand LI9 bound to
CDK2. It is evident that the ΔΔG converges fully after the
ensemble size 30 or so, where the error falls below 0.15 kcal/
mol. We find that the error at the ensemble size 5 is a little
below 0.4 kcal/mol, reducing to about 0.3 kcal/mol on
increasing the ensemble size to 10 and to about 0.2 kcal/mol
on increasing it to 20. Thus, a 4-fold increase in the
computational cost yields marginal improvements. Therefore,
here we take an ensemble size 5 as a good balance between
computational cost and precision of results. However, this
analysis clearly shows that a very high level of precision can be
achieved given a sufficient amount of computation. It should be
noted here that in ESMACS26 a similar analysis was used to
arrive at the appropriate ensemble size of 25, which is larger
than that employed for each λ-window in the standard TIES
protocol. This is because ΔΔGTIES is evaluated from the
integral in eq 2, the error associated with which is in turn
calculated as per eq 4. Thus, there is more smoothing of errors
as compared to that in ESMACS where there is a single

ensemble computed at the end points. Figure 4b shows the
variation of ΔGalch

bound with simulation time for the fixed ensemble
size (in this case 5) per λ window. It is evident that the value of
ΔGalch

bound does not vary by more than 0.1 kcal/mol after 4 ns. A
similar argument based on minimizing the cost-benefit ratio on
increasing the simulation length accounts for our choice of
simulation length of 4 ns per replica simulation. Extensive
studies of diverse ligand−protein systems all confirm that the
cumulative averages of the derivatives ∂V/∂λ converge within 2
ns for all λ windows.26,27,59 In the present case, we show the
convergence in Figure S7 of the Supporting Information.
In this study all systems under investigation contain a

relatively rigid ligand bound to a small globular protein,
justifying the use of the protocol established for CDK2 in all
cases. Should the system of interest differ, for example in
containing a flexible ligand, it is trivial to increase replica
number and/or simulation length as necessary to improve
sampling and reduce statistical uncertainty.

3.5. Automation and High Performance Computing.
The TIES protocol would be very lengthy, tedious, and error-
prone to perform manually. Its execution is much faster and
more error-proof when performed in an automated fashion. We
automated the implementation of TIES by a judicious
combination of our software tools known as the Binding
Affinity Calculator (BAC)56 and FabSim60 as we have also done
for ESMACS. BAC incorporates the entire sequence of steps to
be performed to produce the final results as shown in Figure 3.
Inter alia it automatically builds the input files required for the
dual topology scheme. The final step of statistical analysis of the
data from the ensemble of replicas can be performed on a
desktop (or remote machine) yielding the final results including
error estimation and uncertainty quantification. A user-friendly
version of BAC, namely uf-BAC, has been developed to extend
its accessibility to nontechnical users.26

FabSim is a Python-based toolkit developed to simplify a
range of computational tasks for researchers in diverse
disciplines. It comes into play in the TIES workflow during
the production phase. Since TIES involves performing
ensemble simulations, it is highly desirable to have a well-
defined scheme for data management and curation. The

Figure 4. (a) Variation of error with the ensemble size per λ window and (b) the variation of ΔGalch
bound with simulation length for the transformation

of ligand L1Q to ligand LI9 bound to CDK2. The above plots form a basis for our choice of simulation length as 4 ns and the ensemble size as 5.
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arrangement of input and output files in a standard way makes
portability between different users and environments very
convenient. FabSim is configured to automatically transfer data
and stage the equilibration and production jobs on to the
desired supercomputer using a set of simple one-line
commands.60

4. RESULTS
In this study we applied our TIES methodology to carry out
relative free energy calculations for 55 alchemical trans-
formations between ligands binding to five different target
proteins (Table 1). We were interested in evaluating the
accuracy and precision of our predictions when applied to
diverse sets of protein−ligand systems encapsulating different
types of physicochemical interactions. Table 1 summarizes the
results obtained from this study. The majority of calculations
agree extremely well with the experimentally determined values

(Figure 5). The overall mean absolute error (MAE) is 0.7 kcal/
mol, and the root-mean-square error (RMSE) is 0.9 kcal/mol
(Figure 5a). The calculated relative free energies strongly
correlate with the experimental results with a Pearson’s r of
0.84 and also rank the ligands well based on their relative
binding affinities with a Spearman’s ρ of 0.85 as shown in
Figure 5a. Our calculations have a high level of precision with a
range of uncertainty from 0.1 to 0.5 kcal/mol (Table 1).
Table 1 provides the evaluation of the performance of the

TIES methodology for individual target proteins. For each of
the target proteins, TIES predictions have the same level of
accuracy and precision as for the overall results. The RMSE and
MAE are below 0.8 and 0.7 kcal/mol, respectively, for all targets
except MCL1, for which the respective values are 1.4 and 1.2
kcal/mol. The Pearson coefficient is no less than 0.80 for any of
the targets and reaches 0.90 for thrombin. Similarly, the
Spearman coefficient is always higher than 0.80, reaching 0.91

Table 1. Summary of TIES Results for the Five Different Target Proteins Studiedb

CDK2 thrombin TYK2 MCL1 PTP1B

no. of transformations 7 11 11 16 10
PDB 1H1Q 2ZFF 4GIH 4HW3 2QBS
exp metrics IC50 ITC Ki Ki Ki

reference 48 45 46, 47 43 44
range of uncertainty (kcal/mol) 0.2−0.3 0.2−0.4 0.1−0.2 0.2−0.5a 0.2−0.5
RMSE (kcal/mol) 0.8 0.8 0.5 1.4 0.5
MAE (kcal/mol) 0.7 0.7 0.4 1.2 0.4
Pearson’s r 0.87 0.90 0.88 0.80 0.84
Spearman’s ρ 0.86 0.91 0.88 0.80 0.82

aFive of the 16 transformations have uncertainties between 0.7 and 0.8 kcal/mol due to the presence of a charged carboxylate group in the
transforming part of the ligands. See details in section 5. bThe number of alchemical transformations, crystal structures used, original publications
reporting the experimental binding affinities, and the experimental method used to determine the binding affinities are provided. Isothermal titration
calorimetry is abbreviated as ITC, IC50 stands for half maximal inhibitory concentration, and Ki denotes inhibition constant. The range of uncertainty
obtained is mentioned such that all the predictions have uncertainties lying within it. Values of several statistical parameters - root mean squared
error (RMSE) and mean absolute error (MAE) for all TIES predictions as well as Pearson’s r and Spearman’s ρ between ΔΔGTIES and experimental
results - are also reported in order to assess the quality of TIES results.

Figure 5. (a) Correlation between TIES-predicted relative binding affinities and experimental data for all five protein targets studied. The black line
is the perfect correlation line. Blue and pink dotted lines show the ±1 kcal/mol and ±2 kcal/mol ranges, respectively. The majority of points lie
within the ±1 kcal/mol band, a few points lie in the ±1 kcal/mol to ±2 kcal/mol band, and only two points lie outside the ±2 kcal/mol range. (b)
An alternative representation of the same data such that all the experimental values are negative. Blue squares are the directionally agreeing
predictions, while red stars are the directionally disagreeing ones. Red and blue dotted lines show the boundary of experimental values equal to −0.6
kcal/mol and −0.9 kcal/mol. All the predictions with ΔΔG < −0.9 kcal/mol are in directional agreement, while all directionally disagreeing
predictions lie on the right side of the red dotted line except one.
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for thrombin. The range of uncertainties for each target protein,
as mentioned in Table 1, shows the high level of precision
achieved with our methodology for the individual biomolecular
systems studied. It should be noted that 5 out of 16
transformations of MCL1 ligands have uncertainties in the
range of 0.7−0.8 kcal/mol. This is due to the presence of a
charged carboxylate group in the mutating part of the ligands.
More details are provided in section 5.
Figure 5a is a scatter plot of predicted versus experimental

relative binding affinities for all the transformations. The blue
and pink dotted lines show the ±1 kcal/mol and ±2 kcal/mol
bands, respectively, from the perfect correlation black line. All
but two points lie within the pink lines, while a few points lie
between the blue and pink lines. The majority of points is
within the blue lines, serving to emphasize the high level of
accuracy of our predictions. 45 out of 55 predictions (81.82%)
deviate from the experimental values by less than 1.0 kcal/mol,
while 53 out of 55 predictions (96.36%) do so by less than 2
kcal/mol (Table 2 (top)). More than half of our predictions

have an error less than 0.6 kcal/mol. It is important to mention
here that experimental binding affinities contain errors and are
bound by significant uncertainties.61,62 However, for the
systems studied here the error bars on experimental results
are unavailable. Figure S6 in the Supporting Information
contains correlation plots for each biomolecular system
separately along with the uncertainties in the TIES predictions
shown as error bars.
Wang et al.31 recently reported binding affinity predictions

for the same protein targets as here using the FEP/REST
method, and hence a direct comparison between their results
and ours can be made. The RMSE and MAE for each protein
target reported here (Table 1) are smaller than those given by
FEP/REST, except for MCL1, for which they are the same in
both studies. The correlation coefficients for each system
reported here (Table 1) when compared to those given by the
FEP/REST method are better for CDK2 (0.87 versus 0.48) and
thrombin (0.90 versus 0.71), while being almost the same for
the others. 81.82% and 96.36% of our predictions are accurate

within the absolute error of 1.0 and 2.0 kcal/mol, respectively,
while the same numbers from the FEP/REST study are 63.3%
and 92.4%, respectively. A visual comparison of Figure 5a with
Figure 3 of Wang et al.31 shows that the number of points in
the ±1 kcal/mol to ±2 kcal/mol band is much lower in the
former as compared to the latter. Out of the 55 ligand
transformations studied here, 18 are in common with the
perturbations studied by Wang et al. using their FEP/REST
methodology.31 Figure S10 in the Supporting Information
shows a direct comparison of these 18 predictions from both
the methods. TIES exhibits marginally better accuracy with
slightly smaller RMSE and MAE and slightly larger Pearson’s r
and Spearman’s ρ. Only one of the 18 TIES predictions lies
outside the 1 kcal/mol window from the experimental data, and
one directionally disagrees with the experimental value. On the
other hand, the corresponding numbers for the FEP/REST
predictions are three and two, respectively. Furthermore, these
authors’ results are effectively obtained from running a single
replica, meaning that they are liable to suffer from a lack of
reproducibility.
Figure 5b provides a different representation of our results. A

prediction is said to be directionally agreeing with experimental
observations if ΔΔGTIES has the same sign as that of ΔΔGexp,
otherwise it is deemed to be directionally disagreeing. In Figure
5b we have flipped the signs of both ΔΔGexp and ΔΔGTIES for
all the points which originally had positive ΔΔGexp. In other
words, we rearranged eq 3 such that ligand L1 always has a
more negative binding free energy than ligand L2. Such a
representation is useful in order to show if the calculations
exhibit the same trend as that of the experimental results. Thus,
we are left with all the points on the left-hand side of the y-axis.
Therefore, all the points which lie above the x-axis directionally
disagree (red stars in Figure 5b), while those below the x-axis
directionally agree (blue squares in Figure 5b). The red and
blue dotted lines here are the boundaries of ΔΔGexp equal to
−0.6 kcal/mol and −0.9 kcal/mol, respectively. As shown in
the figure, all the points in directional disagreement lie to the
right of the red line except one, which lies between the red and
the blue lines. This means that all our results predict the
direction of the change in the binding affinities correctly if the
absolute change in the corresponding experimental values is
greater than or equal to 0.9 kcal/mol, with the proviso that
there are no error bars on the experimental values that are
available in this study, as mentioned earlier. Wang et al. suggest
that for high quality measurements, the uncertainties on the
experimental relative binding affinities ΔΔGexp are of the order
of 0.4−0.7 kcal/mol.31 More generally, Chodera and Mobley
state that published affinities may have errors of around 24%,
reported errors near universally underestimating the error
obtained from interlaboratory variation by one to 2 orders of
magnitude.62 All but one TIES prediction which directionally
disagree lie within this range of experimental noise as shown in
Table 2 (bottom). Therefore, when the overlap between the
error bars of both the experimental and the theoretical ΔΔG
predictions is taken into account, even better agreement can be
achieved than that reported here.

4.1. Reproducibility of the Predictions. Another
strength of TIES is its ability to yield reproducible predictions.
By reproducibility, we mean that if a TIES calculation is
repeated for a particular transformation, the new prediction of
the relative binding affinity for that transformation would lie
within ±σ and ±2σ range of the original prediction with a
probability of 0.68 and 0.95, respectively. The typical

Table 2. Summary of the Level of Accuracy Obtained for the
Total Set of TIES Predictionsa

MAE < no. of predictions

0.4 19
0.6 30
0.8 36
1.0 45
1.2 49
1.4 50

|ΔΔGexp| > no. of directionally disagreeing predictions

0.0 9
0.3 8
0.4 6
0.5 3
0.6 1
0.9 0

aThe number of predictions found to be accurate for a specified
absolute error range (top) and the number of predictions found to be
in directional agreement with the increasing absolute values of
experimental results (bottom). The lack of experimental errors means
that the entire discrepancy is assigned to the theoretical predictions. In
practice, the agreement is likely to be even better than shown here.
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uncertainty on our predictions is 0.4 kcal/mol. Thus, in
principle, any repeated TIES calculation for a typical trans-
formation should yield a new prediction within ±0.8 kcal/mol
of the original prediction 95% of the time.
To illustrate this property of our methodology, we chose six

of our relative free energy calculations between ligands binding
to the CDK2 target protein. An ensemble of 20 MD
simulations at each λ-window was performed, and the final
relative free energies were calculated (represented as open
black circles along with their ±σ and ±2σ ranges in Figure 6).

Thereafter, two random nonoverlapping subsamples of ten MD
simulations at each λ-window were chosen in order to obtain
two independent TIES predictions (denoted by red and blue
filled circles in Figure 6) for the 6 transformations. Both the
predictions (red and blue circles) for four of the trans-
formations lie within the ±σ range, while for the remaining two
they lie within the ±2σ range.
4.2. Comparison of Results from Ensemble Based TIES

with Those Using Extended Simulations. We compared
the predictions from the use of the “standard” TIES protocol
with the case when only one “long” simulation is performed at
each λ-window. For this purpose, we chose the transformation
from ligands L1Q to LI9 binding to CDK2. Five independent
TI calculations were performed for this transformation based
on a 20 ns molecular dynamics simulation at each λ window to
check its reproducibility. The ΔGalch

bound from these five TI
calculations vary by as much as 0.8 kcal/mol. On the other
hand, the ΔGalch

bound of the same transformation from TIES has
the 1σ uncertainty range as 0.38 kcal/mol. Therefore, at least in
this case, the results from TIES employing the standard
protocol are only slightly better than those from TI employing
a single longer simulation at each λ-window for the same
amount of computer time (equivalent to 20 ns per lambda
window in each case). This observation may be compared with
other studies,17−19,26−28 where it has been found that the
prediction from an ensemble of 50 short (4 ns) simulations is
better than using a single 1 μs simulation. This may be related

to our earlier observation (section 3.4) that the TIES/TI
algorithm involves a number of internal cancellation of “errors”,
unlike in end point MD. However, for cases with larger and
more flexible ligands and/or proteins and when the size of the
alchemically changing part of the ligand is large, TIES yields
much more precise predictions than can be realized from single
“long” simulations.27 Moreover, the use of multiple replicas
within TIES has the important advantage of reducing the wall
clock time required to get results since these can all be
performed concurrently on a supercomputer.

5. DISCUSSION

Mobley and Klimovitch63 quantified the impact of reliable
binding free energy predictions on the drug discovery process.
According to them, during lead optimization, a computational
method screening 10−100 molecules per week with an error of
0.5 kcal/mol would reduce by a factor of 8 the number of
compounds requiring synthesis in order to achieve a 10-fold
improvement in binding free energy. A similar conclusion can
be drawn from the analysis of biological assay variability.61 In
our study, TIES has been shown to achieve this level of
precision with a short turnaround time and hence has
considerable potential to influence drug design. Moreover, in
this study we have employed TIES on a broad range of target
proteins and for a large set of alchemical transformations
including many types of chemical interactions and processes
such as hydrophobic, hydrogen-bonding, and electrostatic
interactions and solvent effects including displacement of
water molecules from binding pockets. All these interactions
have been accurately predicted with TIES within the limits of
the accuracy of the classical force-field and ligand parameters
employed. Below we draw attention to several cases in which
specific interactions impact results.
Figure 7 shows the S1 pocket of the active site of the human

thrombin protein which contains a water molecule in the case
of the ligand containing an unsubstituted benzylamine ring.
This water molecule is locked inside the pocket and mediates
hydrogen bonding from the ligand amidino group to the
protein. However, the water molecule is displaced by the meta-
substituted benzylamide ring of the ligand. We studied the
transformation from meta-substituted benzylamide to benzyl-
amine (A) and the reverse transformation (B) using TIES; our
results are in excellent agreement with the experimental values.
ΔΔGTIES for the transformations A and B are −0.6 ± 0.2 kcal/
mol and 1.0 ± 0.2 kcal/mol, respectively, while the
corresponding experimental values are −0.9 and 0.9 kcal/mol,
respectively (no error bars reported). It is noteworthy here that
the ΔΔG prediction of the transformation B from FEP/REST31

is 1.5 kcal/mol. In order to quantify the contribution arising
from the presence of the water molecule we calculated the
probability of occurrence of a water molecule in a cubic box of
volume 1000 Å3 centered around the pocket over all
conformations taken from the 5 replica simulations aligned to
the initial structure. In the case of transformation A, the
probability increases from 0 at λ = 0 to 0.7 at λ = 1, while in the
case of transformation B, it decreases from 0.6 at λ = 0 to 0.3 at
λ = 1. Figure 7 shows the two end points (λ = 0,1) of
transformation A where the red frames denote the space with
the number density of water oxygen centers greater than or
equal to that in bulk water. Figure 7a shows that the presence of
water is confined to the two distinct channels C1 and C2 in the
presence of m-Cl, while Figure 7b shows that when the chlorine

Figure 6. Reproducibility of TIES: The relative binding affinities of the
CDK2 ligands (black circles) were calculated using 10 values
resampled from an ensemble of 20 replica simulations. Error bars
are represented as standard deviations of σ and 2σ. For each calculated
ΔΔG value, results are also shown for two randomly chosen
nonoverlapping 10-replica samples (blue and red dots). The data
demonstrate that a 10-replica prediction will lie within ±σ and ±2σ of
the averaged relative binding affinities (open black circles) with
confidence intervals of 0.68 and 0.95, respectively.
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atom is transformed fully to a hydrogen atom the water enters
into the S1 pocket as well as through C1 and C2.
In the intermediate λ-windows of the TIES calculation the

electrostatic interactions are weakly scaled. Therefore, when the
alchemically changing groups contain charges, it is sometimes
possible to encounter larger fluctuations in ∂V/∂λ due to
instabilities caused by the loss or increase of strong electrostatic
interactions. This results in larger variation in the stochastic
integral (eq 2), and hence, less precise prediction of ΔΔG using
the standard TIES protocol as mentioned in section 3.2. In this
study, 5 out of the 16 transformations of MCL1 ligands have a
charged carboxylate group in the perturbing region, with the
uncertainties of their ΔΔG predictions lying in the range of
0.7−0.8 kcal/mol, while the uncertainties of the remaining 11
predictions for MCL1 ligands lie within the range of 0.2−0.4
kcal/mol (see Table 1). In such cases, one can modify the
standard protocol described here by, for example, increasing the
ensemble size at various λ-windows and/or excluding the
charged group from the alchemically mutating part of the
ligands to further emphasize this point. A comparison of results
with and without charged groups in PTP1B ligands is examined
in detail in the SI.
It is evident from Table 1 and Figure 5 that the TIES

predictions for MCL1 have larger deviations from the
experimental results, with the largest RMSE and MAE. In this
case interactions with R263 become too weak to hold it in a
stable position at intermediate λ-windows due to the scaling
down of the electrostatic interactions. Such behavior can be
attributed to the highly flexible nature of the ligand (detail
shown in the SI).
The free energy methods based on alchemical transformation

found in the literature have been applied to cases where the size
of the change in the chemical group is small, usually limited to
one or two heavy atoms. However, the recently reported FEP/

REST method handles perturbations up to 10 heavy atoms.31

In this study, we have achieved the same level by successfully
applying TIES to a diverse range of chemical modifications with
“perturbations” including up to 10 heavy atoms. For example,
the range of chemical transformations with corresponding
absolute errors (AE) include benzamide to p-fluorobenzene-
sulfonamide (AE = 0.6 kcal/mol), benzyloxy to ethanamide
(AE = 0.5 kcal/mol), hydrogen to methyl cyclohexane (AE =
0.1 kcal/mol), cyclohexyl to phenyl (AE = 0.5 kcal/mol),
cyclohexyl methyl to 2,2,4,4-tetramethylcyclohexyl (AE = 0.2
kcal/mol), cyclopentyl to cycloheptyl (AE = 0.0 kcal/mol), and
indole to indane (AE = 2.1 kcal/mol) to mention a few. TIES
correctly predicts that small changes in binding affinity are
associated with these large perturbations (up to 10 heavy
atoms).30

6. CONCLUSIONS

In this article, a new approach based on thermodynamic
integration is described to predict relative binding free energies
which has a high level of accuracy and precision. The
methodology described here is robust and reliable. Automation
of the entire workflow yields results within a few hours. It
provides users with the freedom to set desired statistical
uncertainties for purposes of accuracy and precision, based on
both the length of the MD simulations and the number of
replicas per λ-window, which can all be adjusted separately. The
method gives predictions in very good agreement with the
experimental values for a large set of ligands bound to five
different target proteins. Out of the total 55 predictions made
here, 30 deviate from experimental values by less than 0.6 kcal/
mol, with an overall mean absolute error of 0.7 kcal/mol and
root-mean-square error of 0.9 kcal/mol. A rich diversity of
chemical modifications has been successfully captured with this
approach, ranging from single atom perturbation to large
functional group modifications (up to 10 heavy atoms).
Accurate predictions for flexible ligands with large numbers of
rotatable bonds were made. Most importantly, the calculated
relative binding affinities are shown to be reproducible within
carefully controlled statistical uncertainties. Such a high level of
accuracy and precision make the predictions reliable, and,
hence, this approach may prove of substantial value in the drug
discovery and design process.
A direct comparison of our results with those from FEP/

REST31 demonstrates enhanced accuracy of predictions for the
five biomolecular systems studied in terms of reduced mean
absolute error and root mean squared error and improved
correlation coefficients (section 4). Unlike TIES where it is a
built-in feature, there is no mention of the reproducibility of the
FEP/REST calculations. Compounding the issue, the FEP/
REST methodology is proprietary and not accessible to open
evaluation.
In the present study, the potential parametrizations for both

proteins and ligands are all known to be reliable. However, this
cannot be guaranteed to be the case in new situations. Care
must always be taken in selecting such parametrizations,
particularly for new ligands. Problems pertaining to alchemical
transformations between congeners involving a change in the
net charge using free energy methods are well-known, and
TIES is no exception to them.64,65 The current version of the
TIES protocol cannot reliably handle such situations. More-
over, when alchemically mutating parts of the ligands contain
charges it may be necessary to modify the standard TIES

Figure 7. Cross sections of the S1 pocket of thrombin for the two end
λ-windows of an alchemical transformation involving mutation of m-
chlorobenzylamide to benzamidine. Experimentally, meta-substituents
of benzylamides displace the water molecule from the S1 pocket which
is present there in the case of an unsubstituted benzylamine ring. Red
wireframes show the regions of water occupancy averaged over all the
conformations from the 5 replica simulations aligned to the
corresponding initial structures. (a) No water molecule bound in the
S1 pocket in the presence of chlorine (green) at λ = 0. (b) The water
molecule enters the S1 pocket through channels C1 and C2 on fully
transforming Cl to H at λ = 1. The protein surface is shown in gray,
and ligand atoms are colored by element: hydrogen in white, carbon in
cyan, oxygen in red, and nitrogen in blue.
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protocol to ensure adequate sampling in the calculation of
ensemble averages.
TIES represents one of a new class of ensemble-based free

energy methods which is rapid, accurate, precise, and
reproducible. The approach has the potential to make an
impact in drug design and personalized medicine.
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