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Abstract 

 

Magnetoencephalography (MEG) is a neuroimaging technique which gives direct non-

invasive measurements of neuronal activity with high temporal resolution. Given its 

increasing use in cognitive and clinical research, it is important to characterize, and 

ideally improve upon, its advantages and limitations. For example, it is conventionally 

assumed to be insensitive to deep structures because of their distance from the 

sensors. Consequently, knowledge about their signal contribution is limited.  

One deep structure of particular interest is the hippocampus which plays a key role in 

memory and learning, and in organising temporal flow of information across regions. 

A large body of rodent studies have demonstrated quantifiable oscillatory 

underpinnings of these functions, now waiting to be addressed in humans. Due to its 

high temporal resolution, MEG is ideally suited for doing so but faces technical 

challenges. Firstly, the source-to-sensor distance is large, making it difficult to obtain 

sufficiently high signal-to-noise ratio (SNR) data. Secondly, most generative models 

(which describe the relationship between sensors and signal) include only the cortical 

surface. Thirdly, errors in co-registering data to an anatomical image easily obstruct 

or blur hippocampal sources. 

This thesis tested the hypotheses that a) identification and optimisation of acquisition 

parameters which improve the SNR, b) inclusion of the hippocampus in the generative 

model, and c) minimisation of co-registration error, together enable reliable inferences 

about hippocampal activity from MEG data.  

We found the most important empirical factor in detecting hippocampal activity using 

the extended generative model to be co-registration error; that this can be minimised 

using flexible head-casts; and that combining anatomical modelling, head-casts, and 

a spatial memory task, allows hippocampal activity to be reliably observed. Hence the 

work confirmed the overall hypothesis to be valid. Additionally, simulation results 

revealed that for a new generation of MEG sensors, ~5-fold sensitivity improvements 

can be obtained but critically depend on low sensor location errors.  

These findings set down a new basis for time-resolved examination of hippocampal 

function. 
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Thesis hypotheses and objectives 

 

The over-arching hypothesis addressed in this thesis is that it is possible to improve 

the detection of hippocampal activity in MEG data. This hypothesis is two-fold: 1) It is 

possible to improve data acquisition by improving the signal-to-noise ratio (SNR) 

through the use of head-casts to stabilize the relationship between MEG sensors and 

the brain. 2) It is possible to improve data analysis by including more anatomical and 

electrophysiological information about the hippocampus. 

The general aim of this thesis has therefore been to construct, critically evaluate, and 

apply hippocampal source models to MEG data. Adding anatomical detail to the 

generative model allows us to explicitly test how well this can help us explain variance 

in MEG data. Further, it enables us to directly quantify when and how empirical 

obstacles such as poor SNR and co-registration error impede this ability (Experiment 

1). Knowledge of these obstacles nevertheless leaves open questions. One of the 

starkest is perhaps “but does it work?” To address this, we therefore empirically 

validate the new generative model using a task that has been repeatedly 

demonstrated to engage hippocampus (Experiment 3).  

In parallel, another aim is to increase the SNR during data acquisition to get less noisy 

and more spatially accurate, precise, and reproducible signals from the hippocampus. 

First, we develop flexible head-casts to be used in combination with conventional MEG 

recording (Experiment 2), and later, through data-based optimization of the sensor 

configuration for hippocampal activity, we optimise the SNR with a new generation of 

room-temperature MEG sensors (Experiment 4).  

 

Experiment 1: Probabilistic statements about simulated hippocampal activity using 

generative models 

Hypothesis: If the hippocampus is explicitly incorporated into the generative MEG 

source model, then it is possible to test whether or not it is active at a certain time and 

within a certain frequency band. The validity of this hypothesis can be tested using 

simulated data (where the ground truth is known), making it possible to identify the 

extent to which different empirical acquisition factors - such as co-registration error 

and SNR - hinder the detection of hippocampal activity. 
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Experiment 2: Flexible head-cast design for high spatial precision MEG 

Hypothesis: If the co-registration error and head movement can be minimized during 

acquisition, then the SNR will be significantly improved, leading to much better quality 

data with more consistency and less variability both across and within recording 

sessions. We also predict that such improvement of the SNR will improve the 

reproducibility of the data and spatial resolution of the inference in general. 

 

Experiment 3: Empirical MEG recordings of hippocampal activity using head-casts 

and hippocampal source models  

Hypotheses:  1) If we combine an acquisition technique which is optimal for obtaining 

high SNR data (Experiment 2, head-casts), a well-validated spatial memory task which 

is known to engage the hippocampus, and explicit source modelling of the 

hippocampus (Experiment 1), we can detect hippocampal sources in real MEG data.  

2) If this combination of tools is effective, then changes to the hippocampal portion of 

the generative model should give rise to decreases in model generalizability/fitness 

(which can quantified by two orthogonal metrics; Free energy and cross-validation 

error). Specifically, we predict that if the subject-specific generative model of the 

hippocampus is correct, then laterally rotating it should decrease the model evidence 

and increase the cross validation error 

 

Experiment 4: Optimization of acquisition parameters to detect hippocampal activity 

using Optically Pumped Magnetometers 

Hypothesis: If we can utilize a new generation of room temperature (as opposed to 

supercooled) MEG sensors to drastically improve the SNR due to decreased source-

to-sensor distances, then we can in turn optimize the configuration (location and 

orientation) of sensors based on results obtained in the first three experiments to 

optimally detect hippocampal signals. Such detection of hippocampal signals will allow 

the possibility of eventually making MEG recordings of the hippocampus as the 

participant moves freely around the environment.  
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In summary, the main aims of this thesis are a) modelling of the hippocampus as a 

potential electromagnetic source giving rise to part of the MEG signal, b) 

characterization of the empirical requirements for detecting the signal originating from 

hippocampus, and c) optimization of the acquisition parameters in order to meet these 

requirements.  

Modelling the signal consists of extending the existing biophysical model used to 

explain MEG data, by including the location, orientation, density, cell type and global 

geometrical shape of the hippocampus. 

By systematically simulating a set of MEG experimental data, the aim is to first 

characterize the requirements for hippocampal signal detection. This is then carried 

forward to designing and conducting a cognitive experiment and head-cast device 

which meets the requirements identified in simulations. Finally, we explore where on 

the surface of the head these signals are strongest and use this to guide the placement 

of room-temperature sensors.  
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Key contributions 

 

 The work provides a model of the hippocampus as an electromagnetic signal 

generator and several novel ways of testing this model. We found that including 

a hippocampal ‘mesh’ (i.e. anatomical surface) within the standard model of 

the brain helps explain hippocampal source activity but does not introduce 

bias. We applied rigorous control tests to determine the spatial specificity and 

limitations and advantages of including this mesh. 

 Development of a new prototype of flexible head-casts, which minimizes both 

head movement during scanning, and errors in co-registration to anatomical 

data. Importantly, these casts are safer and more comfortable than the 

previous design. Unlike the previous head-casts, this prototype also enables 

subjects to see while being scanned. 

 Demonstration of hippocampus-specific activity recorded with MEG. Data was 

acquired by asking subjects to perform a cognitive task known to evoke 

hippocampal theta band oscillations while they were wearing a flexible head-

cast. Through application of Bayesian model comparison and cross-validation, 

we found that lateral rotations of the hippocampal portion of the generative 

model significantly decreased its predictive power, even when these errors 

were as low as 5°.  

 The PhD work also contributed novel conceptual and theoretical ideas for 

efficient use of room-temperature MEG sensors. These sensors represent a 

new potential for MEG research to have higher spatial resolution through a 5-

10-fold SNR improvement. The empirical requirements for detecting 

hippocampal activity in terms of different sources of error are addressed and 

the spatial topography of a hippocampal source was obtained, giving way for 

constructing the spatial configuration of a hippocampus-optimal sensor array. 
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Chapter 1 

 

Introduction 
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Overview 

Deep brain structures such as the hippocampus are involved in many healthy and 

pathological brain processes in humans, yet are relatively poorly understood in the 

context of temporal dynamics. Despite the potential and although clinical, simulation-

based, and empirical demonstrations of the detectability of hippocampus using 

magnetoencephalography (MEG) have been presented (Attal and Schwartz, 2013; 

Korczyn et al., 2013; Papanicolaou et al., 2005), widespread scepticism against the 

possibility for detecting hippocampal activity by MEG persists (Mikuni et al., 1997; 

Riggs et al., 2009; Stephen et al., 2005). This thesis aims to establish, from a 

methodological standpoint, the detectability of hippocampal signals in MEG. MEG 

detection of hippocampal signals opens up exciting possibilities to formulate and test 

new and specific hypotheses about the dynamics of hippocampal function during 

cognitive functions in which it is known to be engaged, such as episodic memory and 

spatial navigation. 

MEG is a non-invasive neuroimaging technique that measures electromagnetic brain 

activity with millisecond temporal resolution. In order to localise the spatial origin of 

such activity, anatomical and electrophysiological information is used to constrain the 

solution space. Whilst this general framework is well-established for neocortical 

sources (Hämäläinen et al., 1993; Henson et al., 2009; Lopes da Silva, 2013; Vrba 

and Robinson, 2001), reconstruction of deep sources remains controversial 

(Hämäläinen et al., 1993; Mikuni et al., 1997; Riggs et al., 2009; Stephen et al., 2005). 

This is partly because the signal strength - and consequently the spatial resolution - 

rapidly decreases with distance from sensors: strength ∝ 1/distance2 for dipoles 

(Geselowitz, 1967; Hämäläinen et al., 1993; Hillebrand and Barnes, 2002; Sarvas, 

1987), and partly because it is unclear whether particular cell features or 

configurations of deeper structures render them magnetically silent (Hämäläinen et 

al., 1993).  Despite a well-characterized repertoire of characteristic oscillatory 

dynamics (for reviews see Buzsáki, 2006; O’Keefe, 2007), it is often assumed that the 

hippocampus is difficult to detect with MEG, an assumption that has only recently 

begun to receive critical reappraisal (Attal and Schwartz, 2013; Riggs et al., 2009). 

Research on the methods required to characterize hippocampal detectability has not 

been matched by attention to fMRI, rodent, behavioural, and intracranial methods 

used to characterize hippocampal functions. Here, we are concerned with the analysis 

and acquisition parameters required for successful and robust non-invasive detection 
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of human hippocampal signals. The general relevance of this aim extends to clinical, 

computational, and cognitive research questions.  

In this thesis this issue is addressed by employing a range of different techniques 

including simulations, anatomical and electrophysiological modelling, acquisition 

optimisation through design, virtual reality environments, and room temperature 

optically pumped magnetometers.  

In this introductory chapter, an overview of MEG as a neuroimaging modality is 

presented, starting with the origins of the MEG signal, and how this signal can be 

detected with the two different types of sensors this project used. Next the theory and 

mathematical methods used to characterise the observed signal in 3D space are 

introduced. Generally, these methods rely on specific assumptions about the magnetic 

signal: both where it might originate, and how it might co-vary between neighbouring 

locations. To tie these concepts together with the methods employed in later chapters, 

the introduction describes how such assumptions can be formulated as hypotheses, 

and how these can be directly compared in a Bayesian framework. Finally, the 

relevance of, and rationale for, studying the hippocampus using MEG is outlined, and 

both the modelling and simulation approaches used are described. In addition, the 

debate regarding detectability of hippocampus using MEG is briefly reviewed, and 

several previously unresolved questions that are addressed in this thesis are 

highlighted. 

 

 

Origins of the MEG signal 

 

Electromagnetism of the brain  

The brain transmits information through electrical activity and electrical current flow 

gives rise to magnetic fields. MEG measures these magnetic fields. The MEG signal 

is thought to originate mainly in the outermost layer of the brain - the cerebral cortex - 

which consists of a 2-4 mm thick sheet of grey matter. The surface area of this sheet 

in spread out form is ~2500 cm2 for an adult human brain (Hämäläinen et al., 1993). 

In order to fit it inside the skull, it is therefore highly folded (Figure 1.1A). Interestingly, 

the cellular architecture is well-preserved across this sheet: it is possible to subdivide 

it into different layers based on the morphological features of cells within it (Figure 
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1.1B). Although the absolute thickness of the sheet and the layers vary to an extent 

with function of a particular brain area, the layers are generally well-preserved. Of 

main interest here are the layers containing a particular type of neuronal cell, namely 

pyramidal cells. These cells are large, recurrently connected (i.e. excite and inhibit one 

another so as to potentially introduce synchronous activation), and oriented in parallel. 

Pyramidal cells are found mainly in layers II/III and V, with those in layer V being larger 

and longer (Figure 1.1). Layer V is therefore thought to constitute the main 

contribution to the recorded MEG signal (Murakami and Okada, 2006) (Figure 1.1).   

 

Figure 1.1: Human brain, cortical layers, current dipoles and magnetic fields hereof.  

A) Lateral view of the human brain. The cortical surface is intricately folded, allowing more 

surface area and therefore computational power inside the skull. Photograph adapted from 

[Visuals Unlimited]. B) Layering of different cell types in outermost sheet of cortex (cerebral 

cortex). Horizontal lines mark subdivision into six distinct layers. These are, from outer to 

innermost layers the molecular (I), external granular (II), external pyramidal (III), internal 

granular (IV), internal pyramidal (V) and multiform (VI). Together these six layers constitute the 

grey matter. Below them are white matter and above them are the pia, arachnoid, and dura 

matter before the skull. Layers II/III and V contain pyramidal cells which have triangularly 

shaped cell bodies as shown. Blue arrow represents a current dipole produced by electrical 

activity in a layer V pyramidal cell. Diagram adapted from https://o.quizlet.com/X.dubyvJnupqdHtsbEOi9A.png 

C) Magnetic field of a current dipole. Blue arrow represents current dipole created by a primary 

current, dotted lines represent the volume current balancing it and solid lines represent the 

magnetic field. Note that the magnetic field is technically continuous and the width of the circles 

represent its strength at three heights. The magnetic fields “wrap around” the current dipole 

and should therefore be interpreted as a three-dimensional ring around the blue arrow. This 

diagram assumes the conducting medium to be homogeneous which is largely true for 

magnetic fields in the brain. D) Topographical field map derived from MEG signals. The maxima 

and minima of the magnetic fields represent the locations where the strongest part of the 

magnetic field exits and enters the skull. The dipole is midway between these two points. 

Images C and D adapted from (Hämäläinen et al., 1993). 
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In the next section the production of a primary current (blue arrow, Figure 1.1B,C) is 

described in terms of movement of ions and thus charge along the membrane of 

pyramidal cells. To compensate for this and prevent build-up of charge, a passive 

volume current (dotted lines, Figure 1.1C) restores the balance of charge through ion 

flow in the opposite direction in the extracellular space. Both currents contribute to the 

resulting magnetic field (solid lines, Figure 1.1C) and can be approximated as a 

current dipole: two electrical charges separated by a small distance (such as the length 

of a neuron), with equal magnitude but opposite charge (blue arrow, Figure 1.1B-D). 

Here we focus first on the physics and neurobiology of pyramidal cells and current 

dipoles, and how these give rise to the measured MEG signal.  

 

Electrical and chemical signalling of neurons  

The nervous system consists of billions of specialized cells which have evolved to 

carry and transfer information. While the former is achieved electrically within nerve 

cells or neurons, the latter is achieved chemically when passing information from one 

neuron to the next. Both of these processes are mediated by the opening and closing 

of ion channels in the cellular membrane.  

Within-neuron communication relies on well-maintained electrochemical gradients 

across the membrane which, when altered, result in fluctuations in the local membrane 

potential. The main ions involved are sodium (Na+), chloride (Cl-), calcium (Ca2+), and 

potassium (K+). While Na+, Cl- and Ca2+ have higher extracellular concentrations, K+ 

has a higher intracellular concentration. These chemical gradients are balanced by 

electrical gradients. For each ion, there exists a membrane potential at which the two 

gradients are exactly balanced and there is no net flow. This is known as the reversal 

potential. It is the value of the reversal potential relative to the neuron’s ‘resting’ 

potential (around -65 mV) that determines whether an increase in ionic permeability 

due to channel opening will result in de- or hyper- polarisation of the membrane. When 

the value of the membrane potential is lower than resting potential (i.e. -70 and -110 

mV for Cl- and K+ respectively), the membrane will hyperpolarise if the channels open. 

Conversely, when it is higher (i.e. +40 and 0 mV for Na+ and Ca2+ respectively), the 

membrane will depolarise when the channels open. When the channel is depolarised 

past a certain threshold (about -55 mV), the change in electrical potential becomes an 

absolute and highly stereotyped potential which propagates along the length of the 
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membrane and is referred to as an action potential. This propagation of the action 

potential continues along the axon until it reaches the synapse, where it causes 

release of neurotransmitters at the axonal terminals. 

Between-neuron communication relies on local release of neurotransmitters into the 

synaptic cleft between cells. These neurotransmitters act on, and thereby open, 

ligand-gated ion channels on the neighbouring neuron. Similar to within-cell 

communication, small electrical potentials are generated as a result of ion flux when 

the channels open. These potentials are commonly referred to as post-synaptic 

potentials (PSPs) and form the basis of the signal detected with MEG. As neurons can 

either excite or inhibit one another (or themselves), two main classes of 

neurotransmitters exist: excitatory and inhibitory. The main excitatory pathway 

involves the neurotransmitter glutamate which acts on either AMPA1 (Na+ permeable), 

or NMDA (Ca2+/Na+ permeable) receptors. This gives rise to excitatory (i.e. 

depolarising) post synaptic potentials (EPSPs). Conversely, inhibition most commonly 

works through the release of the neurotransmitter GABA which acts on so-called 

GABA receptors (Cl- permeable) and generates inhibitory (i.e. hyperpolarising) post 

synaptic potentials (IPSPs). Because these potentials are a result of inputs from other 

cells, they occur mainly on the dendrites of the neuron; but importantly, the dipole used 

to model these PSPs spans the length of the neuron, as the current sources (outward 

currents) and sinks (inward currents) are located at opposite ends of the neuron 

(Figure 1.2A).  

Four important differences between action potentials and PSPs distinguish them in 

terms of detectability in MEG. First, action potentials are biphasic whereas EPSPs are 

monophasic. Therefore, when detecting activity synchronized across large cell 

populations (around 104), action potentials may cancel each other out if not exactly 

synchronized, whereas EPSPs summate as long as they overlap in time. Second, 

EPSPs lend themselves well to detection in MEG because they are slower and thus 

have a larger window during which these overlaps can take place. While action 

potentials typically last only around a millisecond, EPSPs last tens of milliseconds, 

depending on the receptor type – the decay time is ~2 ms for AMPA receptors and up 

to 100 ms for NMDA receptors (Spruston et al., 1995) (Figure 1.2B).  Third, an action 

potential consists of de- and re-polarisation moving along the length of the axon. This 

                                                           
1 AMPA stands for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,  

NMDA stands for N-methyl-D-aspartate, and  

GABA stands for γ-aminobutyric acid. 
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is modelled well by two opposing dipoles; one leading and one trailing the 

depolarisation. If the conduction velocity of an axon is 1 m/s, then the distance 

between two such dipoles will be ~1 mm (Hämäläinen et al., 1993). Consequently, 

they will form a quadrupole at a distance (Plonsey, 1977), which means that the 

contribution will be far weaker than dipolar sources such as EPSP-induced neuron-

wide potentials. Specifically, the decay of the magnetic field strength with distance 

from the primary current follows the inverse square law. Therefore, for distance rd 

between a given current source and a sensor detecting its field at a point in space, the 

decay is proportional to 1/rd
2 if the current is a dipole, and 1/rd

3 if it is a quadrupole 

(Hämäläinen et al., 1993).  

Because the magnetic field associated with action potentials is quadrupolar, it will 

decay more rapidly with distance and therefore be less detectable than dipolar 

elements at a distance – such as the scalp. Finally, the apical dendritic trees (Figure 

1.2A) of neighbouring pyramidal cells tend to be aligned and thus lend themselves 

well to formation of dipolar activations across a population of many neurons, whereas 

the same is not true for the axons in such a population (except when they enter white 

matter pathways). Generation of measureable fields also depends on recurrent 

connectivity across the neuronal circuits – i.e. pyramidal cells are structurally 

configured to do so but also require synchronisation, e.g. through recurrent 

connectivity between them, or with the help of interneurons which help 

synchronisation. Thus, functional and structural connections are needed for 

synchronising populations. Such circuits can be found in the pyramidal cell layers of 

both neocortex (layers II/III and V) and the hippocampus. In the hippocampus, a single 

pyramidal cell layer which is morphologically highly similar to neocortical layer V spans 

the Ammon’s horn subfields (Amaral and Witter, 1989) (see also Hippocampus and 

Hippocampal Oscillations section). Thus, the ‘open field’ arrangement underpinning 

the generation of macroscopic electrical potentials can be found across dendrites, but 

not in axons along which the dipoles cancel out. Critically, these parallel dendritic 

arrangements are also perpendicular to the surface of the cortical sheet, which means 

that when it is tangential to the surface of the head, the magnetic field is detectable 

outside the head (although radial dipoles are therefore lost, these make up a very 

small proportion of the potential cell assemblies (Hillebrand and Barnes, 2002)). 

In summary, synchronous excitatory input to apical dendrites of a population of parallel 

pyramidal cells induces EPSPs that can be modelled as a dipole moment spanning 

the height of the neuron cluster, as the sinks and sources are maximally separated. 

Given that these magnetic fields are dipolar, they are detectable at a distance. 
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Furthermore, they are likely to summate sufficiently due to their monophasic nature 

and relatively slow time constants, as well as parallel structural arrangements (Figure 

1.2C).  

There are nonetheless instances where action potentials may contribute to the 

measured signal, such as during epileptic seizures (Bragin et al., 2002), at very high 

frequency activity (>100 Hz) (Curio, 2000), or from somatosensory stimulation (in rat 

neocortex) (Barth, 2003). However, the focus of this thesis is on modelling the signals 

observed at much lower (e.g. 4-8 Hz) frequencies, and it is highly unlikely that action 

potentials influence these signals.  

 

 

Figure 1.2: Basic structure and electrical response profile of a pyramidal neuron.  

A) The neuron receives inputs from other neurons on its dendritic tree, on both the basal and 

apical portions. Excitatory inputs cause excitatory postsynaptic potentials (EPSPs) to arise. 

Reconstructed morphology of layer 5 pyramidal cell, adapted from http://bluebrain.epfl.ch/  B) 

EPSPs vary in duration depending on the receptor type. Im represents the membrane current, 

quantified in nano Amperes (nA), following a unitary synaptic input at t=0ms. From (Shepherd, 

2003) C) Example of an open field: pyramidal neurons arranged in parallel with a dipole 

moment arrow next to it. The neurons receive synchronous excitatory inputs to the apical 

dendrites. The sink is therefore at the top or near the apical dendrites, while the source is at 

the bottom near the soma. 

http://bluebrain.epfl.ch/
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A subtle but important point is the relationship between distributed excitatory synaptic 

inputs to dendrites (Spruston, 2008), and the modelling of this activity as an equivalent 

current dipole (ECD). There are complex and specific cytoarchitechtonic differences 

between the synaptic targets of different sub- and neo-cortical projections, which 

mean that the dendritic arbors contact a given pyramidal cell at different points. 

Consequently, the distance between the sink and the source of a given dipole will 

differ depending on where the excitatory input was delivered, causing differences in 

the magnetic field that is generated. For example, excitation of the soma of layer III 

pyramidal cells gives a positive surface potential, whereas excitation of the apical 

dendrites of layer V pyramidal cells produces a negative surface potential (Mitzdorf, 

1985). Hence, it is difficult to draw conclusions about whether the underlying signal is 

excitatory or inhibitory in nature based on the sign of the cortical dipole.  

 

Electromagnetic coupling and properties of the signal 

As different patches on the cell membrane act as current sources (outward currents) 

and sinks (inward currents), magnetic fields are generated around the current flow. 

The EPSPs of neurons thus underlie the measured signal, but these are not strong 

enough to be individually detected at the scalp. One estimate is that the current dipole 

of a 2 mm long cortical pyramidal cell is between 20-200 fAm (Hämäläinen et al., 1993; 

Murakami and Okada, 2006), while the weakest signal measurable is around 10 nAm 

(Hämäläinen et al., 1993). It follows that if one measures a 20 nAm dipole, the number 

of concurrently active cells generating the signal must be between 100,000 and 

1,000,000.  

The Danish physicist Hans Christian Ørsted was the first to describe the link between 

electric currents and magnetic fields in 1819-20. Before this, in 1786, Luigi Galvani 

demonstrated the presence of electrical current in animal (specifically frog) tissue. 

Later, in 1831, James Clerk Maxwell proposed a system of partial differential 

equations describing how electrical (E) and magnetic fields (B) are generated by the 

rate of change of each other, and the presence of charge density (ρ) and current 

density (J). He also proposed that the propagation of the electrical and magnetic fields 

could be described with a single wave equation, and that the speed of this propagation 

is equal to that of light. Since MEG sensors are only a few centimetres (or millimetres 

in the case of newer sensors) from the brain, the delay between generation and sensor 
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detection of electromagnetic activity need not be considered. Notably, this is different 

from other neuroimaging modalities such as positron emission tomography (PET) or 

functional Magnetic Resonance Imaging (fMRI) where the signal can only be detected 

after several minutes or seconds, respectively. The second reason why Maxwell’s 

equations are useful for describing MEG data, is that brain currents have sufficiently 

low frequencies (<1000 Hz), such that the capacitance and impedance of the head 

and brain tissues, the inductive effect (dipoles across chemical bonds) and the 

electromagnetic propagation effects (attenuation, reflection or perturbations of the 

waves) are all negligible. Together, the instantaneous propagation and the relatively 

low frequencies mean that the time derivatives in the original equations can be ignored 

and thus the equations take a simpler, ‘quasi-static’ form (Geselowitz, 1967; 

Hämäläinen et al., 1993). 

The key notion of electromagnetic coupling as described by Ørsted, is that an electric 

current produces a circular magnetic field as it flows, be it through a wire, or for the 

purposes of understanding MEG, through a neuron. This primary current generates 

magnetic fields that are transmitted through the biological tissue of the head and 

towards sensors outside. Critically, this relationship is not only quasi-static, but also 

linear such that the weighted sum of a subset of currents is equal to the weighted sum 

of their corresponding magnetic fields (Kutas and Dale, 1997). The Biot-Sarvas law 

describes this relationship between a current density J(r’) at location r’ in relation to its 

magnetic field B(r) at a given location r (Baillet et al., 2001; Hallez et al., 2007) 

 
𝐵(𝑟) =  

µ0

4𝜋
∫ 𝐽(𝑟′) ×

𝑟 − 𝑟′

‖𝑟 − 𝑟′‖3
𝑑𝑣′ (1.1) 

Where µ0 is the permittivity of free space (a fundamental constant, (Baillet et al., 2001; 

Hämäläinen et al., 1993)), and dv’ is the differential element of volume. The current 

J(r’) depends both on primary current flow (in/along the neuronal membrane), and on 

volume current flow (compensatory ion flow in the extracellular space). In MEG, the 

more relevant of the two is the primary current, as the location hereof is the location 

of the active neuron assembly. For a given distribution of primary currents and 

potentials on all surfaces of interest (i.e. patches of cortex with sufficiently large cell 

assemblies), the magnetic field can be directly calculated, and becomes (Geselowitz, 

1967): 
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𝐵(𝑟) = 𝐵0(𝑟) +  

µ0

4𝜋
∑(𝜎𝑖 − 𝜎𝑗)

𝑖𝑗

∫ 𝑉(𝑟′)
𝑟 − 𝑟′

‖𝑟 − 𝑟′‖3
× 𝑑𝑆𝑖𝑗

𝑘

𝑆𝑖𝑗

 (1.2) 

Where 𝐵0(𝑟) is the magnetic field due to primary currents alone, summed over all 

boundaries (inner skull surface, outer skull surface, scalp). The second term describes 

the contribution of the volume current to the magnetic field, in the form of surface 

integrals across the brain-skull, skull-scalp, and scalp-air boundaries. 𝜎 denotes the 

conductivity term, which is assumed to be isotropic and constant for each of the three 

surfaces, and V(r’) denotes the potential at r due to the primary current. 𝑆𝑖𝑗 are the 

modelled surface finite elements.  

This equation thereby states that the magnetic field can be calculated directly, given 

the primary current distribution and the potential on all surfaces. In other words, it is 

hereby possible to compute the MEG signal generated by would-be neural activity. 

This is also known as forward modelling or solving the forward problem. In turn, this 

enables inferences about the spatial origins of the recorded MEG signal. To compute 

the forward model, we need to specify a primary current distribution 𝐽𝑝(𝑟′) from which 

we can calculate the primary magnetic field 𝐵0: 

 
𝐵0(𝑟) =   

µ0

4𝜋
 ∫ 𝐽𝑝(𝑟′)  ·  

𝑟 − 𝑟′

‖𝑟 − 𝑟′‖3
𝑑𝑟′ (1.3) 

The forward problem is solved (or the forward model is provided) by using the primary 

magnetic field 𝐵0(𝑟) to model the external magnetic fields. The next two sections deal 

with how the magnetic fields are detected and how the primary current distribution can 

be modelled (forward modelling). 

 

Summary 

The signal measured in MEG primarily originates from postsynaptic potentials (PSPs) 

in pyramidal cells. Synchronized excitatory inputs summate and give rise to dipolar 

magnetic fields which are detectable at the scalp. Important structural features are 

parallel and scalp-tangential arrangements of the dendritic trees, which is the case in 

the pyramidal cell layers found in layers II/III and V of neocortex, as well as the single 

pyramidal cell layer in hippocampus.  
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The most important feature of the MEG signal is that, because of the instantaneous 

propagation of magnetic fields from the brain to the sensors, it presents a direct but 

non-invasive measure of real-time neural activity.  
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Technologies for detecting magnetic fields from the brain 

 

In order to successfully record the very small magnetic signals generated by the brain, 

one must both reduce the otherwise overpowering external magnetic fields, and use 

highly sensitive sensors. Further, it is appropriate to configure the sensors to have a 

high sampling rate (many Hz) because the signals reflect real-time brain activity, unlike 

with for example fMRI. This section describes different currently used noise reduction 

techniques and the two different types of magnetometer sensors used in this thesis. 

While the conventional Superconducting Quantum Interference Device (SQUID) 

based sensors require low temperature environments to function, the newer 

generation of Optically Pumped Magnetometer (OPM) sensors require heating but 

only in a small, sub-cubic centimetre, sensitive volume. In practice this means that 

they can be approximately room temperature a few millimetres from this volume and 

therefore from the scalp. This section briefly describes the quantum mechanics and 

physics underpinning these sensors. 

 

Noise reduction 

The magnetic fields generated by the brain are extremely weak. As mentioned, 

thousands or hundreds of thousands of cells are required to give rise to a measureable 

signal. Nonetheless, the amplitude of a typical evoked (stimulus time-locked) response 

is only ~100 femtoTesla (fT, 10-15 T). This is around one billion times smaller than the 

constant, ~50, µT magnetic field of the earth (Figure 1.3). Additionally, other large 

signals come from cars, trains, computers, people, power lines, and metallic doors – 

all of which are typically found within short distances of an MEG scanner. Finally, 

magnetic fields generated by the heart or eyes can in some cases overpower the brain 

signal, even if this is detected at the scalp. It follows that in order to detect signals from 

the brain, the external signals must be reduced or ideally eliminated.  
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Figure 1.3: Environmental and biomagnetic noise sources. 

Scales of magnetic fields relative to those measured with MEG. Numbers reflect femto-Tesla 

(fT, 1 fT=10-15T). The fields are compared to sound and pressure levels at different distances. 

Noise reduction is critical because most environmental and physiological noise sources are 

larger than brain responses; sometimes 10-12 orders of magnitude larger. Note that close 

proximity to MRI suites introduces immense magnetic fields and the attenuation hereof is 

therefore critical for MEG recordings in many hospital or neuroimaging laboratory settings. 

Image adapted from Sylvain Baillet. 

 

Modern noise reduction set-ups consist of four main components:  

First, the external magnetic fields are reduced by carrying out recordings inside a 

magnetically shielded room (MSR). This provides passive shielding against magnetic 

noise from the environment. High frequencies are attenuated by eddy currents 

whereas lower frequencies are directed around the shielded room. The external 

magnetic fields bend around the MSR and thus the noise inside of it is minimized to 

10-20 nT. The shielding consists of concentric layers of mu-metal (a nickel-iron alloy) 

and aluminium.  

Second, environmental sources of noise are minimized by placing objects which could 

interfere with the signal outside of the MSR, and/or only using objects which are 

guaranteed to not introduce artefacts inside the MSR. For example, the projector used 
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to present visual stimuli is located outside of the MSR, whereas devices used to record 

participant’s responses, such as button boxes, contain no metallic moving parts.  

Third, physiological responses such as those from muscle are reduced as much as 

possible during recording, and can also, to an extent, be subsequently removed from 

the data before analysis. These can arise when subjects make saccadic eye 

movements, blink, swallow, cough, adjust their head position, or when their heart 

beats. To minimize the saccadic eye movements, subjects are often instructed to look 

at a fixation cross during a baseline period (although this is far from problem-removing 

if subjects move their eyes in a way that is stereotypical during the task). To minimize 

head movement, subjects are instructed to hold still as much as possible, and/or to 

rest the back of their head on the back part of the inside of the helmet-like structure 

which contains the sensors (the dewar, Figure 1.4A). However, it is still standard to 

record upwards of 5 mm of head movement, even during short recording sessions 

(Whalen et al., 2008). This problem is returned to and a possible solution is presented 

in Chapter 3 where flexible and subject-specific head-casts are described. The cardiac 

related fields are most often removed from the data offline, through the use of an 

algorithm that identifies the stereotypical waveform of the heartbeat (the combination 

of three graphical deflections, the “QRS complex”), and subtracts the wave deflections 

from the signal. 

Finally, reference channels located inside the MEG scanner can be used to measure 

the ambient magnetic noise. In combination with the signals picked up by the pickup 

coils and SQUIDs, the information from the reference channels can be synchronously 

processed such that a third-order gradient of environmental noise sources can be 

calculated synthetically. This higher-order gradiometer formation is a (CTF-system 

specific) noise reduction technique carried out in real time. A higher-order gradiometer 

is created by subtracting a pre-calibrated mixture of reference channels from each 

gradiometer output. This functions as a form of noise subtraction, as the fields 

recorded at both the standard and reference channels can be assumed to be 

environmental, as the fields from the brain will rapidly attenuate with distance from the 

brain and therefore only be detected by the nearby standard sensors. 

 

Summary 

The weakness of the magnetic signals generated by the brain means that reducing 

externally generated magnetic fields and using highly sensitive devices are 
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prerequisites for detection. This can be achieved at two levels. First, during 

acquisition, one can use magnetic shielding, remove ferromagnetic objects from the 

shielded room, minimize physiological interference from the subject’s body (or remove 

well-characterized events from the data synthetically), and create higher-order 

gradiometers. In addition, some sensor configurations allow more noise attenuation 

than others (but this may be a tradeoff with depth sensitivity, see next section).  

Second, acquisition protocols and experimental designs can be optimised with respect 

to minimizing noise (or equivalently maximising SNR) through increasing the number 

of trials, minimizing blinking, movement, co-registration error, muscle strain etc, and 

decreasing the brain-sensor distance. To explore these effects further, we now turn to 

the two types of magnetic sensor that have been employed in the experiments 

reported in this thesis: superconducting quantum inference devices (or SQUIDs) and 

optically pumped magnetometers (OPMs). 

 

Superconducting Quantum Interference Devices; SQUIDs 

Superconducting Quantum Interference Devices (SQUIDs) rely on the current 

generated across two Josephson Junctions (JJs) in a superconducting loop. This 

effect was named the Josephson effect after it was first described by Josephson 

(Josephson, 1962), giving way for MEG to become a neuroimaging modality ten years 

later (Cohen, 1972). Modern SQUID sensors use a superconducting loop which is 

usually made of niobium cooled to superconducting temperatures (Figure 1.4A,B). 

Such temperatures are defined as within 20 degrees of absolute zero, whereas 

‘cryogenic’ temperature refers to temperatures <150 ºC. The term cryogenic is 

therefore used to describe the MEG system’s cooling which uses liquid helium to 

maintain a temperature of ~-270 ºC.  

Direct current (dc) SQUIDs output the voltage across the JJs. This voltage can be 

used to measure the magnetic flux which passes through the loop because they co-

vary periodically. 

The magnetic flux is measured using a superconducting flux transformer (also called 

a pickup coil, Figure 1.4C). A first-order gradiometer pickup coil consists of two 

opposite wound wires located some distance apart and both perpendicularly to the 

surface of the head (Figure 1.4C). The advantage of this configuration over simpler 

ones (e.g. single loops of wire), is that the coil is insensitive to homogenous magnetic 
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fields such as those created by environmental noise sources. Moreover, the directional 

sensitivity can be determined by orientating the two loops: planar first-order 

gradiometers are maximally sensitive to the spatial gradient along a particular plane 

or direction, whereas axial gradiometers (Figure 1.4C) are maximally sensitive to the 

magnetic activity which is perpendicular to the surface of the scalp. This thesis uses 

data recorded and simulated using axial gradiometer dcSQUIDs.   

 

 

Figure 1.4: MEG system set-up and dcSQUID sensor circuitry. 

A) MEG sensor instrumentation. A large tank of liquid helium is used to lower the temperature 

of the SQUIDs to -270 ºC to enable superconductivity of niobium. i) Diagram of SQUID; 

Josephson Junction acts as insulator separating two superconductive loops but allowing 

current to flow between them. ii) Configuration of subset of SQUIDs used to detect magnetic 

fields produced by neural activity. The magnetic contours represent the in- and out-flow of 

magnetic fields produced by sources tangential to the scalp. The contours can be detected at 

a distance and characterized spatially through the use of several SQUIDs. Adapted from 

(Fishbine, 2003). B) Diagram of a dcSQUID. A flux transformer applies magnetic flux which 

produces oscillations in the SQUID that can be detected (by an external circuit) and amplified. 

FT = Flux transformer, JJ = Josephson junction, IDC = externally applied direct current, L = 

inductor of the SQUID. Adapted from (Andra and Nowak, 1998)  C) Axial gradiometer flux 

transformer seen from the side. The use of two aligned magnetometers allows substantial 

noise reduction as distant fields are detected by both and can be subtracted out, while neutrally 
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generated fields are detected with more strength in the pick-up coil. Li = inductance of the input 

coil, L = inductance of the SQUID. From (Andra and Nowak, 1998). 

 

SQUID sensors are most often arranged in a helmet-like structure or a dewar (Figure 

1.4A), The dewar contains hundreds of sensors distributed across its inner surface as 

close to the scalp as possible given the requirement for cryogenic cooling. Practically, 

MEG recording is silent, passive, non-invasive and gives exceptionally high time 

resolution. The empirical study in this thesis uses a Canadian Thin Films (CTF) system 

containing 275 sensors, with an axial gradiometer at each location. This system also 

contains 29 reference channels which can be used to synthesize third order 

gradiometers, and/or first regress out ambient fields in the case of optically pumped 

magnetometer recordings.  

Until very recently, SQUIDs have remained unchallenged as MEG sensors. A series 

of combined recent developments in atomic physics and miniaturization however have 

led to the introduction of a potential replacement technology;  

 

Optically Pumped Magnetometers; OPMs 

Optically Pumped Magnetometers (OPMs) are a new generation of MEG sensors 

which do not require cryogenic cooling. Instead of superconductivity, OPMs rely on 

the manipulation and interrogation of electron spin in alkali vapour. This section serves 

as an overview of the physics and mechanics of these new sensors, and compares 

them to SQUIDs for context.   

Similar to SQUIDs, the development of OPMs began close to 50 years ago (Dupont-

Roc et al., 1969) but initially had dramatically larger size, large power consumption, 

as well as poorer sensitivity (note that sensitivity scales with size). Particularly due to 

their size, these magnetometers could not be used for multi-channel recordings, 

making them less attractive for MEG experiments (Polyakov, 2003). Over the past 

decade however, these problems have been solved and OPMs now represent a 

candidate technology for surpassing and replacing SQUIDs. The primary reason is 

that OPMs have been miniaturized and operate without cryogenic cooling, meaning 

that they can be placed directly on the scalp. Critically, they now also provide equal 

sensitivity to magnetic fields as SQUIDs do (Shah and Wakai, 2013).  
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Magnetic field sensing by OPMs functions by aligning and then detecting changes in 

electron-spin precession of vaporous alkali atoms. This is done in a low magnetic field 

to ensure that ambient external magnetic fields do not influence the spin precession 

and distort the measurement. First, circularly-polarized light is applied to alkali vapour 

contained in a glass cell, which causes its single valence electrons to orient their spin 

along the direction of the polarized light, absorbing the spin of the photons. This 

process is known as optical pumping. For the spins to orient most efficiently, alkali 

metals with a single (and thus more easily perturbed) unpaired valence electron such 

as potassium, caesium, or rubidium are used (Figure 1.5A). It is the electron’s spin 

which enables operation of OPMs as it can be used to detect the presence and 

direction of an external magnetic field. This is because the electron spin precesses 

around a magnetic field at the precessional or Larmor frequency (Figure 1.5B). This 

frequency refers to the rate of precession of the dipole of the electron around the 

external magnetic field and therefore reflects the strength of the external magnetic 

field. If there is no external magnetic field applied, the spins do not change. If on other 

hand there is, e.g. one generated by the brain, then the spins change, enabling them 

to be used for detection of the external field. Thus, large polarization can be produced 

in these electrons through optical pumping with circularly polarized light (Figure 1.5C), 

which can be conceptualised as a baseline condition relative to which the effects of 

external magnetic field fluctuations can be measured.  

“Pumping” refers to the transfer of spins from the light photons in the circularly 

polarized light, to the valence electrons in the gas. This is a highly effective process, 

meaning that the spins align to near unity. After spin polarization, the electron spins 

can be used to detect external magnetic fields by using a probe light (Figure 1.5D). 

The probe light is linearly polarised to near resonant for zero applied magnetic field 

(recall that the nuclear magnetic resonance depends on the magnetic field), and its 

absorption after passing through the vapour cell can be used to characterize the 

external field (Figure 1.5E). This process is very simple as the changes in light 

absorption can be quantified based on measurements from a photodiode. The key 

feature underpinning the relationship between magnetic fields and electron spins is 

that due to nuclear magnetic resonance (NMR) properties, the resonant frequency of 

a given substance is directly proportional to the strength of the applied magnetic field. 

Thus, the resonant frequency can be used to infer the strength of the magnetic field.  

The stronger the external magnetic field, the more spin precession and the more 

absorption and less transmission of probe light. As the spin polarization difference in 

the probe light photons that pass through the cell reflects the presence and magnitude 
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of an external magnetic field, the probe light passes through the cell uninterrupted and 

the transmission is therefore maximal when there is no external field (Figure 1.5E, 

black line). The sensitivity of this detection depends on the ambient field being very 

small or non-existent, as the transmission will be non-informative if it is too far from 

zero. Moreover, an oscillating magnetic field is applied perpendicularly to the probe 

light and used to measure the local field’s orientation. This applied field is detuned 

from the gas’ resonance (at zero field) so that it does not interfere with the magnitude 

measurements. The demodulation signal causes the polarization angle to rotate in a 

known manner and the degree of rotation subsequently measured by the photodiode 

reflects how well- or mis-aligned the electrons are with respect to the pump beam in a 

certain direction, which in turn reflects the direction of the external field. The 

demodulation signal uses a polarimeter, and OPM direction measurements thus work 

by inferring the orientation of the modulated electron spin precession angle and 

thereby orientation of the magnetic field from the phase of this signal (Figure 1.5E, 

grey line).  

 

In most OPM devices, rubidium (Rb) vapour is used due to its atomic structure which 

contains a single valence electron, and its high atomic density and therefore relatively 

high SNR at low temperatures. For optimal atomic density, the cells are heated to 

~150 °C. Notably however, the cell vapour-containing cell is very small (~1cm3) and 

can therefore be buffered by air such that the surface of the sensor can be room 

temperature even a few mm away from the sensitive volume. This enables OPMs to 

be placed directly on the scalp which is the basis of the 5-10 fold SNR improvement 

(Boto et al., 2016).  
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Figure 1.5 OPM principles of operation 

A) Electron structure of Rubidum, showing the single valence electron in the 5th and outermost 

shell. B) Relationship between electron spin and magnetic field. The spin of the electron 

precesses around the magnetic field, be it from circularly polarized light applied by the OPM 

laser, or neurally generated fields. C) Optical pumping. Photons from circularly polarized light 

transfer their spin to Rb e- which are thus pumped to near-resonance. D) Diagram of an OPM. 

The spin orientations depend on the pump light σ+ and the magnetic field B. Because the pump 

light aligns the spins along a known direction, spin divergence from this (near) resonance will 

only occur if an external magnetic field is present. The probe light is used to detect this. If there 

is no field, it passes through the cell with maximal intensity and is detected by the photodiode. 

E) Photodiode output and demodulation signal curves. The light transmission, black curve, 

reveals the presence and strength of an external B field. An oscillating magnetic field is applied 

perpendicularly to the probe light. This means that the transmitted light is demodulated such 

that the phase can be used to read out the direction of the field, grey curve. 

Until 40 years ago, the largest limiting factor in obtaining higher sensitivity was the 

simple fact that when atoms collide, they can lose their spin orientation, a process 

called ‘relaxation’. As collisions cause the electrons to transition into an alternative 

hyperfine state, it orients and starts to precess in the opposite direction from the rest 

of the group of atoms. This precession causes decoherence of spins across an 

ensemble of atoms, which in turn causes the signal to be attenuated. Relaxation can 

be eliminated by ensuring that the collision frequency is higher than the Larmor 

frequency of spin precession. This effectively means that the spins do not have time 
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to precess and decohere between collisions before they collide again and transition 

back to their original hyperfine state. The high collision frequency is achieved by 

having at high atom density and high temperature (150-180ºC). Thus, the so-called 

Spin-Exchange Relaxation-Free (SERF) regime has contributed to the improvements 

in OPM sensitivity by removing the collision-induced sensitivity constraint (Happer and 

Tang, 1973; Kominis et al., 2003).  

Although the introduction of the SERF regime was accompanied by a large increase 

in sensitive, it is interesting and perhaps counterintuitive to observe that this sensitivity 

has decreased over time. The explanation lies in the requirements imposed by 

miniaturization of the sensors. While larger earlier cells were pushed to give extremely 

high sensitivity, they were also clumsy, impractical, and inherently limited with respect 

to spatial resolution, even in multi-channel systems. In order for them to be useful for 

experimental or clinical purposes however, the sensitive volume was reduced and the 

‘chip-scale’ magnetometers were introduced (for example,(Sander et al., 2012)). This 

reduced volume also reduced the price but limited the sensitivity which nonetheless 

matches that of SQUIDs. Thus, the SERF regime is central to the recent and dramatic 

improvements in OPM sensitivity, it can be implemented in small OPMs, but they 

currently limit the bandwidth to ~100-150 Hz (Sander et al., 2012; Shah and Wakai, 

2013). Fortunately however, most brain activity of interest falls within the 0-150 Hz 

frequency band (Hämäläinen et al., 1993).  This means that OPMs are now small and 

therefore flexible, can be placed close to the scalp, and with a sufficiently large array, 

can be used to localise and reconstruct neural activity in 3D - a feat which was not 

possible earlier with larger sensors. Next we discuss and quantify more explicitly how 

the two types of sensors compare. 

 

Advantages and Disadvantages of OPMs versus SQUIDs 

The increased sensitivity of OPMs come at a price. First, the dynamic range of OPMs 

is limited. The dynamic range is defined as the ratio between the largest and smallest 

possible measurable values of a changeable quantify, in this case the maximal and 

minimal magnetic field strength. This is because in very small magnetic fields, the spin 

precession and continuous pumping interact and static reorientation of the spins 

occurs (Griffith et al., 2010). Further, OPMs have a lower bandwidth (difference 

between upper and lower measurable frequency bounds) compared to SQUIDs: ~100-

150 Hz for OPMs versus 10,000 Hz for SQUIDs.  
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Nonetheless, OPMs possess several important advantages over SQUIDs. The most 

important is that they do not require cryogenic cooling and therefore enable direct and 

flexible placement of the sensors on the scalp. It follows from the inverse square law, 

which states that the intensity (here of a magnetic field) is proportional to 1/distance2, 

that halving the distance between a given source and a sensor equates to quadrupling 

the signal amplitude. Thus, depending on the distance of the sources from the scalp 

(larger improvements for superficial sources) and assuming equal noise floors for 

SQUIDs and OPMs, the source-level SNR improvements will be of a factor around 4 

(Boto et al., 2016). 

This is promising for the future of MEG research, which may benefit from these SNR 

improvements in a multitude of ways. OPMs will enable a neuroimaging modality to 

combine high temporal and spatial resolution. It will also enable flexible sensor 

configurations such that specific structures can be targeted on a subject-specific basis, 

be it for basic research to characterize hard-to-access structures such as the 

cerebellum or brain stem, or for clinical purposes such as localisation of suspected 

epileptic foci, e.g. in the hippocampus. Moreover, the sensors will be particularly useful 

for studies involving children that currently can only be scanned with relatively low 

SNR due to the fixed sensor configuration of SQUID systems.  

In particular, the OPMs will potentially be able to compliment and/or replace EEG and 

intracranial electrode placement prior to epilepsy surgery (Alem et al., 2014), as they 

can be worn for extended periods of time and thus likely detect infrequent epileptic 

activity (unlike SQUID-based MEG), while giving superior spatial resolution to EEG 

and removing the need for dangerous invasive surgery. In addition to these 

advantages, the acquisition and maintenance prices for these devices are significantly 

lower than helium-dependent SQUID systems.  

As discussed in relation to the SERF regime, another important comparison is with 

regards to sensitivity. Sensitivity is defined as the ratio of the change in the 

measurement and the corresponding (true) chance in the value of the quantity being 

measured. In MEG, this is quantified as fT/√Hz. The sensitivity can also be thought of 

as the detection noise, i.e. how much uncertainty is included in the measurement. The 

sensitivity is in part dependent on the size of the sensitive cell and density of the 

atoms; the more atoms, the higher the sensitivity. However, it is desirable to have 

small sensors for MEG as this gives way for higher spatial resolution and many-

channel measurements. Empirically the sensitivity of OPMs has been measured to be 

0.54 fT/√Hz with a small (few cm3) active volume (Kominis et al., 2003). Similarly, a 
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sensitivity of 0.2 fT/√Hz has been reported (Dang et al., 2010) at least over a narrow 

1 Hz frequency band. Around the same time, a sensitivity of 5 fT/√Hz was reported for 

an OPM with a sensitive volume of only 1 mm3 (Griffith et al., 2010). In a shielded 

environment, the improvement of OPM over SQUID sensitivity has been estimated to 

be a factor of 102 : ~3 fT/√Hz for SQUIDs versus the theoretical sensitivity limit of ~0.01 

fT/√Hz for Potassium (as opposed to Rubidium)-based OPMs. Potassium has the 

lowest molecule-to-molecule spin relaxation (Allred et al., 2002) and therefore higher 

sensitivity. However, it requires higher temperatures for optimal atomic density and 

Rubidum is therefore preferred for MEG applications (this may change if the 

Potassium cells can be made smaller or more compact however).   

Another major difference between SQUIDs and OPMs is the configuration of the 

sensor. While SQUIDs in the CTF system for example uses axial gradiometers as flux 

transformers, OPMs are magnetometers which have only a single sensing region and 

thus no equivalent built-in mechanism for noise reduction (although newer sensors 

have both field zeroing and modulation coils inside the sensor). Axial gradiometers 

and magnetometers are sensitive to dipoles in different locations and orientations.  

Therefore, while OPMs have a ‘zero sensitivity line’ directly underneath the 

magnetometer sensor and thus have maximum sensitivity when sources are 

positioned off-centre, axial gradiometer SQUIDs are maximally sensitive directly 

beneath the sensor. Interestingly, the sensitivity changes differ over space between 

the two configurations as well: the sensitivity decreases more rapidly with distance for 

axial gradiometers, making them more sensitive to superficial brain sources and less 

sensitive to deeper sources than magnetometers. This increased sensitivity to deeper 

sources with magnetometers comes at the cost of needing more accurate models for 

source reconstruction. This is discussed in more detail in Chapter 5. The main point 

here is that it is not straightforward to compare the two sensor types directly as they 

output different aspects of the signal.  

 

Summary 

In summary, OPMs work by manipulating and probing well-controlled atomic 

ensembles inside vapour cells based on the influence of external magnetic fields on 

electron spin resonance. The most exciting aspects of the sensors are the freedom 

from cryogenic cooling which enables flexible and direct placement of the sensors on 

the scalp, improving the SNR at least 5-fold. More recently, the miniaturization of these 
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sensors has enabled them to be configured into multiple channel set-ups, which 

enable large improvements in spatial resolution due to the increased sensitivity 

compared to SQUIDs. This development has created a final push towards potentially 

adopting OPMs as a new technology for MEG. However, OPMs have bandwidth 

compared to SQUIDs, but these are still sufficient for recording brain activity. The 

dynamic range is smaller but can be extended by using local feedback coils to cancel 

out external fields.  

In relation to the main aims of this thesis, the current magnetometer set-up of OPMs, 

although likely to soon develop to gradiometers for noise reduction purposes, will most 

likely be more optimal than SQUIDs for detect hippocampal sources due to their 

increased SNR from being closer to the source. This notion and other anticipated 

future developments will be revisited in the discussion.  
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MEG analysis techniques: theory and methods 

 

An externally measured electromagnetic field can be used to estimate neural activity 

in terms of its three-dimensional source configuration and time course. This requires 

two steps: construction of a forward model which describes the predicted scalp 

distribution for a given source with a specific orientation, magnitude and location, and 

subsequent inversion of this forward model to estimate the most likely spatial 

configuration of sources giving rise to the measured signal. All the inversion methods 

used here are parametric empirical Bayes linear inverse methods - the definitions and 

implications thereof will be described in this section. All source reconstruction methods 

rely on carrying out the following steps: preprocessing including filtering and removal 

of possible artefacts present in the data, source space modelling, data co-registration, 

forward computation, before finally carrying out the inverse reconstruction. Here we 

focus on the latter four. The methods for inverse reconstruction vary with respect to 

assumptions about covariance among sources. All simulations and analyses were 

carried out using the Statistical Parametric Mapping (SPM) software version 12 

http://www.fil.ion.ucl.ac.uk/spm/. 

This section serves to introduce in more detail the analysis methods and theoretical 

considerations underpinning source reconstruction methods used in this thesis. First, 

the forward and inverse modelling will be discussed, data co-registration will be 

introduced, and the general linear model will be described. This model proposes a 

solution to the inverse problem and as such comprises the linking principle between 

observed data and source estimates. Next, the Bayesian implementation of the 

inverse methods applied in this thesis will be discussed. Following this, a brief 

overview of the commonalities and mathematical terms of the different methods will 

be given (see (Belardinelli et al., 2012; López et al., 2014; Wipf and Nagarajan, 2009) 

for detailed descriptions). Finally, the Free energy principle and Bayesian model 

comparison will be considered in the context of source reconstruction. The objective 

in later chapters is to set up a framework for direct comparison of competing 

generative (forward) models, and examine this comparison across a range of 

reconstruction methods, empirical factors, and subjects. 

 

Forward Modelling and Data Co-registration 

http://www.fil.ion.ucl.ac.uk/spm/
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The ‘forward’ model is a description of the primary current distribution and its 

propagation through the head before reaching the sensors (Equations 1.1-1.3). It 

relates the measured sensor distribution with dipoles with known location, orientation 

and magnitude.  

Importantly therefore, the forward problem that the forward model solves is well-

posed. This is because there is only one solution for each current dipole, as the laws 

of electromagnetism are linear. It follows that if the primary current density consists of 

N terms, then each measurement can be decomposed into the sum of N terms where 

each represents the part of the measurement that is generated by a single potential 

source. In order to compute this forward model, one must first specify a generative 

model of the brain, scalp and skull (where the first is the most important in MEG). This 

generative model is informed by and based on neurophysiology, and it is possible to 

incorporate unique anatomical characteristics such as shapes of certain structures. 

The latter is used in this thesis for incorporating the surface of the hippocampus into 

the generative model, and evaluating whether this improves the ability of the 

generative model to explain the data parsimoniously. More commonly and generally, 

the forward model is specified by a manifold of the cortical surface based on an 

anatomical MRI image. Specifically, the cortex, skull and scalp surfaces can be 

extracted from T1-weighted anatomical scans using automated segmentation tools 

such as Freesurfer (Dale and Sereno, 1993; Fischl, 2012). In turn, this gives way for 

explicit modelling of the dipole orientation, which is usually specified to be orthogonal 

to the cortical surface mesh where each vertex constitutes a putative source. The main 

advantage of this approach is that given fixed dipoles, the electromagnetic forward 

model can linearly map each source onto each sensor based on approximations to 

Maxwell’s equations. Accurate solutions describing the signal can be obtained using 

methods such as the boundary element method (Brebbia and Dominguez, 1989) 

which incorporates geometric representations of each surface.  

Accurate forward modelling requires accurate estimation of the location of the brain in 

order to be useful. Co-registration is the process by which the functional MEG data 

are aligned or co-registered with the structural generative model (based on MRI data). 

However, if the co-registration is inaccurate and contains 5 or more millimetres of 

error, or there is an equivalent amount of (unmodelled) head movement during 

scanning, then it is reasonable to instead use a non-linear registration of the subject’s 

MRI scan to a canonical template brain (Henson et al., 2009; Mattout et al., 2007; 

Troebinger et al., 2014b).   
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The Inverse Problem 

Once a forward model has been constructed, it is inverted such that the underlying 

neural activity generated by the observed data can be estimated. Unlike the forward 

problem, the inverse problem is mathematically ill-posed, as there are effectively an 

infinite number of possible inverse solutions to a given forward model. In other words, 

even if the experimenter knew the exact magnetic field at all points outside the head, 

s/he would still be unable to determine with certainty the configuration of sources 

inside the head. The problem can be compared to estimating the configuration of 

hands and fingers based on a shadow (Figure 1.5a). Practically however, this 

limitation can be overcome if one is willing to make some simplifying assumptions to 

constrain the solution space. These are often already present and well-known, e.g. 

approximate relative sizes of objects in relation to distance (Figure 1.5b) or, in MEG, 

brain structure and function. In order to find a unique solution, one must specify a set 

of prior assumptions to constrain the inverse solution (Baillet et al., 2001). For MEG 

inverse solutions, these constraints can be anatomical, functional, and/or 

mathematical. In essence, the constraints or ‘priors’ act to define the solution space 

such that the most probable solution (given the priors) can be identified. The most 

likely priors are therefore those that maximise the model evidence for a given MEG 

dataset (Friston et al., 2008a; López et al., 2014; Wipf and Nagarajan, 2009). Hence, 

the Bayesian framework allows one to ask which model or set of priors is the most 

likely, given the data at hand. The approximation of the model evidence will be 

discussed in the Free Energy section below.  

 

 

Figure 1.5:  Illustration of ill-posed nature of the inverse problem.  
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a) Non-uniqueness of inverse problems: a 2D shadow can easily be computed given a source 

of light and a surface (akin to solving the forward problem). Conversely, describing a 3D 

configuration of hands and fingers based on this shadow is under-determined (akin to the 

inverse problem); many configurations could give rise to the same shadow figure. The 

challenge for the ill-posed inverse problem in MEG is reconstructing 3D neural source 

configurations from a lower-dimensional projection. Image adapted from Hand Shadows to be 

Thrown Upon the Wall (Henry Bursill, 1895, http://www.gutenberg.net). b) More realistic 

version of how the inverse problem is solved in an everyday context: by looking at the image 

on the screen, it appears that the man carrying the girl on his shoulders are the same height 

as the yellow house. Given a priori knowledge about the relative sizes of humans and houses 

however, it is easy to explain away this apparent equality with distance between the two. 

 

A well-validated strategy for solving the inverse problem is the distributed approach, 

where a large number of fixed dipoles fill the solution space and only their amplitudes 

(and not orientations or locations) are estimated based on the data. This allows an 

algebraic solution to the inverse problem (Grech et al., 2008).  

 

The Generalized Linear Model 

A distributed set of neural sources that linearly map onto sensors placed outside the 

head are employed by all the reconstruction algorithms used here (Hämäläinen et al., 

1993): 

 𝑌 = 𝐿𝐽 +  𝜀 (1.4) 

Where the dataset 𝑌 ∈ ℝ𝑁𝑐×𝑁𝑡 contains information of 𝑁𝑐 sensors at 𝑁𝑡 time points, 

the lead field 𝐿 ∈ ℝ𝑁𝑐×𝑁𝑑  incorporates our assumptions about cortical folding and head 

location between 𝑁𝑐 sensors and 𝑁𝑑 sources, and 𝐽 ∈ ℝ𝑁𝑑×𝑁𝑡  is a matrix containing 

𝑁𝑑 amplitudes by 𝑁𝑡 time points of unknown primary current density parameters (i.e. 

neural sources). 𝜀 is a zero-mean Gaussian noise distribution which incorporates both 

sensor noise and uncertainty about the propagation through 𝐿. Note that 𝐿 is defined 

as the propagation model of an MEG signal that is produced by a source of unitary 

strength, and is completely determined by the sensor configuration and volume 

conductor physics, as described in terms of the forward model. This function also 

contains all known details about the measurement set-up and physical properties of 

the brain. Since these are unlikely to change over the course of the experiment, the 

lead fields is only computed once per dataset. This is valid provided that the location 

http://www.gutenberg.net/


45 

 

of the head relative to the sensors is unchanged – whether or not this assumption is 

valid will be discussed later. 

The generalized linear inverse solution describes the neuronal activity, 𝐽(𝑡) at any 

latency or time point 𝑡. Because the number of potential sources greatly exceeds the 

number of sensors (𝑁𝑑 ≫ 𝑁𝑐), 𝐿 is ill-posed and therefore cannot be inverted directly. 

This problem is simplified by assuming that the source amplitudes 𝐽 are a zero-mean 

Gaussian distribution with covariance cov(𝐽) = 𝑄, which gives the generalized linear 

inverse solution: 

 𝐽 = 𝑄𝐿𝑇(𝑄𝜀 + 𝐿𝑄𝐿𝑇)−1 𝑌 (1.5) 

Where 𝑄𝜀 describes the sensor-level covariance cov(𝑌) and 𝐽 ∈ ℝ𝑁𝑑×𝑁𝑡 contains the 

estimated 𝑁𝑑 source amplitudes by 𝑁𝑡 time points. This general expression is used 

across most distributed source reconstruction algorithms which employ Gaussian 

assumptions. Given that 𝑌 is known and 𝐿 can be computed from the head model (and 

sensor configuration and volume conduction principles), the only parameters needed 

to compute the source current estimates in 𝐽 are estimates of the sensor and source 

level covariance matrixes, 𝑄𝜀 and 𝑄. The differences between inverse schemes arise 

from how 𝑄 – the source level covariance - is defined, and this will be described in the 

section Covariance Matrix Specification Using Different Functional Priors.    

Thus, having an algebraic solution to the inverse problem implies that the inverse 

problem can be formulated as a probabilistic generative model of the data. The term 

probabilistic refers to the joint probability of all variables in the model while the term 

generative implies that the model describes how the data were generated. This is done 

by including all possible (and not mutually exclusive) variables and their estimated 

probabilities in the joint probability, i.e. calculating the combination of factors which 

could have given rise to the data. These factors include locations and orientations of 

possible sources and are described in greater detail below. Moreover, the generative 

model is hierarchical with two parameter levels. Each level has its own prior precision 

which determines the importance of the prior relative to the data (in a Bayesian context 

relative to the likelihood). Optimising these precision values as free parameters is 

therefore equivalent to optimising the balance between the data and the priors at hand 

(Mattout et al., 2006; Phillips et al., 2002). This is a critical feature because it is 

effectively empirical model optimisation since the parameters can be estimated from 

the data.  
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The two levels are the sensor level which is directly measured, and the source level 

which is inferred. The source level is higher in the hierarchy and thus its 

‘hyperparameters’ represent priors on the lower level sensor parameters. This 

relationship means that the source level hyperparameters scale the sensor level prior 

distributions such that the likelihood is maximal given the data. Notably, this method 

assumes Gaussian distribution of the priors (Belardinelli et al., 2013; Friston et al., 

2008b; Henson et al., 2011; Phillips et al., 2005).  

 

Bayesian Implementation 

Applying Bayesian methods to the inverse problem is helpful because they enable the 

solutions (i.e. estimated locations or time courses) to take the form of posterior 

distributions as opposed to point estimates. A posterior distribution is the distribution 

of predictions (or unobserved observations) conditional on the observed data. In the 

context of source reconstruction, the posterior distribution describes the subset of 

possible sources which are most likely to have given rise to the observed data. Using 

a Bayesian framework also makes it possible to marginalise out irrelevant variables 

through integration.  

 

The basis of the Bayesian implementation is that the recorded activity over sensors, 

𝑌, is used to estimate the distribution of putative sources in the brain. The inverse 

solution constraints take the form of prior probabilities of the source activity 𝑝(𝐽) and 

that these priors are informed by anatomy and neurophysiology (and combined with 

the physical properties of volume conduction). The priors are then used to estimate 

the posterior probability of the source activity given the data p(J|Y) through 

combination with, or weighting by, the likelihood of the data p(Y|J). As such, Bayes 

theorem takes the form (Grech et al., 2008): 

 
𝑝(𝐽|𝑌) =  

𝑝(𝑌|𝐽)𝑝(𝐽)

𝑝(𝑌)
 

(1.6) 

Where evidence for the recorded data 𝑝(𝑌) is considered to be constant, given a 

constant dataset. This term also acts as a normalisation term because it is the 

denominator of the equation. Gaussian refers to the assumption of normally distributed 

and mean-zeroed data in the time domain. The estimated magnitude of 𝐽, 𝐽 can be 

found by taking the expectation of the posterior:  
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 𝐽 = 𝐸[𝑝(𝐽|𝑌)] (1.7) 

The covariance of 𝑝(𝐽|𝑌)  is equivalent to ∑ =𝐽  (𝐿𝑇𝑄𝜀
−1𝐿 + 𝑄−1)

−1 
. As this (𝑁𝑑 × 𝑁𝑑) 

source covariance is computationally expensive, it is commonly replaced by the 

modelled sensor covariance (Friston et al., 2008b) which is given by: 

 𝛴 =  𝑄𝜀 + 𝐿𝑄𝐿𝑇 
(1.8) 

Where 𝑄𝜀  is the sensor noise covariance, 𝐿 is the lead field, 𝑄 is the prior source 

covariance matrix and (. )𝑇 denotes the transpose operator. This in turn enables 

projection of the source space covariance components into the (typically smaller) 

sensor space. Given the algorithm-specific source covariance component(s) 𝐶𝑖 and 

the covariance estimate of the sensor noise 𝑄𝜀, the sensor covariance can be 

modelled as 𝛴 for optimising the hyperparameters: 

 

𝛴 =  𝑒𝜆0𝑄𝜀 + ∑ 𝑒𝜆𝑖

𝑁𝑞

𝑖=1

𝐿𝐶𝑖𝐿𝑇 
(1.9) 

Where ℎ𝑖 is now expressed as 𝑒𝜆𝑖 which constrains its value to be positive, ensures 

that the optimisation is convex and that the prior on the hyperparameters follows a 

Gaussian (this equates to assuming a log-normal distribution on the scale parameters 

𝑒𝜆) (Friston et al., 2008a; Wipf and Nagarajan, 2009).  

 

Principles of Inverse Reconstruction  

The three different inversion schemes used in this thesis are briefly described here 

with respect to their commonalities and differences. What differs between them is the 

choice of putative sources (the prior set) and the accompanying assumptions about 

source covariance 𝑄. The rationale for each is the same, however, and all three 

algorithms are PEB algorithms. As for these three schemes, most popular inversion 

schemes differ only in the choice of the form that the source covariance 𝑄 takes 

(Equation 1.5) (Friston et al., 2008a; Mosher et al., 2003; Wipf and Nagarajan, 2009) 

- that is, these three inversion schemes differ in their choices of source covariance 𝑄. 

The sensor noise is assumed to be identically independently distributed (IID), i.e., an 

identity matrix scaled by the so called regularization parameter ℎ0. This means that 
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the same noise level is assumed on all channels such that cov(𝜀) = 𝑄𝜀. It can be written 

as: 

 𝑄𝜀 =  ℎ0𝐼𝑁𝑐
  (1.10) 

Where 𝐼𝑁𝑐
∈ ℝ𝑁𝑐×𝑁𝑐 is an identity matrix, and ℎ𝑜 is the sensor noise variance. Implicit 

in this formulation is the assumption of uniformity (that the noise variance is the same 

across all sensors). ℎ𝑜 can also be informed by empirical recordings of an empty MSR 

to approximate the true sensor-level covariance (Henson et al., 2011). 

Another important parameter common across the inversion schemes employed here 

is smoothness, the spatial extent of each source prior. We include this because it is 

known a priori that neuronal currents display local coherence. The smoothing function 

used to determine the modelled smoothness is computed locally on the vertices of the 

anatomical subject-specific MRI-derived surface mesh. We use a Green’s function 

based on a graph Laplacian proposed by (Harrison et al., 2007) which can be 

described as: 

 
𝐺(𝑠) =  ∑

𝑠

𝑖!
𝐴𝑖

8

𝑖=0

 
(1.11) 

Where the adjacency matrix 𝐴 denotes the neighbourhood properties of the vertices 

where 𝐴 = 1 if there is face connectivity and 𝐴 = 0 otherwise. The smoothness 

parameter 𝑠  determines how far from the central vertex the G function connects the 

patch points. In SPM, the default value, and the value we use here is 𝑠 = 0.6. This 

provides a trade-off between spatial accuracy and local coherence, it corresponds to 

assuming an effective local coherence or patch diameter of approximately 10 mm if 

the mesh density is approximately the same as a “normal” mesh with 8196 vertices.  

 

Covariance Matrix Specification Using Different Functional Priors  

We now turn to the differences between the inversion schemes utilised here: Minimum 

Norm Estimation (MNE), Empirical Bayes Beamformer (EBB) and Multiple Sparse 

Priors (MSP). 

Bayesian MEG inversion algorithms differ only with respect to definition of the prior 

source covariance matrix 𝑄 (Mosher et al., 2003; Wipf and Nagarajan, 2009). Here we 
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briefly describe the differences between 𝑄𝑠 specified using Minimum Norm Estimation 

(MNE), Empirical Bayes Beamformer (EBB) and Multiple Sparse Priors (MSP).  

The standard minimum norm estimation (MNE) represents the simplest assumption 

about prior source covariance 𝑄, namely that the sources are independent and 

identically distributed. This means that they have the same variance and no 

covariance and can therefore be described by the covariance matrix: 

 𝑄𝑀𝑁𝐸 = 𝐼 (1.12) 

Where 𝐼 ∈ ℝ𝑁𝑐×𝑁𝑐 is an 𝑁𝑐 sensors by 𝑁𝑐 sensors identity matrix.  

The Empirical Bayes Beamformer (EBB) inversion scheme is similar to MNE as there 

is a single diagonal source prior covariance matrix which can be written as: 

 𝑄𝐸𝐵𝐵 = 𝑑𝑖𝑎𝑔(𝜎2) (1.13) 

Where 𝜎2 is the source variance. Unlike MNE, this variance value is estimated directly 

from the data under the standard beamforming assumption that there are no spatially 

separated but temporally correlated sources (Belardinelli et al., 2012; Van Veen et al., 

1997). Thus, while MNE assumes that all sources are potentially active with equal 

probability, EBB selects and weights priors based on their putative contribution to the 

measured signal. Specifically, for every dipolar location θ, the source variance 𝜎2 is 

calculated as follows (Hillebrand and Barnes, 2005; Mosher et al., 2003):  

 𝜎𝜃
2 = (𝐿𝜃

𝑇 𝐶𝑏
−1𝐿𝜃)−1 (1.14) 

Where 𝐶𝑏 = 𝑌𝑌𝑇 is the sensor-level covariance matrix and 𝐿𝜃represents the effective, 

smoothed lead field for a patch centred at dipole location θ. (·)T denotes a transpose 

operator.  

The Multiple Sparse Priors (MSP) inversion (Friston et al., 2008a) models a set of 

sparse local spatial patches (as opposed to a single cortex-wide pattern) and prunes 

away those patches which do not explain variance. Importantly, MSP is a more general 

form of the approaches described above because the structure of the prior 

components in 𝑄 can take any other form (if it is more appropriate), including those of 

EBB and MNE. This is because the prior source covariance is a weighted sum of a set 

of (multiple sparse) prior components, one per spatial prior: 𝑄 = {𝐶1, … , 𝐶𝑁𝑞
} where 𝑁𝑞 

denotes the number of priors covering the mesh. The default 𝑁𝑞 = 512 in SPM. The 

priors constrain the source space such that the algorithm is forced to explain the data 
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using the priors given such that a poor model (i.e. a set of incorrect priors) will have a 

low model evidence. Both generative models used with MSP have 90 identical 

randomly distributed cortical priors but differ on the inclusion of hippocampal priors 

(the remaining 10 cortical priors in the cortical model are also randomly distributed 

across the cortex). The (global) prior source covariance matrix can be expressed as: 

 

𝑄𝑀𝑆𝑃 =  ∑ ℎ𝑖𝐶𝑖

𝑁𝑞

𝑖=1

 

 

(1.15) 

Where each 𝐶𝑖 ∈ ℝ𝑁𝑑×𝑁𝑑 is itself a prior source covariance matrix with each prior 

component corresponding to a smooth surface patch. These covariance components 

are individually weighted by hyperparameters ℎ = {ℎ1, …, ℎ𝑁𝑞
}. The larger a given 

hyperparameter, the larger the prior variance of the patch. MSP can thereby optimize 

the hyperparameters so as to best fit the modelled covariance to the data covariance 

(at sensor-level) by mixing and pruning (hyperparameter down-weighting) the priors 

such that the model evidence is maximized. Whereas MNE and EBB use only a single 

hyperparameter to fit the data covariance, MSP uses one per spatial prior. MSP is a 

generalisation of Bayesian inversion algorithms as it can take any other form if this is 

optimal for explaining the data at hand parsimoniously.   

After implementing the functional prior assumptions as described above, the 

algorithm-specific 𝑄 is empirically optimised whereby that the current density can be 

estimated and most likely source distribution inferred. The optimisation is based on an 

approximate Bayesian inversion scheme, Variational Laplace (Friston et al., 2008b), 

which assumes that the posterior distribution of 𝐽 (𝐽 ∈ ℝ𝑁𝑑×𝑁𝑡 which describes the 

amplitude of 𝑁𝑑 current dipoles over 𝑁𝑡 time samples) is Gaussian. The result is a set 

of hyperparameters that maximize the model evidence for the given data, and which 

are used to specify 𝑄 in the subsequent data inversion step (see for example Grech 

et al, 2008 for details). 

 

Free Energy  

Each inversion returns a negative variational Free energy value (𝐹) which 

approximates the model evidence 𝑝(𝑌|𝑚) where Y is the data and m is the model 

(Friston et al., 2007; Wipf and Nagarajan, 2009). Because 𝐹 represents a trade-off 

between complexity and accuracy (Penny, 2012), it is used as the cost function to find 
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the best hyperparameters when the models underlying the source reconstruction are 

linear and Gaussian.   

The Free energy is used as the objective function to fit the modelled covariance 𝛴 

(Equation 1.16) to the actual data covariance 𝛴𝛾. The Free energy, F, is expressed 

formally (Friston et al., 2007) as 

 
𝐹 =  

𝑁𝑡

2
𝑡𝑟(𝛴𝛾𝛴−1) −  

𝑁𝑡

2
log|𝛴| −  

𝑁𝑡𝑁𝑐

2
𝑙𝑜𝑔2𝜋 − 

1

2
(�̂� − 𝑣)

𝑇
𝛱(�̂� − 𝑣)

+  
1

2
𝑙𝑜𝑔|𝛴𝜆𝛱| 

 

(1.16) 

 Or equivalently, 𝐹 =  −[𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟] − [𝑠𝑖𝑧𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑣𝑎𝑟𝑎𝑖𝑛𝑐𝑒] −

[𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠] − [𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] +

[𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] 

 

Where 𝑡𝑟(⋅) is the trace operator, 𝑁𝑡 is the number of time samples or temporal modes 

(here 𝑁𝑡 = 1), 𝛴𝛾 is the measured data covariance and 𝛴 is the modelled data 

covariance. There are 𝑁𝑐 sensors or spatial modes (here 𝑁𝑐 = 274). Where 𝜆 and 𝑣 

are the prior and posterior means, and 𝛱 and 𝛴𝜆 the prior and posterior precisions of 

the hyperparameters, respectively. We use the SPM default values 𝜆 =  −32 and 𝛱 =

1/256 which makes the hyperparameters weakly informative.  

This optimization can be thought of as a process to minimize the number of source 

patches but still explain the maximum amount of data. The mixing and pruning of priors 

means that for large numbers of priors, the optimization can get trapped in local 

extrema. One practical solution to this is to run the same algorithm many times with 

different sets of priors (spatial patches) (Troebinger et al., 2014a). 

Perhaps the most important principle of the Free energy formulation for the purposes 

of this thesis is that it can be divided into two constituent components: accuracy and 

complexity. The accuracy is given by the first three terms in the equation while the 

complexity (which is what differs from other Bayesian approaches (Wipf and 

Nagarajan, 2009)) is given by the latter two terms. The accuracy reflects how well the 

model explains variance in the data while the complexity reflects the error in the 

approximations of the hyperparameters.  
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As F approximates the model evidence for a generative model used to invert a set of 

data, Free Energy values obtained with different models can be used for comparison 

of the likelihood of these models. In this model comparison framework, properties of 

the generative model are changed, and the F values obtained for the different 

parameter values can be compared with respect to how well they describe the data 

parsimoniously simply by subtracting one F value from the other. It is thereby possible 

to quantify the difference in (approximated) model evidence which enables hypothesis 

testing through variations in the generative model. For example, hypotheses could 

relate to anatomical structures involved in generating the signal. The application of 

this model comparison approach to MEG data analysis has successfully been 

demonstrated elsewhere (Henson et al., 2011, 2009; Lopez et al., 2013; López et al., 

2014; Penny, 2012; Stevenson et al., 2014; Troebinger et al., 2014a). Because of the 

Bayesian context, the F value difference is equivalent to calculating a Bayes factor. In 

line with Bayesian convention, a positive difference means that the first model in the 

equation is 
1

1+𝑒∆𝐹 more likely than the second. A significance threshold is defined at 3 

where, because of the log distribution of the Bayes factor of F difference, one model 

is ~20 times more likely than the other. Critically, model comparison is only valid 

however when the data is the same and can only be used to infer the relative fitness 

of two models – not whether, or what form a potentially better one might take.  

 

Summary 

The general linear inverse expression describes how sensor-level data modelled as a 

distribution of primary currents can be inverted such that the locations and time 

courses of these currents or neural sources can be reconstructed. This is done by 

constructing a forward model which simulates the field distribution for a current dipole 

in a given orientation, location, and with a given source strength inside a volume 

conduction model of the brain.  

Because the inverse problem is ill-posed, is it necessary to specify prior constraints. 

This can be done through prior distributions describing putative sources in a Bayesian 

context. This gives a posterior distribution over the potential sources by incorporating 

information about covariance present in the data into the solution, in a two-layer 

hierarchical model of how the data were generated.  

Assumptions about source level covariance are expressed through different inverse 

reconstruction algorithms. These can also be thought of as functional priors (as 
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opposed to spatial priors). Within the Parametric Empirical Bayesian framework in 

SPM, any inverse solution also returns an approximation of the model evidence (a 

Free energy value) which gives a trade-off between the accuracy and complexity of 

the solution, and can be used to compare models (different functional and/or 

anatomical priors) based on the same data. 
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Hippocampus and hippocampal oscillations 

  

The hippocampus is a small bilateral curved structure constituting part of the 

archicortex in the medial temporal lobe (Figure 1.7B). Its shape is similar to a sea 

horse from which it also takes its name in Greek. It is ~5 cm long in adult humans 

(Schultz and Engelhardt, 2014). It is a uniquely important brain structure in humans 

due to its role in episodic memory. This function is thought to have co-evolved 

alongside navigation and spatial memory functions such that memory/learning, spatial 

navigation and planning could be supported by the same neural circuits (Amaral and 

Witter, 1989). Underpinning hippocampal mechanisms which support episodic 

memory and spatial navigation are, most prominently studied and thus most well-

understood, 4-8 Hz theta oscillations (Vanderwolf, 1969; O'Keefe and Nadel, 1978; 

Buzsáki, 2005). Hippocampal theta is very well studied in rodents, and possesses a 

wide range of directly quantifiable relationships between behaviour and features of the 

oscillatory activity (such as frequency, phase and power). For example, theta 

frequency and amplitude increases with running speed (McFarland et al., 1975) but 

the frequency decreases with environmental novelty (Jeewajee et al., 2008).  

Overall, we are interested in knowing whether (and how) we can translate the rodent 

findings to humans and potentially further nuance them in this context. At present, 

efforts to do so is occasionally possible in epileptic patients but for generalizability, 

statistical power, and experimental freedom we must make these recordings non-

invasive. 

Other human brain rhythms are predominantly generated by superficial sources and 

are therefore relatively easy to measure using MEG. Hippocampal theta on the other 

hand, is not. Thus, hippocampal theta is less well-studied in humans due to 

methodological difficulties (which are addressed by this thesis), but iEEG recordings 

from epileptic patients suggest that there are memory correlates (such as the 

subsequent memory effect, (Sederberg et al., 2003)) as well as bouts of theta 

oscillations during movement in virtual reality (VR) environments.  

 

Relationships between Hippocampal Theta Oscillations and Behaviour 

In rodents, a large set of complex and interesting relationships between theta and 

behaviour have been demonstrated. For example, it has been shown that there is a 
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relationship between theta and movement/arousal (Green and Arduini, 1954), that 

theta frequency and power correlate with running speed (McFarland et al., 1975), that 

theta frequency is reduced by anxiolytic drugs (John et al., 2014), that eliminating theta 

impairs spatial memory function (and gets rid of grid cell firing patterns) (Brandon et 

al., 2011; Givens, 1995). Two main domains have developed as a result of these 

studies: one investigates the role of theta in physiological terms, linking synaptic 

changes to behavioural changes in relation to theta. The other has emphasized the 

role of theta in computing the location of an animal during spatial navigation.  

 

The first domain which places the main focus on mechanisms related to memory and 

learning is based on a set of documented links between synaptic potentiation, and 

theta. For example, it has been shown that there is increased efficiency of memory 

encoding during periods where theta amplitude is high (Seager et al., 2002), and is 

has since been suggested that long-term plasticity may be induced by theta. 

Specifically, it has been proposed that theta supports memory by providing a (timing) 

signal which causes a population of simultaneously active cells to spike within a short 

temporal window, in turn causing Hebbian plasticity and thus, long term changes in 

synaptic connections (Buzsáki, 2005; O’Keefe and Recce, 1993). 

 

The second domain on the other hand has focused on the notion of a cognitive theta 

map (O’Keefe and Nadel, 1978; Tolman, 1948). The basis of this theory comes from 

a study which showed that rodents build an internal map of the environment which 

enables them to find a goal location regardless of starting point – and to take shortcuts, 

as opposed to simply link actions to stimuli and follow previously executed routes 

(Tolman, 1948). Importantly, these processes have since been shown to be 

dependent on the integrity of the hippocampus (Morris et al., 1982). Currently, this 

field concerns itself with the interactions and computations of the different cell types 

and functions found in and around the hippocampus. These include (but are far from 

limited to) hippocampal place cells (O’Keefe, 1976), entorhinal grid cells (Hafting et 

al., 2005), and accounts of how theta mediates informative combinations of the neural 

dynamics hereof, e.g. the role of phase in determining where within a place field an 

animal is currently, or soon to be, located (Burgess and O’Keefe, 2011; Buzsáki and 

Moser, 2013; Moser et al., 2008). Thus, theta oscillations modulate the activity of 

hippocampal place cells (O’Keefe and Recce, 1993; Huxter et al., 2003). This branch 

of research also concerns itself with the different cognitive processes which constitute 

navigation. These processes include path integration whereby the internal self-motion 

cues are integrated without reference to external cues, in order to encode the relative 
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spatial location. One interesting example of the link between path integration of theta 

showed that theta power is dependent on movement velocity, but that the gain of this 

function is higher when the animal moves on its own, compared to being moved, or 

having the external cues move (Terrazas et al., 2005). 

 

In humans, the body of literature is far smaller but supports both theories of 

hippocampal theta functions: there is evidence that theta power correlates with 

memory performance (Ekstrom et al., 2005; Lega et al., 2012), and similarly, some 

evidence that theta is associated with movement (especially movement onset) in 

virtual reality (VR) environments (Kaplan et al., 2012a). Moreover, theta power 

(synchrony) has been shown to selectively correlate with retrieval of spatial 

information that is relevant for navigation (de Araújo et al., 2002). Generally however, 

in order to begin to address the outstanding questions, as well as test new predictions, 

a reliable and non-invasive method for recording hippocampal theta is needed (Dalal 

et al., 2013a; Riggs et al., 2009).   

Preoperative epilepsy patients with recording grids in the hippocampus have provided 

valuable but rare insights into theta dynamics in humans (Jacobs et al., 2013; Lega et 

al., 2012; Tesche and Karhu, 2000). However, such recordings are suboptimal for 

ethical and practical reasons, as well as being infrequent and potentially non-

representative of healthy hippocampal processing. Thus, a non-invasive and reliable 

alternative could potentially replace these invasive pre-operative procedures. This 

could offer a much safer, more comfortable, cheaper and faster method of estimating 

the epileptic foci, if effective and spatially precise. Further, it could enable a new range 

of cognitive experiments which could address the role(s) of hippocampal oscillations 

in the human brain. In addition, it is likely that the paradigms could be more complex 

and thus representative of real-life navigation than is currently the case with patients 

who are often drowsy, elderly, unwell, and/or off medication. 

In this thesis, the focus is on using and developing new MEG methods for detecting 

hippocampal activity. Since a large and growing body of both rodent electrophysiology 

and human neuroimaging work has focused on the ability of the hippocampus to 

represent and process spatial information, we use a well-validated spatial cognition 

task to activate hippocampus in the empirical validation of the methods. This section 

serves as a brief introduction to the relevant spatial cognition literature, overview of 

anatomical and electrophysiological features incorporated into the MEG forward 

model, and a discussion of previous MEG experiments showing evidence of 

hippocampal activity. 
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Viewpoint Independence 

A cognitive map can be defined with respect to the behaviours is allows and a central 

feature of the hippocampal cognitive map is that it is viewpoint-independent. This is 

an ideal format of spatial knowledge since it can be enables behaviours such as taking 

a novel short cut, flexibly planning and imagining routes, finding a desired goal location 

from any starting position, etc. 

This form of perspective is called allocentric and can be contrasted with an egocentric 

or first-person viewpoint (Figure 1.7A). Egocentric representations of space have 

been shown to localise to the parietal lobe, where lesions lead to egocentric spatial 

processing deficits (Bisiach and Luzzatti, 1978), replicated in fMRI where the posterior 

parietal cortex for example tracks egocentric direction of goal locations (Spiers and 

Maguire, 2007). Allocentric spatial memory representations however have been 

shown to be hippocampal: patients with bilateral hippocampal lesions are strongly 

impaired on recognition of object arrays only when the viewpoint has been shifted 

(King et al., 2002), suggesting an impairment specifically in allocentric representation 

(be it encoding or retrieval or both). Further, the hippocampus has been shown in fMRI 

to be more active during novel wayfinding than stimulus-based route following (where 

an allocentric mental representation is required for the former but not latter) (Hartley 

et al., 2003), and when planning routes during real-time navigation (Spiers and 

Maguire, 2006). Similarly, the amount of allocentric knowledge acquired in single trials 

(measured behaviourally through trial-by-trial improvements) correlates with 

hippocampal activation (Doeller et al., 2008). A classical rodent example of this 

anatomical dichotomy between allocentric and egocentric processing showed that 

inactivating hippocampus and striatum makes rats use only the ego- and allocentric 

strategies respectively in an elevated plus maze task (Packard and McGaugh, 1996). 

This well-documented allocentric mapping is central to the importance of the 

hippocampus across cognitive functions; encoding flexible representations of space 

and relevant features is needed for subsequent recognition and planning.  
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Figure 1.7 Neural basis for spatial cognition. 

A) Representations of allo- and ego-centric navigation perspectives. The hippocampus 

provides a system for building allocentric representations of space based on egocentric 

experiences. From https://www.google.co.uk/maps. B) Location and size of the human 

hippocampus (red). From Wikimedia Commons (September 2016). 

 

Electrophysiology of the hippocampus 

The hippocampus consists of two inter-locking magnetically ‘open-field’ structures: the 

dentate gyrus (DG) and Cornu Ammonis (CA consisting of subfields CA1-CA3). The 

pyramidal cells found in neocortex layer V and CA subfields of the hippocampus are 

morphologically indistinguishable (Spruston, 2008) (Figure 1.8A). In both pyramidal 

cell layers, the principal neuronal axes of the dendritic trees are arranged in parallel 

with one another, perpendicularly to the surface envelope. At a population level one 

https://www.google.co.uk/maps
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can therefore model current flow along the principal neuronal axis (red arrow in Figure 

1.7A) in the same way as per convention for the neocortex. Although the hippocampal 

pyramidal cells point in the opposite direction to those in neocortex, this does not 

influence the shape or extent of the magnetic fields produced and therefore need not 

be explicitly modelled.  

Conversely, dentate gyrus mainly consists of small granular cells which also have an 

oriented dendritic tree and a high cell density (Attal et al., 2007; Duvernoy, 2005). 

However, these cells are much smaller and shorter and are thus less likely to give rise 

to dipole-like sources. Moreover, it is difficult or impossible using 3T MRI images to 

segment these substructures accurately (Bonnici et al., 2012; Wisse et al., 2012). 

Other MEG models have made the simplifying assumption that the hippocampal signal 

originates only in the CA pyramidal neurons such that dipoles are modelled 

orthogonally to the surface envelope (Figure 1.8B, (Attal et al., 2012)).  

 

 

Figure 1.8 Hippocampal cell morphology and subfield structures 

A) Morphology and similarity of pyramidal neurons in cortex and hippocampus. Postsynaptic 

potentials occurring at the apical dendrites or tuft give rise to the primary intracellular current 

(red arrow) which is measureable outside the head given a sufficiently large synchronously 

firing cell population. CA: Cornu Ammonis. Cells pictured are from the rat (but representative 

of all three cell types in humans). Image modified from (Spruston, 2008). B) Diagram showing 

distribution of subfields in a coronal plane. CA1-3 folds around the dentate gyrus and almost 

encapsulates it. Adapted from (Yang et al., 2008). 

 

MEG source reconstruction in the case of the hippocampus  
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Cumulative evidence suggests that hippocampal sources can be identified in MEG, 

an observation made both with simulations (Attal and Schwartz, 2013; Chupin et al., 

2002; Mills et al., 2012; Quraan et al., 2011; Stephen et al., 2005), and empirical data 

(Adjamian et al., 2004; Backus et al., 2016; Cornwell et al., 2012, 2008; Engels et al., 

2016; Guitart-Masip et al., 2013; Hillebrand et al., 2016; Kaplan et al., 2012a; Korczyn 

et al., 2013; Mills et al., 2012; Moses et al., 2011; Poch et al., 2011; Quraan et al., 

2011; Riggs et al., 2009; Tesche and Karhu, 2000). Despite this body of theoretical 

support and empirical evidence, the sufficiency of the spatial precision of MEG for 

deep source reconstruction is still being debated (Mikuni et al., 1997; Mills et al., 2012; 

Riggs et al., 2009) or assumed insufficient. The main reason is perhaps that although 

these authors claim to record signals from hippocampus, the ground truth is not 

available and so validation of these claims is difficult. Another reason is that arguments 

for hippocampal involvement typically rely on the spatial location of a statistical peak 

in traditional group level volumetric inference. Consequently, factors which have lead 

such findings to be toned down from ‘hippocampus’ to ‘medial temporal lobe’ include 

image smoothness at this depth (Gross et al., 2003), intra-subject variability, head 

movement and in particular, co-registration error. Another argument against its 

detectability is that its cylindrical geometry could cause signal cancellation 

(Baumgartner et al., 2000; Mikuni et al., 1997; Stephen et al., 2005). However, it has 

been demonstrated that the cancellation is lower than expected even when sources 

on opposing subfields are simulated (Stephen et al., 2005). Perhaps most importantly, 

direct evidence comes from two studies showing that concurrent intracranial electrode 

recordings and MEG reveals that MEG sensors can reliably detect hippocampal theta 

oscillations (Crespo-García et al., 2016; Dalal et al., 2013a). These two studies form 

a critical piece of cross-modal evidence which, unlike the non-invasive neuroimaging 

studies, has ground truth available and shows that the MEG sensors detect 

hippocampal activity both using beamforming (Crespo-García et al., 2016), and at 

sensor-level (Dalal et al., 2013a). Another similar observation comes from separate 

iEEG and MEG studies where the same theta correlates have been observed 

invasively and non-invasively in response to the same VR (Bush et al., 2015; Kaplan 

et al., 2012a). 

Another commonly used argument is that the hippocampus is simply too deep to 

produce a measureable signal. Estimates suggest that the distance between the 

centroid of the hippocampal mesh and the nearest sensor is ~8 cm (Chapter 2). 

Although this is deep relative to neocortical structures which are only a few centimetres 

from the MEG sensors, it is more superficial than other structures successfully imaged 
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using MEG such as the thalamus and brainstem (Attal and Schwartz, 2013; Coffey et 

al., 2016; Papadelis et al., 2012; Parkkonen et al., 2009; Wibral et al., 2013). 

Moreover, recent evidence suggests that the cell density, and consequently also 

current source density in the hippocampal pyramidal cell layer is at least twice that of 

the neocortex, which might compensate to some degree for its distance to the sensors 

(Attal et al., 2012; Murakami and Okada, 2015, 2006). Thus, it seems likely that a 

measureable signal is produced by the hippocampus (Crespo-García et al., 2016; 

Dalal et al., 2013a). The question then is how best to induce theta band 

oscillations/activity in the human hippocampus in order to test this hypothesis?   

Since the late 1990s, virtual reality (VR) has enabled a broader and more ecologically 

valid approach to studying spatial navigation in humans (Maguire et al., 1999). Several 

important features make this technology ideally suited for human neuroimaging 

experiments designed to engage hippocampus. First, VR simulates real world 

navigation in a highly naturalistic way. Unlike table-top tasks where the subject is 

presented with allocentric representations from the beginning, VR makes it possible 

for subjects to build these representations based on egocentric information, matching 

real-world processes. Second, VR makes it possible to study the dynamic processing 

involved in real navigation processes such as planning, path integration, wayfinding 

etc. Third, VR environments have enabled experimenters to directly test the effects of 

manipulating environmental layouts and content (e.g. landmarks, novel objects) on 

navigation performance and strategies (Maguire et al., 1999).  

Empirical validation of the ecological validity comes from research showing that 

cognitive maps built through VR closely resemble those acquired naturally: with 

practice, people learn to navigate inside a simulated building with equal level of 

performance as in the real building. Interestingly and in accordance with the 

requirement for naturalistic environments/surroundings, landmarks were found to 

improve performance (though a form of spatial anchoring or improved reference 

capacity), while abstract coloured pattern cubes were not (Ruddle et al., 1997). 

Nonetheless, VR has drawbacks such as limited field of view, lack of vestibular and 

proprioceptive feedback/engagement, movement execution through a keypad and 

potential software issues such as screen resolution and speed are worth taking into 

consideration for data interpretation (Maguire et al., 1999). Thus, while the ideal freely 

moving experimental set-up is not currently possible, VR provides a highly useful 

simulated version thereof (Shine et al., 2016).  
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Summary 

In summary, the hippocampus is thought (among other things) to enable a viewpoint 

independent representation of physical space through computations dependent on the 

theta rhythm. These oscillations are very well-studied in rodents and possess a range 

of quantifiable relationships with running speed, novelty, synaptic plasticity, and the 

activity of place and grid cells. The question therefore is whether and how these 

theories can be translated to, and expanded on, in human neuroscience.   

At present, these oscillations are difficult to study non-invasively in humans (using 

MEG). The two primary reasons for this are distance from the MEG sensors (around 

8 cm) and complexity or difference of the neural architecture from that of neocortex. 

However, the depth is a solvable SNR problem, and the hippocampal pyramidal cell 

layer is almost identical to neocortical layer V. Given appropriate/optimised acquisition 

and analysis methods, is should therefore be possible to devise an objective test for 

hippocampal theta. 

There is now strong evidence showing that hippocampal theta oscillations can be 

detected in MEG from epileptic patients by recording simultaneous MEG and 

intracranial hippocampal activity (Crespo-García et al., 2016; Dalal et al., 2013a). If it 

is possible to create use MEG as a reliable and non-invasive methods for studying 

hippocampal oscillations in humans, then the usefulness and relevance of this 

approach extends across cognitive, clinical and computational neuroscience 

questions. 

 

 Overall Summary 

Current dipoles generated by groups of synchronously active parallel pyramidal cells 

produce instantaneous magnetic fields at the scalp. This enables us to sample 

cognitively relevant brain oscillations directly but non-invasively.  

Magnetic signals generated by the brain are extremely small, which means that it is 

necessary to both shield the external magnetic field and use highly sensitive devices 

for detection. Magnetically shielded rooms provide the required passive shielding, 

while SQUID and OPM sensing technology are both extremely sensitive, and have 

additional hardware and software based methods for noise minimization.  
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Sources of neural activity measured by these sensors can be reconstructed by using 

a set of mathematical models to “invert” the data from the sensor to the source level. 

Various assumptions or hypotheses about the spatial distribution of these signals can 

be embedded in different algorithms and generative models of how the brain gave rise 

to the measured signals. 

The human hippocampus contains a layer of pyramidal cells which strongly resemble 

cortical pyramidal cells and therefore are likely to give rise to similar signals. There 

are strong predictions about the temporal dynamics of these signals, specifically theta 

oscillations, which could be tested in MEG if the spatial resolution of the data could be 

improved.  

 

 

Thus, the questions which remain unanswered and which I aim to address in this 

thesis are: 

1) Does including a model of the hippocampus in the generative model help to 

explain hippocampal data? 

2) In a probabilistic or Bayesian framework, how does this model perform relative 

to a null hypothesis model?  

3) How specific is this advantage anatomically? For example, do cortical sources 

give false positive results? Do medial temporal lobe sources? How sensitive is 

the advantage it to translations and rotations of the mesh? 

4) Can we reliably use performance metrics to evaluate the model’s performance 

which are not limited to simulated data (i.e. which do not rely on ground truth)? 

If such a metric is appropriate for evaluating the goodness of fit, it can also be 

applied to empirical data and provide directly comparable results. 

5) How do different newly developed inversion algorithms compare to more 

classical methods in this context, and which would be more appropriate for 

empirical analysis? 

6) How does this model perform in the face of realistic empirical perturbations 

such as noise and/or co-registration error? How can we optimise our 

acquisition protocol to meet such requirements? Does this enable us to 

empirically measure hippocampal signals? 
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7) Can we expect further improvements from using better MEG sensors in the 

future? What are some of the potential practical pitfalls of this new technology? 

How can these be addressed? 

  



65 

 

 

  



66 

 

Chapter 2  

 

Experiment 1: Using generative models to make 

probabilistic statements about hippocampal 

engagement in MEG 
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Precis 

The current general consensus (as outlined in the introduction) is that MEG cannot 

reliably be used to localize activity from deep sources such as the hippocampus. If this 

is the case, then we wondered whether an improvement to the anatomical modelling, 

such as adding a nested hippocampal manifold to the cortical mesh, would give way 

for an improvement in the model fit and therefore reveal itself as source-specific mesh 

preferences in a Bayesian evaluation framework.  

Here we evaluate the differences between model fits with and without this 

hippocampal manifold included in the model. We do this across different inversion 

algorithms and report their properties.  

 

Introduction 

The aim of this part of the PhD was to develop a method to infer not where an 

activation peak appears to be, but rather whether a model which includes the 

hippocampus does a significantly better job than a hippocampus-free model (i.e., a 

“null” model) at explaining hippocampal activity. We address this question by 

comparing two generative models, both including the cortex but one with and one 

without the hippocampus also included. A generative model is an account of the 

putative origins of the signal. The models therefore enable formulation of competing 

hypotheses, and direct comparison hereof. This work echoes previous papers on the 

suitability of fMRI priors (Henson et al., 2009) and distinction between cortical laminae 

(Troebinger et al., 2014a), where for a given dataset we evaluate the evidence for two 

competing generative models which differ with respect to their anatomy. In this 

simulation study, we focus on explaining the method and testing its performance under 

different empirical constraints. We know from previous work that mesh-based 

generative models are extremely sensitive to co-registration error (errors in aligning 

an anatomical MRI image used to constrain the inverse solution, and the recorded 

MEG data) (Hillebrand and Barnes, 2011, 2003; López et al., 2012; Troebinger et al., 

2014b) which therefore constituted our main factor of interest.  

Here we propose an anatomically and electrophysiologically realistic generative model 

of deep source activity which accounts for geometry, depth and cell type. Through 

model comparison, this allows us to make categorical statements about which 

generative model is most likely for a given dataset – one with the hippocampus 

explicitly modelled, or one without. Although we focus on the hippocampus in this 
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work, the approach should generalize to other structures with similar features. Here 

the modelling is motivated by the similarities between the pyramidal cell layer V in 

neocortex which is the main generator of the MEG signal (Murakami and Okada, 

2006), and the pyramidal cell layer of the hippocampus. Firstly, the cells are 

morphologically identical (Figure 1.8A). Secondly, the pyramidal cell layer follows the 

surface curvature which means that it can be modelled as such. Thirdly, individual 

cells have dendritic trees oriented in parallel, thus causing magnetic fields to arise 

perpendicularly to the surface.  

The main advantage of an explicit generative model is that it makes it possible to 

exploit not only the information from the estimated source location but also its 

orientation (and other parameters not considered here like current density and local 

coherence). We will show that this allows us to differentiate the hippocampus from 

even the most proximal cortical sources. 

In order to obtain probabilistic and comparative estimates of how good the two 

generative models are with respect to the data, we approximate their model evidence 

and compare the relative values in a Bayesian framework. This Bayesian model 

comparison uses these model evidence values and is a useful way to compare models 

because it allows direct quantification of competing models’ abilities to explain the 

same data while avoiding over-fitting. Building models equates to specifying prior 

beliefs about what could be expected from the data. In this case, the priors pertain to 

the anatomical locations and orientations of the potential sources, and functional 

properties of sources, e.g. how sparse or smooth they are (different functional priors 

or inversion schemes).  

To approximate the model evidence, we use Free energy (F), a lower bound on the 

true model evidence. F rewards models which accurately fit the data, but penalizes 

models based on their complexity. The former helps identify good hypotheses, while 

the latter eliminates over-fitting noise. The logic in this context is that if electrical 

current was generated on the hippocampus but the hippocampus is not part of the 

generative model used to reconstruct the data, then a more extensive mixture of 

cortical sources is required to explain the data equally well. Because of the increased 

complexity (see Wipf and Nagarajan 2009 on how the volume of the model covariance 

acts as penalty or sparsifying term), the hippocampus-free model will have lower 

model evidence (or Free energy) than model which includes the hippocampus. 

The aim of this chapter is to first introduce the notion of a generative model, and then 

relate this to the simulation and source reconstruction procedures and parameters. 
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Next the model comparison framework is introduced, where two models are assess in 

relation to each other, in a set of scenarios with different sources of uncertainty, 

specifically co-registration error and white noise added to the sensors. This model 

comparison is done across three different sets of popular functional priors or beliefs 

about the structure of the neural activity (e.g. how smooth and sparse it might be): 

Minimum Norm Estimate (MNE), Empirical Bayes Beamformer (EBB), and Multiple 

Sparse Priors (MSP). This allows us to interrogate the model comparison framework 

from multiple angles, as there is no single superior functional prior since the 

performance depends both on the experimental question(s), performance criteria, and 

data (Hauk et al., 2011). Moreover, this allows us to address the consistency of results 

across functional assumptions, i.e. the robustness to both different types of 

uncertainty, and different assumptions about source covariance. 

 

Hypothesis and objectives 

Hypothesis: If the hippocampus is explicitly incorporated into the generative MEG 

source model, then it is possible to test whether or not it is active at a certain time and 

within a certain frequency band by using Bayesian model comparison.  

This relies on the validity of the Occam’s razor approach: we assume that the simplest 

way of modelling a source is the correct one. Specifically, we show that if hippocampal 

activity is simulated, then a generative model which includes the hippocampus gives 

a more parsimonious, and therefore better, inverse solution.  

Our objective here is to test the limitations and robustness of this approach in 

simulations where ground truth is known. A related objective is to quantify the effects 

of different empirical acquisition factors, namely co-registration error and SNR, on our 

ability to successfully and reliably detect hippocampal sources. 

  

Methods 

Anatomical modelling of the hippocampus 

The independent variable of our generative model is the hippocampal surface mesh. 

We constrain the sources to be oriented perpendicularly to the mesh surface (Figure 

2.1A shows the surface envelope extracted from an MRI image). The hippocampus’ 

location is overlaid on an MRI image (Figure 2.1B) and shown with respect to the 
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cortical mesh (Figure 2.1C). As the hippocampus bulges into the floor of the (inferior 

horn of the) lateral ventricle, its medial surface extends more medially than that of the 

cortical surface. Apart from this, the hippocampus is nested inside the cortical 

manifold.  

We extracted the left hemisphere’s cortical and hippocampal surfaces for a single 

subject using FreeSurfer’s (Reuter et al., 2012) automated image segmentation of 

individual T1-weighted MRI images (3T Siemens Magnetom). FreeSurfer gave a 

cortical mesh that we used directly, and a hippocampal volume file which we converted 

into a tessellated surface mesh. We limited the simulations and re-constructions to the 

left side of the brain for simplicity. The resultant hippocampal surface was more 

densely tessellated than the cortical, so we smoothed and downsampled it such that 

the mean vertex-vertex distances matched. The number of vertices in the cortical and 

hippocampal meshes were 10595 and 162 respectively and the mean vertex-vertex 

distances were 3.73 and 3.69 mm. This approach is consistent with the Deep Brain 

Activity model proposed by (Attal and Schwartz, 2013). 

 

 

Figure 2.1: Hippocampal surface structure and location 

A FreeSurfer-derived tessellated envelope of the left hippocampus. We model the sources to 

be perpendicular to mesh vertices, consistent with the pyramidal cell orientation. B Sagittal 

view of FreeSurfer hippocampal region of interest on a sample 1.5T T1-weighted MR image 

from the FreeSurfer Image Analysis Suite. Blue colour shows the extent of hippocampal region 

of interest. Image adapted from (Hostage et al., 2013) C Source space of the combined model 

consisting of FreeSurfer-derived cortical and hippocampal meshes. For more detailed 

description of this model, see Figure 3.  

 

Simulation set-up 
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The simulation and reconstruction pipeline consisted of three steps: first, we simulated 

a single dipole perpendicularly to the hippocampal surface with a sinusoidal waveform 

of 20 Hz for 300 ms (six cycles) and a total effective dipole moment of 20 nAm (Figure 

2.2A). The simulation locations were randomly drawn from the 162 hippocampal 

vertices and were simulated with a full-width half-maximum of 6 mm. Each simulated 

dataset had a sampling rate of 600 Hz with the mean sensor-level Signal to Noise 

Ratio (SNR) set to either 0, -5, -10, -15 or -20 dB, specified by adding Gaussian white 

noise to the data. We repeated this 30 times with both hippocampal and cortical 

simulation locations at each SNR level. This gave a core set of simulated data with 

known ground truth (hippocampal source or not).  

In the second step (Figure 2.2B), we mimicked the effect of co-registration error 

between functional (MEG) and anatomical (MRI) images by adding 0, 1, 2 or 3 mm 

standard deviations of error to each of three fiducial points in each of the three spatial 

dimensions. This shifted the surface mesh used for reconstruction (red) relative to the 

surface mesh used to generate the simulation (black). Co-registration error levels 

commonly seen empirically in MEG recordings are usually ~5 mm or more even with 

the best compensation tools, be they bite-bars (Adjamian et al., 2004; Singh et al., 

1997) or algorithmic movement corrections (Whalen et al., 2008). 

After having perturbed the idealized data by adding sensor noise and co-registration 

error, we inverted the data using two different anatomical models and three different 

inversion schemes. One anatomical model was, per convention, just the cortical 

surface (Figure 2.2C, cortical model), while the other model additionally included the 

hippocampal surface envelope (Figure 2.2C, combined model). Each anatomical 

model was inverted using three different inversion schemes embodying functional (or 

source covariance) assumptions. These were Minimum Norm Estimate (MNE) 

(Hämäläinen et al., 1993), Empirical Bayesian Beamforming (EBB) (Belardinelli et al., 

2012) and Multiple Sparse Priors (MSP) (Friston et al., 2008a). We thus obtained six 

inversion solutions per simulated dataset; three inversion algorithms, each giving one 

solution per anatomical model.  

This lets us examine the difference between generative models across different 

assumptions about the nature of the activity – how sparse, how co-varying, how 

smooth etc. Each such inversion returns a Free energy (F) value, which approximates 

the model evidence for generative model. This set-up allowed us to quantify the 

difference in model evidence when the hippocampal mesh is included in the 

generative model. The hypothesis was that there would be an improvement if the 
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simulated source was hippocampal. This model comparison approach has 

successfully been demonstrated elsewhere (Henson et al., 2011, 2009; Lopez et al., 

2013; López et al., 2014; Penny, 2012; Stevenson et al., 2014; Troebinger et al., 

2014a). Here we used log Free Energy to quantify the difference between anatomical 

models: ΔFanatomical = Fcombined – Fcortical. A positive difference means that the combined 

model is 
1

1+𝑒∆𝐹 more likely than the cortical. If ΔF = 0 then the two models are equally 

likely, and if ΔF = 3 then the combined model is approximately twenty times more 

likely.  
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Figure 2.2: Overview of the simulation pipeline. 

A A single dipole source is simulated (at a random location) on the hippocampal surface as a 

temporal waveform with sinusoidal frequency of 20 Hz. Gaussian white noise is added to the 

sensor level data (in this case -10 dB). On the right, a representative subset of the resulting 

274 time-varying waveforms simulated are shown as coloured traces. B To simulate the effects 

of co-registration error, we added a displacement of 0, 1, 2, or 3 mm standard deviation of error 

in each spatial dimension to each of the three standard fiducial points. The data themselves 

were unchanged. The displacement shown here is 2 cm for illustration. C Next we inverted the 

simulated data twice, using two different generative models. One with only the cortical surface 

(cortical model) and one with both cortical and hippocampal surfaces (combined model). We 

repeated this double inversion procedure on each dataset using three different reconstruction 

algorithms. 

 

Specification of anatomical priors 

The schematic in Figure 2.3 illustrates the two anatomical models and how they were 

implemented. The key difference is that MSP priors can be user-defined within 

subsections of the source space. Conversely, EBB and MNE by definition make use 

of the complete source space. Left panels (A and C) show the cortical models and 

right panels (B and D) show combined models (with hippocampal priors). For EBB and 

MNE, the addition of hippocampal priors simply involves an addition to the source 

space (which increases from 10595 vertices to 10757 vertices). For MSP on the other 

hand, we kept the complete source space (combined model with 10757 vertices) but 

specified 100 spatial priors (patches of cortex) to either include or not include the 

hippocampus. The 90 blue dots mark cortical priors shared across the two models. 

The ten green dots mark cortical priors unique to the cortical model (Figure 2.3C). 

The ten red dots mark hippocampal priors unique to the combined model (Figure 

2.3D). In all cases, we used a Nolte single shell (Nolte, 2003) to model the inner skull 

boundary. 
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Figure 2.3: Anatomical models with and without hippocampal priors. 

Panel A shows implementation of the cortical model in the EBB and MNE algorithms. The 

tessellated cortical surface envelope is comprised of 10595 vertices. Panel B shows the 

combined model which includes a nested hippocampal manifold and contains 10757 vertices. 

Bottom panels (C, D) show the anatomical model implementations in MSP. The full source 

space is specified in both models such that each includes the nested hippocampal mesh and 

the number of vertices is 10757. In both, 90 blue dots illustrate identical cortical prior locations. 

In panel C an additional ten green cortical priors are specified. In D, an additional ten red 

hippocampal priors are specified.  

 

Source Inversion 

The empirical Bayes source inversion scheme has been described in detail elsewhere 

(Belardinelli et al., 2012; Friston et al., 2007; Henson et al., 2011; López et al., 2012; 

Phillips et al., 2005; Troebinger et al., 2014a). For a review, see (López et al., 2014). 

Here we elaborate on implementation issues and empirical applications.  
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All three algorithms require the estimation of a source and sensor level covariance 

matrix. In all cases we used an identity matrix to represent uncorrelated white sensor 

level covariance. The main difference between the three algorithms is that the MNE 

and EBB solutions require the optimization of a single source level covariance prior 

whereas MSP has a more general form. In MNE this is also an identity matrix (all 

sources have equal prior variance and are uncorrelated); for the EBB algorithm this 

prior is derived directly from the data. This means that for EBB and MNE the algorithm 

must estimate two (hyper) parameters which set the relative weighting of source and 

sensor level variances. The MSP algorithm takes a more general form and allows the 

source distribution to be built up of multiple covariance components. Traditionally each 

of these components is a locally coherent patch of cortical activity. The ensuing 

optimisation (to maximize Free energy) can be thought of as a process to minimize 

number of patches but still explain the maximum amount of data. The mixing and 

pruning of these priors means that for large numbers of priors, the optimisation can 

get trapped in local extrema. 

One practical solution to avoid this is to run the same algorithm many times with 

different sets of priors (Troebinger et al., 2014a). However, as we were not interested 

in the optimisation per-se in this work, but in finding the best possible solution, we 

used 100 priors and simulated sources at a subset of these locations. Note that there 

was thus a clear advantage for the MSP algorithm relative to EBB and MNE, because 

the best solution is fixed to lie in the space of MSP priors, which is much smaller than 

the space of all the vertices (See Figure 2.3 and discussion). This advantage is 

relevant in both hippocampal and cortical simulation results. For hippocampus, the 10 

MSP priors included the simulated patch, versus all 162 hippocampal vertices supplied 

with EBB/MNE. Similarly for the cortical simulations, the solution space was defined 

by 90 anatomical priors for MSP, again including the simulated patch, versus all 10595 

cortical vertices specified for the EBB/MNE algorithms. Importantly, it is still possible 

to directly compare the inversion schemes by keeping the model (and data) constant. 

We return to this and examine it across a range of SNRs. 

We did not use any spatial dimension reduction (i.e. all 274 functioning MEG channels 

were used) but we decomposed the time series into a single temporal mode. The time 

window was set to match that of simulation (0-300 ms), as was the frequency band of 

interest (0-80 Hz, simulated waveform of 20 Hz). A Hanning taper was applied to the 

time series. We used three different forms of functional priors (MNE, EBB and MSP) 

and two sets of anatomical priors (cortical and combined models). Sample inverse 
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solutions for all six prior combinations are shown in Figure 2.4A. We carried out 30 

iterations of each hippocampal and cortical simulations at each SNR level.  

 

 

Dipole Localisation Error Analysis  

In order to provide a frame of reference between the model evidence based approach 

and other simulation studies we also calculated the dipole localisation error (DLE). 

The DLE equates to the distance between the true simulation location and source 

distribution maximum of the inversion. The latter was defined as the peak in the 

estimated primary current density matrix. We calculated DLEs separately for the 

combined and the cortical models used to invert 30 hippocampal and (random) cortical 

simulation scenarios using EBB.  

 

Results  

Variance Explained and Free Energy 

In order to demonstrate the basic logic behind our analysis Figure 2.4A shows a 

representative single-simulation source reconstruction for each combination of 

anatomical and functional priors. We can compare the algorithms qualitatively with 

respect to accuracy and complexity because we know the true source location. Spatial 

accuracy can be assessed by looking at how far the simulation vertex (red circle) is 

from the peak (darkest vertex) of the estimated current distribution. The complexity is 

reflected in the spread of the source estimates. Note that when the correct anatomical 

model is used (Figure 2.4A, top row), for EBB and MSP, the source estimates are 

generally accurate and focal. The increase in complexity (most noticeable for MSP 

and EBB) in the bottom row (inversions using just the cortical model) occurs because 

it takes more non-hippocampal sources to describe MEG data arising from a single 

hippocampal source. The simulation used here has sensor-level SNR -5 dB and zero 

co-registration error added. 

We find that as expected, MMN gives the most diffuse solution and MSP and EBB 

give the most focal. Nonetheless, it is encouraging to note that although the algorithms 

have different functional assumptions, the estimated activity is in approximately the 

same place throughout.  
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In contrast to F, variance explained is not penalized for complexity and consequently 

is not discriminative of the correct model. Figure 2.4B illustrates the mean percentage 

of variance explained over 30 iterations of hippocampal simulations with SNR -5 dB 

whereas Figure 2.4C illustrates the mean Free energy. Note that the mean variance 

explained is >99.5% for all algorithms, and that the best model in terms of Free energy 

(MSP) does not explain the most variance. This is because there is less over-fitting of 

the noise.  

Given that the Free Energy values do not rely on information about the true source 

location, it is ideally suited for evaluation of empirical as well as simulated data. For 

example, it has been shown that Free energy correlates with cross-validation accuracy 

as demonstrated by machine learning evaluations (Penny and Roberts, 1999), and 

with conventional reconstruction evaluation measures such as dipole localization error 

(Belardinelli et al., 2012). Although we do have access to the ground truth in these 

simulations, we will nonetheless rely on Free energy as a goodness of fit criterion but 

also evaluate the dipole localisation error for comparison. The main focus will be 

evaluation of two forms of Free energy differences, shown in Figure 2.4C. The bars 

encode mean Free energy values over 30 iterations of hippocampal simulations with 

SNR -5 dB. We first compare anatomical priors by subtracting the two Free energy 

values obtained using different anatomical models with the same algorithm. This is 

shown for MSP where ΔFanatomical = Fcombined - Fcortical. We then compare functional priors 

by subtracting the two Free energy values obtained using the same anatomical model 

but different algorithms. For example, comparing Free energy with the combined 

model using EBB and MSP: ΔFfunctional MSP vs EBB = FMSP – FEBB. This metric tells us 

how good the functional assumptions are (how smooth/sparse etc.), because the data 

and anatomical model are constant (the results of these tests are shown in Figure 

2.11).  

The main emphasis of this paper is on ΔFanatomical, or quantifying hippocampal 

engagement probabilistically through comparison of generative models. With respect 

to single-simulation ΔFanatomical values corresponding to solutions shown in Figure 

2.4A, we find that for all three algorithms, the combined (true) model has a higher F 

than the cortical model (single simulation ΔFanatomical MMN = 1.4, EBB = 10.6, MSP = 

73.2). We find that the average ΔFanatomical values across 30 simulations (Figure 2.4C), 

are somewhat similar (mean ΔFanatomical MMN = 1.0, EBB = 6.0, MSP = 23.1). Note that 

only EBB and MSP pass the significance threshold of 3 (log units). Thus, even without 

knowledge about true simulated source locations, Bayesian model comparison can 

distinguish between anatomical models, and thereby be used to infer whether the 
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source location is hippocampal or not. Interestingly, in this example EBB appears 

(from the source level maps) to perform equally well for both anatomical models. One 

explanation for why the peak of the cortical model solution appears to be in/on the 

hippocampus when it is not explicitly modelled (Figure 2.4A), is that the cortical and 

hippocampal mesh surfaces are very close together (see Figure 2.3B). Since EBB 

can distribute variance across all source vertices, those on the medial temporal lobe 

could therefore appear hippocampal. This issue is directly addressed later in Figure 

2.8. Note that the performance of algorithms with certain models is a separate question 

from ΔFanatomical, 

 

Figure 2.4: Sample source reconstructions and model comparison. 

A) Single-trial reconstructions of a hippocampal source (red circles) with MNE, EBB and MSP 

priors using the combined model (top row) and the cortical model (bottom row). EBB and MSP 

accurately capture the true source location. Glass brains show estimated current source 
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density with the grey scale proportional to the darkest (maximally active) vertex location. 

Sample source simulated with SNR -5 dB and no co-registration error. B) Variance explained 

by different anatomical and functional priors. Bars encode mean percentage variance 

explained across 30 hippocampal simulations (±SEM). Note that the y axis only spans 99-

100%. For this metric there was no significant differences between models with EBB (t(29) = 

1.0842, p = 0.287) or MNE (t(29) = 0.1591, p = 0.875). For MSP in contrast, there was a 

significant difference in the percentage variance explained (t(29) = -8.6310, p < 0.001), but 

favouring the incorrect (cortical) model. C) Bayesian model comparison methods. Free energy 

(F) is used to approximate model evidence. Bars encode mean Free energy values over 30 

simulations, normalized to MNE cortical. Differences between anatomical priors we denote 

ΔFanatomical whereas differences arising from different functional priors we denote ΔFfunctional.  

 

Anatomical Model Comparison 

We evaluated two variations of the same basic generative model, one that included a 

nested hippocampal manifold and one that did not. To verify that the combined model 

helps to explain hippocampal activity, we simulated hippocampal sources and 

compared the Free energy values obtained with the two anatomical models (ΔFanatomical 

= Fcombined - Fcortical). We observed that as expected, the combined model increased 

model evidence. Figure 2.5A shows the positive ΔFanatomical values from across 30 

simulated hippocampal datasets with SNR of -5 dB and zero co-registration error. As 

a first control, we tested whether this improvement was anatomically specific or could 

be driven by an increase in vertices regardless of the source location. We therefore 

simulated cortical sources and evaluated them in the same way before. The cortical 

sources were randomly distributed across the cortical mesh and again the simulation 

locations equated to (30 of the cortical) MSP priors. Given that the locations of the 

cortical priors (sparse or mesh-wide) were identical in the cortical and combined 

models, we expected to find no difference in model evidence between anatomical 

models. Figure 2.5B shows the null ΔFanatomical values for data simulated on the cortical 

surfaces.  

In order to derive a conservative bound on whether the models differed significantly, 

we computed the the Bayes Omnibus Risk (BOR) which quantifies the probability 

that the null hypothesis (that there is not a true difference in model frequency of 

winning) is true and any observed differences between models observed are due to 

chance (Rigoux et al., 2014). Table 1 shows the mean Free energy differences and 

accompanying BOR values across all algorithms tested for the hippocampal and 
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cortical control simulations. The mean Free energy difference must be above three 

while the BOR must be below 0.05 to reach significance (i.e. conclude that the 

results are only 5% likely to have been obtained by chance). While MSP and EBB 

both have a mean Free energy difference above 3 and a significant BOR value (and 

thus show significantly improved model fits with the combined model), the MNE Free 

energy mean does not surpass significance although the BOR is significant. For the 

cortical simulations, none of the mean nor BOR values reach significance. 

 

Table 1: Bayes Omnibus Risk values for hippocampal and cortical simulations  

 Hippocampal simulations Cortical simulations 

 Free energy 
mean 

BOR Free energy mean BOR 

MSP 23.09 <0.001 -0.0490 0.8011 

EBB 6.01 <0.001 0.0951 0.7930 

MNE 1.04 <0.001 0.0642 0.7862 

 

 

 

Figure 2.5: Anatomical model comparison for hippocampal and cortical (control) 

sources. 

A Dots show ΔFanatomical = Fcombined - Fcortical values for sources simulated on the hippocampus. 

ΔFanatomical is positive because the combined model explains more data using fewer 

(hippocampal) priors. The black line marks zero where there is no difference between models. 

The green line marks a positive difference of 3 which, because F is on a log scale, means that 
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the combined model is >20 times more likely than the cortical. MSP outperforms the other 

algorithms while MNE fails to reach significance. B Shows the results for the simulated cortical 

sources or control condition (note that here exactly the same comparison between full and 

cortical models is made). There is little if any difference between models because the models 

contain the same cortical mesh (all 10595 cortical vertices for EBB and MNE) or cortical priors 

(90/100 priors for MSP where the hippocampal priors are redundant and therefore pruned away 

in the combined model). For the 30 hippocampal and 30 cortical simulations shown, SNR is -

5 dB and no co-registration error is added.  

 

Effect of Co-registration Error 

We then examined the effect co-registration error on our ability to identify the correct 

model. To do this, we simulated co-registration error by adding 0, 1, 2 or 3 mm 

standard deviation of error to each of three fiducial locations in each of three 

dimensions before inverting the model (see Figure 2.2B). Note that the shift and data 

were always the same for the two models. Figure 2.6A-C shows the model evidence 

differences obtained for the 30 hippocampal simulations described previously but with 

different levels of co-registration error. As expected, ΔF decreases as co-registration 

error increases, demonstrating that uncertainty about head location compromises our 

ability to evaluate and discriminate between models. We also found that the variability 

of ΔF values increases, illustrated most clearly with MNE (Figure 2.6C).  

To quantify this we used a random effects analysis (Stephan et al., 2009) to estimate 

the probability that the correct (combined) model would win given a randomly drawn 

simulation run (grey lines, Figure 2.6D-F). Consistent with the model evidence 

difference decreases in the top panel, this probability decreases as co-registration 

error increases. If we were to select a dataset at random, we would expect to make 

the correct decision ~95% of the time with MSP, regardless of co-registration error. 

With the EBB this chance would decrease to ~75% at 3 mm of error and with MNE, 

we would be at chance level with 2 mm of error. One problem with this inference is 

that there is an underlying assumption that one model is better than another. In order 

to derive a (conservative) bound on where the models differed we again computed the 

the Bayes Omnibus Risk (BOR) which quantifies the probability that the null 

hypothesis is true and that differences between models observed occurred by chance 

(Rigoux et al., 2014). BOR probabilities (green lines in Figure 2.6D-F) of less than 

0.05 (red lines) mean that the null hypothesis can be rejected. This showed that just 3 

mm of co-registration error abolishes our ability to distinguish between models with 
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EBB and MNE.  In sum, increased co-registration errors of ~3 mm or larger blur out 

existing differences between the anatomical models. Note that these co-registration 

errors are often observed and most often exceeded in conventional MEG recordings. 

Moreover, the closer the functional prior to the ground truth (compare MSP and MNE), 

the more robust it will be to co-registration error.  

 

 

Figure 2.6: Effect of co-registration error on anatomical model comparison. 

Inversion results from simulated hippocampal dipoles with SNR -5 dB and 0, 1, 2 or 3 mm 

standard deviation of error added to each of three fiducial locations in each dimension. Top 

panel (A-C): Dots represent ΔFanatomical for the same 30 simulations at each co-registration 

error level. There is an increase in number of negative ΔFanatomical values (false negatives) as a 

function of co-registration error. Green line marks the significance threshold of 3, black line 

marks no difference. Y-axes of EBB and MNE plots are adjusted for visibility. Lower panel (D-

F) is structured in the same way but depicts two measures of the reliability of the model 

comparisons shown above. Grey line marks the expectation of the posterior; the probability 

that the combined model supersedes the cortical model. Green line marks the Bayes Omnibus 

Risk, the probability that anatomical model frequencies are equal (i.e. there is no difference 

between models); we can reject this null when this metric is below 0.05 (red line).  
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Effects of Co-registration Error and Sensor-level SNR 

We next investigated the interaction between sensor level noise and co-registration 

error. We added different amounts of uncorrelated white noise to obtain 0, -5, -10, -15 

and -20 dB SNR at sensor level.  Figure 2.7 takes the same form as Figure 2.6 but 

includes an SNR dimension. The upper panel shows mean ΔFanatomical over 30 

hippocampal simulations where positive values show evidence in favor of the 

combined model. As expected, we find that as both co-registration error and noise 

increase, ΔFanatomical decreases. The lower panel shows the Bayes Omnibus Risk 

quantified based on 30 hippocampal simulations at each combination of SNR and co-

registration error. Green bar tops mark values BOR<0.05 where we can reject the null 

hypothesis that the models are equivalent, red bar tops mark the opposite (i.e. no 

difference between models). In general, we find that poor SNR is less detrimental to 

our ability to distinguish sources than co-registration error is. As before, we conclude 

that co-registration error must be <3 mm to make reliable identification of hippocampal 

activity with EBB and MNE. As expected (or defined by our simulations), the MSP 

outperforms the other two algorithms at all levels of co-registration error and SNR 

tested here. 

 

Figure 2.7: Effects of noise and co-registration error on anatomical model comparison. 
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The figure is similar to figure 6 with an added dimension of noise. Top panel (A-C) shows 

negative effects of co-registration error and noise: ΔFanatomical decreases as a function of either. 

Each bar encodes average ΔFanatomical of 30 reconstructed hippocampal simulations. Lower 

panel (D-F) shows roughly the same effects on the Bayesian Omnibus Risk, the risk that 

anatomical model frequencies are equal. Co-registration error above 0 and 1 mm are 

detrimental for MNE and EBB respectively. Green and red bar tops mark signify when the null 

(that there is no difference between models) can be rejected (BOR values <0.05) and not 

rejected respectively.  

 

Closest Cortical Neighbours 

As spatial resolution decreases rapidly with depth in MEG, there is a risk that higher 

Free energy values for the combined model could arise from nearby but non-

hippocampal sources, yet be misinterpreted as hippocampal activity through the 

inference. 

We tested this by simulating activity on the nearest cortical vertices to each of the 30 

hippocampal vertices used in the original simulations and inverting these data with 

both the cortical and combined models to calculate model evidence difference for each 

location. Reassuringly, we found the average ΔF for the closest cortical neighbour 

simulations to be non-significant (mean 1.75, BOR<0.001) (Figure 2.8A, grey dots). 

Conversely, the hippocampal simulations gave positive and significant (ΔF>3, mean 

6.01, BOR<0.001). The average distance between neighbouring hippocampal and 

cortical vertices was only 2.14 mm (Figure 2.8B). 

 

 



85 

 

Figure 2.8: Closest cortical neighbour analysis. 

A Orange dots reflect ΔF when activity is simulated on the hippocampal mesh (30 different 

sources shown here). Grey dots reflect ΔF when activity is simulated on the cortical surface 

but centred at the nearest cortical vertex to its hippocampal neighbour. Dots are vertically 

aligned in pairs (or neighbours). Simulating hippocampal simulations sources gives significant 

(>3, green line) ΔF values whereas simulating on the nearest cortical neighbour does not. 

Parameters used were no co-registration error, SNR -5 dB and EBB. B Simulation locations 

visualised on two views the hippocampal mesh. Orange dots are on the hippocampal surface, 

grey are on the cortical surface (not visualised). 

 

Effects of Translating the Hippocampus 

To ensure that Free energy differences were specific to the correct model and not 

simply to having a deep structure added, we carried out a set of inversions with models 

that had the hippocampal slightly offset relative to the correct location. For this 

analysis, we used the same simulated hippocampal data as described previously (i.e, 

activity simulated on the hippocampal surface in its original location), but inverted 

these data using combined anatomical models with the hippocampal mesh slightly 

offset from the correct location (0.5, 1, 1.5 and 2 cm shifts) in three dimensions 

(medial-lateral, anterior-posterior, dorsal-ventral), and two directions (+ and -) giving 

24 different shifted models (Figure 2.9). Note that the cortical portion of the combined 

model stayed the same. We focused here on EBB because its performance was mid-

range and because it does not require specification of priors. We used simulations 

with SNR -5 dB. We inverted each of the 30 datasets with each of the 24 shifted 

models and compared the resulting Free energy values to those obtained with the 

standard cortical model as well as standard combined model. Only in cases where 

there is no translation (i.e. the correct combined model is used, middle bars), or there 

is 0.5 cm lateral translation, is the model comparison significant (all BOR values are 

significant, Table 2). This demonstrates specificity of the model comparison approach, 

and the ability to identify the correct model among a set of subtly offset alternative 

models. In other words, despite the physical overlap between surfaces when the 

hippocampus is translated, the disparity in the surface orientations mean that these 

shifted surfaces are poor generative models.  

Table 2 shows the BOR values accompanying the translated mesh analysis. In all cases, the 

BOR is significant but only in the no shift and 0.5 cm lateral shift conditions is the mean Free 

energy difference between the two models greater than 3 (light green line, Figure 2.9).   
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Table 2: Bayes Omnibus Risk values for hippocampal translations 

BOR 2 cm 1.5 
cm 

1 cm 0.5 
cm 

No 
shift 

0.5 
cm 

1 cm 1.5 
cm 

2 cm 

Medial-
lateral 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.009 

Anterior-
posterior 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 

Dorsal-
ventral 

0.012 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

 

 

Figure 2.9: Effect of shifting the hippocampal mesh on Free energy. 

We compare different combined models with shifted hippocampal meshes to the standard 

cortical (hippocampus-free) model. Bars represent ΔF = mean Fshifted – Fcortical of 30 different 

hippocampal simulations for the particular shifted model. Top panel shows medial-lateral shifts, 

middle panel anterior-posterior, bottom panel up-down. While no shift (combined – cortical) 

gives a significant ΔF value, shifting the hippocampus in any dimension or direction renders 

the model comparison non-significant. ΔF = 3 is taken as a significance threshold and marked 

in green. 

 

Dipole Localisation Error 



87 

 

We also performed more traditional analysis by calculating the dipole localisation error 

(DLE) between simulated and recovered sources (Figure 2.10). Both the average DLE 

and its variance increases as co-registration error increases (A) and SNR decreases 

(B). Furthermore, we found that in accordance with our Free energy results (Figures 

2.6 and 2.7), DLE is more affected by co-registration error than by SNR. By definition, 

DLE can only be calculated when the true source location is known, i.e. in simulations. 

Critically therefore, the correspondence between the DLE and Free energy supports 

the notion that Free energy is valid and informative when the true source location is 

not known, i.e. in empirical data.  

 

 

Figure 2.10: Dipole localisation errors as a function of co-registration error and SNR 

when sources are hippocampal. 

A) Mean dipole localisation error (±SEM) against co-registration error. SNR of -5 dB. Dotted 

yellow lines show results for EBB using the cortical model; orange solid lines used for 

combined. For the combined mesh, DLE and variability starts to increase >1 mm co-registration 

error. B) Mean dipole localisation error (±SEM) across SNR levels. For the combined mesh, 

both error and variability increases with noise >15 dB. No co-registration error added.  

 

Furthermore, we quantified how often the hippocampal simulations have source 

distribution maxima on the hippocampal mesh (the true positive rate or sensitivity), 

and how often cortical simulations have maxima on the cortical mesh (the true 
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negative rate or specificity). At SNR -5 dB and no co-registration error, we find that the 

sensitivity is 93.33% and specificity is 100%. The full table of sensitivity and specificity 

values across all co-registration error and SNR levels is shown below:  
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Table 3: Sensitivity and Specificity values across co-registration error and SNR levels 

 0 mm co-registration error 
SNR (dB) 0 -5 -10 -15 -20 
Sensitivity 93.333 93.333 93.333 93.333 76.667 
Specificity 100.00 100.00 100.00 100.00 100.00 

 1 mm co-registration error 
SNR (dB) 0 -5 -10 -15 -20 
Sensitivity 93.333 96.667 93.333 93.333 80.000 
Specificity 100.00 100.00 100.00 100.00 100.00 

 2 mm co-registration error 
SNR (dB) 0 -5 -10 -15 -20 
Sensitivity 90.000 86.667 76.667 90.000 76.667 
Specificity 100.00 100.00 100.00 100.00 100.00 

 3 mm co-registration error 
SNR (dB) 0 -5 -10 -15 -20 
Sensitivity 80.000 66.667 66.666 56.667 50.000 
Specificity 100.00 96.667 100.00 100.00 96.667 

 

Multiple Sources 

One further question is whether this approach is robust to situations 

containing a mixture of cortical and hippocampal sources. Reconstructing 

concurrent sources in the model comparison framework revealed that even 

when a single hippocampal source is simulated along with three cortical 

sources, the model comparison framework can (in some cases) be used to 

identify the hippocampal activity. Figure 2.11 shows the relationship between 

ratio of cortical-to-hippocampal sources and ΔFanatomical. As expected, the 

proportion of hippocampal activity correlates with Free energy differences: 

Four cortical sources (Free energy mean -0.0139, BOR 0.814), three cortical 

and one hippocampal source (Free energy mean 0.7934, BOR 0.191), two 

cortical and two hippocampal sources (Free energy mean 1.491, BOR 

<0.001), one cortical and three hippocampal sources (Free energy mean 

1.900, BOR <0.001), four hippocampal sources (Free energy mean 4.366, 

BOR <0.001). Importantly this analysis also acts as a second validation of the 

claim that (multiple) purely cortical sources (condition 4C) do not benefit from 

the addition of the hippocampal mesh (Figure 2.5B).  
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Figure 2.11: Simultaneous sources. 

To test whether the model comparison framework would generalise with more than one dipole, 

we simulated four simultaneous dipoles at different ratios of cortex (C) to hippocampus (H). 

Orange dots represent 30 ΔFanatomical values with 10 root mean square (rms) noise added. Blue 

line shows mean Free energy difference. We added no co-registration error to these 

simulations. As the proportion of hippocampal sources increases, the Free energy differences 

increase. To add noise, we simulated band-limited white noise waveforms between 1-80 Hz 

for 300 ms. The effective dipole moment for cortical sources was set to 100 nAm and 200 nAm 

for hippocampal sources (Attal et al., 2012; Murakami and Okada, 2015, 2006). The simulation 

locations were the same as used previously (which were drawn at random). Each simulated 

dataset had a sampling rate of 600 Hz with the sensor-level white Gaussian noise level now 

defined as an absolute value of 10 root mean squared (rms). Due to the range of frequencies 

simulated, we used 16 temporal modes to model the data. We added no co-registration error 

to these inversions. 

 

Differences Between Functional Priors 

We then asked whether we can use the simulated datasets to directly compare the 

performance of the functional, as opposed to anatomical, priors. To do this, we looked 

at the Free energy values obtained with the combined model and compare these 
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values across algorithms. Given the same data and anatomical models, the 

differences therefore reflect the appropriateness of the assumptions related to the 

source covariance, and not, as before the physical locations of potential sources. The 

ΔFfunctional is defined as the difference between given algorithm and the algorithm which 

returns the smallest Free energy value (so for the worst algorithm this difference will 

be zero). Figure 2.12 shows the mean ΔFfunctional from the 30 hippocampal simulations, 

across SNR levels (A), and co-registration error levels (B). We found that the most 

likely functional prior is MSP for all SNR levels and that the second best algorithm is 

EBB throughout. This implies that EBB has a good empirically-based estimate of 

source power even at low SNRs and high co-registration error, considering that it does 

not have the advantage of MSP where a small sub-set of sparse priors pre-specified.  

 

Figure 2.12: Functional model comparison. 

Functional model comparison. This analysis compares combined models across algorithms, 

meaning that we compare the functional, as opposed to anatomical, priors. Given that data 

and models are constant, the differences in Free energy reflect the appropriateness of the 
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assumptions related to source covariance. A) Model comparisons of combined models across 

algorithms as a function of SNR. Bars encode mean functional Free energy difference (Falgorithm 

– Fworst algorithm) of 30 hippocampal source inversions. Results are normalized to smallest mean 

functional Free energy difference at each SNR value. Results are for the combined model 

without co-registration error. The most likely functional prior is MSP for all SNR levels tested, 

and the second most likely is EBB throughout. This implies that EBB has a relatively good data-

driven estimate of source power, even at low SNR (considering that it does not have the explicit 

advantage of MSP where a small subset of correct and sparse priors are used to constrain the 

source space). B) Same as A, but as a function of co-registration error. Results are similar to 

SNR range, implying that the model comparison differences are driven by differences in the 

model evidence values associated with the combined (compared here), and not the cortical 

models. SNR set to -5 dB throughout. 

 

Discussion 

We demonstrate a new method for making probabilistic statements specifically about 

hippocampal engagement in MEG. We show that in order to reliably infer hippocampal 

activity through comparison of two generative models, one with and one without the 

hippocampus explicitly modelled, uncertainty about the location of the brain relative to 

the sensors must be less than 3 mm. Notably, this rather stringent criteria applies only 

when one wishes to make a specific case for hippocampal (rather than medial 

temporal) involvement.  

This approach works because a model without the hippocampus explicitly modelled 

will be sub-optimal in the sense that it provides a less-parsimonious solution to explain 

the same amount of data. Consequently, this model will be penalized in terms of its 

model evidence. Therefore, although the cortical and combined models may explain 

the same amount of variance in the data (Figure 2.4B), the cortical model must use 

more sources to do so, consequently returning a lower Free energy value (Figure 

2.4C). 

The most immediate advantage of the Bayesian model comparison method is that it 

allows us to make use of much more information when making the same inference. 

For example, instead of simply looking at the location of the peak in an image, we can 

use a generative model to test whether the orientation of the source is what we would 

have expected.  

 

One important caveat is that our inference is only as good as our models. So for 

example if the true activity arises from a neighbouring structure (such as the 
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amygdala) and we have not specifically included a model of the amygdala then we 

may make incorrect inference. The level of detail required is also an empirical 

question. It would be interesting to test whether for real data we can distinguish 

between canonical and individual models of the hippocampus (similar to work on the 

cortex, see (Henson et al., 2009; Troebinger et al., 2014a)). We are encouraged by 

the sensitivity of our inference to hippocampal location (Figure 2.9). Here we have 

focused on the distinction between cortical and hippocampal surface sources (Figure 

2.5, Figure 2.8) but we hope to eventually incorporate structural features of 

hippocampal subfields and close-by structures (retrosplenial cortex, parahippocampal 

cortex, entorhinal cortex, amygdala, etc) into the modelling of neuronal current flow. 

This would allow the uncertainty to be further reduced and for us to begin to distinguish 

between subcortical structures in MEG and study their real-time interactions. 

 

Although the spatial resolution is inevitably poorer at deep locations in the brain 

(Hillebrand and Barnes, 2002), we have shown that the approach presented here is 

sensitive enough to discriminate between hippocampal and neighbouring cortical 

sources, even when these are as close together as ~2 mm (Figure 2.8). We attribute 

this discriminability to the different orientations of the local surfaces which give us 

leverage to distinguish between models not commonly available in more traditional 

voxel-wise inference where only location information can be used. As such, Bayesian 

model comparison is distinct, and complementary to standard group level voxel wise 

statistics in which we traditionally look for a peak location within a specific structure. 

The key difference being that for each subject we have anatomical models which 

constrain not only source locations but also orientations (and potentially in the future 

expected current densities (Helbling et al., 2015)) which give us an extra dimension 

through which to distinguish between models. 

 

With respect to the central question of whether significantly higher Free energy for the 

combined model is specific to hippocampal activity, we conclude that it is. This is 

supported by four lines of converging evidence: a) Free energy is not higher for the 

combined model when the source(s) is/are cortical (Figure 2.5B and Figure 2.11), b) 

simulating activity on the nearest portion of medial temporal lobe does not give rise to 

significant Free energy differences (Figure 2.8), c) the maximum Free energy 

difference is specific to the correct location of the mesh and falls below significance if 

the mesh is shifted (Figures 2.9), and d) using the combined mesh, the dipole 

localisation error is close to zero at low co-registration error and high SNR (Figure 

2.10). Thus, the extent to which Free energy differences can be used to infer 
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hippocampal activity is dependent on the accuracy of the solution obtained with the 

combined model. Largely irrespective of the SNR level, the most important empirical 

factor when attempting to unambiguously determine the presence or absence of 

hippocampal activation is minimization of co-registration error. Notably, we base the 

detection of hippocampal on six cycles of oscillatory activity here (20 Hz simulation 

frequency and 300 ms duration). Having more data would increase the detectability 

by improving the SNR (Brookes et al., 2008).  

We simulated data using one set of functional priors (suited to MSP) and reconstructed 

using two other commonly used assumption sets (beamforming and minimum norm). 

As one might expect, the MSP performs the most robustly and sensitively. This is 

unsurprising, given that the simulated activity was sparse, a characteristic that 

matches with the MSP assumptions. Another important point is that we pre-selected 

the correct set of priors (spatial patches) for MSP and therefore side-stepped a 

potentially computationally intensive search over possible patches which would be 

necessary for empirical data (for example see (Troebinger et al., 2014a) where we 

used 32 random patch sets per dataset and cortical model). This means that while 

MNE and EBB had the same large search space, only MSP was given priors to start 

the search from which exactly matched the actual simulation location.   Overall we 

were encouraged to find that all the functional assumptions showed a preference for 

the correct anatomical model (Figure 2.3B-D) and gave somewhat similar estimates 

of the true source distribution (Figure 2.4A). Importantly, as the true functional priors 

will never be known, the Free energy equation (Equation 1.16) also allows us to select 

the most likely functional priors (Figure 2.12). Given that the EBB algorithm did not 

have the advantages of the reduced MSP prior space, yet performed well, and given 

the wealth of previous hippocampal studies using volumetric beamformers (Cornwell 

et al., 2012; Guitart-Masip et al., 2013; Kaplan et al., 2012b; Poch et al., 2011), we 

think this is a promising avenue for further work. 

It is important to consider the main limitations and assumptions of using Bayesian 

model comparison and Free energy. Firstly, as is true for any model comparison 

scheme, we cannot evaluate how good the individual models are in absolute terms; 

we can only infer how good they are relative to one another. It is therefore not possible 

to make inferences or predictions about whether alternative models might be better 

without testing these models. In addition, there is a risk of having local maxima in the 

cost function (in this case the Free energy) if the number of sources and/or hyper-

parameters is very large (Wipf and Nagarajan, 2009). This would mean that models 

could converge on non-optimal solutions and thereby render the Free energy value an 
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invalid reflection of the model or algorithm’s optimal parameter settings. However, 

using simulated data, it has been shown elsewhere that Free energy correlates with 

cross-validation accuracy using machine learning approaches (Penny and Roberts, 

1999), and with conventional reconstruction evaluation measures such as dipole 

localization error (Belardinelli et al., 2012). We also find this in our data (Figure 2.10). 

It follows that maximization of Free energy can be used to fine-tune features of the 

generative model used for analysis, such as number of equivalent current dipoles 

(Kiebel et al., 2008), forward model (Henson et al., 2009), or cortical layer giving rise 

to the measured signal (Troebinger et al., 2014a). However, perhaps the greatest 

advantage of Free energy is that it provides a framework for reliably evaluating 

hypotheses without knowledge of ground truth. 

 

Here we have evaluated algorithm performances for a set of specific perturbations 

from ideal conditions. We emphasize that there are parameters which we have not 

fully investigated the effects of. For example, it would be interesting to evaluate the 

algorithms using different types of correlated noise (although see Figure 2.11 in which 

correlated noise is effectively introduced through multiple sources). Ultimately, there 

are therefore still unresolved questions related to the assumptions implicit in the 

algorithms and simulation parameters used here. Nonetheless, we show that 

irrespectively of these, source reconstruction of hippocampal activity depends upon 

accurate co-registration between MRI and MEG data.  

The outstanding issue therefore is whether the proposed generative model will be 

useful in practice. We know from these simulations that the main empirical constraint 

will be co-registration error which we can now reduce down to <1.5 mm using flexible 

and subject-specific head-casts for MEG. Moreover, the head-casts reduce head 

movement during recording to <0.4 mm which gives way to higher SNR data. We are 

now working on providing empirical validation of the model comparison approach 

presented using these devices (Troebinger et al., 2014b) conjunction with a paradigm 

known to modulate hippocampal activity (Doeller et al., 2008).  

 

The roles of the hippocampus in cognition has been emphasized in both humans (for 

example,  Burgess et al., 2002; Lega et al., 2012; Rutishauser et al., 2010; Zhang and 

Jacobs, 2015)  and animals (Kahana et al., 2001; Logothetis et al., 2012). Our work 

shows that by optimising acquisition protocols such that co-registration error is 

minimized and SNR is maximised, e.g. by using head-casts (Troebinger et al., 2014b), 

we have the ability to selectively study hippocampal dynamics in humans non-

invasively. 
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Key points 

 

 We demonstrate a method for quantifying hippocampal engagement 

probabilistically using simulated hippocampal activity and realistic anatomical 

and electromagnetic source modelling.  

 We constructed two generative models, one which supports neuronal current 

flow on the cortical surface, and one which supports neuronal current flow on 

both the cortical and hippocampal surfaces. 

 Using Bayesian model comparison, we could then infer for any given dataset 

which of the two models provided a more likely explanation of the data.  

 In addition, we tested the robustness of this inference by adding co-registration 

and sensor level noise.  

 We found that the framework is sensitive to hippocampal activity when co-

registration error is <3 mm and the sensor-level signal-to-noise ratio (SNR) is 

<-20 dB.  

 These level of co-registration error and SNR can now be achieved empirically 

using recently developed subject-specific head-casts. 

 

This chapter derives from Paper 1: “Using MEG generative models to make 

probabilistic statements about hippocampal engagement” Sofie S Meyer, Holly 

Rossiter, Matthew Brookes, Mark Woolrich, Sven Bestmann, Gareth R Barnes (under 

review, NeuroImage). 
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Chapter 3  

 

Experiment 2: Flexible Headcasts for High Spatial 

Precision MEG 
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Precis 

In combination with magnetoencephalographic (MEG) data, accurate knowledge of 

the brain’s structure and location provide a principled way of reconstructing neural 

activity with high temporal resolution. However, measuring the brain’s location is 

compromised by head movement during scanning, and by fiducial-based co-

registration with magnetic resonance imaging (MRI) data. Each factor contributes in 

the order of 0.5 cm of error which is propagated into the forward model. Here, we 

present a method for stabilizing and repositioning the head during scanning, and co-

registering MRI and MEG data with low error. Using this new flexible and comfortable 

subject-specific head-cast prototype, we find within-session movements of 0.25 mm 

and between-session repositioning errors around 1 mm. Further, we empirically 

demonstrate high precision source level reproducibility. 

 

Introduction  

In theory, the spatial precision attainable with magnetoencephalography (MEG) 

increases monotonically with increasing signal strength (Gross et al., 2003; Hillebrand 

and Barnes, 2005, 2003). In practice however, this increase is difficult to achieve. Two 

of the main limitations are co-registration between functional MEG data and 

anatomical magnetic resonance imaging (MRI) data, and head movement during 

scanning. Both introduce, at best, ~0.5 cm of uncertainty about the location of the head 

relative to the sensors (Adjamian et al., 2004; Gross et al., 2013; Ross et al., 2011; 

Singh et al., 1997; Stolk et al., 2013; Whalen et al., 2008). Both sources of error non-

linearly compromise the forward modelling accuracy (Hillebrand and Barnes, 2011, 

2003), and reduce the signal-to-noise ratio (SNR) through topographical blurring 

(Medvedovsky et al., 2007; Uutela et al., 2001).  

Although some progress has been made in minimizing co-registration error (Hironaga 

et al., 2014; Koessler et al., 2011; Nunez and Silberstein, 2000; Whalen et al., 2008), 

for example by stabilizing the head during recording (Adjamian et al., 2004; Singh et 

al., 1997), or compensating for movements both during and after recording 

(Medvedovsky et al., 2015, 2007; Nenonen et al., 2012; Stolk et al., 2013; Uutela et 

al., 2001), implementation problems have remained. The sources of residual error 

include misalignment of surfaces, amplification of small placement errors at the front 
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of the head to large errors at the back of the head, and/or reliance on invariance in 

fiducial placement within and across experimenters and subjects (Adjamian et al., 

2004).  

Using 3D printing to create solid head-casts which are moulded to the surface of the 

head internally and to the inside of the MEG dewar externally, we recently showed 

reduction of co-registration errors to <2 mm (Troebinger et al., 2014a, 2014b). 

Although these first solid head-casts gave access to much higher quality data by 

minimizing both co-registration error and head movement, they covered the eyes and 

their rigidity reduced participant comfort, particularly for long recording sessions. Here, 

we present a new head-cast prototype made of flexible polyurethane foam which 

leaves the eyes uncovered, and is easier, safer, and more comfortable to use. The 

improved user comfort is primarily because of the flexibility which makes it easier and 

faster to get into and out of the MEG helmet. Furthermore, the 3D printing is now 

based on an MRI image (as opposed to an optical scan used in Troebinger et al., 

2014a and 2014b) which both maximise the accuracy with which the cast fits the head, 

and minimizes co-registration error by predefining the MEG fiducial coil locations in 

MRI space. We describe the construction pipeline, the within- and between-session 

head movement for subjects wearing these head casts, and assess the estimated co-

registration error. We then show how these improvements give rise to very high 

between-session reproducibility at source level. 

 

Hypothesis and objectives 

Hypothesis: If co-registration error and movement of the head during data recording 

can be minimized, then spatial precision and data reproducibility will be maximised. If 

subjects can be re-positioned consistently, and maintain a stable head position 

throughout normal-length scanning sessions, then it will be possible to build up high-

SNR datasets through repeated scanning of single subjects. If this is true, then non-

varying electrophysiological responses should be consistent across re-positionings 

and scanning days.  

In addition to maximising data quality through stabilization and reliable re-positioning 

of the head relative to the sensors, the objective of this chapter is to design the head-

casts such that subject comfort and safety are improved relative to the first head-cast 

prototype. 
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Methods 

This section is divided into two parts. First, we describe the methods used for building 

head-casts. Next, we describe the scanning procedures for evaluating the head-casts 

with respect to head stabilization, co-registration, and spatial precision.  

 

Participants 

Data were collected from five healthy adult subjects (5 men, mean age 30.0 years 

old). All subjects were right-handed and had no history of neurological or psychiatric 

disease. One participant was excluded from the analysis because of recording errors. 

Informed written consent was given by all subjects prior to scanning and the 

experiments were carried out after obtaining ethical approval from the University 

College London ethics committee (ref. number 5833/001).  

 

MRI Data Acquisition 

In order to construct the head-cast, an accurate image of the scalp surface is required. 

To get this, we first scanned participants in a magnetic resonance imaging (MRI) 

system (Figure 3.1a). Images were acquired using a Siemens Tim Trio 3T system 

(Erlangen, Germany). During the scan, the participant lay in the supine position with 

their head inside a 12-channel coil. Acquisition time was 3 min 42 s, plus a 45 s 

localizer sequence. We were very cautious of skin distortions as any such errors could 

potentially make the head-cast ill-fitting and therefore uncomfortable. For this reason, 

participants were not given padding or ear phones, as these could displace the skin 

on the face, head or neck. To minimize audible noise they were instead given ear 

plugs. The short acquisition time minimizes motion and potential consequential 

distortions. We used an radiofrequency (RF) and gradient spoiled T1 weighted 3D fast 

low angle shot (FLASH) sequence with the following acquisition parameters: image 

resolution 1 mm3 (1 mm slice thickness), field-of view set to 256, 256, and 192 mm 

along the phase (A–P), read (H–F), and partition (R–L; second 3D phase encoding 

direction) directions respectively. Susceptibility differences existing at air-tissue 

interfaces can lead to magnetic field inhomogeneity and subsequent distortions or 

signal loss in the acquired image. Therefore, to preserve brain morphology we used a 
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single shot approach with high readout bandwidth (425 Hz/pixel) and minimum echo 

time (2.25 ms). Consequently no significant geometric distortions were expected or 

observed in the images. A short repetition time (7.96 ms) was used to minimise 

acquisition time while the excitation flip angle was set to 12° to ensure sufficient signal-

to-noise ratio for the resulting anatomical image. To accelerate the acquisition, a 

partial Fourier (factor 6/8) acquisition was used in each phase-encoded direction. 

 

 

 

Head-cast Construction 

The construction process can be divided into seven steps (Figure 3.1a-g). First, we 

extracted the scalp surfaces from the MRI data using standard SPM12 procedures 

(http://www.fil.ion.ucl.ac.uk/spm/) (Figure 3.1a). We then converted this tessellated 

surface into standard template library (STL) format (Figure 3.1b), commonly used for 

3D printing. To specify the shape of the fiducial coils, we used optical white light 

scanning to obtain a 3D representation of a single coil. This was digitally drawn in 3D 

and then checked for its accuracy both against the digital white light scan as well as 

the physical coil, using digital measuring callipers. Next three copies of this virtual coil 

were placed, as per convention, at the approximate nasion, left peri-auricular (LPA), 

and right peri-auricular (RPA) sites. Note that this was not strictly necessary as any 

set of distant scalp locations would have enabled the co-registration procedure. This 

approach therefore does not suffer from inaccuracies in determining anatomical 

landmarks, as is commonly the case when placing fiducial coils on the head during 

MEG data acquisition. One constraint on the placement of the coils was ensuring that 

the coil-body and extruding wire were flat against the scalp, in order to remove 

unnecessary stress or movement of the coil when the head-cast was put on or taken 

off.  

The original design (Troebinger et al., 2014b) was altered so as to now include eye-

hole extensions, ear flaps which extend down below the ears, and a top spacing-

cylinder to accurately position the positive head model in the dewar-helmet (Figure 

3.1c-f). The ear flaps facilitate getting into and out of the scanner more easily and 

safely (see Safety Procedures for more details) and also provide an external reference 

of when the head-cast is touching the top of the dewar. The virtual 3D model was thus 

http://www.fil.ion.ucl.ac.uk/spm/
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placed inside a virtual version of the scanner dewar-helmet (Figure 3.1d) such that 

the distance to the sensors was minimized (by placing the head as far up inside the 

dewar as possible) while ensuring that vision was not obstructed. Next, the positive 

head-model (plus spacing elements and coil protrusions) was printed using a Zcorp 

3D printer with 600 x 540 dots per inch resolution (Figure 3.1e). The 3D printed head 

model was then placed inside the manufacturer-provided replica of the dewar-helmet 

and liquid resin was poured in between the surfaces to fill the negative space. The 

resin expands and sets within ~30 s, and the resulting flexible foam constitutes the 

subject-specific head-cast (Figure 3.1f). Note that the coil protrusions on the 3D print 

now become indentations in the foam head-cast. The fiducial coils can thus be placed 

inside the resulting indentations and the head-cast can be worn for scanning (Figure 

3.1g). This removes inaccuracies in determining anatomical landmarks for fiducial 

placement, and also ensures that the same location is used for repeated scans.  

 

 

Figure 3.1: Overview of head-cast construction steps. 
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a) Head surface is extracted from an anatomical MRI image using the standard SPM12 

segmentation procedure. b) Head surface extraction is converted to a surface file and fiducial 

coils are added. The coil locations are defined in MRI coordinates. c) A positioning cylinder at 

the top of the head is added to the virtual model to define the position of the head inside the 

head-cast. Eye extensions are added to enable vision during use. d) Using and adjusting the 

positioning cylinder, eye extensions and ear extensions, the virtual head model is positioned 

appropriately inside a virtual copy of the MEG dewar. e) The positive head model is 3D printed. 

f) The 3D print is placed inside the manufacturer-provided dewar copy (as in d) and foam resin 

is poured in to fill the gap between the printed positive head model and the dewar. The fiducial 

coil protrusions on the 3D printed head result in small coil-shaped indentations in the head-

cast (the nasion coil is visible between the eye protrusions in the image). g) The subject can 

now wear the flexible foam head-cast and enter into the (real) MEG dewar for scanning. 

 

MEG Data Acquisition  

MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG 

system with superconducting quantum interference device (SQUID)-based axial 

gradiometers (VSM MedTech, Vancouver, Canada) in a magnetically shielded room. 

The data collected were digitized continuously at a sampling rate of 600 Hz. We 

refer to Safety Procedures for a description of the general operating and safety 

procedures. 

 

Experiment 1: Between-session variability 

We first tested how consistently subjects could be repositioned within the MEG 

scanner by asking them to reposition themselves in the scanner ten times. In addition 

to measuring absolute location of the head-cast using the fiducial coils, we also placed 

a reference coil on one side of the nose to measure relative displacements between 

the head-cast and head. Each subject performed ten separate 10s trials. For each run, 

the subject first positioned themselves inside the scanner with the head-cast on, sat 

still for 10s, before and after which the fiducial coils were localized, and the subject 

then exited the scanner and removed the head-cast. This removal and replacement 

was repeated ten times.  

In addition to the healthy subjects, we also performed a similar experiment using the 

manufacturer provided spherical current dipole phantom. This experiment was done 

in order to get an approximation to the system-based noise inherent in localization of 

the fiducial coils and for comparison with the head-cast results. We did not have a 
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head-cast for the phantom but kept the four fiducials fixed on the surface of it using 

tape. To mimic the re-positioning, we physically shifted its location between ten 10 

second trials.  

 

Experiment 2: Within-session variability and button presses 

To test the head movement within trials, we analysed head-position data from a single 

subject (subject 3 from experiment 1) performing button presses across twelve 15-

minute sessions with 180 trials each. These sessions were spread over four days 

(which were separated by several weeks) with three runs per day. Visual stimuli 

consisted of dots moving left or right, with the participant responding with a button 

press using the right hand, upon a subsequent Go signal. MEG data were acquired at 

a sampling rate of 1200 Hz.  

Data were epoched around the button press onset (time 0), and a beamformer 

covariance matrix constructed based on the data from the beta band (15-30 Hz) from 

-2000 to 2000 ms. To extract the source locations, beamformer-based volume-of-

interest (VOI) analysis was then carried out, comparing two time windows ([-1500 to -

1000] versus [500 to 1000] ms) to generate a statistical chi square volume centred on 

the average left primary motor cortex peak (-34, -30, 52 mm in MNI space) with a 20 

mm radius and 1x1x1 mm3 grid resolution. The data were subsequently smoothed with 

a full-width half-maximum kernel of 8 mm. We then constructed a time frequency 

decomposition of the signal from the primary motor cortex sphere (centred around -

34, -30, 52 with 20 mm radius) using a Morlet wavelet transform method with 7 cycles 

on the baseline ([-1500 to -1000] ms) corrected data. 

 

Results  

Between-session movement 

To first establish how reproducible the absolute head position was when using head-

casts, we measured the fiducial coil locations across ten repositioning trials 

(Experiment 1). We found that it was possible to reposition the fiducial coils relative to 

the MEG system within 0.6 mm standard deviation in any one dimension (Figure 

3.2a).  
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Next we were interested in whether there is a risk of the coils moving with respect to 

each other when the head-cast is taken on and off. We examined this by calculating 

the standard deviation of the distances between fiducial coils across repositioning 

trials. We found no such effect measureable as the standard deviations of the 

distances were similar to the standard deviation of the absolute locations (Figure 

3.2b). We found that when we repeated the experiment using a phantom (with the 

coils fixed on the surface), we observed a similar level of variability, suggesting that 

this error is due to uncertainty in the (MEG system’s) localization of the coils 

themselves and not to coil movement.  

Since the fiducial coil locations are recorded by the MEG system, changes in head-

position relative to the dewar during recording, although undesirable, can be 

accounted for. A more pernicious source of error is relative movement of the head with 

respect to the head-cast. To address this directly, we placed a reference coil on the 

nose of the subject in order to measure the distances between this reference and the 

standard fiducial coils (Figure 3.2c). Unlike with the previous analysis where there 

was no difference between measurements made with the phantom and normal 

subjects, we now observed an effect beyond measurement error. We found that the 

variability in the location of the head-cast relative to the head was predominantly due 

to uncertainty in the Z dimension of 1.2 mm standard deviation.  

Next, we were interested in whether these differences in distances to the reference 

coil could be attributed to differences in location along some spatial dimensions more 

than others. Figure 3.2d shows that the most variable dimension is the Z (up-down) 

dimension. Figure 3.2e shows the standard deviation of the reference coil with respect 

to ‘head-centred’ space, meaning that the coordinate frame is defined by the three 

standard fiducial coils. These values reflect how much the reference coil moved 

around relative to the standard fiducial coils inside the head-cast in X (front-back), Y 

(left-right), and Z (up-down) dimensions. We thus found that the main axis along which 

additional variance occurs is the Z (up-down) axis (Figure 3.2d,e). Surprisingly, we 

found this highest variation in the Z dimension to be true for both phantom and human 

measurements. This suggests increased measurement uncertainty in this plane, 

which may be unrelated to the head-cast but perhaps due to the MEG sensors and 

algorithms used to localise the coils or simply the vertical movement of the scanning 

chair (on which the phantom rested) over time. 
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Figure 3.2 Between-session head movement. 

Results from Experiment 1 (re-positioning trials where each of the four subjects came out of 

the scanner, removed the head-cast, put it back on and re-entered 10 times). a) Variability of 

absolute coil locations. Dots show the standard deviation of the absolute coil location over the 

course of the experiment. Repositioning is precise to within <0.6 mm standard deviation for 

any coil in any dimension. b) Coil-coil distance variability. The standard deviations are 

calculated from the distances between the fiducial coils measured in Experiment 1. The 

distances vary <0.5 mm which is within the range of measurement error, as illustrated by the 

phantom measurements (black squares). c) Reference coil-standard coil distance variability. 

Same format as b, but based on the distances between each of the three standard fiducial coils 

and a reference coil placed on the nose. There is more variability with normal subjects than 

phantom. d) Scatter plot showing absolute locations of reference coil in head-centred (standard 

coil-defined) space. This plot illustrates dimensions along which the reference coil location 

varies relative to the standard coils: mostly in the Z (up-down). e) Location of reference coil in 

head-centred space. Bars encode standard deviation of absolute position of the reference coil 

in head-centred space measured across 10 repositioning trials. The location of the reference 

coil deviates <1.2 mm from the fiducial coils in the worst case. Note that variability along the Z 

dimension is also relatively high with the phantom. The standard deviation over all subjects 

was 0.50, 0.57, and 0.80 mm for the X, Y and Z dimensions respectively.  

 



107 

 

In addition to the standard deviation values shown in the Figure, Table 4 shows the 

mean, maximum and minimum values of the coil locations. Values are in cm. P 

phantom, S1 subject 1, LPA left pre-auricular, RPA right pre-auricular. 

Table 4: Mean, maximum and minimum values for coil locations during Experiment 1  

  Nasion LPA RPA Reference 

  x y z x y z x y z x y z 

S1 Mean 7.17 6.88 -22.56 -4.570 7.11 -24.510 7.03 -4.44 -24.64 6.39 7.97 -26.6 

Max 7.21 6.94 -22.48 -4.53 7.13 -24.43 7.04 -4.39 -24.57 6.44 8.06 -26.4 

Min 7.14 6.85 -22.62 -4.62 7.1 -24.55 7.01 -4.47 -24.76 6.33 7.78 -26.76 

S2 Mean 7.86 7.57 -24.76 -3.79 6.75 -24.86 6.25 -3.74 -24.64 6.24 7.71 -26.41 

Max 7.90 7.62 -24.72 -3.77 6.76 -24.83 6.28 -3.72 -24.59 6.30 7.82 -26.29 

Min 7.81 7.54 -24.84 -3.81 6.74 -24.91 6.23 -3.77 -24.69 6.15 7.64 -26.54 

S3 Mean 6.88 6.52 -23.46 -4.28 6.64 -24.68 6.55 -4.18 -24.57 6.07 7.38 -26.92 

Max 6.91 6.57 -23.4 -4.230 6.67 -24.64 6.60 -4.07 -24.53 6.16 7.45 -26.85 

Min 6.83 6.47 -23.53 -4.33 6.62 -24.72 6.52 -4.24 -24.64 6.01 7.30 -27.01 

S4 Mean 7.43 7.33 -24.03 -3.62 6.58 -25.37 5.85 -3.98 -24.67 5.86 7.71 -27.48 

Max 7.52 7.43 -23.97 -3.51 6.63 -25.28 5.90 -3.88 -24.61 5.96 7.78 -27.36 

Min 7.36 7.23 -24.07 -3.69 6.55 -25.42 5.79 -4.08 -24.73 5.70 7.67 -27.59 

P Mean 5.24 5.50 -27.87 -5.180 5.48 -26.33 5.44 -4.97 -26.72 -4.92 -4.95 -25.03 

Max 7.34 7.86 -27.74 -2.83 6.90 -25.63 7.13 -1.41 -26.22 -1.97 -3.17 -24.89 

Min 1.55 3.23 -28.02 -7.55 2.5 -26.84 3.84 -6.90 -27.5 -6.24 -6.81 -25.29 

 

 

Within-session movement 

To evaluate the head location stability over time, a single subject was scanned on 12 

separate trials lasting 15 minutes each (Experiment 2).  We found that results were 

almost identical across fiducial coils. For any coil, relative movements over twelve 15-

minute runs were sub-millimetre (<0.75 mm) and the movement predominantly 

occurred as drift in the vertical direction (left coil shown as an example, Figure 3.3a). 

Note that these traces were mean-corrected (such that the average head position over 

each 15 minute period was set to zero) but that the standard deviations of these means 

were 0.25, 0.25 and 0.26 mm for the X, Y and Z dimensions respectively. Across all 

coils, we found the standard deviations of locations over time to be below 0.22 mm for 
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any coils in any dimensions (Figure 3.3b).  The maximal absolute changes in the coil 

locations were 0.69, 0.5 and 0.75 mm for the left, nasion, and right fiducial respectively 

(the corresponding minimal changes were 0.06, 0.11, and 0.06 mm). All of the maxima 

were in the Z (up-down) dimension. We reason that the explanation for the slightly 

larger absolute changes and standard deviations in this dimension is that the height 

of the head-cast inside the dewar may change slightly over the course of a trial, e.g. 

because the subject relaxes and therefore slouches and loses posture more. We also 

suspect that there is slightly lower sensitivity in the Z axis (see phantom data in Figure 

3.2e) which could be due to the sensor configuration (see Discussion).   

 

 

Figure 3.3 Within-session head movement. 

Data from Experiment 2. a) Absolute location of the left coil in the X, Y and Z dimensions over 

the course of 12 (colour coded) 15-minute trials. The location is mean-corrected individually 

for each trial. We find that the variability across time is negligible. The largest movements are 

downwards (from positive to negative) in line with the subject sliding down in the chair. b) 

Circles show the standard deviations of the absolute coil locations for all 12 trials in all 

dimensions and for all coils. The standard deviation of the locations recorded was 0.22 mm at 

maximum. Z (vertical) is consistently the most variable dimension. 

 

Data Reproducibility  

In Figure 3.4 we show recordings from a single subject performing repeated right hand 

button presses over multiple sessions conducted over several days. The beamformer 
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peak from 11/12 sessions (consisting of 180 trials each) fell on the same three 1mm3 

grid locations  (positional noise is added to the plot in Figure 3.4a for visualisation) 

while one fell more dorso-laterally when constrained to the same contralateral 

hemisphere as the others.  

Figure 3.4b shows the time-frequency plot over 4 separate scanning days for the 

same subject (each represents the average of three 15-minute runs with 180 trials per 

run) extracted from the beamformer peak in the motor cortex (Figure 3.4a).  
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Figure 3.4 Consistency of data features across four separate scanning days 

a Coloured spheres represent beta (15-30 Hz) rebound peaks from Experiment 2. The peak 

locations reflect the maximum chi square statistic when comparing pre-button press data (-

1500 to -1000 ms) to post-button press data (500 to 1000 ms) across a 20 mm radius, 1x1x1 

mm3 resolution sphere centred around the average left primary motor cortex peak (-34, -30, 

52). Note that the solutions were not constrained by the mesh as reconstruction was 

volumetric. Data shown are smoothed using an 8 mm kernel. b Time-frequency plots based on 

the motor cortex beamformer peak for right hand button presses. Each plot shows data from 

one of four scanning days and represents the average of three separate 15 minute runs, each 

run consisting of 180 trials.  

 

Discussion 

We have developed a novel method for building flexible and subject-specific MEG 

head-casts to stabilise the head during recording. This method makes use of the 

subject’s MRI image both to build the head-cast by 3D printing an image of the head 

shape, and to co-register the MEG and MRI data. We find that using this technique for 

head-cast design, the within-session head movement is 0.75 mm in the worst case 

(and 0.06 in the best) over a 15 minute period, and the co-registration error is around 

1.2 mm. 

The head-casts were designed to improve both subject comfort and safety. By making 

the casts flexible and adding ear flaps, we made it easier to enter and exit the dewar, 

minimizing the risk of getting stuck or requiring assistance. Additionally, we added eye 

holes which enable subjects to see and therefore participate in experiments using 

visual stimuli and/or eye tracking. Together, these features make the head-casts less 

intimidating to wear and open up the possibility of a wider range of experiments. 

Importantly the head-cast does not obstruct breathing, vision, or talking although 

hearing may be mildly compromised. We have not found these head-casts to induce 

anxiety or claustrophobia.  

The other major difference between this generation of head-casts and the previous, is 

that the 3D print is now based directly on the MRI image eliminating the need for 

optical scanning. We optimised an acquisition sequence to eliminate distortions on the 

surface of the head. The manufacturing process is nonetheless not completely 

straightforward. Whilst some head-casts fit very well, others require removal of 
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sections that constitute pressure points on the head, typically near the eye holes and 

temples. This seems to be more pronounced in subjects with longer hair. 

With respect to the subjective experience of wearing the head-cast, we find that 

subjects experience them as constraining and unusual at first, but that they quickly get 

accustomed to the experience (after a few recordings), and they improve at entering 

and exiting the dewar. Multiple subjects have remarked that it is obvious to them when 

the head-cast is fit incorrectly when entering the dewar but not necessarily before. We 

have also observed that some experienced subjects find it easier to relax while being 

scanned when wearing a head-cast as they do not have to minimize or inhibit 

movement. This is an important improvement, as previous methods have relied on 

self-stabilization (e.g. with bite bars to hold the head in position (Adjamian et al., 2004; 

Muthukumaraswamy, 2013; Singh et al., 1997)) which induces a risk of increased 

muscle activity and concomitant artefacts (Kumar et al., 2003; Muthukumaraswamy, 

2013; O’Donnell et al., 1974; Whitham et al., 2007).  

The main advance of this head-cast approach is that unlike other co-registration 

minimization approaches, the specification of fiducial points, and extraction of scalp 

surface based on the same original MRI scan simultaneously minimizes co-

registration error and head movement. In turn, this improves the reproducibility of data 

(Figure 3.4a). In previous work (Troebinger et al., 2014b) we have shown that the 

reduction of within-session movement from 5 to 1 mm gives rise to an effective 5 fold 

increase in SNR. Notably, high reproducibility implies high precision but not 

necessarily accuracy. However, the high SNR recordings mean that this framework 

can be used to directly test between different forward models (e.g. the head in different 

positions, see Lopez et al. 2012) delivering an accuracy measure that encompasses 

the complete source reconstruction pathway.  

A number of caveats remain. First, we address the increased uncertainty of coil 

localisation in the Z dimension as observed with increased error in phantom 

measurements (Figure 3.2e). This could either be due to the internal algorithm used 

to locate the fiducial coils based on their magnetic signature or simply the movement 

of the scanner-chair. Second, the co-registration estimate based on the reference coil 

(Figure 3.2c) may have been pessimistic as   the tape holding the reference coil in 

place on the side of the nose extended beyond the coil and was easily tugged on by 

the head-cast. Additionally, the location of the reference coil was both below and 

outside of the dewar, meaning that it would provide a further challenge to the internal 

MEG coil localization procedure. Moreover, prospective motion correction methods 
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where a small optical marker is tracked with sub-micron movement and sub-degree 

rotation precision has shown that placing the marker on the bridge of the nose is 

unstable, as uncorrelated movement between the marker and the brain can be 

observed, likely due to malleability of the skin (Todd et al., 2015).  

As mentioned perhaps the most pernicious source of error due to these devices is 

movement of the subject’s head relative to the head-cast. In this case the fiducial 

locations would appear stable over time whilst, for example, the subject was slowly 

slipping out of the cast. Based on our reproducibility measurements in Figure 3.2c the 

refitting of the cast over time does not seem to be a problem, but there may be some 

subjects (due to the shape of their heads) who can slide downwards within the 

headcast without head-cast movement. In the future we will begin using a 4th coil 

(attached to the head) for more routine measurements in order to quantify this.  

Given that the brain is suspended in corticospinal fluid inside the skull, it must be 

acknowledged that it remains ambiguous whether the difference between the brain 

location while supine (during the MRI scan) and sitting (during the MEG scan) could 

be affecting our estimates. There is a risk that when the head changes orientation with 

respect to gravity, the brain shifts when the density or thickness of the CSF layer 

between the brain and the skull changes. It has been approximated that the this 

change in thickness is ~30% which equates to approximately 1 mm (Hill et al., 1998; 

Rice et al., 2013). We emphasize however that using head-casts while subjects are 

supine removes the ability to use gravity to exit the dewar, causing the safety to be 

compromised. Although it would be interesting to directly quantify these shifts though 

such comparisons, we decided not to due to the safety issues outline below. 

Other potential data acquisition problems which we posit that the head-casts solve to 

a degree but which we have not formally tested are to muscle artefacts 

(Muthukumaraswamy, 2013), particularly when using bite-bars (Adjamian et al., 2004), 

and slow within-session drifts (Stolk et al., 2013). 

Moreover, we have extended the prototype design such that it can accommodate 

subject with long or thick hair (Supplementary Figure 3A). This extends the usefulness 

of these devices and means that a larger segment of the population can be scanned. 

We are working on testing whether this modification affects head stabilization, re-

positioning, or in any way introduces unknown errors.  

The results of the present study suggest that employment of the individual flexible 

head-casts for MEG recordings provide an accurate and reliable method of safely 
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stabilizing the head location during MEG recordings, and for co-registering MRI 

anatomical images to MEG functional data. This design is ideally suited for studies 

which require sensitive longitudinal MEG measurements. 

 

Key points 

 A method for constructing flexible head-casts to stabilize the head during MEG 

scanning is proposed 

 Co-registration error is minimized by using MRI images to pre-define fiducial 

coil locations. 

 Within- and between-session movement is <.25 and <1 mm respectively. 

 This enables high reproducibility of source level results. 

 

This chapter derives in part from: Paper 2: “Flexible headcasts for high spatial 

precision MEG” Sofie S Meyer, James Bonaiuto, Mark Lim, Luzia Troebinger, Holly 

Rossiter, Sheena Waters, David Bradbury, Simon Little, Sven Bestmann, Matthew 

Brookes, Gareth R Barnes (submitted, Journal of Neuroscience Methods). 

 

Safety procedures 

Any head-casts pose a significant source of risk of injury to subjects if used incorrectly. 

Because the head-casts are designed to fit the subject’s head internally and the MEG 

dewar externally, the participant’s head is firmly fixed inside the dewar during 

scanning. This means that any unexpected movement of the chair or MEG system 

has the potential to cause severe neck injury. Our primary safety measure is therefore 

to ensure that neither the chair nor the dewar is moved while the subject is wearing a 

head-cast. This means that the initial positioning of the subject (as well as any 

subsequent adjustments to the height or angle of the chair) only takes place when the 

subject is not inside the scanner or wearing a head-cast. To enter or exit the dewar, 

the subject therefore slides in and out of the seat unassisted. In our experience, this 

takes some practice but is easily and quickly mastered. However, this means that only 

healthy, agile volunteer subjects are suitable for head-cast scanning. In order to 

ensure maximal comfort and safety of participants, we have developed a set of safety 

procedures to be followed by all researchers carrying out MEG scans involving head-
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casts.  We also screen subjects to avoid scanning participants with claustrophobia, 

and place a panic button inside the magnetically shielded room should the subject 

wish, at any time, to stop scanning. 

We advise that only authorised personnel are allowed to scan volunteers with a head-

cast.  

For these reasons we have decided never to use the head-cast with a subject in supine 

position where the consequences of unexpected relative movement between the 

dewar and the bed could be much more serious.  

We refer to our safety guidelines, standard operating procedures, training guide, 

volunteer guide, and emergency procedures available on the MEG community website 

(http://megcommunity.org/ under instrumentation > peripherals > subject stabilization) 

which also contains a link to an instruction video for experimenters.  

 

Supplementary Figure 3A: Head-cast design modified to accommodate hair 

a) Virtual head model of a subject with grooves to accommodate hair volume.  The MRI scan 

is insensitive to hair so protrusions are added to the scalp extraction to create space. b) 

Photograph of head-cast designed to accommodate hair.  

 

  

http://megcommunity.org/
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Chapter 4  

 

Experiment 3: Hippocampal theta activity can be 

detected in MEG during spatial memory with head-

casts 
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Precis 

Experiment 1 demonstrated that detection of hippocampal sources in MEG is possible 

with improved modelling and depends on minimization of co-registration error, while 

Experiment 2 demonstrated how this minimization can be achieved using flexible 

head-casts. In this study, the anatomical modelling and head-cast methods are 

combined to investigate the empirical predictions made in Experiment 1. This study 

thereby addresses the question of whether it is possible to reliably detect hippocampal 

activity empirically when the acquisition protocol is optimised (to the best of our ability), 

and the individual hippocampal surface manifold is included in the generative model. 

If this proves possible, it will be a step towards the exciting prospect of extending MEG 

to be a non-invasive, temporally resolved neuroimaging tool for investigation of the 

dynamics of human hippocampus. One cognitive function of particular interest is 

spatial navigation which provides a fruitful starting point and a substantial challenge 

as many of its neural properties have been studied in rodents, uncovering a wealth of 

predictions and open questions. The focus of this study the methodologies which may 

pave the way for such possibilities; how the previously presented methods can be 

combined and to what extent it is possible to validate simulation results using empirical 

data. 

 

Introduction 

Humans display remarkable cognitive skills when navigating through the environment. 

Like other animals, our behaviour is based on explicit representations of space that 

must be encoded, stored, and flexibly interrogated. The temporal dynamics of the 

hippocampal computations which underpin these processes are being characterised 

in humans using intracranial recordings in epileptic patients. However, studying these 

using a non-invasive neuroimaging tool such as MEG would be a more generalizable, 

efficient and unbiased way of exploring these correlates. This prospect has recently 

been shown to be realistic for several reasons. First, it has been demonstrated using 

concurrent intracranial hippocampal electrodes (in preoperative epileptic patients) and 

MEG, that there is a large zero-lag component of the ongoing theta rhythm which is 

detected by the sensors (Dalal et al., 2013b), and that this can be localised using 

beamformers (Crespo-García et al., 2016). Second, the electrophysiology and 

anatomy of the hippocampus lends itself well to MEG; the hippocampus contains a 
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pyramidal cell layer similar to neocortex (Attal and Schwartz, 2013; Spruston, 2008), 

it is known to exhibit oscillatory activity in humans (Ekstrom et al., 2005; Lega et al., 

2012; Watrous et al., 2011), and information about the environment is encoded across 

large populations of neurons (Buzsáki and Moser, 2013; Hebb, 1949; Pouget and 

Driver, 2000). Third, the spatial priors (expected locations of activity) are strong given 

that cognitive experiments can be adapted from MRI studies with robust hippocampal 

responses. However, the real-time neural dynamics of these cognitive processes, 

while extensively studied in rodents and shown here to possess a wide range of 

quantifiable relationships to behaviour, have received relative little attention in humans 

(Jacobs, 2014; Riggs et al., 2009; Zhang and Jacobs, 2015). Thus, it is unclear to 

what extent the neural circuits and their oscillatory properties are shared across 

species, and whether rodent findings can be successfully translated into human 

neuroscience and begin to explain, in physical and computational terms at a systems-

level, the richness and complexity of our experiences of cognitive feats such as 

navigation. Crucially also, the cognitive capacities of humans which extend beyond 

those of rodents may hold answers to more general and clinically useful research 

questions.  

Several functional features of the human hippocampal rhythms have previously been 

demonstrated. However, while findings based on invasive electrophysiological 

measurements are informative (but rare), they are not necessarily representative of 

the general population, or healthy brains. On the other hand, they do rely on a known 

ground truth (i.e. that the measured signal is hippocampal), whereas the same is not 

true for MEG studies. Nonetheless, theta oscillations (~4-8Hz) during encoding and 

retrieval of spatial information have been found in MEG by several research groups, 

and these studies suggest (but do not show) that the signal is hippocampal (Backus 

et al., 2016; Cornwell et al., 2012; Dalal et al., 2013c; Jacobs et al., 2013; Kaplan et 

al., 2014, 2012b; Lega et al., 2012).  

Theta oscillations and changes to them in relation to behaviour have a wide range of 

interesting and informative properties. For example, theta power has been shown to 

selectively correlate with retrieval of spatial information that is relevant for navigation 

(de Araújo et al., 2002). At a circuitry level, theta oscillations modulate the activity of 

hippocampal place cells (O’Keefe and Recce, 1993) and carry information about 

spatial location in the oscillatory phase, the latter of which is thought to be used by 

entorhinal grid cells to compute an animal’s location in space (Burgess et al., 2007).  
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While it has been shown that anatomically, the human hippocampus plays a role in 

detection of novelty (Kumaran and Maguire, 2007), medial temporal lobe (potentially 

hippocampal) theta power during encoding of spatial information has been shown to 

relate specifically to environmental, but not content, novelty (Kaplan et al., 2012b). 

However, it is not clear whether the human hippocampus analogue of rodent theta is 

at the frequency range thus far assumed (~4-8 Hz) (Lega et al., 2012), raising 

questions and perhaps concerns about the conclusions drawn from earlier studies.  

In addition to theta, high-frequency gamma power increases in hippocampal activity 

have also been shown to relate to successful memory encoding and retrieval (Burke 

et al., 2014; Hanslmayr et al., 2016; Staresina et al., 2016). This suggests that power 

changes in other frequencies, such as gamma, have an important but not-yet-

understood role in hippocampal-based memory functions such as pattern completion. 

As MEG has a very high temporal resolution and is minimally susceptible to signal 

attenuation by tissue or skull surrounding the brain, it is well-suited for measuring 

dynamic brain activity such as theta oscillations. Despite a large and growing body of 

modelling and empirical studies documenting the feasibility of MEG for detecting 

hippocampus (Attal et al., 2007; Backus et al., 2016; Guitart-Masip et al., 2013; Kaplan 

et al., 2014, 2012b; Riggs et al., 2009), as well as simultaneous invasive and MEG 

recordings directly demonstrating this claim (Crespo-García et al., 2016; Dalal et al., 

2013a), controversy regarding the reliability of these claims persist (Mikuni et al., 1997; 

Riggs et al., 2009; Stephen et al., 2005) and deeper sources are often omitted from 

analysis de facto.   

However, there are now several methodological advances which directly facilitate 

examination of hippocampal signals using MEG. Across a range of assumptions about 

the relationship between brain activity and MEG signals, we found that minimizing co-

registration error is the single most important factor in being able to reliably detect 

hippocampal activity (as demonstrated in Chapter 2). Using a new generation of 

flexible head-casts for MEG (Chapter 3), it is now possible to meet the co-registration 

error criteria identified in simulations. The key argument is that accurate information 

about the anatomy of the brain in relation to the MEG sensors enables reliable 

assessment of hippocampal involvement because generative models with and without 

the hippocampus, or with variations in the hippocampal portion, can be compared. 

This comparison can then be used to probabilistically assess whether the hippocampal 

portion of the model contributes to a parsimonious explanation of variance and 

generalizability, or not. Importantly, these head-casts are now compatible with visual 
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stimulus presentation. Using a well-validated virtual reality (VR) paradigm which is 

known to engage hippocampus in fMRI (Doeller et al., 2008), MEG (likely 

hippocampal, tentatively medial temporal lobe) (Kaplan et al., 2014, 2012b), and 

intracranial EEG (iEEG) (Bush et al., in preparation), we hypothesized that it would be 

possible to find evidence for hippocampal activity in real data. Thus, this experiment 

uses a combination of novel and well-validated methods to try to demonstrate the face 

validity of this approach.  

 

Hypothesis  

Hypothesis 1: If we combine an acquisition technique which is optimal for obtaining 

high SNR data (Experiment 2, head-casts), a well-validated spatial memory task which 

is known to engage the hippocampus, and explicit source modelling of the 

hippocampus (Experiment 1), we can detect hippocampal sources in real MEG data.  

Hypothesis 2: If this combination of tools is effective, then changes to the hippocampal 

portion of the generative model should give rise to decreases in model 

generalizability/fitness (which can quantified by two orthogonal metrics; Free energy 

and cross-validation error). Specifically, we predict that if the subject-specific 

generative model of the hippocampus is correct, then laterally rotating it should 

decrease the model evidence and increase the cross validation error. 

 

Methods 

Participants 

We recruited 13 participants (11 men, 2 women, average age = 29.5, SD = 7.4, all 

right-handed). All subjects gave informed consent and were compensated for their 

participation (with the exception of one collaborator and one author). The head-cast 

creation, cognitive task protocols, and MEG scanning were approved by the UCL 

Research Ethics Committee. All subjects had normal or corrected-to-normal vision, no 

history of psychiatric or neurological disease or claustrophobia.   

 

Task Design and Structure 
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During scanning participants were required to accurately encode and later remember 

the locations of objects placed in a virtual arena within which they could freely move 

(Figure 4.1). The circular arena was surrounded by 3-4 distal cues to be used for 

navigation. The task consisted of two phases; encoding and test. Both were carried 

out while the subject was being scanned in an MEG scanner while wearing a custom-

built flexible head-cast (see Chapter 3 for methods relating to this).  

The experiment was designed such that each subject carried out one pre-scanning 

familiarization trial and four regular trials (encoding plus test, carried out during 

scanning) on each of two separate visits to the lab. Each encoding trial consisted of 

presentation of six separate three-dimensional objects, each in a fixed location within 

the arena. Only one object was visible at a time. The subjects were instructed to “pick 

up” objects by moving to the location of the object which caused it to disappear. 

Immediately following this, another object would appear in its respective location. 

Following the encoding phase, subjects were presented with a fixation cross followed 

by one of the six objects where fixation and cue periods were 3s each. During the cue 

period, the subjects were instructed to construct a vivid mental image of where they 

saw the object and try to incorporate as much detail into this image as possible. 

Following the cue period, subject were placed in a random location and orientation in 

the arena, and instructed to navigate to where they think the object was located and 

indicate their response by pressing a button, after which a new fixation period would 

begin. As with encoding, subjects performed 24 test runs in pseudorandom order; four 

for each of the six objects presented during encoding. During test runs, no objects 

were visible in the arena (the distal cues were still visible however). 

Each subject performed four blocks of 24 trials per visit (plus one familiarization trial 

on each of the two visits). To control and orthogonalize environmental and object 

novelty, each trial was either performed in a new virtual reality environment. The object 

sets and virtual arenas were staggered such that on each new trial, only one was novel 

(to enable comparison of familiar versus novel objects). Object sets, object order, 

environment order, and starting locations were pseudorandmised and fully counter-

balanced across participants. The experiment was self-paced with the exception of 

the fixation and object presentation periods. Subjects were given breaks between trials 

to exit the dewar and remove the head-cast if they wished. 

Subjects controlled their movements through the environment with two 2-button MEG-

compatible control pads. The four buttons were configured to allow the subject to move 
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left, forwards, right, and to indicate their response (i.e. location they thought the object 

being tested was located in).  

 

 

Figure 4.1: Virtual Reality environment and trial structure. 

Left: Encoding run showing sample virtual reality environment. Subjects were instructed to 

encode the locations of the object (chair, duck, helmet, bucket, etc) placed in the environment 

and to pick it up by navigating to the location. Each of six objects was presented four times 

with only one object present at a time. Encoding was self-paced and subjects were instructed 

to focus on remembering the object locations. Right: Test run showing cued retrieval of object 

location. Each consisted of a 3s inter-trial interval (ITI) followed by a 3s cue period where one 

of the objects presented during the encoding phase was shown in the middle of the screen. 

Subjects were instructed to remember, as vividly as possible, the location of the object 

presented. Afterwards, the subject was placed at a randomized start position in the 

environment and instructed to navigate back to the remembered object location and indicate 

their response. Presentation order, object locations and identities were randomized and 

counter balanced across subjects. Note that the subject only ever saw the environment from 

an egocentric (first person) perspective.  

 

Virtual Reality  

UnrealEngine2 Runtime software (Epic Games, https://unity3d.com/) was used to 

present a first-person perspective viewpoint 2 metres above the ground. All 

environments were the same size (18 metres in diameter) and shape (circular), and 

surrounded by a set of distal landmarks to enable orientation within the arena. These 

were a stone/marble floor, surrounded by mountains, a grassy plane surrounded by 

trees, a tiled arena surrounded by mountains, and a metal floor surrounded by 

buildings and towers. All environments also had a clouds in the background and the 

sun as a consistent light source which could be used for orientation. Participants 

https://unity3d.com/
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practiced the task in an unrelated virtual environment before performing the 

experiment. 3D objects were presented at different locations inside the environment. 

The location in the environment and heading location was recorded every 25ms. 

During the encoding phase, participants were instructed to “collect” the objects by 

passing through their location. During the cue phase, the objects were presented as 

2D images and participants were instructed to remember and subsequently navigate 

to the object’s original location before indicating a response using the left button box. 

To trigger the data, a small box was coded to appear at the top left-hand corner of the 

screen and change from white to black when subjects transitioned from one trial-state 

to another (e.g. from ITI to cue period). This enabled us to use a photodiode to record 

and temporally align trial transitions with respect to the MEG data.  

 

MEG Data Acquisition and Inversion 

MEG recordings were made in a magnetically shielded room with a 275-channel 

Canadian Thin Films (CTF) system with SQUID-based axial gradiometers. Data were 

digitized continuously at a sampling rate of 600 Hz. Subjects wore customized flexible 

head-casts during recording (methods described in Chapter 3). Fiducial coils were 

attached to the head-cast and thereby located at MRI-defined nasion, right and left 

preauricular sites. The coils were continuously energized throughout the experiment 

for localization of the head(-cast) with respect to the MEG sensors. No subjects 

deviated more than 5 mm from their starting position. Subsequently to MEG recording, 

the data were co-registered to an anatomical MRI image. 

The inversion parameters used here were kept as similar to those in Chapter 2 as 

possible for comparability. Firstly, we used the Empirical Bayes Beamformer (EBB) 

algorithm which bases the source covariance estimate on the data and is free from 

pre-specified spatial priors and the bias which may accompany them. We analysed 

the activity during the 3s cue period and baseline corrected this using the immediately 

preceding 3s inter-trial interval. We used no spatial dimension reduction to ensure 

valid comparisons across models (thus we used 274 spatial modes, matching the 

number of functional sensors). We used 16 temporal modes and constrained the 

solutions to lie on the meshes provided, with the orientation constrained to be normal 

to the mesh vertices. A Hanning taper was applied to the time-series but no down-

sampling or data averaging was done. A Nolte single shell model was used to model 

the inner skull boundary (Nolte, 2003). For the theta analysis, the frequency of interest 
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was set to 4-8 Hz, while for the gamma analysis the frequency of interest was set to 

60-90Hz. 

 

MRI Data Acquisition and Surface Extraction 

Two MRI images were acquired for each subject; one for constructing the head-cast, 

and one for creating the anatomical models of the cortex and hippocampus for 

constraining the inverse solutions of the MEG data. Both were acquired using a 

Siemens Tim Trio 3T system (Erlangen, Germany). While the main criteria for the 

former was to minimize distortion of the scalp, skin and face, the main criteria for the 

latter was maximization of spatial resolution. Thus the acquisition times and 

parameters differed; for the head-cast MRI, a 12-channel head coil was used without 

padding, and the acquisition time was 3 min 42 s (see Chapter 3 for remaining MRI 

and head-cast construction protocol details). Conversely, for the high (0.8mm) 

resolution MRI images, a standard quantitative multiple parameter mapping (MPM) 

protocol was used with a 32-channel head coil, padding, and 3 x 7 minutes acquisition 

times for the (see (Weiskopf et al., 2013) for details). Both MRI images were acquired 

during approximately two weeks prior to the first MEG recording.  

The T1-weighted head-cast image was segmented and used to create a virtual head 

model for 3D printing using standard MRI segmentation procedures in SPM12 (See 

Chapter 3 for more details). The T1-weighted MPM image was segmented using 

FreeSurfer (Fischl, 2012) to extract the cortical and hippocampal surfaces for each 

subject. Freesurfer-based mesh extraction consists of correcting for intensity 

variations in the image, removing extracerebral voxels, and segmenting the cortical 

hemispheres and subcortical structures taking into account variability in the 

histological composition of these structures. Further, the algorithm self-corrects 

topological defects. The result is a triangular tessellation of each structure; in this case 

two hemispheres and two hippocampi per subject. These meshes were then used to 

constrain the inverse solutions by modelling each structure with the assumption of 

pyramidal cell-generated signals emerging whereby the source locations and 

orientations were constrained by the mesh. The locations were modelled by the 

vertices and the orientations were modelled by the normal orientation to these 

vertices. The number of hippocampal vertices was ~400 for both hippocampi, making 

up ~2% of the total vertices in the combined model. 
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The MPM image was co-registered to the head-cast MRI image and the MEG data 

was subsequently co-registered to the MPM image.  

 

Pre-processing  

Epochs corresponding to fixation and cue period were defined as -1000 to 7000 ms 

relative to the onset of the fixation cross. We included 1s of padding on either side of 

the baseline and cue period pairs to avoid analysis-induced artefacts. The data were 

baseline corrected whereby the mean of the pre-cue (baseline) period was subtracted 

from the activity during the 3s cue period. The data were then high-pass filtered 0.5 

Hz, low-pass filtered at 150 Hz, and the power-line interference was stop-band filtered 

away by removing 48-52 Hz. Data were analysed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) within MATLAB 2014a (The MathWorks). 

Eye blinks were detected from a frontal channel and detected eyeblinks were used to 

obtain an average blink time course, based on which a principle component analysis 

was used to obtain templates of the spatial topography related to blinks. The main 

component obtain was regressed out of the data before proceeding with analysis. 

Artifactual epochs were detected by visual inspection and rejected using the FieldTrip 

visual artefact rejection tool. 

  

Model Comparison 

To assess the role of the hippocampus in generating the observed signals, we 

specified, for each subject individually, a set of forward models which varied with 

respect to the hippocampal mesh extracted from their MRI image. The forward model 

constitutes part of the generative model describing how the data arose. All other 

components of the generative model were left the same across all models tested. We 

explored here the model evidence (approximated using Free energy, F) as well as the 

cross validation error (CVE) values associated with each inversion carried out with a 

different model. These two metrics are independent but it is worth noting that the 

inverse solutions are optimised with respect to Free energy. Both Free energy and 

CVE allow formal comparisons of different models of data. While Free energy works 

in a Bayesian framework and can be conceptualised as a Bayes factor, CVE reflects 

how well a random subset of sensors can be predicted based on the remaining 

sensors, given the generative model (see introductory section Free Energy and next 

http://www.fil.ion.ucl.ac.uk/spm/
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section Cross Validation Error for more details of how these are calculated). Both 

values are used here as relative or comparative measures; that is, we compare the 

Free energy and CVE values from different models against each other. The model 

comparisons presented here provide a complement to the simulations presented in 

Chapter 2 in the form of empirical substantiation of the assumptions made, given that 

the acquisition requirements are met by using head-casts. 

Figure 4.2 shows an example of the set of generative models tested against the data 

recorded. First, a cortical (and hippocampus-free, a) model is compared against a 

combined model which includes the individual subject’s hippocampus (b). This is the 

basic model comparison which assesses whether or not modelling the hippocampus 

at all, facilitates explaining variance in the data. Next, we add different degrees of 

lateral rotation to each hippocampal mesh (c-f).   

 

Figure 4.2: Anatomical models; cortical model, combined model, combined models with 

shifted hippocampi. 
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a) Cortical model comprising only the cortical surface. The cerebral cortex is used as a model 

of putative cortical sources. This is the standard model/method used in most non-volumetric 

MEG inversion algorithms. b) Combined model comprising the cortical surface and the 

hippocampal surfaces. c) 5° rotation model. This is equivalent to the combined model but the 

lateral axis of the hippocampus is rotated by 5° and shown in blue. Note that the red 

hippocampal mesh is the non-rotated mesh, included for visualisation of the difference. d) 

Same as c) but with 10° of rotation added to the hippocampal meshes. e) Same as previous 

but with 20° of rotation. f) Same as previous but with 45° of rotation. The meshes shown here 

are a representative example taken from a single subject but note that each generative model 

is subject-specific and based on an anatomical MRI image with 0.8mm resolution.  

 

Cross Validation Error 

Cross validation is a model validation method used to assess how well a given model 

will generalize to an independent measurement. Here, we apply this method to the 

sensor-level signals and ask how well these can be predicted using different 

generative models of the data. The validation component of this method consists of 

leaving out a subset of the data, and measuring how well this subset can be predicted. 

Thus, we examine the predicted signals in the left-out sensors.  

We can then compare the different generative models with respect to the error in these 

predictions. The units of these errors are femtoTesla (fT). In this set-up, we take out 

10% of the sensors (equal to 27 sensors), and use the remaining 90% (247) to create 

a model. We then use this model to predict the signals observed. In this analysis we 

then calculate the average cross validation error across four iterations per dataset. 

The figure below shows the different time-courses measured and predicted at a 

random sensor over the course of 1 second of the cue period for a single subject 

(Figure 4.3). The black line shows the measured data while the red shows the 

predicted data when the generative model includes the correct (straight) 

hippocampus. The blue line shows the predicted data at the sensor when the 

hippocampi are rotated by 45° (Figure 4.2f).  
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Figure 4.3: Cross validation method  

Left image shows a random subset of sensors left out of the analysis and subsequently 

predicted using generative models containing variations of the hippocampal mesh. The 

generative models can be compared on the basis of their error in predicting the measured 

signals across the randomly left out sensors. Right plot shows an example of data measured 

(black line), predicted with a generative model which includes the correct (straight) 

hippocampus (red line), and predicted with a generative model where the hippocampal mesh 

is rotated 45° laterally (blue). For illustration, random sensors were marked and for clarity, only 

1s was included in the plot (although all 3s of the cue period were entered into the analysis). 

   

Results  

Free Energy 

We created a standard cortical and a combined (including the hippocampus) 

generative model for each subject (Figure 4.2) and compared the Free energy values 

obtained upon inversion of the cue period where subjects were told to remember the 

spatial location of an object. To first establish that this improved the model evidence, 

we found a significant (>3 log units, BOR <0.001) increase from inclusion of the 

hippocampus in all subjects (Figure 4.4). Consistent with simulation results (Chapter 

2), we observed evidence in favour of hippocampal engagement during the cue period 

of the spatial memory task. Notably, the Free energy values and thus differences scale 

with the amount of data, and so are far larger here where we have ~96 trials per 

subject compared to in simulations which are based on single trials. 
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Figure 4.4: Free energy differences: cortical versus combined models 

Anatomical model comparison results for 11 subjects. Bars represent Free energy value 

differences when the anatomical combined and cortical models at 4-8Hz during the 3 s cue 

period where subjects are instructed to remember the location of the object presented. There 

are two bars per subject, representing the two separate visits and datasets. Note that subject 

10 was only scanned once however. All subjects are (well) above the significance threshold of 

3, implying that the advantage of including the hippocampal mesh in the generative model 

outweighs the increased complexity introduced. Inset shows zoomed-in view of results for 

subject three; both bars are well above the significance threshold. 

 

Next we were interested in the effect of rotating the hippocampal mesh on Free 

energy. Here we therefore compared the combined model (in this context the straight 

model) to models with rotated hippocampi. This analysis revealed that the average 

model evidence between the model with a straight versus rotated hippocampus is 

significant in the 4-8Hz band even when this rotation is only 5° (Figure 4.4a).This 

effect is significant at group level across all degrees of rotation (average ΔF>3). The 

involvement of hippocampal generators in the recorded MEG signal is thus likely to be 

well-captured by the generative model created on the basis of subject-specific MRI 

images. At 45°, 21 of 22 model evidence differences are significant at <-3 log units 

difference.   

An interesting follow-up question is whether this finding generalises across frequency 

bands. We found that constraining the frequency to the gamma band (60-90 Hz), we 
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were also able to find decreases in model evidence which scaled with rotation of the 

hippocampal mesh (Figure 4.5). Here, the average model evidence difference 

reaches significance at 20° of rotation.   

Finally, as a control condition, we shuffled the lead field labels such that the 

relationship between anatomy and sensors was destroyed (Figure 4.5c). This shows 

that there is no bias inherent in the analysis, and that the anatomical information 

relates to the signal recorded. 

 

Figure 4.5: Free energy differences: straight versus rotated hippocampi 

a) Free energy difference increases as hippocampal mesh rotation increases. Average 

difference across all subjects shown in blue. All degrees of rotation are significant (mean<-3). 

Theta (4-8Hz) analysis. We find that comparing the straight to rotated hippocampi (rotated-

straight), the change in model evidence scales with degree of rotation of the hippocampal 

mesh. Inset shows significance of mean model evidence difference level (<-3) at 5° rotation. 

b) Same as a) but applied to gamma (60-90Hz) frequencies. Average ΔF becomes significant 

at 20° of lateral rotation. Average across subjects shown in yellow. Inset shows mean model 

evidence at 5° of rotation (not significant). c) Control analysis where lead field sensor labels 

are shuffled to destroy relationship between anatomy and sensors.  
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Table 5 shows the mean Free energy differences and accompanying BOR values for 

the two frequency bands tested as well as the lead field shuffle condition. Values are 

calculated across all subjects. We find that while the mean Free energy difference 

reaches significance at 5° rotation in the theta band (with a significant BOR value), 

this is true at 20° in the gamma band, and never in the shuffled lead field condition.  

 
Table 5: Mean Free energy differences and Bayes Omnibus Risk values across frequency 

bands/conditions 

 Theta Gamma Shuffled 

 Mean F BOR Mean F BOR Mean F BOR 

5° rotation -4.252 2.1774e-09 -0.618 <0.001 -0.0002 0.875 

10° rotation -10.226 1.8459e-10 -1.774 2.478e-09 <0.001 0.875 

20° rotation -26.268 8.4852e-13 -5.419 4.8853e-16 0.005 0.874 

45° rotation -73.909 3.0238e-14 -18.534 3.4484e-19 0.0327 0.816 

 

 

Cross Validation Error 

As a second independent measure of performance of the different models, we 

calculated the cross validation error when leaving out 10% of the sensors over 4 folds. 

This analysis showed approximately the same result as the Free Energy findings 

(Figure 4.6). Table 6 shows the p-values, t-values, and degrees of freedom (df) for 

each frequency band or condition tested. We find that in the theta band, the effect of 

mesh rotation is significant at group level at 10° while in the gamma band it is 

significant at 20° or more. When the lead fields are shuffled as a control condition, 

there is never a significant effect of mesh rotation. 

In both frequency bands tested, subjects consistently showed consistent increases in 

error across degrees of rotation. In both frequency bands therefore, the activity 

measured can therefore be attributed to the hippocampus. Together, the Free Energy 

and cross validation error results support the case that we are measuring hippocampal 

sources (confirming the second hypothesis stated).   
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Figure 4.6: Cross validation error: straight versus rotated hippocampi 

Same format as Figure 4.5 but reflecting cross validation error changes. a) Cross validation 

error increases as hippocampal mesh rotation increases. Average difference across all 

subjects shown in blue. All degrees of rotation are significant. Theta (4-8Hz) analysis. We find 

that comparing the straight to rotated hippocampi (rotated-straight), the change in model 

evidence scales with degree of rotation of the hippocampal mesh. Inset shows zoomed-in view 

of 5° rotation data where the mean is below zero. b) Same as a) but applied to gamma band 

data (60-90Hz). Average cross validation error shown in yellow becomes significant at 20° of 

lateral rotation. c) Control analysis where lead field sensor labels are shuffled to destroy 

relationship between anatomy and sensors. Errorbars reflect SEM.   

Table 6: Cross validation statistics for mesh rotation analysis 

 Theta Gamma Shuffled 

 p-val t-val df p-val t-val df p-val t-val df 

5° rotation 0.094 -1.370 18 0.834 0.996 17 0.066 -1.579 18 

10° rotation 0.046 -1.778 18 0.832 0.988 17 0.077 -1.487 18 

20° rotation 0.018 -2.267 18 3.426e-07 -7.434 17 0.120 -1.214 18 

45° rotation 0.007 -2.703 18 4.781e-08 8.539 17 0.418 -0.210 18 

Due to a technical problem with the inversion in the gamma band for a single dataset, the 
data was not included and the degrees of freedom equals 17 and not 18 as with the others. 
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Discussion 

This experiment was concerned with the empirical validation of the hippocampal 

source modelling method presented in Chapter 2. We used flexible and subject-

specific headcasts to minimize co-registration error and head movement, and MRI-

based anatomical modelling of the hippocampus for explicit evaluation of hippocampal 

engagement under optimal (low co-registration error) recording conditions. We hereby 

demonstrate empirically the contribution of hippocampus-specific activity to the 

measured signal, validating the modelling and simulation results presented in Chapter 

2. Through application of Bayesian model comparison and cross-validation, we found 

that lateral rotations of the hippocampal portion of the generative model significantly 

decreases the predictive power of the model as a whole (quantified using two 

independent metrics), even when these errors are as low as 5°. 

We can also confirm our second hypothesis (sensitivity to subtle distortions of the 

hippocampal portion of the generative model). We found evidence for this across two 

independent metrics; Free energy and cross validation error. We found that for theta 

band activity, we are sensitive to lateral rotations of the hippocampi as small as 5° with 

either method. We find this to be significant at the group level. With Free energy, we 

take significance as an average difference between the two models of 3 or more 

(where one model is 20 times more likely than the other, whereas for cross validation 

error we assess significance using a one-tailed t-test. It is important to note that we 

only did 4 folds of cross validation, which is less than what is commonly used. 

However, the results should in theory strengthen with more iterations. 

It is important to note here that with rotated hippocampi, there is an inherent advantage 

from a modelling perspective; as the dipole orientations are rotated away from those 

of the cortical mesh in the medial temporal lobe, the hippocampal mesh becomes an 

increasingly better model for explaining noise or artefacts. Thus, the rotation should in 

theory not only be neutral with respect to the ability of the model to explain data, but 

actually increase it if the source was non-hippocampal. 

From a methodological perspective, another set of exciting possibilities remain. For 

example, it would be interesting to assess the specificity of the anatomical structures 

with respect to individual variation; if one were to swap the hippocampi across 

subjects, would it be possible to recover the true anatomy using model comparisons? 
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I.e. can this data and analysis approach also be used to obtain structural information 

from the MEG data?  

Several open questions remain to be addressed in this dataset. These include 

questions regarding the relationship between theta and behavioural performance 

(Crespo-García et al., 2016; Ekstrom et al., 2003; Watrous et al., 2011), the 

significance of theta during encoding (Jensen and Lisman, 2005; Lega et al., 2012), 

and movement-related changes (Kaplan et al., 2012a). Finally, in terms of pertinent 

cognitive questions, theta power increases in hippocampus which are coupled to theta 

in medial prefrontal regions could be explored using this dataset (Backus et al., 2016; 

Guitart-Masip et al., 2013; Kaplan et al., 2014). Further, several very close-by 

structures and cell types are also known to be modulated by, and thus exhibit theta 

oscillations during navigation. These include entorhinal grid cells, subicular place and 

direction cells, and cells of the parahippocampal cortex (Burgess, 2008; Cornwell et 

al., 2008). In the case of grid cells, an interesting prediction would be that such 

modulations, in either or both theta and gamma ranges, would likely follow six-fold 

symmetrical spatial patterns which represent space.  

Regarding the different cell types and structures involved in coding space, this poses 

a challenge as they are comprise a large number of potential sources. Moreover, it is 

likely that these structures or a subset hereof are concurrently active with the 

hippocampus, but unclear whether or how they give rise to a measureable MEG signal. 

It follows that it would be interesting to model these structures and evaluate their 

contribution to the measured signal explicitly within the Bayesian and/or cross 

validation framework. However, doing so may be non-trivial, as the pyramidal cells are 

generally not distributed or oriented in a laminar fashion, raising doubt about how most 

appropriately to model them with respect to the MEG signal.  

In summary, the findings accord with the results found in simulations; the addition of 

a hippocampal mesh increases the model evidence (Figure 4.4), and this 

improvement depends on the correct orientation of the hippocampal mesh (Figure 

4.5,6). Specifically, we have shown that we are sensitive to minute distortions in the 

generative model of hippocampus, empirically validating the simulation approach 

presented in Chapter 2, and answering the question raised at the beginning of this 

thesis (is it possible to detect hippocampus using MEG?) with a ‘yes’. 

 



135 

 

Key points  

 Lateral rotations of the hippocampal portion of the generative model 

significantly decrease its predictive power, even when these errors are as low 

as 5°. 

 Hippocampus-specific activity can be recorded with MEG using head-casts 

and inferred using appropriate source modelling.  

 Both hippocampal theta (4-8Hz) and gamma (60-90Hz) activity can be imaged 

using this combination of methods. 

 

This chapter derives in part from papers 3 and 4: “Using head-casts to image 

hippocampus with MEG” Sofie S Meyer, Daniel Bush, James A Bisby, Aidan Horner, 

Neil Burgess and Gareth Barnes (in preparation), and “MEG sensitivity to hippocampal 

dipole orientations” Sofie S Meyer, James Bonaiuto, Daniel Bush, James A Bisby, 

Aidan Horner, Neil Burgess and Gareth Barnes (in preparation). 
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Chapter 5  

 

Experiment 4: Optimal configuration of optically 

pumped magnetometers for detecting hippocampal 

signals  
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Precis 

Experiments 1, 2 and 3 showed that minimizing co-registration error and head 

movement are key to hippocampal detectability, that head-casts can be used to 

minimize both while maintaining comfort, and that by using head-casts empirically, 

successful hippocampal detection is possible. Nonetheless, the hippocampus is still a 

deep brain structure and therefore inherently difficult to measure activity from because 

the intensity of magnetic fields fall off with the square of distance from the source. The 

source-scalp distance thus poses a constraint on the SNR achievable. However, a 

second and potentially larger SNR constraint comes from the several centimetres of 

scalp-sensor distance with a normal MEG scanner. This distance is large due to the 

requirement for cryogenic cooling of the sensors, and in part also the “one size fits all” 

design. Therefore, if we want to detect hippocampal signals with higher SNR, reducing 

the scalp-sensor distance is a good starting point.  

This has recently been made possible as optically pumped MEG sensors which do not 

require cryogenic cooling have recently become commercially available. These 

sensors can be placed directly and geometrically flexibly on the scalp, thus greatly 

reducing the scalp-sensor distance and removing the “one size fits all” problem (as 

arrays can be optimised on a subject-by-subject basis). However, the flexibility of 

placement also changes the nature of the modelling uncertainty: although secure 

placement of the sensors on the head removes head movement errors, co-registration 

errors can originate from errors in either the orientation or location of sensors, be these 

with respect to the head or other sensors.  

Thus, in order to understand the potential benefits as well as new sources of 

uncertainty better, it would be useful to carry out a set of simulations where activity is 

known to be hippocampal, and the detectability improvements and pitfalls can be 

directly quantified. In this chapter, the geometrical flexibility of these new sensors is 

thereby dealt with, both in terms of the different kinds of modelling error it potentially 

introduces, the effects of these, and how one might use the flexibility to spatially 

configure an array of sensors for detection of hippocampal activity. 

 

Introduction 

At present, MEG experiments are carried out using an array of superconducting coils, 

each coupled to a superconducting quantum interference device (SQUID). The 

operation of these sensors relies on cryogenic cooling, typically liquid helium which 
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not only makes the scanners costly to acquire and maintain, but also imposes a 

limitation on the minimal separation between the scalp and sensors of several 

centimetres. This distance is non-trivial given that magnetic field strength decreases 

with the square of distance from the source.  

Over the past decade, rapid progress in quantum technology and engineering has led 

to the development of small, non-cryogenic magnetometers which detect magnetic 

fields with the same sensitivity as SQUIDs (Shah and Wakai 2013). These Optically 

Pumped Magnetometers (OPMs) operate at ~150°C yet can be constructed such that 

the sensitive volume is only a few millimetres from the surface which remains at 

approximately room temperature. This is crucial, as it enables placement of the 

sensors directly on the scalp. OPMs thus offer drastic improvements in the sensitivity 

of measurements because of the decreased distance between source and sensor, as 

well as the potential for flexibly arranging the sensors according to brain regions of 

interest.  

As OPMs can be placed on the scalp surface, the largest improvement over SQUID 

systems will be at the cortical surface where the source-sensor distances will undergo 

the greatest reduction relative to a SQUID set-up. Empirical demonstrations of OPMs 

for different superficial sources have recently been shown: evoked responses can be 

detected from both auditory (Johnson et al., 2010, 2013; Xia et al., 2006) and 

somatosensory stimulation (Johnson et al., 2010; Sander et al., 2012). Critically, 

recent studies have also demonstrated the feasibility of multi-channel arrays (Johnson 

et al., 2013; Kim et al., 2014) and improvement of the sensitivity to match that of 

SQUIDs at ~10 fT/√Hz (Shah and Wakai, 2013; Tiporlini and Alameh, 2013). As 

sources within the brain get deeper however, the relative 8-10 fold sensitivity gain at 

the cortical surface decreases to around a factor of 1-4 for deeper brain structures in 

beamformer-based simulations (Boto et al., 2016). Whether a more structure-specific 

approach using spatial priors to test for deep activity will yield similar or better results 

is relevant for understanding the potential of these sensors but currently unclear. This 

chapter is concerned with evaluating the expected sensitivity improvements when 

using OPMs to detect hippocampal sources. To examine this, anatomical model 

comparison for hippocampal sources (as described in Chapter 2) is used. The 

rationale behind this approach is that including a hippocampal mesh should give a 

more parsimonious generative model which will return a higher model evidence value 

if sources are hippocampal. 
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Interestingly, as the OPM technology does not require a fixed array of sensors (the 

equivalent of an MEG dewar), we become prey to new and different forms of potential 

modelling errors, as we no longer necessarily know the positions and orientations of 

the sensors relative to one another or in absolute terms. In this chapter, the 

advantages of using an OPM system to localize electrical activity in the hippocampus 

is assessed in relation to this uncertainty: we ask how both independent and 

systematic location and orientation errors affect our ability to reliably detect 

hippocampal sources through model comparison-based inference. Finally, we 

conclude with how to potentially minimize these errors in an empirical context (see 

also General Discussion).  

Hypothesis and objectives 

If OPM sensors have the same noise sensitivity as SQUIDs but can be placed directly 

on the scalp, then they should be able to detect weaker signals simply by virtue of 

being closer to the sources generating them. Here we are interested in the extent to 

which this is true for hippocampal signals.  

If we can manipulate four different kinds of potential modelling errors independently 

(systematic and independent errors in both sensors location and orientation), then we 

can identify how detrimental these are to our ability to reliably detect hippocampal 

activity. This in turn can be used to inform the design of an OPM head-cast. 

 

Methods 

Simulation set-up 

As in Chapter 2, the simulation and reconstruction pipeline consisted of three main 

steps: 1) simulation of a single hippocampal dipole patch, 2) reconstruction hereof with 

two generative models, one with a nested hippocampal mesh and one without, and 3) 

model comparison of the two models through comparison of model evidence.  

The simulation parameters were similar to those in Chapter 2: a sinusoidal waveform 

of 40 Hz was simulated for 500 ms as a dipole with FWHM of ~6 mm, oriented 

perpendicularly to a randomly chosen vertex in the hippocampal mesh. Instead of 

SNR, here we varied the total effective dipole amplitude to assess hippocampal 

detectability at varying source strength. 10 ft/√Hz Gaussian white noise was added to 

the data at sensor-level. At each source strength, 30 datasets were simulated and the 

average model evidence difference across the corresponding model comparisons was 
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computed. As in Chapter 2, we used only one hemisphere and one hippocampal mesh 

for simplicity. 

For the source reconstruction, we used the Empirical Bayes Beamformer (EBB) which 

does not require explicit specification of anatomical priors as it makes use of the entire 

source space (i.e. the full generative model, whether or not it includes a hippocampal 

mesh). We thereby avoid the problem of having to specify a ratio of hippocampal to 

cortical priors, and of deciding whether to specify the correct (simulated) hippocampal 

priors, as was done with the Multiple Sparse Priors (MSP) algorithm in Chapter 2. 

Other parameters were the same as in Chapter 2 for comparison, with the exception 

of the number of spatial modes which was set to 270, meaning that we did not perform 

any spatial dimension reduction as the number of sensors simulated was also 270 for 

each sensor type. The time and frequency windows were set to match those simulated 

such that these were 0-500 ms and 0-80 Hz. We applied a Hanning taper to the time 

series but did not do any down-sampling or data averaging.  

To evaluate the effect of moving sensors closer to the scalp, we constructed two virtual 

sensor arrays. These were both based on the MRI-derived scalp extraction for a single 

subject (the same subject’s brain used to construct the generative models). To explore 

the flexibility of positioning of OPMs and maintain comparability with SQUIDs, we 

scattered 270 sensors at random locations but specific distances from this scalp 

surface. To simulate an OPM array, this distance from the sensitive volume to the 

scalp was 3 mm (Figure 5.1a) and to simulate a SQUID array it was 3 cm. The noise 

floor of the two sensor types was assumed to be equal (10 fT/√Hz) and both were 

configured as radial magnetometers, i.e. detecting one radial measurement each 

(although OPMs can in practice be set to record both radial and tangential fields). 

Thus, the OPM and SQUID arrays differ only in their distance from the scalp.  

In this simulation set-up, the distance from the centroid of the hippocampal mesh to 

the closest sensor was 8.44 cm for the SQUID system and 5.81 cm for the OPM 

system. Likewise, the average distance from the hippocampal centroid (across all 270 

sensors) was 12.81 versus 10.26 cm for the SQUID and OPM systems respectively. 

 

Co-registration errors 

We used two different forms of co-registration error to investigate the tolerance of 

OPMs to errors. We first simulated systematic shifts in sensor locations where sensors 
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stayed constant with respect to each other, but changed relative to the head location 

(Figure 5.1b). This is similar to standard co-registration error in (standard SQUID-

based) MEG where the head may move relative to the sensors, or the co-registration 

between anatomical and functional data may be shifted due to mislocalization of one 

or a subset of fiducial coils. Due to the OPM-specific flexibility of sensor positioning, 

we also simulated independent errors in sensor location where sensors were shifted 

relative to one another, breaking the array’s geometry (Figure 5.1c) as well as the 

spatial relationships of the sensors and the head.  

For comparability across sensor arrays, each dataset was inverted the same two 

generative models (with versus without hippocampus) with both sensor arrays (OPMs 

and SQUIDs). This enabled direct comparison of the performance of the two different 

sensor arrays by comparing the point at which the hippocampus became discernible. 

We can thereby identify the parameters (source strength and sensor distance) under 

which it is possible to reliably detect the hippocampal signal through model 

comparison.  

 

 

Figure 5.1 Schematic showing the different types of sensor location error for OPM 

arrays. 

a) Standard locations of OPM sensors 3 mm from the scalp surface. b) Systematic shifts added 

to the sensor locations. Sensors are shifted together in a random direction but maintain the 

spatial relationships to one another (equivalently to standard co-registration error where the 

location of the head relative to the fixed sensor array is uncertain). c) Independent shifts added 

to the sensor locations. Here the location of a given sensor is randomly perturbed which breaks 

the spatial relationships between sensors, as well as those between the sensors and the brain. 

Here error types are shown for simulated OPM sensors (3 mm stand-off from the scalp) but 

the same types of shifts were added to the simulated SQUID sensors (30 mm stand-off from 



143 

 

the scalp). The same principle was used for the sensor orientation error simulations. Blue unit 

vector arrows are used for illustration purposes only and do not represent sensor size or shape. 

 

Results   

Effect of sensor stand-off distance 

We first investigated how large of an improvement in detectability of hippocampal 

sources could be expected from moving the sensors closer to the scalp. To address 

this, we compared generative models with and without the hippocampus across a 

range of source strengths. As expected, we found that smaller scalp-sensor distances 

equates to greater sensitivity (Figure 5.2): While OPMs (blue) give model evidence 

differences of 3 (where the combined model is 20 times more likely) at ~10 nAm 

signals, SQUIDs only do so at ~50 nAm (Figure 5.2B). Notably however, the 

significance depends also on the Bayes Omnibus Risk values (Table 7) which show 

that while OPMs reach significance at 20 nAm, SQUIDs do so at ~100. Thus we are 

approximately 5 times more sensitive to hippocampal sources using OPMs.  

Table 7 shows the BOR values for the OPM and SQUID model comparisons across 

source strengths. While the OPM results reach significance at 20 nAm (but not at 

100 nAm), SQUID based simulations reach it at 100 nAm.  

 

Table 7: Bayes Omnibus Risk values for OPM and SQUID simulations across source strengths 

BOR 1 nAm 5 nAm 10 nAm 20 nAm 50 nAm 100 nAm 200 nAm 

3 mm 0.711 0.377 0.110 0.043 0.034 0.166 0.035 

30 mm 0.711 0.689 0.552 0.320 0.081 0.044 0.038 
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Figure 5.2 ΔF values across simulated source strengths for OPM and SQUID arrays. 

A) Depiction of sensor locations with OPM sensors virtually placed 3 mm from the surface of 

the scalp (blue) and SQUID sensors virtually placed 30 mm from the scalp (green). B) Bar plot 

showing model comparison results for simulated hippocampal sources reconstructed with 

either an array of OPM sensors (blue) or SQUID sensors (green). Each bar encodes the 

average model evidence difference across 30 simulated hippocampal datasets reconstructed 

with a generative model which includes the hippocampus, and one which does not;  ΔFanatomical 

= Fcombined - Fcortical. The black line marks the significance threshold (ΔF=3) where the 

combined model is 20 times more likely than the cortical. Bringing the sensors 2.7 cm closer 

to the scalp equates to increasing the sensitivity to hippocampal signals approximately 5 fold 

(~20 versus ~100 nAm strength required for detection, see Table 7).  

 

Effects of independent and systematic errors in sensor locations 

In the previous analysis we assumed that the forward model is accurate. In reality 

however, there are several factors which may impede the modelling accuracy, such 

uncertainty about the location and/or orientation of the sensors with respect to each 

other, and/or with respect to the head. We first investigated whether and to what extent 

sensor location errors obstruct our ability to discriminate between generative models 

and thus detect hippocampal sources.  

These results demonstrate that errors do negatively affect hippocampal detectability 

(Figure 5.3). Specifically, too much independent sensor location error (e.g. 10 mm, 

orange lines) completely eliminates hippocampal detectability with both OPMs and 

SQUIDs (Figure 5.3a,b).  With smaller errors, increased source strength can to an 
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extent compensate for errors (compare green and blue lines, Figure 5.3a). Similarly 

increasing the SNR by using OPMs affords improved tolerance of errors. For example, 

when there is 5 mm of independent error added to the sensor locations (green lines), 

it is only possible to detect hippocampal sources if the sensors are close to the head 

(Figure 5.3a,b). Even with very strong hippocampal sources (200 nAm), the average 

SQUID model evidence differences does not reach significance. Results are similar 

but slightly better when adding systematic errors (dotted lines, Figure 5.3c,d). With 

10 mm of independent error (dotted orange lines), it is generally possible to detect 

hippocampal sources above 20 nAm with OPMs but not SQUIDs, regardless of source 

strength. Although there seems to be an effect of error type (solid versus dotted lines 

in Figure 5.3c,d), this is not significant (Bayes Omnibus Risk comparing systematic 

and independent errors is 0.077 for OPMs and 0.105 for SQUIDs).  
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Figure 5.3 Effects of systematic and independent sensor location errors on ΔF across 

simulation strengths. 

a) OPM simulation with sensor stand-off of 3 mm. Coloured lines represent mean model 

evidence difference values when independent sensor location error is added. Model evidence 

differences increase with increasing source strength (along x). Up to 5 mm or error (green line), 

the increased SNR afforded by decreased sensor distance enables detection sources which 

are 20 nAm or more in strength (never possible with SQUIDs, see subplot b). Black line marks 

the significance threshold of 3 where the combined model is significantly (~20 times) more 

likely than the cortical model.  b) SQUID simulation with sensor stand-off of 30 mm. Coloured 

lines represent mean model evidence differences when independent location error is added. 

Larger distances to the simulated sources means that higher source strength is needed for 

model evidence differences to be significant (10 nAm in panel a versus 50 nAm in panel b). 

Due to the relatively low SNR, only small errors are tolerated by the SQUID system: errors 

above 2 mm rule out detection of hippocampal sources. c) OPM simulations, same format as 

panel a but dotted lines showing effects of systematic errors as source strength increases. 

Independent errors (solid lines) included for reference. Systematic errors generally give higher 

model evidence differences and so are less detrimental to inferences about hippocampal 

sources than independent errors (but this difference is not significant). Syst systematic, indep 

independent. d) SQUID simulations, same format as c. Average model evidence differences 

when systematic error is added are shown with dotted lines. Again we found the difference 

between systematic and independent errors across all noise levels to be positive but not 

significant.  

 

Next we were interested in the relationship between increased sensitivity to 

hippocampal signals, and increased sensitivity to error. That is, do we need more 

accurate models to make use of OPM data, and how accurate must the modelling be 

in order to benefit from having the sensors closer? To first visualise an answer to this 

question, we replotted a subset of the data shown in Figure 5.3 to show the effects of 

location error on model comparison (Figure 5.4a,b). We chose 10 and 50 nAm 

because these were the approximate source strengths at which the OPMs and 

SQUIDs could detect hippocampal sources (without error). We found that the model 

evidence difference falls off faster as a function of error with OPMs than with SQUIDs 

(compare grey lines, Figure 5.4a,b), and that at approximately 10 mm of error there 

is no longer an advantage of having the sensors closer, as the difference between 

models is below the significance threshold of 3 regardless of source strength.  

As the model comparison on its own may give false positive (or negative) results by 

chance if the underlying models do not differ in their (actual) ability to explain the data 
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parsimoniously, we calculated the Bayes Omnibus Risk (BOR) to ensure that this was 

not the case (Figure 5.4c,d). We did this for both source strengths and both error 

types. BOR was thereby used to quantify the reliability of the model evidence 

differences as a function of error. We found that although the BOR values mirror the 

model evidence difference values well generally, they suggest a slightly more 

conservative interpretation of the results. For example, with SQUIDs the model 

evidence differences at 0, 1 and 2 mm are (just) significant (Figure 5.4b) but the BOR 

values are between 0.08 and 0.09 (i.e. not significant). Per convention we define the 

BOR significance threshold to be 0.05. Thus, at low errors and 50 nAm sources 

detection of hippocampal sources is not reliable using SQUIDs. 

Conversely, we find that with OPMs, the BOR stays below the significance threshold 

up to and including 5 mm of error for 50 nAm sources (grey lines, Figure 5.4c). 

However, at 10 mm of error, although the model evidence difference for the systematic 

error condition is significant (Figure 5.4a, grey dotted line), the BOR suggests that 

these two models may be equally likely. 
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Figure 5.4 Evidence for source models as an effect of sensor location error 

a) OPM simulation with sensor stand-off of 3 mm. As sensor location error increases (along x), 

model evidence differences rapidly decrease. This is most pronounced when source strength 

is higher (50 nAm; grey lines). High SNR entails high sensitivity to error. Green line marks 

significance threshold of 3 (combined model 20 times more likely than cortical). b) SQUID 

simulation with sensor stand-off of 30 mm. Evidence for the correct source model is lower 

(almost no model evidence difference at 10 nAm, blue lines), and decreases less rapidly. 

SQUIDs are less sensitive to activity and more robust to errors. c) Bayes Omnibus Risk (BOR) 

as a function of location error when sensor stand-off is 3 mm. With 50 nAm sources, model 

evidence differences are significant with up to and including 5 mm of error whereas 10 nAm 

sources never give a reliable (or significant, a) difference. Green line marks significance 

threshold 0.05 where risk that model frequencies are equal is 5%. d) BOR as a function of 

location error when sensor stand-off is 30 mm. Even when model evidence differences are 

significant at 0-2 mm with 50 nAm source (grey lines, b), the BOR probability that the two 

models are equally likely is not significant.  
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Effects of independent and systematic errors in sensor orientations 

In order to characterize more rigorously what the empirical requirements for OPM-

based detection of hippocampal signals might be, we next investigated what the 

effects of sensor orientation errors were. Again we tested the effects of both 

systematic and independent errors on model evidence differences when simulated 

sources were hippocampal. Similarly to with location errors, this analysis revealed that 

systematic and independent orientation errors negatively affect our ability to detect 

hippocampal sources, can be compensated for to an extent by increased source 

strengths, and are largely equally detrimental to model comparison (Figure 5.5). The 

differences between independent and systematic errors were less pronounced than 

with location errors and also not significant with neither OPMs (BOR=0.604), nor 

SQUIDs (BOR=0.653). We also found a similar difference in tolerance of errors as 

before: OPMs give significant model evidence differences in the face of larger errors 

and lower source strengths than SQUIDs. While both 5 and 15° errors can be tolerated 

by OPMs when sources are <20 and <50 nAm respectively, SQUIDs require 100 nAm 

source strength to detect hippocampal sources when there is 5° of error, and can 

never detect hippocampal sources when there is 15° of error, regardless of how strong 

the source is (Figure 5.5). 

 

Figure 5.5: Effects of systematic and independent sensor orientation errors on ΔF 

across simulation strengths. 
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Same format as Figure 5.3 but with perturbed sensor orientations rather than locations. 

Independent perturbations are approximately equally detrimental as systematic both when 

relatively large (15°) and relatively small (5°). A) OPM simulation with sensor stand-off of 3 

mm. At 5° of sensor orientation error (orange lines), it becomes possible to distinguish between 

models at <20 nAm source strength, whereas >20 nAm is required when errors are 15°. B) 

SQUID simulation with sensor stand-off of 30 mm. Sources must be 100 nAm to be detectable 

when there is 5° of orientation error added to the sensors. Conversely, is not possible to 

reliably infer hippocampal activation when there is 15° of orientation error, even when the 

source strength is high (200 nAm, compare to ~20 nAm required with an OPM array, A). Syst 

systematic, indep independent. 

 

We then investigated the relationship between sensitivity to hippocampal signals 

versus modelling error in the context of sensor orientation uncertainty. Again, we 

asked, how accurate must the modelling be (in terms of sensor orientation), in order 

to benefit from having the sensors closer? Similarly to Figure 5.4, we first replotted 

data shown in the previous figure to assess the effect of error on model comparison 

with 10 and 50 nAm sources (Figure 5.6a,b). Here, we observe a similar pattern as 

before, namely that the model evidence difference falls off faster as a function of error 

with OPMs than SQUIDs. Interestingly, we also find that although 50 nAm sources on 

average give highly significant model evidence differences with OPMs when the 

orientation error is 5° (10.58 and 9.75 for systematic and independent errors 

respectively, Figure 5.6a), the associated BOR values are not significant (both 0.24). 

The same relationship is found with 15° errors: model evidence differences are 

significant at 4.79 and 4.16 for independent and systematic orientation errors, while 

BOR values are likewise not significant at 0.25 and 0.26 respectively (Figure 5.6c). 

This means that even with very small (5°) errors, the high SNR obtained by using 

OPMs does not afford hippocampal detectability. We also found that with orientation 

errors added to SQUID sensors (included for comparison, but practically does not 

occur when sensors are arranged in a fixed configuration inside a scanner Figure 

5.6b,d), it is never possible to detect hippocampal sources as simulated here.  
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Figure 5.6 Evidence for source models as an effect of sensor orientation error 

Same format as Figure 5.4 but showing model evidence differences and BOR values as a 

function of sensor orientation as opposed to location errors. a) OPM simulation with sensor 

stand-off of 3 mm. As sensor orientation error increases (along x), model evidence differences 

rapidly decrease. Again this is most pronounced when source strength is higher (50 nAm; grey 

lines). Green line marks model comparison significance threshold of 3 (combined model 20 

times more likely than cortical). b) SQUID simulation with sensor stand-off of 30 mm. Evidence 

for the correct source model is lower with either source strength - there is almost no model 

evidence difference with 10 nAm sources (blue lines). SQUIDs are less sensitive to activity. c) 

Bayes Omnibus Risk (BOR) as a function of location error when sensor stand-off is 3 mm. With 

50 nAm sources, adding either 5 or 15° of orientation error invalidates the model evidence 

difference. Green line marks significance threshold 0.05 where probability that model 

frequencies are equal is 5%. d) BOR as a function of orientation error when sensor stand-off 

is 30 mm. In all conditions shown here, the BOR is not significant.  
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Effects of sensor error on the combined generative model alone 

So far we have looked at model evidence differences between the combined and 

cortical models. However, a potentially more sensitive measure of how modelling 

errors affect our ability to detect hippocampal sources might be to assess changes in 

model evidence values for the combined model alone, as a function of error. We 

reason that the optimal condition for measuring hippocampal activity is with zero error, 

and therefore assess how error affects the model evidence we obtain with the 

combined model when modelling error is added (Figure 5.7). This analysis revealed 

stronger effects of error than when the two different generative models were 

compared. For example, at 1 mm of systematic location error, the model evidence 

value for the combined model is significantly decreased in both the OPM and SQUID 

simulations, specifically by 26.7 and 10.61 log units respectively (Figure 5.7a,b). This 

equates to the combined model being more than 390 million and 40,000 times more 

likely for the zero-error condition. 

Several other observations emerged from plotting the results in this way. First, we 

found that generally, model evidence values are more strongly affected by modelling 

errors when the sensor array is closer to the head (compare left and right columns, 

Figure 5.7). Second, we found a tendency for systematic errors to be equally or less 

detrimental in the context of location error, but more or equally detrimental in the 

context of orientation error (compare upper and lower panels, Figure 5.7).  
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Figure 5.7 Evidence for combined generative model as sensors degrade 

Change in model evidence values of the combined generative model as a function of sensor 

errors. a) Model evidence for the generative model in an OPM array as a function of sensor 

location error. Model evidence values normalised to zero error condition (marked by black line). 

Red line marks significance threshold of -3 where the zero error model is 20 times more likely 

than the one in comparison to it. Systematic errors (dotted lines) are less detrimental to the 

model evidence: values drop off less sharply with error and stay above the significance 

threshold until 1 and 2 mm for 50 and 10 nAm sources respectively. The stronger (50 nAm) 

source causes the model evidence to drop off more sharply with error than the weaker (10 

nAm) source in the independent location error condition where even 1 mm of error causes a 

significant decrease in model evidence at both source strengths. b) Same format as a, but for 

a SQUID sensor array. The effect of sources being stronger is the same as sensors being 

closer to the head (panel a): more rapid drop-off of model evidence with error. Both error types 

tolerate up to 2 mm of error when sources are weak (10 nAm, blue lines) or error is systematic 

but source is strong (50 nAm, grey dotted line). c) Model evidence values for the combined 

generative model as a function of orientation errors when sensors are 3 mm from the scalp. All 



154 

 

model evidence values decrease significantly from only 5° of error, regardless of type or source 

strength. Systematic errors cause larger decreases than independent errors. d) Model 

evidence values for the combined generative model as a function of orientation errors when 

sensors are 30 mm from the scalp. While model evidence for the combined model does not 

significantly decrease when sources are 10 nAm and errors are independent and up to 15°, all 

other conditions tested show a significant decrease when only 5° of error is added. Again, 

systematic errors are generally more detrimental, although the 10 nAm trajectory is 

approximately equal to the 50 nAm independent error trajectory.      

 

Discussion 

In this section, we introduced a simple simulation framework to evaluate the 

advantages and limitations of detecting hippocampal sources using OPMs placed 

directly on the scalp. It appears that OPMs provide the potential for approximately 5-

fold sensitivity improvements if testing specific hypotheses about deeper structures 

such as the hippocampus (Figure 5.1). This is higher than that reported when 

detectability is determined on the basis of beamformer reconstructed time courses (1-

2 fold) (Boto et al., 2016). Thus, we posit that a model comparison approach may 

enable further increased sensitivity through more precise priors.  

However, increased sensitivity to sources implies increased sensitivity to modelling 

error. We found that while small modelling errors have large negative effects on OPM 

inversions, this is to an extent offset by the increased SNR afforded by having the 

sensors closer to the scalp (Figures 5.3-5.6). Importantly, because OPMs can be 

placed flexibly, they are more prone to both sensor orientation and location errors. 

These may occur either systematically or independently (or both). We found that all 

errors are highly detrimental to hippocampal detectability, confirming our hypothesis 

that increased sensitivity also extends to errors. This supports the notion that model-

comparison based methods may be more sensitive to deeper sources, as the effects 

of modelling errors reported in other simulations (Boto et al., 2016) show that the 

benefits of OPMs for deep sources are negated by forward modelling errors of ~20% 

(discrepancies between simulated and inverted lead fields).  

Our results suggest that OPM sensors must be physically constrained in order to both 

make use of the stronger signal, and maximise their potential. In particular, modelling 

the orientations of the sensors (which is not an issue with SQUIDs where the 

orientation cannot vary) is very detrimental to successful model comparison-based 

detection. We find that the empirical error should be kept as low as possible, at least 
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<5° (Figure 5.6-5.7). We therefore propose that the sensors are oriented and fixed 

with respect to the head, eliminating both independent and systematic errors a priori. 

This could be done with a head-cast like design (Chapter 3) but where the head-cast 

itself is (more) rigid and contains slots which fix both the orientation and location of the 

sensors with respect to the head, and each other. 

It is worth noting here that although unclear from these simulations what the exact 

source-level SNR improvements may be, and whether they could be improved further 

by arranging sensors in a more data- or anatomy-driven manner. It is also unclear 

what the optimal sensor coverage density might be, although simulations suggest that 

the improvement continues to increase with density (Boto et al., 2016).  

Finally, although it might be informative for designing an acquisition device, this 

simulation set-up is inherently optimistic and potentially unrealistic for several reasons: 

sensors are located in the throat and face and SQUIDs are located outside a dewar 

system. Here we simulate OPMs as magnetometers but axial gradiometers have 

recently been configured and empirically validated (but are not yet fully implemented 

in the commercially available devices). Nonetheless, we posit that these findings are 

useful as demonstrations of the sensitivity and flexibility of these new sensors, as well 

as novel guiding principles for optimisation of acquisition protocols for these new 

devices. 

 

Key points 

 Reducing the distance between the brain and sensors gives ~5 fold sensitivity 

improvement for hippocampal sources. 

 Increased sensitivity is accompanied by increased sensitivity to errors which 

may be offset to an extent by increased SNR. 

 A method for locating and orienting the sensors with respect to the head is 

needed in order to eliminating co-registration errors while minimizing the scalp-

sensor distance. 

 

This chapter does not derive from a manuscript in preparation.   
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General Discussion 

 

Overview 

The aim of this thesis was to advance acquisition and analysis methods for detecting 

signals from the human hippocampus using MEG. In doing so, an extension of the 

standard generative model used for inversion of MEG data was created by adding a 

hippocampal mesh. This extended model was then tested across a range of simulated 

conditions (Experiment 1). Next, the development of a new prototype of flexible head-

casts used for stabilizing and accurately repositioning the head in the MEG scanner 

was described and tested empirically (Experiment 2). The head-casts and 

hippocampal source model were then successfully applied to acquire and analyse real 

data and revealed hippocampus-specific activity (Experiment 3). Moreover, the 

detectability of hippocampal sources with a novel sensor type was characterized in 

simulations (Experiment 4). 

In this chapter, this work is considered in relation to other recent work in the relevant 

field(s), and a new perspective on the ongoing debate about whether it is possible to 

detect hippocampal activity using MEG will be presented. Then, a set of new potential 

research questions made feasible through the combination of the methods developed 

here are suggested, along with and in relation to potential analyses and clinical 

applications. Finally, a 3D printing based head-cast design for OPM sensors is 

presented.  

 

Chapter 2: What is needed to see hippocampal activity in MEG? 

In Chapter 2 we considered how to test for hippocampal contributions to the MEG 

signal using simulated data with an anatomical and electrophysiological source model 

of the hippocampus. The underlying rationale was that if a source is hippocampal, 

then inclusion of a hippocampal mesh in the generative model will give a more 

parsimonious inverse solution. Therefore, by comparing a generative model with a 

hippocampal mesh to one without, it should be possible to infer the presence of a 

hippocampal source based on the difference in model evidence obtained with different 

models applied to the same data. Thus, we used a Bayesian framework to make 

probabilistic statements about (simulated) hippocampal activity through model 
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comparison. We found that it is possible to detect hippocampal sources when the co-

registration error is low (<3 mm) and SNR modest (>-20 dB).  

We also tested the specificity and sensitivity of this model comparison. We found that 

the specificity is high (or false positive rate is low), as the model evidence difference 

between the models is not significant when sources are cortical. We also found that 

the sensitivity is high (or false negative rate is low) as it is possible to detect 

hippocampal sources based on the model evidence differences (Figures 2.5 and 2.8). 

The sensitivity depends on the simulation parameters however and decreases with 

modelling errors. 

An important assumption made in this study was that a representative model of 

hippocampal sources could be constructed based on the pyramidal cells distributed in 

macro-columns of Ammon’s horn (hippocampal subfields CA1-4). We used the 

external tessellation of the hippocampus as to model and simulate the sources. It 

should be noted however that the hippocampus also includes the subiculum and 

dentate gyrus subfields, the latter of which interlocks with Ammon’s horn. 

Nonetheless, pyramidal cells which are thought to constitute the main component of 

the measured neocortical MEG signal are mainly found in Ammon’s horn. Our model 

is therefore a first approximation but it would be useful to consider higher resolution 

MRI images obtained with 7T for segmentation of the CA1-4 and dentate gyrus 

subfields (Wisse et al., 2012). 

Another recent study which also assessed source localisation accuracy of 

hippocampal sources in simulated data used somewhat comparable methods (Attal 

and Schwartz, 2013). For one, a similar electrophysiological model of the 

hippocampus was used. For another, the authors simulated simultaneous activations 

as well as variable temporal overlaps of hippocampal and cortical activations. They 

found that while it was not possible to detect hippocampal sources when cortical and 

hippocampal sources were simultaneously active, it was possible to do so when a 

neocortical source was no more than 50% of the hippocampal in amplitude. In these 

cases, hippocampal sources were detected but a local maximum was created in the 

thalamus with dSPM and sLORETA algorithms (Attal and Schwartz, 2013). We also 

simulated hippocampal sources twice the strength of cortical sources. In our results 

however, we found that the model evidence difference was significant in 23% of cases 

where there were two hippocampal and two (temporally overlapping) cortical sources. 

This result, however, compares favourably well to another study, where Stephen and 

colleagues showed in simulations that MEG is able to correctly localise activity from 
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the hippocampus and parahippocampal gyrus only when there is no temporal overlap 

(Stephen et al., 2005). However, the ability to reliably detect only 23% of hippocampal 

sources in the presence of concurrent activity is a non-trivial problem which, if true 

with empirical data as well, suggests that the modelling is limited in its usefulness.  

Moreover, in the simulation study by Attal and colleagues, the hippocampal tail and 

edges were found to be more prone to localisation errors (Attal and Schwartz, 2013). 

We did not test for this explicitly but it would be interesting and possible to do so both 

with Free energy and/or cross validation error calculations. One possibility for doing 

so would be to change the source model. For example, one might use the rotation 

method presented in Chapter 4, take out different portions of the hippocampal mesh 

(e.g. the most anterior 25%), swap the hippocampi of different subjects, change their 

sizes, etc. It would in itself be informative to compare the performance of these altered 

models both for simulated and real data.  

Like other simulation studies looking at hippocampal activity, we also simulated 

dipoles with some spatial spread (approximately 1 cm). Others have used patches of 

varying size (Attal and Schwartz, 2013; Chupin et al., 2002). The use of patches of 

varying size has mainly demonstrated a detection saturation effect with size of the 

patch, due to the curvature of the hippocampus which causes sources to oppose each 

other and cancel out. We would most likely observe the same if we were to simulate 

more extended patches.  

Another potentially fruitful extension to this framework would be to use a different 

method for computing the forward head model. We used a single shell but would likely 

benefit from having a more realistic model with multiple compartments such as a 

Boundary Element Method-based one (Brebbia and Dominguez, 1989; Stenroos, 

2016).  

We note here that while we evaluated our two anatomical models in a Bayesian 

context, the models and the framework are not inherently limited to this approach. For 

example, we also assessed the dipole localisation error obtained with the different 

models and found this to echo the Free energy findings. It would be interesting to 

examine what the model comparison would look like in other model comparison 

regimes or with different inversion parameters. There are both similar metrics to Free 

energy such as the Bayesian Information Criterion and Akaike’s Information Criterion 

which could be evaluated (as evaluated in Penny, 2012), as well as more conventional 

methods which could take direct advantage of the known ground truth, such as 
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localisation error, point spread, and cross talk (as evaluated in Attal and Schwartz, 

2013). 

Overall, the usefulness of the approach and the validity of simulation results always 

depend on empirical validation as well as on additional assessments of any possible 

impacts from relevant (in this case for example physically nearby) potential influences. 

Hence, one potential caveat of this study or model is that it might be helpful to model 

more of the surrounding structures in order to directly distinguish between 

contributions, and quantify this probabilistically. For example, the amygdala as well as 

the entorhinal and retrosplenial cortices are strongly coupled to the hippocampus 

functionally and anatomically. For the basolateral nucleus of the amygdala and the 

basal ganglia and related structures, the lack of laminar and oriented cell structure 

suggests that distributing the dipoles inside regular volume grids rather than on the 

surface would be more likely to capture true sources. It follows that more simulation 

and empirical work could be done on assessing the separability of these sources. 

However, in our multiple dipole approach where hippocampal dipoles were simulated 

to be twice as strong as neocortical ones (which in turn raises the question of what an 

appropriate current density would be for other deep structures), we only found modest 

model evidence improvements.  

 

Chapter 3: Where is the brain? 

In Chapter 3 we focused on developing a method for improving co-registration and 

head stabilization. The flexible head-casts developed are an extension of a previous 

prototype (Troebinger et al., 2014b). The aim of the present PhD work was to minimize 

uncertainty in the forward model, while maximising subject safety and comfort, 

including avoiding obstructing vision. Enabling vision greatly increases not only the 

comfort of the subjects, but notably also the usefulness of these devices, as cognitive, 

psychophysical, as well as purely visual experiments are become possible. Subjects 

are more comfortable and less likely to experience anxiety when vision is not 

obstructed. We also made the construction more practical and accurate by using an 

anatomical MRI image as the basis of the cast, as opposed to using an optical scan. 

Critically, the performance of the new head-casts was consistent with, or better than 

the previous prototype and both safety and comfort were improved: we found the 

within- and between-session movement levels to be <.25 and <1 mm respectively. An 

important feature of the head-casts generally is that they do not rely on self-

stabilisation by the subject which avoids muscle artefacts which are likely to 
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contaminate the signal (Adjamian et al., 2004; Kumar et al., 2003; 

Muthukumaraswamy, 2013; O’Donnell et al., 1974; Whitham et al., 2007).  

We tested and quantified the stability and reproducibility of the head position within 

and across sessions, and demonstrated high spatial reproducibility of source-level 

results. However, we did not carry out a direct comparison with non-head-cast data 

here. This has since been done by an independent group and shown to give increased 

stability of beamformer estimated source orientations (Liuzzi et al., 2016). In our case, 

such a direct comparison might have enabled us to directly quantify the improvements 

when all other acquisition parameters were kept constant in the context of the 

measurements presented here.  

Nevertheless, the new flexible head-casts provide the potential for increasing the SNR 

through repeating the same experiment many times and no longer being limited by 

head movement which in turn opens up new and exciting possibilities. For example, 

would it be possible to formulate hypotheses based on more subtle signal features 

than before (such as thalamic, lateral geniculate nucleus, or brainstem signals)? 

Would it be sensible to build up very high SNR datasets using only a small groups of 

subjects, and conduct analyses at the single subject - rather than at the group - level? 

In doing so, the focus would shift from group-level findings to single subject features.  

Thus, the next question is whether these head-casts should provoke new ways of 

thinking about data analysis and pipelines. For example, an interesting and 

counterintuitive finding is that beamformers perform more optimally when there is 

some noise in the data, if the source model is not completely accurate (Hillebrand and 

Barnes, 2003). Therefore, if there is less noise and a more accurate model, should 

some error be added back if using beamformers? Or, one might ask whether other 

algorithms such as multiple sparse priors (MSP) would be more suitable for high SNR 

data (Friston et al., 2008a)? Research on the opposite question has been carried out, 

essentially asking how best to account for the uncertainty in probabilistic terms (López 

et al., 2014, 2012). Similarly, it has previously been shown that it is not worth the extra 

effort of building a subject-specific forward model for inverting MEG data under normal 

circumstances; that a canonical mesh is just as good given the expected modelling 

uncertainty inherent in MEG data (Henson et al., 2009). However, it has also been 

shown – also using Free energy – that when co-registration errors fall below 5 mm, it 

is worth creating a subject-specific forward model, as this gives higher model evidence 

than a canonical model does (Troebinger et al., 2014b). Thus, it is worth constructing 

subject-specific forward models for head-cast data analysis, and it is worth considering 
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- and ideally formally testing - which inversion algorithms are most appropriate for 

achieving the most accurate interpretation of the data. 

This leads to the next point, which is how to find and make use of the spatial and 

structural information available in the MEG data? One major research field concerns 

itself with distinctions between the different laminar layers of cortex, the interactions 

between them, and the roles these interactions play in cognition. Until now, it has only 

been possible to explore and study these layers in animal models, fMRI, or invasively. 

However, if head-casts make it possible to carry out non-invasive laminar 

electrophysiological studies in humans in vivo, with high temporal resolution, then it 

would be a key method for bridging and expanding these neuroscience findings in 

computational terms. There are already promising MEG studies which address this 

issue (Michalareas et al., 2016; van Pelt et al., 2012). The main distinction of interest 

is formulated in terms of a predictive coding account of human cognition. Specifically, 

bottom-up (or feed-forward) processes are throught to originate from pyramidal cells 

in superficial layers (layers II/III), whereas top-down (or feedback) processes are 

throught to originate from pyramidal cells in deeper layers (layers V/IV). Due to the 

frequency differences between the two directions, MEG lends itself well to human 

investigations. While bottom-up processes have been shown to occur at higher 

frequencies such as in the gamma band (30-90Hz), top-down processes occur at 

lower frequencies such as in the beta band (15-30Hz) (Bastos et al., 2012).  

Another potentially fruitful application is within decoding analysis, another relatively 

new area of MEG research (Cichy and Pantazis, 2015; Jafarpour et al., 2013; Myers 

et al., 2015; Stokes et al., 2015). The basic idea is that if it is possible to decode 

spatially overlapping features of the signal by distinguishing between different spectral 

properties of the signal (e.g. activity in different frequency bands). One would expect 

that data with less head movement and higher SNR would be ideally suited for 

decoding analyses, as the rich spectral content is more consistent over time, and the 

dipoles stay oriented in the same way if the head does not move (Liuzzi et al., 2016). 

Perhaps the most obvious use of the new head-casts is for questions related to 

changes over longer time than during a single scan. Such use spans from long term 

longitudinal studies which could be used to study changes in brain structure, function, 

and spectral signatures over years or decades, to memory experiments depending on 

consolidation of newly acquired knowledge over short timescales (e.g. one hour, one 

night’s sleep) to longer timescales (e.g. days, weeks). While the dynamics of encoding 

and retrieval of information have been studied using MEG (Crespo-García et al., 2016; 
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Grimault et al., 2014; Kaplan et al., 2012a), they have not been studied in the context 

of longer times than single experiments. Generally, longitudinal experiments would be 

well-suited for using the head-casts, both because SNR can be built up over time with 

a large number of trials, and because accurate re-positioning of the head inside the 

scanner is key to doing so, and to making valid inferences across recording sessions.  

Apart from memory experiments, three other particularly well-suited areas of research 

for longitudinal MEG experiments are developmental, degenerative, and 

pharmacological neuroscience. Child development is rarely studied in MEG mainly 

because children often move their heads, which is moreover made easier by the fact 

that they have heads which are far smaller than those of adult subjects which the 

current MEG dewars are designed to hold. Thus, stabilizing the head opens up an 

exciting possibility for studying the temporal dynamics of child and adolescent 

development with high spatial resolution (unlike EEG). Naturally, with growth would 

also come the need for updated head-casts and anatomical brain images for accurate 

modelling. With degenerative disorders, especially those which affect movement 

control, it has previously been difficult, if not impossible, to detect changes using MEG. 

Although head-casts potentially open up this possibility and thereby hold the promise 

of potentially facilitating identification of clinically useful trait- and state-markers, it is 

important to uphold and extend the safety regulations we propose. Not only would it 

be more challenging from the experimenter’s perspective to scan elderly and/or sick 

patients, it would also potentially be unsafe, as well as challenging for the participant 

to get in and out of the dewar unaided. Therefore, although head-casts hold potential 

for characterizing and disambiguating brain changes in relation to degenerative 

disorders, translating the technology into a useful tool for these populations carries 

with it significant challenges. Finally, it would be interesting and potentially more 

straightforward to carry out more pharmacological studies in MEG and make use of 

the increased SNR. For example, drugs with longer half-lives could be administered 

and the participant could be scanned at regular intervals (e.g. for 15 minutes every 

half hour) to track slower changes and their effect on resting state, induced, and/or 

evoked responses. This would give way for a deeper understanding of the 

relationships between behavioural and neural changes in responses to certain drugs 

and combinations hereof. 

 

Chapter 4: Is it really the hippocampus? 
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The results from Chapter 4 demonstrated hippocampus-specific activity recorded with 

MEG. The data was acquired by asking subjects to perform a cognitive task known to 

evoke hippocampal theta band oscillations (Bush et al., 2015) while they were wearing 

a head-cast. Through application of Bayesian model comparison and cross-validation, 

we found that lateral rotations of the hippocampal portion of the generative model 

significantly decreased its predictive power, even when these errors were as low as 

5°.  

As with the simulation study, this leads to a question of hippocampal model specificity. 

Would the results hold if a given hippocampal mesh originated from another subject’s 

brain? In other words, how sensitive are we to the individual subject’s anatomy and 

would it be possible to distinguish between anatomical models on the basis of the 

MEG data? Alternatively, one might ask whether a canonical hippocampal mesh can 

capture and explain hippocampal sources? One might imagine a canonical 

hippocampal mesh similar to the canonical cortical mesh implemented in the statistical 

parametric mapping (SPM) software where the size and shape are warped into an 

individual subject’s forward model so as to fit most appropriately and be used as a set 

of spatial priors. One reason to expect that a canonical mesh might be sufficient is that 

there is less structural variability in deeper than more superficial brain structures. It 

would be relatively straightforward to test both the hypothesis that the MEG data can 

be used to distinguish between anatomical models, and/or that a canonical model is 

good enough using model evidence (Henson et al., 2009; Troebinger et al., 2014b). 

In this case, one would also obtain a direct quantification of the improvement from 

using a subject-specific model (if any), perhaps as another form of measuring the 

amount of spatial information in the MEG data. Further, regardless of whether the 

hippocampal model used for analysis was canonical or not, it would also be relatively 

straightforward to configure an automated way of testing the sensitivity to rotations of 

the hippocampal model, as was shown in Chapter 4. This might then constitute one 

method of assessing hippocampal engagement. Other questions which might be 

asked using the nested hippocampal mesh and structural manipulations or omissions 

hereof are: does the activity lateralise to one hippocampus (previous literature 

suggests that right-lateralisation might be expected (Iglói et al., 2010; Jacobs et al., 

2010)? If so, is this lateralisation consistent across subjects? This would be testable 

by omitting one hippocampus in one generative model and the other in another, and 

comparing model evidence values. Other questions include: is there evidence for an 

anterior-posterior dissociation? Do certain features of the signal localise to certain 
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regions or subfields of the hippocampus (e.g. frequency, amplitude, or phase of an 

induced response)? 

One implication of the results presented here is that the simplifying assumptions made 

in the simulation paper are valid – if they were not, the empirical replication would not 

work. The most important of these simplifications, which turned out to produce valid 

results, is the hippocampus pyramidal cell modelling in the form of a tessellation of the 

surface envelope.  

A prediction made from the simulation results and an obvious question to ask in 

relation to the data collected is whether the use of head-casts is truly necessary or 

whether the modelling approach would reveal the same levels of sensitivity with non-

head-cast data? As the premise here is combining the methods presented in previous 

chapters, this would be relevant to formally test. This is an empirical question as the 

spatial resolution of (normal) MEG is relatively high (~5-8 mm) (Brookes et al., 2010), 

depending on how and how much data is collected. If head-casts are not necessary 

for detection of hippocampal sources (or, the sensitivity was only slightly lower, e.g. 

lateral rotations of 15° were significantly worse than the true model), then the model-

based analysis might have further reaching relevance and could be easily and 

immediately implemented in a far wider context.  

Regardless of dependence on head-casts, we believe that the empirical, experimental 

demonstration of hippocampal detectability achieved provides a novel method for 

formally assessing directly the contribution of hippocampus to non-invasively 

measured signals. Most excitingly, this result in turn implies that we can begin to bridge 

electrophysiological findings from rodent hippocampal studies with human 

neuroscience, ask more complex questions through more complex tasks, and thereby 

probe new nuances of behaviour, memory, experience and learning. Understanding 

spatial cognition in particular sets out a basis for better understanding many other 

cognitive processes and mechanisms such as decision making and social 

relationships (Barron et al., 2013; Eichenbaum, 2015; Maguire et al., 1999; O’Keefe 

and Nadel, 1978). Such an improved understanding would also allow identification of 

features and functions in humans which would aid determination of the homologies 

between human and rodent hippocampi at a systems level. New, specific and testable 

hypotheses can be formulated for MEG to address many of these open questions. 

As a starting point, in addition to the methodological modelling related questions listed 

above, other, more cognitive questions could be asked of the data collected with the 

present experiment. For example, one would expect that novelty of the stimulus should 
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have an effect on theta: based on previous literature, one might expect increased theta 

power during retrieval (object presentation) for objects that are novel versus those 

which are familiar (Kaplan et al., 2014). Specifically, we predict that this effect will be 

most prominent in anterior portions of the hippocampal body (Kaplan et al., 2014; Viard 

et al., 2011). Note that “novelty” is used as a relative term here: as each set of objects 

is presented twice (in two different spatial environments), the data could be split into 

first retrieval trial (”novel”) and contrasted with the second retrieval trial. Another 

feature we could potentially measure is a neural correlate corresponding to the 

strength of memory encoding. Previously, theta power has been shown to correlate 

with subsequent memory performance both in non-spatial (Osipova et al., 2006; 

Sederberg et al., 2003; Serruya et al., 2014), and spatial (Kaplan et al., 2012b) 

experiments. This effect is likely to be found mainly in the posterior portion of the 

hippocampus (Doeller et al., 2008; Kaplan et al., 2012b; Nadel et al., 2013). It would 

be particularly interesting to investigate this question, as new data suggests that the 

opposite is true; that the theta power decreases during item-place encoding (Crespo-

García et al., 2016). Factors such as the exact frequency band chosen (Jacobs, 2014) 

as well as task parameters are likely to play an important (but thus far unclear) role. It 

is therefore useful to consider neither the theta or gamma band activity as unique and 

separate markers of brain activity, but rather to consider each as a single data feature 

in single dimensions of analysis. Interactions with other frequencies and brain regions 

for example may be equally if not more informative about the underlying processes, 

e.g. phase coupling with medial prefrontal cortex as shown in a very similar version of 

this task (Kaplan et al., 2014). In addition to cognitive questions such as these, 

interesting computational questions could likewise be raised. For example, predictions 

made from computational models of spatial memory (Byrne et al., 2007; Byrne and 

Becker, 2004) might include specific hypotheses related to retrosplenial cortex’s role 

in translation between egocentric and allocentric reference frames, transmitting this 

information to the hippocampus through a dorsal pathway which combines this input 

in the posterior parahippocampal gyrus. 

 

Chapter 5: The coolest magnetometer is not the best one 

In Chapter 5 we examined a set of empirical factors in using new optically pumped 

magnetometers (OPMs) for MEG, specifically with the aim of measuring hippocampal 

sources. We were interested in assessing how to most efficiently use these new 

sensors. We found that as with standard MEG, co-registration is detrimental to our 
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ability to detect hippocampal sources. Critically with OPMs, this can take a new form 

as the sensors are not fixed with respect to the others so the sensors can now move 

with respect to each other and vary in both location and orientation. We also found 

that while OPMs are ~5 times more sensitive to hippocampal signals because they 

are closer to the source, they are also more sensitive to errors (Figure 5.5). An 

interesting extension of these simulations would be to assess the effects of 

independent and systematic sensor orientation or location errors in combination with 

each other. Here, we only assessed these effects in isolation but they could likely co-

occur in reality and potentially interact in non-linear ways. Due to the results and this 

prediction, we therefore propose using a modified version of the head-cast design to 

orient and stabilize the sensors with respect to the head. This removes co-registration 

to the best of our ability, as the relationship between the sensors and brain anatomy 

is known a priori (without needing localisation of fiducial coils).  

Although simulations assessing OPMs have not been carried out in great numbers 

(yet), a highly relevant paper for comparison with the results presented here has 

recently been published (Boto et al., 2016). The authours found 5-10 fold 

improvements in signal amplitude for superficial sources and lower, approximately 2 

fold improvements for deeper sources. This was quantified as ratio of Frobenius norms 

of the forward field vectors for the different sensor types. This result raises an 

important albeit subtle point: moving sensors closer to the scalp will produce a shift in 

the relative SNR of the hippocampal and cortical. This means that although the SNR 

of the hippocampal sources increases as a consequence, the ratio of cortical to 

hippocampal SNR also increases meaning that there is a risk that hippocampal 

detectability could decrease overall. The authors of the study did not explicitly test 

hippocampal detectability but it would be interesting to expand the simulations 

presented here to include cortical sources, and examine the relative contributions to 

the signal and begin to explore how best to account for this. Another interesting 

analysis was direct quantification of the source-level SNR for comparison between 

SQUID and OPM set-ups. This direct SNR quantification avoids the issues related to 

comparing different sensor types (i.e. magnetometers versus gradiometers). 

Nonetheless, the SNR calculations also allow comparison of arrays which are different 

in other ways, e.g. sensor number/density or location/distribution. The authors also 

assess the effect of error on OPMs versus SQUIDs and similarly to here, find 

increased sensitivity with increased SNR. Specifically, they show that a 5% error in 

the forward field used for inversion (relative to the one used for simulation) eliminates 

the advantage of having OPMs when dipoles are shallow (<4 cm from surface). With 
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deeper dipoles (4-6 cm from surface), ~20% error is tolerated before OPMs reach the 

same performance as SQUIDs (Boto et al., 2016).     

The simulations presented in this thesis await empirical validation, ideally using a 

subject also scanned with a flexible head-cast and tested on the spatial memory 

experiment (Chapter 4). The number of sensors required for reconstruction of 

hippocampal activity is an empirical (or simulation) question. A recent empirical OPM 

experiment using a solid head-cast showed that it was possible to reconstruct the 

source of the N20 median nerve response using a single OPM sensor placed in 13 

different positions to simulate an array (Boto* et al., 2016). This is a promising and 

encouraging finding, as it also showed that for both evoked and induced activity, the 

sensor array is not limited to the number of sensors at hand. Due to the flexibility of 

the sensors and geometry hereof, one might also imagine more creative sensor 

placement for measuring hippocampal signals. For example, given the depth of the 

hippocampus, it is likely that portions of the magnetic fields generated would be best 

captured at locations outside of the standard MEG array, be it on the cheeks, neck, 

under the eyes, or inside the mouth or ears. Such arrays become possible with non-

cryogenic sensors. 

We hope that the simulation results and considerations presented here may be of use 

in guiding the design of OPM instrumentation and encourage the use of explicit 

hippocampal modelling in combination with the proposed head-cast design or 

variations hereof. This is catalysed by the significant decrease in both acquisition and 

maintenance cost, the possibility of placing the sensors in a subject-specific array with 

a higher sensor density, and the potential freedom from requiring a magnetically 

shielded room (if  cancellation coils are developed to fully compensate for the Earth’s 

field (Boto* et al., 2016)). The implications of this for cognitive and basic neuroscience 

have been discussed above and the clinical implications will be discussed below 

(Clinical applications). Further applications include several new domains of 

neuroscience including child and adolescent development (not previously well-studied 

in MEG because of small head size and large amount of head movement), social 

interaction whereby several subjects could be recorded simultaneously while wearing 

OPMs, movement and movement disorders or rehabilitation, spatial navigation while 

moving in the real world or in conjunction with virtual reality goggles. Many more 

unexplored domains likely exist.  
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Perspectives and Outlook 

 

Clinical applications 

In general, the hippocampus plays important roles in healthy cognition and is affected 

by a wide range of neurological, developmental, and degenerative pathologies such 

as Alzheimer’s disease, Parkinson’s disease, temporal lobe epilepsy, anxiety, 

depression, post-traumatic stress disorder, schizophrenia, and dementia 

(Baumgartner et al., 2000; Bisby et al., 2010; Brambilla et al., 2013; Eichenbaum, 

2015; Gordon et al., 2013; Protzner et al., 2010; Squire et al., 2004). Additionally, it is 

hypersensitive to hypoxia and thus predisposed to impairments from lack of 

oxygenation, especially the CA1 region (Kreisman et al., 2000).  

While other neuroimaging modalities such as fMRI and PET have demonstrated clear 

links between cognitive functions related to these disorders (such as memory) and 

hippocampal activity, the spatiotemporal dynamics of the hippocampal associated can 

only be revealed using a technique with higher temporal resolution such as MEG or 

EEG. The spatial resolution of MEG is better than that of EEG, making it more suitable 

for measuring hippocampal-specific signals. This in turn uniquely allows direct 

neuroimaging of the nature of hippocampal cognitive functions both in healthy and 

disordered states.  

Perhaps the most direct translation of hippocampal MEG into a clinical context is in 

temporal lobe epilepsy. Epilepsy affects approximately 50 million people on a global 

basis, around 30% of which are resistant to drug treatments and may require surgical 

intervention (Zhang et al., 2014). Temporal lobe epilepsy accounts for about 60% of 

all epilepsy cases (Stefan et al., 2003) and is currently difficult to non-invasively image 

reliably pre-operatively. MEG is an ideally suited modality because epileptic events 

may in some cases last only few tens of milliseconds and rapidly spread from the 

seizure onset zone into complex networks. A promising new avenue is to assess and 

attempt to localize high frequency oscillations, particularly from the hippocampus and 

entorhinal cortex (Bragin et al., 1999). At present however, MEG is thought to be too 

costly and imprecise of an alternative to “presurgical surgery” where a rod or grid is 

implanted into the brain in the region(s) thought to contain the SOZ (Papanicolaou et 

al., 2005; Wennberg et al., 2011). Another obstacle is the need for the head to be still 

throughout recording which is not only difficult and tiresome to do over the course of 

many hours which is required for ictal activity to be observed due to the low frequency 
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with which it occurs. For these reasons, the preferred modality for telemetry (longer 

term observation) is EEG which can be used while the patient is moving around.  

However, several facts suggest that OPMs hold great potential for substitution of 

intracranial electrodes. For one, they are far cheaper and therefore more accessible 

than a standard MEG scanner (Boto* et al., 2016; Shah and Wakai, 2013). For 

another, they will likely soon be compatible with telemetry and thereby improve the 

spatial resolution of the data recorded, potentially pushing towards good enough 

source localization to avoid the dangers, discomfort, and costs associated with pre-

surgical implants (Papanicolaou et al., 2005). Finally, they can be placed flexibly 

according to prior hypotheses about the most likely seizure onset zone location, and 

adjusted based on the data recorded. This includes varying the sensor density based 

on need. At an engineering level, this would first require compatibility with movement, 

efficient noise cancellation, and ideally further miniaturization of the sensors (Sander 

et al., 2012).  

A promising tendency more generally is the use of bigger datasets through sharing 

across labs and countries, as well as use of advanced mathematical models to tease 

out subtle data features which may be informative but hidden to experimenters and 

clinicians. The use of bigger datasets is presumed to be particularly promising in 

epilepsy where small and rare changes in the signal are easily overlooked but would 

likely be found using machine learning classification algorithms (Lecun et al., 2015). 

In addition to epilepsy, the use of more advanced data-driven mathematical models 

(from big datasets resulting from sharing of data across labs) could also be useful for 

sleep, psychiatry, pharmacology, and developmental neuroscience research. Further, 

such larger datasets would lend themselves well to neuro-feedback paradigms which 

in turn lend themselves well to several applications, e.g. in stroke recovery.  

An important added benefit of the flexibility of OPM placement is the possibility of 

designing sensor arrays for children. At present, children and infants are rarely 

scanned in MEG due to the small head sizes which are not compatible with dewars 

optimized to fit a large proportion of the adult population. A small number of child MEG 

scanners exist but finding one which fits appropriate is unlikely given the rapid growth 

and consequent large range of head sizes of children. The possibility of using OPMs 

for child MEG is thus two-fold: not only would healthy brain processes and the 

variability hereof now be possible to measure and document, the ways in which 

development is retarded by specific diseases or disorders can be measured and 

tracked over time (from milliseconds to years) in spatiotemporal terms.  
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An obvious and non-trivial challenge with OPMs which are compatible with movement 

is how best to minimize the effect of movement or muscle-induced signal artefacts. 

One might imagine that neck and eye muscles for example would likely give rise to 

relatively large signals when a subject or patient is no longer asked or made to sit or 

lie still. Again, one might imagine that building advanced algorithms which for example 

were designed to make use of monitored muscular contractions (e.g. using 

electromyography) could eventually “learn” to account for movements. Perhaps this 

could even be done in conjunction with the Helmholtz-coil based field cancellation 

system if 3D tracking was used and compensated for online. 

 

Proposed OPM head-cast design 

An idea which emerged from the previous chapters was that if we can project 

empirically recorded hippocampal MEG activity back onto the scalp of a single subject, 

then we can begin to design and optimise the spatial configuration of OPM sensors 

for sampling this topography. In Chapter 5 we found that both location and orientation 

errors are detrimental to our ability to detect the hippocampus and must therefore be 

minimized a priori. One method for doing so is by constructing a solid head-cast which 

orients and fixes the sensors with respect to the head, effectively eliminating both 

independent and systematic errors in both location and orientation of the sensors. 

Such a design would allow experimenters to benefit from the high temporal resolution 

of MEG, the high signal amplitude attainable with OPMs, and the high spatial precision 

attainable with a head-cast. 

Thus, to bring the experimental chapters together and provide an outlook for the future 

of hippocampal MEG, we translated the data from a single subject tested on the spatial 

memory task in Chapter 4 into a practical OPM-sensor array design (Figure 6.1).  
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Figure 6.1 OPM sensor placement for optimal detection of hippocampus 

a) Subject wearing head-cast was scanned in a normal MEG scanner and asked to perform a 

spatial memory experiment (described in Chapter 4). Data during spatial recall period was 

used: subjects were asked to remember the location of an object they had earlier “collected” in 

a virtual reality arena (insert illustration of one such object, an apple). The cued recall period 

was 3s long. b) Power in the 4-8Hz theta frequency band was calculated across all trials and 

all time. Figure shows normalized power values colour-coded for each hippocampal vertex. 
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The theta band peak for this subject is in the left anterior hippocampus. c) Spatial configuration 

of OPM sensors (black circles) placed 3 mm from the scalp of the same subject. Blue indicates 

the brain volume and the black mesh indicates the scalp shape. d) Scalp topography of the 

field pattern when projecting activity from the hippocampal peak onto the OPM sensor array. 

This 2D image suggests that optimal placement of sensors may be relatively widely distributed. 

Colour scale shows theta power intensity. e) Virtual 3D model of sensor placement for a median 

nerve experiment based on distribution of positive and negative portions of the field. The 

maximal density of sensors depends on sensor size. f) Photograph of same subject as used 

for hippocampal experiment, wearing N20-optimised 3D printed head-cast. Images e and f are 

adapted from Boto et al, 2016. (Although this placement and clustering of sensors is based on 

a different sensor topography and experiment from the present, the images bear similarity to 

how a hippocampal-specific 3D printed head-cast might look; in this case the sensors might be 

placed in two large clusters (as opposed to one) in order to optimally sample the positive and 

negative peaks found in d)). 

 

The above figure shows the pipeline of the proposed head-cast design. Inspired by 

the design procedures outlined in Chapter 3 but with the location and orientation 

fixation constraint in mind, we first extracted the most active hippocampal vertex in the 

theta band across all trials for a single subject scanned on the spatial memory task in 

Chapter 4 (Figure 6.1a,b). We then plotted the scalp topography from the lead field 

of this peak vertex in a 2D plane, based on an OPM array with sensors placed 3 mm 

from the scalp surface (Figure 6.1c,d). This topography can then be used to determine 

how to sample the magnetic fields produced by this subject’s hippocampus during this 

task. It shows relatively far apart maxima and minima of the field, which accords which 

patterns observed in concurrent MEG and intracranial data (Dalal et al., 2013a). If the 

number of sensors available were unlimited, it would therefore be optimal to sample 

the whole distribution (as in Figure 6.1c), but if not, one might choose to cluster 

sensors around the locations of the two extrema, and place some sensors where little 

if any field changes would be expected (i.e. in the green band spanning from left frontal 

to right posterior sensors, Figure 6.1d). It would also be possible to place sensors in 

or on parts of the face or neck which are not usually well-detected by a standard MEG 

array, but which may improve the sensitivity and spatial resolution of hippocampal 

sources even further. We are in the process of developing a 3D printed subject-specific 

head-cast optimised not for measuring hippocampus, but for a focal somatosensory 

evoked response from median nerve stimulation (Figure 6.1e,f). This design stabilizes 

the sensor orientations and locations in relation to the head (no systematic error) and 

perhaps more importantly, in relation to each other (no independent error). It could be 
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modified in terms of sensor placement and density based on the scalp topography 

from our hippocampal experiment and thereby enable hippocampal OPM-based MEG 

experiments to be conducted for the first time. It is the hope that in time, it will be 

possible to not only obtain dramatically improve hippocampal SNR data with MEG 

through the use of OPMs in this way, but also that subjects will be able to perform 

naturalistic tasks where they move freely in the environment, opening up new avenues 

of neuroimaging research in spatial navigation, social interaction, psychophysics, 

motor control et cetera. 

We are hopeful that we have identified a suitable and relevant set of research 

questions to help further our understanding of possibilities and limitations for reliably 

detecting hippocampal signals using MEG. We designed an MEG simulation 

experiment and model (Chapter 1), recording device (Chapter 2), task adaptation and 

novel (rotation) analysis (Chapter 3), and OPM configuration (Discussion) for testing 

our hypotheses. The overall conclusion from the studies presented is that by carefully 

stabilizing and accurately measuring the spatial relationships between the sensors 

and the scalp, it becomes possible to improve the sensitivity to hippocampal sources 

in MEG. Future studies might build on this work either by using flexible head-casts 

with standard MEG scanners, or rigid head-casts with OPMs. 
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