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Abstract

Numerous gene signatures, or modules have been described to evaluate the immune cell

composition in transcriptomes of multicellular tissue samples. However, significant diversity

in module gene content for specific cell types is associated with heterogeneity in their perfor-

mance. In order to rank modules that best reflect their purported association, we have gen-

erated the modular discrimination index (MDI) score that assesses expression of each

module in the target cell type relative to other cells. We demonstrate that MDI scores predict

modules that best reflect independently validated differences in cellular composition, and

correlate with the covariance between cell numbers and module expression in human blood

and tissue samples. Our analyses demonstrate that MDI scores provide an ordinal summary

statistic that reliably ranks the accuracy of gene expression modules for deconvolution of

cell type abundance in transcriptional data.

Introduction

Transcriptomic analysis from tissue samples is now a common approach for in vivo systems

level assessments of multicellular biological processes. This has allowed identification of

enriched functional pathways using well-established bioinformatic tools [1–3], but deconvo-

luting the data to decipher the relative cellular composition of tissue samples from transcrip-

tional profiles remains a substantial challenge [4]. To do so, multiparameter transcriptional

gene signatures or modules have been proposed to reflect different cell types, and can be repre-

sented by a single summary measurement. This approach reduces noise from individual con-

stituent genes whilst allowing comparative assessments between samples [5,6]. Modules have

been used successfully to reveal relative enrichment of immune cell types in blood transcrip-

tomic datasets [4,7–9], as well as confirming cellular infiltration in tissue inflammation, such

as the site of the tuberculin skin test (TST) [10,11].

Diverse methods have been used to derive cell-type specific transcriptional modules. These

include manually curated lists of genes [10], identification of genes which are differentially
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expressed between purified cell types [12,13], semi-supervised approaches that identify genes

co-correlated with putative cell markers [11] and entirely unsupervised network analyses of

purified cell types [14] or peripheral blood samples [4]. Consequently, there are now many

published modules that share similar cellular annotations [4,12–14] but may vary in their con-

stituent genes. However, there has been no systematic assessment of the comparative sensitiv-

ity and specificity with which they reflect their purported cellular associations. We tested the

hypothesis that substantial discordance exists between the performance of different transcrip-

tional modules representing individual immune cell subsets. In order to identify the transcrip-

tional immune cell modules that reflect the cellular composition most accurately, we propose a

modular discrimination index (MDI) that ranks the relationship of each module with cell

numbers from human blood and tissue specimens and thereby identifies the best performing

cell type specific modules.

Results

Derivation and comparison of cell-type specific modules

Numerous immune cell transcriptional modules have been derived by identification of co-cor-

related expression networks from purified cell types or human peripheral blood transcriptional

datasets [14,4]. Modules can also be derived from genes differentially expressed between a cell

of interest and all other cells within any one transcriptional dataset [13,15]. In addition, we

derived further modules using two alternative strategies. First, by identifying transcripts with

>2-fold increased expression in the cell of interest compared to all other cells common across

multiple datasets from purified cells. Second, by using validated cell type specific ‘markers’ as

baits to identify co-correlated genes and assemble modules with the genes that were common

to all the co-correlated lists in multiple data sets [11]. These modules are listed in S3 Table.

A consequence of the multiple strategies to generate cell-type associated transcriptional

modules is that a large number of independently derived modules have now been ascribed sim-

ilar or overlapping annotations. We compared the constituent genes across all of the published

cell-associated modules, using the Jaccard index to quantify the proportion of shared genes in

all pairwise analyses. Different modules associated with the same cell type broadly revealed a

greater degree of sharing, but there was also substantial discordance between modules associ-

ated with the same cell, and in some cases, substantial sharing amongst modules associated

with different cell types (Fig 1A). Given the evident discordance in modules associated with a

particular cell type, we tested the hypothesis that different modules would indicate significant

variation in the abundance of the target cell within any given multicellular transcriptome. We

compared the expression of 26 modules that have been associated with T cells (S3 Table) in

genome-wide transcriptional data from the site of a tuberculin skin test (TST), representing a

classical model of inflammation in which enrichment of T cells is well established [10,16,17].

Most T cell modules showed increased relative expression in data from TST samples compared

to that of control saline injections, but there was striking heterogeneity in the relative expres-

sion of different modules, some of which showed no significant enrichment (Fig 1B).

In view of the heterogeneity in the performance of T cell modules, we sought to evaluate the

sensitivity and specificity of a broader range of cell associated transcriptional modules, with

the aim of ranking how closely each module represents the associated or target cell type. We

compared the module expression levels across transcriptomic data from a variety of purified

immune cell types. Although we observed higher module expression in the target cell type, this

analysis revealed marked variation in signal intensities for target cells relative to others, reflect-

ing substantial variation in both sensitivity and specificity across the range of purported cell

type associated modules (Fig 2).
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Fig 1. Variability in cell-type specific module content and expression. (A) Heat map of Jaccard index for

multiple pairwise comparisons between a wide range of cell-type specific transcriptional modules, reflecting the

proportion of shared genes. Mo = monocytes, Neut = neutrophils, NK = NK cells. (B) Geometric mean expression

of all available T cell associated modules within genome wide transcriptional data from skin biopsies at the site of

TST compared to the site of control saline injection. Box and whisker plots show median, interquartile range and

full range of data from 16 TST biopsy sites. NS = no significant difference in data from the site of TSTs compared

data from the site of saline injection.

doi:10.1371/journal.pone.0169271.g001

Fig 2. Cell-type specific module expression across multiple cell types. Heat map of module geometric mean expression for multiple

cell-type specific modules (columns) within genome wide transcriptomes from selected immune blood cells (rows). Module expression

calculated from E-GEOD-28491 dataset. Mono = monocytes, NK = NK cells, Neutr. = neutrophils.

doi:10.1371/journal.pone.0169271.g002
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In order to quantify this variation we propose a molecular discriminating index (MDI) as

a normalised measure of the expression of a module amongst target cells compared to all

other cell types in any given dataset (S4 Table). In order to ensure the generalisability of this

index, we calculated the MDI for each module in multiple datasets with sufficient breadth of

purified cell types such that the cell type of interest was compared to at least four other cell

types.

Such publicly available data were only available on the Affymetrix microarray platform, but

we found that the MDI derived from Affymetrix data strongly correlated with the relative dif-

ference in module expression between target and non-target cells in data from both Illumina

and Agilent microarrays (Fig 3).

MDI score validation: Correlation with cell enrichment

Next we sought to confirm that the MDI scores derived from peripheral blood cells correctly

ranked the modules which best correlated with specific cellular enrichment within tissues

identified by immunohistochemistry. In order to address this question, we surmised that mod-

ules with the highest MDI score would provide the most sensitive measure of cell-type specific

enrichment. Accordingly, we found that the relative expression of each T cell module at the

site of TST, compared to saline injection, correlated significantly with the MDI for T cell mod-

ules (Fig 4A). Likewise, a significant correlation was seen between MDI and relative enrich-

ment of T cell modules in data from skin samples in which T cell infiltration was induced by

injections of interferon gamma (IFNγ) (Fig 4B) [18]. B cell module MDI correlated signifi-

cantly with differences in B cell module expression between tissue samples from idiopathic

pulmonary fibrosis that showed B cell enrichment compared to healthy lung (Fig 4C) [19]. In

erythema nodosum leprosum lesions characterised by neutrophil infiltration that is not evi-

dent in lepromatous leprosy lesions [20], enrichment of neutrophils was closely correlated to

the MDI score of neutrophil modules (Fig 4D). B cell depletion after rituximab treatment [21]

and NK cell depletion in the uteri of women treated with the progesterone receptor modulator

asoprisinil [22] were best identified by B and NK cell modules with the greatest MDI scores

(Fig 4E & 4F). These findings were observed in both Agilent and Affymetrix microarray data,

but in order to extend our MDI validation further, we identified RNA-Seq expression data

from human head and neck cancer samples where tumour infiltrating lymphocyte (TIL) num-

bers were classified as high or moderate [23]. The differences in T cell module expression

between high and moderate TIL tumours closely correlated with T cell module MDI score (Fig

4G). These analyses validated the use of MDI to rank the modules which best reflect variation

in the abundance of specific cell types within tissue using transcriptomic data from diverse

microarray platforms and RNA-Seq.

MDI score validation: Covariance with cell numbers

We sought to further validate module MDI ranking by comparing this statistic to other meth-

ods for quantitation of cell frequency in various human tissues. We used the covariance

between cell frequency and module gene expression as a measure of the sensitivity of each

module to detect the abundance of its associated cell type. We then hypothesised that this

covariance would be closely correlated with module MDI scores independently derived from

purified cell data. Modules which showed the highest covariance with target cell numbers

would therefore be predicted to have the highest MDI.

Peripheral blood transcriptomes from samples with known differential blood cell counts

provided the opportunity to compare variation in cell type module expression with that of

directly measured cell frequency. Blood transcriptomes of patients presenting to hospital with
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febrile illnesses [24] confirmed that different modules associated with the same cell type show

striking heterogeneity in their covariance with actual cell counts (Fig 5A). As hypothesised,

MDI scores for neutrophils, T cell and B cell modules each showed excellent correlation with

the covariance between module expression and cell frequency (Fig 5B–5D). Importantly, this

analysis spanned cellular frequencies ranging from 0.1-94% of the total leucocyte fraction, sug-

gesting that the ranking of modules by MDI score remains valid even at very low cell

frequencies.

We extended our cell frequency covariance analysis in two ways. First, we assessed an addi-

tional TST dataset for which parallel immunohistochemistry staining for the T cell marker

Fig 3. Cell type module MDI scores correlate closely with difference in gene expression between

target and non-target cells. Relationship between the module MDI and relative difference in geometric

mean expression of selected cell-type specific modules in data from target cell types compared to all other cell

types derived from (A) Illumina (E-GEOD-19443) and (B) Agilent microarray (E-GEOD-6887) data. Data

points represent data derived from individual modules, giving regression lines with 95% confidence limits,

Spearman rank correlation coefficients (r2) and p values.

doi:10.1371/journal.pone.0169271.g003
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CD3 was performed, showing a range of CD3+ T cell infiltration in different individuals (Fig

6A). The covariance between CD3 staining in the skin and the expression of different T cell

modules was variable (Fig 6B). This covariance showed strong correlation with T cell module

MDI scores (Fig 6C), confirming that modules with the highest MDI provided most sensitive

measurement of differences in T cell abundance. In addition, we used a transcriptomic dataset

combined with flow cytometric analysis of disaggregated lymph node (LN) biopsies from

patients with follicular lymphoma [21]. In this example also, module MDI scores correlated

closely with the covariance between relative proportions of T and B cells and the expression of

each cell-type specific module (Fig 6D & 6E). We conclude that the MDI score successfully

Fig 4. MDI scores identify modules that best reflect changes in cell number in tissues. Relationship between the module

MDI and relative difference in geometric mean expression of cell-type specific modules for (A) T cells at the site of TST

compared to saline injections; (B) T cells in psoriatic skin injected with IFNγ compared to saline; (C) B cells in pulmonary

fibrosis tissue compared to normal lung; (D) neutrophils in erythema nodosum leprosum (ENL) skin lesions compared to

lepromatous leprosy (LL) skin lesions; (E) B cells in blood samples from patients before and after receiving rituximab therapy;

(F) NK cells in the uteri of women treated with 25mg asoprisinil compared to placebo; (G) T cells in head and neck tumours with

high compared to moderate levels of tumour infiltrating lymphocytes (TIL). Data points represent data derived from individual

modules, giving regression lines with 95% confidence limits, Spearman rank correlation coefficients (r2) and p values.

doi:10.1371/journal.pone.0169271.g004
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ranks the cell type modules that best describe the relative frequencies of different immune cells

within tissues.

Discussion

Multiple gene modules, generated by different approaches, have been described for many dif-

ferent cell types which seek to provide a discriminatory transcriptional signature [4,12–14].

Crucially, the process of predicting the overall cellular association of modules from its constit-

uent genes is often manual and dependent on investigators’ a priori knowledge, or interpreta-

tion of the published literature. The analysis presented in this paper demonstrates that

different modules purported to represent the same cell type vary significantly in their specific-

ity, and consequently provide different estimates for cell type enrichment in tissues.

We quantified module performance by relating it to module specificity as measured by a

meta-analysis of module expression across a large set of purified immune cell transcriptomes.

This specificity was then mapped to an ordinal scoring system which we call MDI. We demon-

strate that MDI scores accurately predict relative module enrichment in tissues and, where

available, predict module expression covariance with cell numbers in both blood and tissue. A

strength of this scoring framework is that it provides an independent hierarchy of module

accuracy applicable across different tissue settings and across different sources of transcrip-

tional data, including several microarray platforms and RNA sequencing. MDI scores

Fig 5. MDI scores predict strength of covariance between module gene expression and cell frequency in blood. (A)

Relationship between geometric mean expression of two T cell modules which show highest (M14) and lowest (M4.6)

covariance (shown in brackets) with T cell frequency in peripheral blood. Each data point represents measurements derived

from a TST in separate individuals. Regression lines and 95% confidence limits are shown for each module. (B-D) The

relationship between covariance of neutrophil, T cell or B cell frequencies and cell-type specific module expression, with the

MDI for each module. Data points represent data derived from individual modules, giving regression lines with 95% confidence

limits, Spearman rank correlation coefficients (r2) and p values.

doi:10.1371/journal.pone.0169271.g005
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therefore provide a good predictor of module performance in cell type quantification, without

requiring extensive in silico or in vitro validation of module performance.

We focused on generating MDI scores for immune cell modules as changes in cell numbers

are common biological questions and many datasets of pure cells were available for scoring

purposes. Importantly, we showed that the MDI score correctly ranked the sensitivity and

specificity of the cell type specific modules within clinical samples representing a diverse array

of pathologies or immunological responses. We interpret this to mean that the best performing

modules represent core transcriptional programs independent of differential cellular activation

states. Although we and others have described cytokine and innate immune stimulus specific

gene expression modules to represent functional biological activity beyond cellular composi-

tion [11,25,26], comprehensive data from which to derive transcriptional modules represent-

ing cell-type specific activation states are not presently available, and may well require

multiparametric flow cytometry to resolve accurately. Likewise, transcriptional data to dis-

criminate between closely related cell subsets, such as CD4 and CD8 naïve or memory T cells

are the focus for future work.

The meta-analysis performed in this study supports the use of transcriptional modules to

extract biological information from tissues as well as blood. Modules have been mostly used to

describe relative cell and pathway enrichment in whole blood or peripheral blood mononu-

clear cells (PBMC) [8,9]. We previously identified transcriptional modules which could deci-

pher cell and innate immune response enrichment from human skin [11]. In the current

Fig 6. MDI scores predict covariance between module gene expression and cell frequency in skin and lymph

nodes. (A) Representative images of CD3 immunohistochemical staining in skin biopsies at the site of saline injection or

tuberculin skin tests. (B) Relationship between geometric mean expression of two T cell modules which show highest (M19)

and lowest (M4.9) covariance (shown in brackets) with quantitation of CD3 immunostaining. Each data point represents

measurements derived from a TST in separate individuals. Regression lines and 95% confidence limits are shown for each

module. (C) The relationship between covariance of CD3 immunostaining in TST biopsies and T cell module expression,

with the MDI for all T cell modules. (D-E) The relationship between covariance of T or B cell frequency and cell-type specific

module expression, with MDI for each module. Data points represent data derived from individual modules, giving

regression lines with 95% confidence limits, Spearman rank correlation coefficients (r2) and p values.

doi:10.1371/journal.pone.0169271.g006
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manuscript we extend these observations further, demonstrating their applicability across a

range of human tissue types. Although some cells undoubtedly induce context specific tran-

scriptional programmes, we demonstrate that cells retain some tissue-agnostic transcriptional

profiles, observing that B cell modules with the greatest specificity (i.e. MDI score) accurately

reflect B cell numbers in lungs, blood and lymph nodes. Equally, the most specific T cell mod-

ules reflect T cell numbers in blood, head and neck tumours, skin and lymph nodes. Notably,

we also show for the first time that cell biology in tissues is faithfully reflected by modules

derived purely from unsupervised network analysis of whole blood transcriptomes [4].

The MDI scoring framework also provided insight into the merits of different module gen-

erating methodologies. Whilst no single approach consistently provided the best modules,

MDI scores highlight that unsupervised network analyses generate highly heterogeneous mod-

ules, some possessing no specificity for their annotated cell type. Secondly, where modules are

generated in a supervised manner by incorporating genes which show differential expression,

limiting a module’s constituent genes to those identified in multiple datasets almost always

improves performance compared to using analysis of individual datasets. Finally, in settings

where dataset availability may be limited or novel cell subtypes are being investigated [27], a

semi-supervised approach to module generation using genes co-correlated to marker bait

genes appears to be a viable alternative approach to generate highly specific modules [11].

In conclusion, we have generated and validated in multiple settings a novel, cross-platform

framework for ranking the quality of published transcriptional modules. We propose that the

MDI scoring approach becomes a new standard to assess the fidelity of modules’ annotations

in order to make accurate comparative assessments in transcriptional analyses.

Methods

Datasets

All datasets used are described in S1 Table. Data matrices were obtained from processed data

series downloaded at the Array Express repository (https://www.ebi.ac.uk/arrayexpress/).

Probe identifiers were converted to gene symbols using platform annotations provided with

each dataset. In circumstances where downloaded datasets were not log2 transformed, this was

performed on the entire processed data matrix. Datasets were alphabetically sorted by gene

symbol and duplicate genes were removed after the first one identified using Microsoft Excel

duplicate remover function.

Scripts

All scripts were written in R v3.2.2 and RStudio v0.98, and are available to download on

GitHub (https://github.com/MJMurray1/MDIScoring). A list of functions used in the manu-

script is available in S2 Table.

Module derivation and generation

All module names, annotations and gene contents used in the analyses are available in S3

Table. In addition to published cell-associated modules, we derived further modules using two

alternative approaches. First by identifying overlapping module content across multiple data-

sets composed of purified cell types (accession numbers E-GEOD-22886, E-GEOD-28490,

E-GEOD-28491, E-GEOD-24759 and E-GEOD-50008). For every gene, the expression differ-

ence between the cell type of interest and all other cell types in the dataset was computed.

Genes that were two-fold or greater upregulated in the target cell compared to at least 90% of
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the other cell types in that dataset were selected. This process was then repeated for all datasets,

and genes identified in at least two datasets were then selected to comprise the final module.

Secondly co-correlation modules were generated using cell specific marker genes derived

from the published literature as previously described [11]. The Pearson correlation coefficient

of each marker relative to all other genes was derived from a dataset comprising a wide variety

of purified cells (E-GEOD-22886). This approach yielded a ranked list of genes correlated to

each marker, and the cell module was then constructed from the overlap of the top 1% of cor-

related genes in each of the lists.

Assessing module content overlap

Pairwise assessment of module similarity was made using the Jaccard similarity index, which

is defined as the intersection divided by the union of two sets (S2 Table). Content for both

assessments was derived from HGNC gene symbols in S3 Table.

Calculating MDI scores

The overall gene expression of any module was determined from the geometric mean expres-

sion of all the constituent genes. MDI scores were calculated from datasets containing a wide

breadth of purified cell types in which the cell type of interest made up<20% of all cells (range

4.7% - 16.7%—S1 Table). Within each data matrix, we identified the samples that best repre-

sented each cell type (e.g. when calculating MDI scores for B cells, the prototypic condition

across the datasets tested was “B cells from PBMC”, “B cells” or “naïve B cells”). All other non-

target cell types then were assigned “Other” status.

Modules for which the mean expression across multiple datasets in the target cell was lower

than any other cell type were excluded from further analysis. Modules’ MDI scores were then

calculated from the cross-dataset average of relative geometric mean expression difference

between the target cell and all other cell types according to the equation:

MDImod ¼
1

n

Xn

i¼1

X � Y
X

� �

MDImod ¼ MDI score for module annotated as target cell

X ¼ Module geometric mean for target cells in dataset

Y ¼ Module geometric mean for non � target cells in dataset

n ¼ number of datasets used to derive MDI score

Where a dataset specified the differentiation or activation state of a target cell, these conditions

were averaged prior to MDI scoring, in order to focus on modules’ core performance to reflect

a particular cell type (e.g. gene expression of resting and activated T cells was averaged when

generating MDI scores for T cells overall). All other comparator conditions in that dataset

were unaltered for MDI score generation.

Skin biopsy collection and transcriptomic analysis

Skin biopsy samples were collected as part of a research study approved by UK National

Research Ethics Service (reference no: 11/LO/1863). Written informed consent was obtained

from all participants included in the study.
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Healthy volunteers with positive IFNγ release assays using QuantiFERON-TB Gold tests

(Qiagen) received 0.1 ml intradermal injection of two units tuberculin (Serum Statens Insti-

tute) or saline injections in the volar aspect of the left forearm. At 72 hours, skin biopsies for

transcriptomic and histological analysis were collected and stored as previously described [11].

RNA was extracted from skin, processed by Agilent microarrays and analysed according to an

established pipeline that we have previously described [11,28].

Histology and immunohistochemistry of skin biopsy specimens

Punch skin biopsies for histological analysis were snap frozen in OCT Compound (Tissue-

Tek). Frozen sections were carefully thawed and fixed in 4% neutral buffered formalin, then

embedded in paraffin wax (Sakura). 10 μm sections were cut and stained using the Leica Bond

III automated immunostaining platform, with the Leica Bond Polymer Refine detection kit

(Leica DS9800and a DAB chromogen. More specifically, anti-human antibodies against CD3

(clone LN10) (Leica NCL-L-CD3-565) were used. Whole slide images of the histology sections

were acquired with an Axio-Scan microscope using Zen 2 core software at 20x magnification

and are presented without any subsequent processing. Digital image analysis was performed

using Definiens AG (Munich) Tissue Studio 4.3. Tissue detection automatically identified all

the tissue within each image, then a machine learning method was used to separate the sample

from background and non-tissue regions, and segment the sample into dermis and epidermis;

manual correction was used to ensure valid separation of these regions of interest (ROI). A

fixed threshold was then applied to each ROI to identify the chromogen positive areas (μm2),

which is represented as a percentage of the total tissue/ROI area.

Statistical analysis

Spearman Rank correlations and linear regression models were calculated in Graphpad Prism,

and covariance analyses were performed in Microsoft Excel.

Supporting Information

S1 Table. Table of accession numbers for all microarray data used in this manuscript.

(XLSX)

S2 Table. Table of R functions utilised for all data analyses in this manuscript.

(XLSX)
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(XLSX)

S4 Table. Table of immune cell module MDI scores.

(XLSX)
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