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Abstract

Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their
applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and
randomly distributed flax fibers (0, 0.5, 1, 2.5, 5 and 25 wt%) on setting reaction kinetics, and mechanical and
morphological properties of glass ionomer cements. Addition of flax fibers did not significantly affect the setting
reaction extent. According to their content, flax fibers increased the compressive (from 148 to 250 MPa) and flexure
strength (from 20 to 42 MPa). They also changed the brittle behavior of glass ionomer cements to a plastic one. They
significantly reduced the compressive (from 3 to 1.3 GPa) and flexure modulus (from 19 to 14 GPa). Accordingly,
flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas.
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Introduction

Due to their adhesive properties and anticariogenic
action, conventional glass ionomer cements (GICs)
have been widely used with best clinical outcomes as
liners, bases, and filling materials in low stress bearing
areas as cervical cavities. GICs also have favorable
biologic properties and a similar coefficient of thermal
expansion to dental tissues. GICs, however, have some
drawbacks including high solubility[1], relatively poor
mechanical properties[2], poor fracture toughness and
long setting time[3].
A series of modifications to the GIC powder or liquid

component have been attempted to improve their

properties. Resin modified GICs (RMGICs) are an
example of liquid modification that involve the addition
of polymerizable hydrophilic monomers, such as 2-
hydroxyethyl methacrylate (HEMA), to the polyacrylic
acid liquid of conventional GICs. This modification
improved the mechanical properties and resistance of
GICs. The presence of uncured monomer, however, in
RMGICs increased the concern about its biocompat-
ibility with pulpal tissues[4–6]. Metal-reinforced GICs,
as an example of powder modification, involve the
addition of silver-amalgam alloy powder to conven-
tional GICs powder; it increased the mechanical
properties, reduced solubility, and induced radio-
opacity to GICs. Metal-reinforced GICs, therefore,
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employed to restore cavities in high stress-bearing
areas, e.g., Class II. The addition of metals to GICs
powder, however, reduced fluoride release and bond
strength to tooth structure[7].
Experimental GICs, based on niobium modified

calcium fluoro-alumino-silicate glass powders, were
prepared by sol-gel method in an attempt mainly to
improve the mechanical properties and degradation
resistance[8–10]. These formulations have been initially
shown to be biocompatible when injected subcuta-
neously, but further research is still required to verify
their biocompatibility in the presence of dentin-pulp
complex[11]. One of the latest attempt involves the
incorporation of titanium dioxide nanoparticles into
GICs’ powder to improve the mechanical properties, as
well as to induce antibacterial activity[12].
The worldwide use of natural products for pharma-

cological purposes has increased over the last few
decades. Flax fibers, as an example of biologic material
(lingo-cellulosic), have been considered as multipur-
pose use fibers. They are commonly used for both
industrial, e.g., automotive and construction indus-
try[13], and non-textile use, mainly in composites[14].
These fibers are renewable, nonabrasive and strong;
their natural origin eliminates any concern with health
and safety during handling and application[13]. Accord-
ingly, their use has recently been extended to biome-
dical applications[15,16]. Due to their antibacterial
action, genetically modified flax fibers were used as
wound dressings for treatment of infection[15]. The
development of biologically active dressings has also
been attempted by immobilization of the required drug
into flax fibers; this resulted in better clinical outcomes
and reduction in both treatment time and post-traumatic
suppuration[17-18]. For dental use, flax fibers were
effective in improving compressive strength while
reducing solubility and micro-leakage of zinc oxide
eugenol cement[19].
Through this study, short chopped flax fibers were

randomly incorporated at different weights into GICs
restorative materials' matrix to control GICs’ mechanical
properties. The setting kinetics of GICs, however,
represents one of the main issues that would be
considered when designing new materials. The aim of
this study was, therefore, to study the effect of flax fiber
incorporation on setting reaction/kinetics, mechanical
and morphological properties of GICs using Perkin
Elmer ART-FTIR, Instron testing machine and SEM,
respectively. The two null hypotheses were: (1) there was
no significant difference in the setting reaction/kinetics of
GIC and flax fiber modified GIC; (2) there was no

significant difference in the flexure and compressive
properties of GIC and flax fiber modified GIC.

Materials and methods

Reagent

Natural short flax fibers and glass ionomer filling
materials (KetacTM Fil Plus, 3M ESPE, Germany, shade
3.5A) were used for this study. Fibers were included at
0, 0.5, 1, 2.5, 5 and 25 wt%. These were coded as GIC,
0.5FFRGIC, 1FFRGIC, 2.5FFRGIC, 5FFRGIC and
25FFRGIC. The powder/liquid (P/L) ratio was fixed at
3:1. The required amount of powder and liquid was
weighted using an electronic balance (Shimadzu
Corporation, Tokyo, Japan). For proper distribution of
flax fibers, they were properly mixed with the powder
before the addition of liquid. The cement was mixed
according to the manufacturer’s instruction.

Fourier transform Infra-Red and setting reaction
monitoring

The setting reaction kinetics of each formulation has
been studied using ATR-FTIR spectrometry (Perkin
Elmer Series 2000, UK) at 37°C. The mixed cement
was placed in a rubber ring of 8 mm diameter and 1 mm
depth positioned centrally on the Golden Gate Single
Reflection Diamond ATR. With this technique, the
bottom few micron of each sample contacting the
diamond are analyzed. The top surface of each sample,
however, was initially sealed with an acetate sheet to
avoid possible dehydration of the samples. FTIR spectra
between 500 and 4,000 cm–1 were then obtained using
Timebase software with a resolution of 4 cm–1 every 12
seconds for 30 minutes. The reaction extent (�) versus
time was calculated from the absorbance change (ΔA)
and the maximum absorbance change (ΔAmax) at 1565
cm–1 using the following equation[20]:

� ¼ ΔA
ΔAmax

¼ At –A0

Af –A0

Where A0,At and Af are the absorbance initially, at
time t and finally.
Spectra of the starting materials (KetacTM Fil Plus

powder and liquid, as well as the flax fibers) were also
obtained.

Compression test

Disc shaped specimens (n = 6) of 10 mm diameter and
3 mm thickness were prepared from each composition
using a transparent rubber mold that can be easily
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removed from the material after its setting. The rubber
mold was set on the top of a glass slab and an acetate
sheet. The material was inserted into the mold with a
slight excess of material used to fill the mold. Another
acetate sheet was then placed on the top of the filled
mold; the material surface was pressed flat with another
glass slab. The glass slab was held firmly in place for a
few minutes to avoid air bubbles from forming and to
obtain a flat and smooth surface. After ~15 minutes, the
celluloid strips and glass slabs, as well asexcess material
were removed. The surface of each disc, however, was
left untouched. The samples were then kept in a sealed
plastic bag at room temperature for 1 week before testing.
The dimensions of each specimen were measured

with a micrometer prior to testing using the Universal
testing machine (Instron 5969, USA) at a cross head
speed of 0.25 mm/minutes and 50 kN load cell. The
compressive strength, modulus and failure strain were
recorded using Bluehill 3 software.

Three-point bending test

Rectangular specimens (n = 6) of 25�2�2 mm3 were
used to measure the flexure strength and modulus of
each composite using the three-point bending test.
Samples were prepared as described above for the
compression test.
The dimensions of each specimen was measured with

a micrometer prior to testing using a Universal testing
machine (Instron 5944, USA) at a cross head speed of
0.25 mm/minutes and 2 kN load cell. The flexure
strength (�f ) in MPa and modulus (Ef ) in GPa were
calculated using Bluehill 3 software.

Scanning electron microscopy

For scanning electron microscopy, samples were
mounted on aluminum stubs, sputter coated with gold-
palladium alloy, and viewed using a Stereoscan 90B
scanning electron microscope at 15kV (Cambridge
instruments Ltd., UK).

Statistical analysis

Numerical data was presented by mean � standard
deviation. Due to heterogeneity of variance, the data
was analyzed using the non-parametric Kruskal- Wallis
test. Since Kruskal-Walis testing does not identify
where the stochastic dominance occurs, a pairwise
comparison between groups was then carried out to test
the significant differences between them. The statistical
analysis was carried out using IBM SPSS for Windows
(SPSS 20, SPSS Inc., Chicago, IL, USA). The
significance level was set at 0.05.

Results

Fourier transform infrared and setting reaction
monitoring

Starting components

Fig. 1A shows the FTIR spectra of the starting
components of flax fiber modified formulations. The
powder of KetacTM Fil Plus is characterized by the
presence of peaks at 540 and 970 cm–1 that could be
assigned to Si-O stretch[21]. The liquid has sharp peaks
at 1,249, 1,635, 1,707 and 3,380 cm–1. The shoulder at
1,635 cm–1 O–H stretch of water[21] while the peaks at
1,249 cm–1 at 1,707 cm–1 are due to C-O and C = O
stretch of polyacrylic acid, respectively[21]. Flax fibers
have strong peaks at 540 and 1,027 cm–1. The peak at
1,027 could be assigned to outof plane bending g(O-
H…..O) vibration of the intermolecular hydrogen
bonds[22]. A very broad peak in the region 2,500-
3,600 cm–1 was assigned to the –OH vibration of several
hydroxyl groups in the cellulose matrix[23].

Setting reaction

An example of change in the FTIR spectrum as the
GIC reaction progresses is provided in Fig. 1B. The
different spectra obtained have peaks and troughs in the
same positions irrespective of flax addition or time of
reaction and are characteristic of a glass ionomer setting
reaction. As is the case with all cements, substantial
changes in the spectra were observed during the first 30
seconds. The troughs seen at 1,249 and 1,707 cm–1 can
be assigned to C-O and C = O stretch bands of
polyacrylic acid which are shifted when it is neutra-
lized[21,24]. By comparing the intensity of 1,707 cm–1 as
the time proceeds, nearly 50% and 90% of polyacrylic
acid has been consumed in the acid-base reaction by the
first 2 and 10 minutes, respectively. The loss of intense
polyacid peaks coincided with the gradual appearance
of broad symmetric (1,400 and 1,470 cm–1) and
asymmetric (1,565 cm–1) COO polyacrylate salt
peaks[21]. The addition of flax fibers had no significant
effect on either the different spectra or on the calculated
reaction extent (Fig. 2C).

Compressive strength

Fig. 2A shows the stress-strain curves of KetacTM Fil
Plus and flax fiber reinforced formulations. The stress-
strain curve of KetacTM Fil Plus is characterized by a
linear elastic region terminated by peak stress called

Setting kinetics and mechanical properties of flax fibre reinforced glass ionomer restorative materials 3



Fig. 1 Starting components and setting reaction. A: FTIR
spectra of the starting components of flax fiber modified KetacTM

Fil Plus restorative glass ionomer. B: Difference spectra, obtained by
subtracting the initial absorbance from the final absorbance, for
2.5FFRGIC as an example. C: Reaction extent versus time, measured
using the peak at 1565 cm – 1, of KetacTM Fil Plus and flax fibers
reinforced KetacTM Fil Plus.

Fig. 2 Compressive properties. A: Stress-strain curves obtained
from the compression test, B: compressive (MPa) and yield strength
(MPa), C: compressive modulus (GPa) and strain (%) of KetacTM
Fil Plus and flax fibers-reinforced KetacTM Fil Plus. Bars represent
mean (n = 6) while error bars represent standard deviations. * refers
to statistical significance from KetacTM Fil Plus. The significance
level was set at 0.05.
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'elastic limit' where the failure occurred. In such cases,
the compressive strength is equal to the elastic limit of
the material. This type of behavior is described as
brittle. Generally, KetacTM Fil Plus is stiff, strong and
brittle (i.e., no yielding before failure). The addition of
flax fibers changed the stress-strain behavior of the
material, where the materials showed yielding before
failure. This region of yielding is called plastic region;
the extent of yielding increased in proportion to the
fibers' content. The failure mode changed from being
brittle to plastic as the content of fibers increased. This
type of failure becomes clearly evident with 5FFRGIC
and 25FFRGIC. Furthermore, a toe-in region, at the
beginning of load application, became evident in the
stress-strain behavior of 25FFRGIC. Generally, the flax-
modified formulations are resilient, strong and ductile.
The addition of flax fibers produced an increase in

both compressive and yield strength. This increase,
however, was not statistically significant (P> 0.05) for
all formulations except 25FFRGIC (P = 0.002 and
0.001 for compressive and yield strength respectively)

when compared with KetacTM Fil Plus (Fig. 2B). The
compressive strength increased from 148�12 for Ketac
Fil Plus to 250�50 MPa for 25FFRGIC. All fiber
reinforced formulations, however, showed statistically
significant difference from 25FFRGIC. As shown by
the pairwise comparison, there was a statistically
significant difference between 0.5FFRGIC and
25FFRGIC (P = 0.000), between 1FFRGIC and
25FFRGIC (P = 0.018), between 2.5FFRGIC and
25FFRGIC (P = 0.001), and between 5FFRGIC and
25FFRGIC (P = 0.043). Regarding the yield strength,
all fiber reinforced formulation showed significantly
different statistics from 25FFRGIC. As shown by the
pairwise comparison, there was a statistically significant
difference between 0.5FFRGIC and 25FFRGIC (P =
0.002), between 1FFRGIC and 25FFRGIC (P = 0.006),
between 2.5FFRGIC and 25FFRGIC (P = 0.003), and
between 5FFRGIC and 25FFRGIC (P = 0.012).
On the other hand, a significant linear reduction in

Young's modulus was observed when incorporating flax
fibers into KetacTM Fil Plus (a reduction from 2.6 � 0.4

Fig. 3 Flexural properties. Stress-strain curves of (A) KetacTM Fil Plus and (B) 5wt% flax fibers-reinforced GIC as obtained from the three-
point bending test as an example to show the ductile behavior of fibers-reinforced formulations with 5 and 25wt. % fibers content. The inset
represent the compression and tension side of the bar under three-point bending; the failure normally starts at the tension (bottom) side
(C) Flexure strength (MPa) and modulus (GPa). (D) Flexure strain (%) of KetacTM Fil Plus and flax fibers-reinforced KetacTM Fil Plus. Bars
represent mean (n = 6) while error bars represent standard deviations. * refers to statistical significance from KetacTM Fil Plus. The significance
level was set at 0.05.
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GPa for Ketac Fil Plus to 1.5 � 0.3 GPa 25FFRGIC)
(Fig. 2C). All fiber reinforced formulation showed
significantly lower modulus than GIC. The P values
were 0.007, 0.042, 0.19, 0.013 and 0.000 for
0.5FFRGIC, 1FFRGIC, 2.5FFRGIC, 5FFRGIC and
25FFRGIC when compared with GIC. There was also a
statistically significant difference between 1FFRGIC
and 25FFRGIC (P = 0.036).
The reduction in modulus was associated with a

significant linear increase in strain (%) recorded at the
material failure (Fig. 2C). A pairwise comparison test
showed that, statistically, there is a significant difference
GIC and 1FFRGIC (P = 0.007), between GIC and
5FFRGIC (P = 0.003) and between GIC and 25FFRGIC
(P = 0.000). There was also a significant difference
between some flax fiber reinforced formulations
(0.5FFRGIC, 1FFRGIC and 2.5FFRGIC) and
25FFRGIC; the "P" values are 0.001, 0.042 and 0.003
respectively.

Flexural strength

Fig. 3 shows the brittle failure of KetacTM Fil Plus
under the three-point bending test. Similar behavior was
relatively seen for 0.5FFRGIC, 1FFRGIC and
2.5FFRGIC. Fig. 3B, however, shows the characteristic

plastic behavior of formulations with high flax fiber
content, 5FFRGIC and 25FFRGIC. As expected, the
failure under the three-point bending condition nor-
mally started at the tension side. This failure was
catastrophic once the elastic limit of the material had
been approached; this was observed for KetacTM Fil
Plus. Addition of flax fibers, however, increased the
strain % before failure; this behavior was clearly seen
for formulations with 5 and 25 wt%. This type of
behavior was expected for fiber-reinforced formula-
tions. While the flexural strength and strain linearly
increased, the modulus decreased with increased fiber
content (Fig. 3C andD). Kruskal–Wallis testing showed
that the addition of flax fibers produced a statistically
significant change in flexural strength (P = 0.001), strain
(P = 0.005) and modulus (P = 0.004) when compared
with GIC. So there is strong evidence to reject the null
hypothesis. Only 5FFRGIC and 25FFRGIC showed a
significantly higher strength than GIC; the P values are
0.037 and 0.000 respectively. The remaining fiber
reinforced formulations (0.5FFRGIC, 1FFRGIC and
2.5FFRGIC) showed higher strength than GIC, but this
increase was not statistically significant (P> 0.05).
Furthermore, there was a statistically significant differ-
ence in flexural strength of 0.5FFRGIC, 1FFRGIC,
2.5FFRGIC and 5FFRGIC when compared with GIC;

Fig. 4 SEM images of KetacTM Fil Plus (A), flax fibers reinforced KetacTM Fil Plus
with different wt. % of flax fibers (1, 2.5, 5 and 25 wt%) (B-E) as well as KetacTM Fil
Plus powder (F) and flax fibers (G).
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the P values were 0.001, 0.012, 0.012 and 0.034,
respectively.
Regarding the flexural modulus, only 2.5 and 25

showed significantly lower modulus than GIC; the P
values are 0.001 and 0.045, respectively. Also both
0.5FFRGIC and 1FFRGIC showed significantly higher
modulus than 25FFRGIC; the P values are 0.025 and
0.001 respectively. Both 2.5FFRGIC and 5FFRGIC
showed significantly lower modulus than 1FFRGIC; the
P values are 0.028 and 0.032, respectively.
Regarding the strain, only 25FFRGIC showed

significantly higher strain than GIC; the P value was
0.002. Furthermore, 0.5FFRGIC, 1FFRGIC,
2.5FFRGIC and 5FFRGIC showed significantly lower
strain than 25FFRGIC; the P values were 0.002, 0.000,
0.002 and 0.002, respectively.
Comparing the compressive strength with that of

flexure strength (that mostly measure the tensile
strength); all tested materials had flexure strength
around 6-8 times lower than the compressive strength.
This indicates the brittle nature of these materials. The
ratio of compressive: flexure strength decreased with
increasing the filler contents indicating the move from
brittle to plastic nature (or indicating a reduction in
brittle behavior). The compressive moduli were 6-11
times lower than the flexure moduli. The ratio increased
with increasing the fiber content.

Scanning electron microscopy

Fig. 4 shows SEM images of the set KetacTM Fil Plus
(A), fiber modified formulations (B-E) as well as the
powder (F) and flax fibers (G). The surface morphology
of GIC and flax fiber modified GIC exhibited a high
degree of integrity and smooth surface. Accordingly,
addition of flax fibers produced no difference in the
morphology of the set materials. The flax fibers become
only visible on the surface when presented in high
content (25 weight %) and these fibers were completely
coated with the GIC matrix. The cracks seen on samples
could be due to dehydration during sample preparation
for SEM[25]. The powder particles had an angular shape;
they varied in sizes from 2 to 30 micron in size. Short
flax fibers (675 � 255 μm length and ~10 μm
diameters).

Discussion

Despite the excellent adhesive properties of glass
ionomer cement, its weak mechanical properties limits
its application in stress-bearing areas. The present study
aimed to modify a commercially available conventional

glass ionomer cement with naturally occurring flax fibers
to produce new formulations with enhanced mechanical
properties while maintaining the same setting reaction
kinetics of the conventional cement. The effect of flax
fiber incorporation on setting, compressive and flexure
properties of KetacTM Fil Plus glass ionomer restorative
material has been investigated throughout this study. The
morphological character of the produced formulations
were also obtained.
After mixing, the acid-base reaction between the

weak polyacrylic acid and the finely powdered calcium
fluoroaluminosilicate glass commences. This reaction
was observed from the absorbance changes seen in
FTIR spectra as a gradual reduction in the intensity of
polyacrylic acid peak at 1,707 cm–1. The intensity of
COO salt peaks increased with time. Young observed
the presence of symmetric asymmetric COO stretch
bands of polyacrylate salts with mono or divalent
counterions at 1,420 and 1,540 cm–1 but those of
trivalent counterions closer to 1,460 and 1,600 cm–1[24].
Nicholson et al., however, claimed that the position of
these peak could vary with the physical environment in
which the acid-base reaction occurs[26]. The addition of
flax fibers had no significant effect on the setting
reaction/kinetics of KetacTM Fil Plus. Accordingly, there
was not enough evidence to reject the first null
hypothesis.
As seen from the stress-strain behavior, the Ketac Fil

Plus failed under compression at the elastic limit i.e., the
peak stress at the end of the linear elastic region. This
could occur due to crack formation within GIC matrix.
Once the crack started, an immediate catastrophic
failure occurred as expected for brittle materials as
GIC. With fiber modified formulations, 5FFRGIC and
25FFRGIC in particular. However, the failure happened
at higher stress and at the end of the plastic portion of
the stress-strain curve. This plastic region may represent
a crack propagation stage which was absent from GIC i.
e., application of stresses higher than the elastic limit of
5FFRGIC and 25FFRGIC resulted in a progressive
crack propagation before failure. In case of fiber
modified formulations, the crack initiation would be
expected at the fibers-GIC matrix interface, the weakest
area in these formulations. The progression of crack
through the plain GIC matrix is expected to be fast; the
presence of short, discontinuous flexible flax fibers,
however, could absorb some of the stresses or energy
required for cracks propagation. The flax fibers could
then redistribute these stresses or energy to the nearby
GIC matrix, thus suppressing the strain localization.
This could explain the presence of ductile, plastic
behavior of fiber modified formulation i.e., absence of a
catastrophic failure characteristic to the plain GIC
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matrix. The large area under the stress-strain curve, seen
with fiber modified formulations, indicated a significant
increase of the work-of-fracture compared to the brittle
characteristics of KetacTM Fil Plus. The crack propaga-
tion in GIC matrix resulted in a crack pattern that
divided the material into a number of portions that can
break off[27].
The compressive strength indicates the resistance of a

material to the masticatory forces. The mean values
obtained for the compressive (148 � 12 MPa) and
flexure (20� 2 MPa) strength of KetacTM Fil Plus in the
present study are similar to those reported by Molina
et al.[28]. The ratio of compressive to flexure strength is
7.5; this is also in agreement with those reported by
Molina et al.[28]. Generally, KetacTM Fil Plus is stiff,
strong and brittle (i.e., no yielding before failure) while
the fiber modified KetacTM Fil formulations are resilient,
strong and ductile. The reduction seen in compressive
modulus with addition of flax fibers was also observed
in our previous work using amplitude modulated force
microscopy mode (AMFM, 3D-Bio, Research Asylum),
which enable continues mapping of surface mechanical
properties and recording the force-deflection curve
under indentation. The results obtained in the current
study, fall in the same range obtained for modulus using
AMFM. As also indicated from AMFM, the set GIC
represents a single phase material while the fiber
modified formulations are bi-phasic materials. Lack of
chemical bonding between the flax fibers and the GIC
matrix could account for the non-significant increase in
the compressive strength particularly at low filler
content. Furthermore, absence of chemical bonding
between the flax fibers and GIC matrix will produce a
weak interface. Surface modification e.g., silane treat-
ment, of the flax fibers will therefore be considered in
our future work.
Similar findings were also seen from the three-point

bending test. The flexure strength increased but the
modulus decreased with addition of flax fibers. The
resilience increased linearly with increasing the flax
fiber content. This may account for the reduction seen in
modulus with increasing the fiber content. The
compressive and flexure strength of flax-fiber modified
formulations are higher than those obtained by
Lohbauer et al., who used reactive glass fibers for
reinforcing GIC. According to the results of this study,
the second null hypothesis was rejected since there are
statistically significant statistical differences in the
compressive and flexure properties of KetacTM Fil
Plus and flax fiber modified KetacTM Fil Plus.
In conclusion, short flax fibers with 675 � 255 μm

length and ~10 μm diameter were used for the
reinforcement of glass ionomer to be employed as a

dental restorative material with improved mechanical
properties. The addition of flax fibers up to 25 weight%
had no significant effect on the acid-base reaction of
glass ionomer cement. The acid neutralization was
observed by the loss of intense C = O polyacid peak,
identified mainly at 1707 cm–1 and concomitant
appearance of broad symmetric and asymmetric COO
polyacrylate salt peaks. The intensity of COO poly-
acrylate salt peaks increased with time. Incorporation of
flax fibers showed a significant increase in the
compressive and yield strength only at high weight %,
25FFRGIC. Low fiber content significantly improved
compressive strength obtained by silane treatment of
flax fibers. Incorporation of flax fibers≥1 wt%,
however, significantly increased flexure strength, elas-
ticity and resilience and changed the material's behavior
from brittle to ductile. Addition of fibers produced no
morphological changes in the set materials. The
improvement obtained in the mechanical properties
with incorporation of flax fibers could extend the
application of GIC to stress-bearing areas.
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