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Abstract  

 

Three Dimensional Bistatic Tomography Using HDTV 

The thesis begins with a review of the principles of diffraction and reflection tomography; 

starting with the analytic solution to the inhomogeneous Helmholtz equation, after 

linearization by the Born approximation (the weak scatterer solution), and arriving at the 

Filtered Back Projection (Propagation) method of reconstruction. This is followed by a 

heuristic derivation more directly couched in the radar imaging context, without the rigor 

of the general inverse problem solution and more closely resembling an imaging turntable 

or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the 

line integral and projections (the Radon Transform), followed by more general geometries 

where the plane wave approximation is invalid.  

We proceed next to study of the dependency of reconstruction on the space-frequency 

trajectory, combining the spatial aperture and waveform.  Two and three dimensional 

apertures, monostatic and bistatic, fully and sparsely sampled and including partial 

apertures, with controlled waveforms (CW and pulsed, with and without modulation) 

define the filling of k-space and concomitant reconstruction performance.  

Theoretical developments in the first half of the thesis are applied to the specific example 

of bistatic tomographic imaging using High Definition Television (HDTV); the United 

States version of DVB-T. Modeling of the HDTV waveform using pseudonoise 

modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move 

approximation established the imaging potential, employing an idealized, isotropic 
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scatterer. As the move-stop-move approximation places a limitation on integration time 

(in cross correlation/pulse compression) due to transmitter/receiver motion, an exact 

solution for compensation of Doppler distortion is derived. The concept is tested with the 

assembly and flight test of a bistatic radar system employing software-defined radios 

(SDR). A three dimensional, bistatic collection aperture, exploiting an elevated 

commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the 

best of our knowledge, represents a first in the formation of three dimensional images 

using bistatically-exploited television transmitters.  
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Chapter 1 

 

Motivation, Problem Statement and Publications 

There are many remote sensing applications where a need exists for high spatial 

resolution imaging in either two or three dimensions, and consequently this is remains an 

active area of radar research. When imaging at standoff distances from the object or scene 

of interest, one often has to contend with a line-of-sight that is partially or fully occluded 

over some or all of the observation geometry. This blockage may be the result of foliage 

occluding the scene, the imaged area/volume being in the interior of some structure, or 

some other screening medium was or is in place during observation. Example 

applications range from archaeological survey [1, 2], law enforcement [3, 4], 

environmental and natural resource monitoring [5], disaster response [6], and defense 

operations [7]. Radar systems are frequently the modality of choice for remote sensing 

because of 1) the ability to decouple data collection from constraints such as weather, 

clouds or lighting conditions, 2) possibly of operation at frequencies that propagate, at 

least to some degree, through intervening media, and 3) the potential to yield very large 

image production/area coverage rates. 

Radio Frequency (RF) imaging radar systems employ Synthetic Aperture Radar (SAR) 

techniques to create an image in which resolution in the range dimension is realized 

through the waveform bandwidth and in the cross range dimension through the length of 

the synthetic antenna created. SAR continues to be a dynamic research topic and many 

algorithms have been developed to efficiently focus the synthetic aperture. Operating at 

lower frequencies is necessary to realize penetration of foliage (or other media) and many 
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monostatic imaging systems have been developed over the years. An excellent summary 

can be found in [8]. The evolution of RF technology has removed, or at least heavily 

mitigated, hardware-based limitations and wide-to-ultrawide band imaging radars have 

resulted. However those commercial influences which have largely served as the 

stimulant for component maturation and associated cost reductions, the mobile 

telephony/wireless services/social media markets, have created, or greatly contributed to, 

the constraint on low frequency radar operation. The availability in the portion of the 

microwave spectrum below 1.5 GHz, which would be desirable for some imaging radar 

operations, is very limited with spectrum allocations representing very significant 

commercial (and government) investment [9]. In some environments, national and 

international spectrum allocations may be secondary considerations (e.g., operating 

within underdeveloped regions), but other applications of interest would necessarily have 

to contend with other emitters/receivers as both threats (interferers) and victims, including 

critical communications links. One approach is to implement spectral notching to mitigate 

interference on both transmit and receive (for examples [10] and [11]). However in many 

regions there may be so much radio frequency interference, or keep out bands, that the 

degree of notching could result in unacceptable performance [12]. These complications 

lead to the argument for as limited an operating bandwidth as possible, dynamically, and 

cognitively [13], adjusting waveforms to work amongst other allocated users, or 

exploiting the radiations as signals of opportunity.  

Bistatic radar can operate with dedicated, purpose-designed transmitters, waveforms and 

synchronization or it can exploit signals of opportunity that meet application specific 

criteria while synchronizing noncooperatively. Synthetic aperture imaging is a well 

established capability within the field of bistatic radar. Radar imaging requires that 

transmitter, receiver or both platforms are moving during aperture sampling [14], or that 

an ensemble of receivers are distributed around a scene such as in structural imaging [15] 
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or geophysical imaging [16]. The low frequency spectrum (e.g., 1 GHz and below) has 

large numbers of transmitters which may be suitable for exploitation for imaging use: 

elevated transmit locations, high radiated average power levels with wide spatial 

coverage. These include digital audio broadcasting (DAB) and digital television 

broadcasting (DVB-T in the majority of the world, HDTV in the United States and 

Canada). These signals are individually narrowband and strictly regulated to avoid 

potential interference. Bistatic radar introduces challenges not present in monostatic 

applications, particularly with continuous wave signals. These include relative stability of 

the transmit and receive system clocks, multipath presence in the reference or template 

signal, and direct signal breakthrough. 

Exploiting a low bandwidth signal to produce high resolution images (the term “high 

resolution” is subjective, but here we define it as spatially resolving of the order of fifty-

to-one hundred times that defined by bandwidth) requires extended synthetic apertures, 

e.g., [17] employing tomographic techniques (recognizing the spotlight SAR-tomographic 

duality [18]) to reconstruct the scene. With the shape of the sampling aperture dictating 

the image impulse response, both two dimensional and three dimensional images are 

possible, as suggested by [19] and [20], which can meet our definition. In addition to 

resolution however, image quality is an essential attribute, arguably dominant: one 

manifested through the sidelobe structure of the image point spread function (PSF). Ultra-

narrowband imaging produces sub-wavelength resolution in tomographic application 

(with an isotropic scatterer) but yields high sidelobes [21]. 

The main question posed in this research is whether opportunistic exploitation of 

commercial broadcast signals, such as U. S. format digital television (High Definition 

Television, HDTV) is suitable for high resolution, three dimensional imaging. This work, 

to the best of our knowledge, represents a first in the formation of three dimensional 

images using bistatically-exploited, television transmitters. A secondary aspect explored 



22 

 

whether the potential exists to realize both high resolution and low sidelobe operation 

through the exploitation of spectrally sparse waveforms in combination with the sampling 

aperture. 

Publications and Patents derived from thesis research are listed below. 

 

Sego, D. J., Griffiths, H. D. and Wicks, M.C., ‘Waveform design for low frequency 

tomography’, IEEE International Waveform Diversity and Design Conference (WDD) 

2010, Niagara Falls, CA, pp230-237, 8-13 Aug. 2010. 

 

Sego, D., Griffiths, H. D. and Wicks, M. C., ‘Waveform and synthetic aperture design for 

low frequency tomography’, 2011 UNSC-URSI National Radio Science Meeting, Special 

Session on Waveform Diversity: Multidisciplinary Approaches to Different Sensing 

Modalities, Boulder, CO, 4-6 Jan. 2011. 

 

Sego, D. J., Griffiths, H. D. and Wicks, M. C., “Waveform and aperture design for low 

frequency RF tomography’, IET Radar, Sonar and Navigation Special Issue on Waveform 

Diversity and Design, Vol.5, Issue 6, pp686-696, July 2011. 

 

Sego, D. J., Griffiths, H. D., and Wicks, M. C., ‘Radar tomography using Doppler-based 

projections’, IEEE Radar Conference 2011, pp403-408, Kansas City, MO, 23-27 May 

2011. 

 

Sego, D. J. and Griffiths, H. D., ‘Three dimensional RF tomography using sparse 
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May 2016.  
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Chapter 2 

 

Research Context 

The research topic outlined in Section 1 represents a system level construct combining 

several distinct topics. The body of work on microwave imaging and related topics is far 

too large to encompass. Likewise are the broad, multi-phenomenology aspects of clinical 

tomographic imaging. Consequently we conduct our critical examination by addressing 

the specific radar sub-disciplines herein, and along the lines indicated in Figure 2.1. The 

perspective taken is that of more recent developments, acknowledging, but not 

addressing, the historical aspects of bistatic radar.  

 

Figure 2.1. Topic Decomposition for the Critical Literature Review 

2.1 Non-cooperative Passive Bistatic Radar. 

Very significant amount of research into bistatic radar applications, much of which is 

ongoing, has demonstrated the exploitability of high power commercial transmitters 

(particularly digital television and radio) for surveillance as non-cooperative sources. 

Bista tic Radar

Cooperative Non-cooperative

Moving target detectionImaging

ISAR SAR/tomography

Stationary

Transmitter

Stationary

Receiver
Distributed

Stationary Array

Two or more Tx/Rx

platforms, a ll Moving



24 

 

Transmitters are available in quantity, are relatively widely dispersed, use stable clocks 

for generating the signal(s), and exhibit high effective radiated power (ERP). Also, 

evolution to digital modulation formats eliminates the ambiguities associated with analog 

waveforms and with the striking similarity to noise radars, produces an ambiguity 

function with lower sidelobes. These features allow radar operation and employment, and 

research with affordable, receive-only electronics such as the software-defined radio/radar 

(SDR). The preponderance of the work has been performed against moving targets from 

stationary receivers using terrestrial sources (e.g., [22] to [29] and references therein, and 

noting [23] as an exemplar of the class of fielded systems which includes the Thales 

HA100, among others). The moving targets range from aircraft to automobile traffic and 

vessels at sea. The underlying functional basis is the processing of a coded, modulated, 

continuous wave waveform with no time reference from which to measure delay, into a 

form from which range can be estimated is common to both imaging and moving target 

detection areas. This process, which employs a reference antenna to measure the direct 

signal path and generate a template waveform, may be considered a form of pulse 

compression. The cross correlation (also called ambiguity function processing) of a 

down-converted and coherently sampled signal containing moving targets with the 

synchronously sampled template signal must be steered to each Doppler hypothesis.  

These works introduce and address the unique aspects of continuous wave waveform 

exploitation [30]: direct signal breakthrough or leakage, and multipath effects which arise 

from the ambiguity function processing to generate the range-Doppler predetection map 

(e.g., multipath present in the template signal). Much of the signal processing for Passive 

Bistatic Radar (PBR) is common to noise radar [31]. Leakage serves to desensitize the 

PBR. Direct path energy received via the sidelobes of the surveillance (or main) antenna 

combines with the template signal to produce a very bright return at zero delay in the 

cross correlation result. The sidelobe levels of the compressed (e.g., cross correlated or 
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ambiguity function processed) data burst are a function of the time-bandwidth (TB) 

product: that is the bandwidth of the illuminating waveform and the coherent processing 

time associated with burst temporal duration. The cross correlation time sidelobes are 

1/TB down from the zero delay response (in power). This has two main implications. The 

first is that the direct path signal might establish an effective noise floor well above the 

actual noise level of the receiver(s) [36], suppressing detection or limiting sensitivity. The 

second case relates to the more customary problem with thumbtack ambiguity structures 

of the absence of ambiguity-free range-Doppler regions [32]. The problem of leakage is 

addressed in several ways: shielding of the main antenna from unwanted 

sidelobe/backlobe energy along the direct path [26], direct path filtering [34 and citations] 

or through the use of spatial filtering such as an auxiliary antenna and adaptive 

cancellation [35]. 

Digital broadcast signals strongly exhibit noise-like properties and, consequently, bear a 

significant degree of similarity to noise radar. The presence of clutter scatterers and 

targets will cause the cross correlation sidelobes to add in the RMS sense, increasing net 

sidelobes above the 1/TB mean level. Alternative processing to cross correlation is 

described in [36], [37], and [38] where adaptive processing or mismatched filtering is 

introduced lower time sidelobes due to the incoherent summation of multiple scatterer 

responses. LMS adaptive pulse compression performed by estimating the reflectivity 

profile in an unknown channel is demonstrated to lower the sidelobes when the unknown 

channel is comprised of up to 8 scatterers [37]. Lowering time sidelobes increases 

effective SNR when the noise level is defined by the mean time sidelobe level. The 

motivation in [36] and [37] is the preprocessing of pseudo-pulses comprised of a set of 

contiguous samples of a noise or noise-like CW waveform in preparation for GMTI or 

SAR processing. An alternative approach is identified in [38] based on Least Squares 

adaptation. The CLEAN algorithm is proposed in [39] for range sidelobe reduction of 
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random noise radar compressed pulses. Point and continuous targets were simulated using 

a waveform consisting of 100 samples of independent Gaussian noise with a bandwidth 

of 150 MHz. For the case of three closely-spaced, but resolved, targets CLEAN reduced 

the sidelobe level by greater than 10 dB with a simulated SNR of 20 dB and by about 10 

dB when the SNR was reduced to 10 dB. The CLEAN algorithm intrinsically assumes 

that the brightest object in the scene is a target, hence this sensitivity. In the continuous 

target case the application of CLEAN reduced the mean sidelobe level by 3 dB. 

Concomitant improvement in detection is also demonstrated for a small target in the 

presence of a larger, masking target. 

There has been substantial progress in addressing multipath which, on the reference 

signal, will produce additional artifacts in the zero-Doppler profile through the pulse 

compression process.  There are several methods evaluated and demonstrated through 

which this is achieved. The first is realized by exploiting the known modulation protocol. 

The main antenna signal is demodulated and the program content recovered. The content 

is then remodulated, producing a multipath free replica as the template signal [40], among 

others. This method has the additional advantage of elimination of the dedicated reference 

channel as the template signal is estimated directly from the surveillance antenna. A 

second approach is based on digital filtering and several variations can be found with a 

subset collected here. In addition to the method of [40] and references therein, there is an 

orthogonal subspace projection [41] which addresses the direct path, multipath as well as 

clutter (Extensive Cancellation Algorithm, a range-Doppler implementation). The 

multidimensional Constant Modulus Algorithm (with Space and Time variants) is defined 

in [42] to remove multipath from the reference signal. Finally, a single spatial channel 

lattice filter topology is employed in [43]. These methods, generally, are presented in the 

system context of moving target detection, though elimination of artifacts on the direct 

path is applicable to imaging.  
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2.2 Passive Bistatic Radar Imaging. 

Imaging with synthetic apertures requires diversity of geometric viewing with respect to 

the object or scene under observation. With PBR we parse bistatic imaging using 

noncooperative, opportunistic waveforms into two categories. These are delimited by the 

method of realizing geometric diversity necessary for imaging: target motion or sensor 

motion (or equivalent via spatially distributed apertures). The first, target motion, is 

essentially Inverse Synthetic Aperture Radar (ISAR) with the specific requirement, per 

our decomposition, of noncooperatively exploiting transmissions of opportunity. The 

second we further parse into four subcategories.  

 The first is defined as a constellation (distributed) of static sensors wherein each 

sensor may act as transmitter, receiver, or both (this may arguably considered a 

form of coherent MIMO, multiple-input multiple-output, imaging) 

 Second an ensemble of moving sensors which can either transmit, receive or both. 

 Our third category is defined by a moving transmitter/stationary receiver 

 The fourth is limited to stationary transmitter/moving receiver. 

We recognize that the third and fourth categories are special cases of the second. 

2.2.1 Noncooperative ISAR. ISAR achieves geometric diversity through rotation of an 

object or target with respect to the lines of sight to transmitter and receiver. We 

distinguish this from radio frequency instrumentation ranges wherein a target is placed on 

a turntable for high resolution radar cross section measurements, as in [44]. The first 

known suggestion of the use of television transmitters for ISAR is found in [45]. Here 

XPATCH was used to simulate aircraft phenomenology over 180 degrees of rotation 

(with symmetry). The body of the work, describing a multiple subaperture reconstruction 

based on what was called the Smoothed Pseudo Wigner-Ville distribution (SPWVD) but 

employed monostatic geometry with a frequency range of 500 MHz using L-band, 
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because of electromagnetic solver limitations in terms of accuracy and 

speed/computational complexity arguments, to emulate the UHF (broadcast) band. The 

accompanying issues with PBR detailed in Section 2.1 were not considered. There were 

several related papers by these authors, not cited here, including a multistatic variant, all 

published in the 2001 time frame.   

The first ISAR experiment found [46] was reported in 2010, having been conducted in 

Japan. This work was concentrated on imaging airborne targets using a single transmit 

tower but with 6 adjacent channels providing a total bandwidth of 36 MHz. The bistatic 

angle of 68 degrees yielded a range resolution of about 5 m. A 5 second aperture was 

employed to produce a two dimensional image of a Boeing 777-300.  A burst of research 

on this topic occurred in 2012 to 2014 (see, for example [47] and [48]). The latter citation 

incorporates a version of the CLEAN algorithm (PR-CLEAN) to enhance simulated point 

spread functions based on up to 9 simultaneous illuminators.  

Applying PBR-based ISAR to imaging ships at sea can be found in [49] and related 

references. The identification of candidate targets to image is based on range-Doppler 

maps as described for moving targets generally in Section 2.1. As in [46] multiple 

channels on the same broadcast tower are coherently combined to enhance bandwidth. 

Candidate target complex range delay-Doppler cells are inverse processed to a range-time 

format using an inverse Fourier transform. From this point generally standard processing 

is employed for image production; motion compensation, time windowing for a stable 

target rotation vector followed by the cross range FFT. The final stage is described as a 

cross range rescaling operation. Resolution cited is 6.89 m in range and 11.4 m in cross 

range against large commercial shipping targets.  

ISAR concepts employing satellite-based transmitters and stationary receivers have also 

been proposed. In [50] multistatic ISAR using geostationary satellites is proposed. The 
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concept exploits telecommunications transponders on geosynchronous satellites, 

combining the several possible bistatic pairs into a commonly registered image plane. The 

work builds on [51] in which only bistatic pairs are addressed. In these works the receiver 

is terrestrial and stationary. In geosynchronous orbit the transmitter is effectively 

stationary as well. We expand to “true” multistatic ISAR, distinct from pair-wise 

operation just noted, in Section 2.3.  

2.2.2 Noncooperative SAR/tomography. Spatial sampling diversity with respect to a 

fixed/stationary target (area) separates SAR from ISAR. Our decomposition of 

SAR/Tomography contains four subcategories: distributed stationary arrays, distributed 

moving arrays, moving transmitter/stationary receiver and moving receiver/stationary 

transmitter.  

2.2.2.1 Distributed stationary array. The category is represented by an array of sensor 

units which may transmit, receive or transmit and receive, and which are stationary. In 

our literature study, the first example of this class was [52]. The focus of this work is the 

reconstruction given the circular sensor geometry (with an ultrasonic context) in three 

modes. In the first each element could transit then receive (e.g. operate monostatically) 

and the active element would sequentially cycle around the element ring, discretely 

emulating a moving monostatic source. In the second mode, one element transmits and 

second receives. The pair has a fixed and constant angular separation (bistatic angle) and, 

again the active pair discretely cycle around the ring. In this work there is no discussion 

of the specific implementation found (e.g., cooperative/noncooperative) however it is 

included as exactly representing the subcategory. A radio frequency implementation for 

transmission (not reflection) imaging for diagnostics of living trees in vivo is found in 

[53] employing a semicircle of receivers distributed around a hypothetical tree trunk. 

Incident plane waves at multiple, discrete frequencies (without modulation as part of 

transmission) are used to reconstruct a dielectric image of the trunk in two dimensions. 
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Mechanization is not described but noncooperative exploitation of existing signals is 

distinctly an option. Set up and orientation of the receive array might be made with this 

specific objective. However the transmission measurement distinctly separates this work 

from reflection imaging approaches.  

A study conducted based on exploiting wireless networks can be found in [54] where Wi-

Fi based tomographic imaging is described. Like [53], this work employed the 

transmission modality, as opposed to reflection, and because it is attenuation-based 

operates without a coherent reference. The concept forms all network transmit-receive 

pairs performing reconstruction on moving objects after compensating for effects of static 

absorptive objects and environmental effects (multipath). While noncooperative, the use 

only of the network channel as opposed to the modulation differentiates this concept apart 

from the research described herein. The reconstruction methodology employs a Bayesian 

approach with regularization based on a maximum a posteriori formulation. Experimental 

results are presented from an array of 28, 2.4 GHz wireless routers. Image examples are 

presented which clearly display the position of one, and two moving human targets 

surrounded by the ensemble of WiFi antennas (an approximately 7 m by 7 m 

instrumented region). In the two object case some image splitting appears to occur. The 

image magnitude scale is not provided and it is not possible to judge the resolution 

achieved. In the single target case, and assuming the scale to be linear, ~1.5 m resolution 

is estimated. 

There are several research examples of distributed RF tomographic imaging networks, 

both concepts and related experimentation, performed by the U. S. Air Force Research 

Laboratory (AFRL). Like [53] these studies [55], [56], [57], and references therein, 

employ continuous wave or ultra narrowband (UNB) waveforms with an ensemble of 

emplaced sources and receivers for both two- and three dimensional imaging. The 

mechanization can be considered as noncooperative as, in the case of commercial 
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broadcasts, the modulation structure is known but they employ for-purpose radar signals 

and do not share timing and control (as can be inferred from the means of sensor 

emplacement and concept of employment). However it is distinct in that no range 

information can be derived as the waveforms are grossly range ambiguous. The UNB 

implementation exploits space/geometry and frequency to fill Fourier space (see Section 

2.3) to complement the spatially sparse sampling of the image scene. Solution for the 

forward matrix required regularization prior to reconstruction. This is distinct from the 

more traditional method of imaging using translation of one or both platforms with spatial 

sampling linked to the method of reconstruction; Doppler-based with spatial Nyquist of 

backprojection and the spatial phase artifact. 

2.2.2.2 Moving distributed sensor array. Little was found in this category. A concept 

employing GPS multistatically from a single elevated moving receiver is described in 

[58]. A constellation of such transmitters would be available for exploitation by the single 

receiver. The GPS waveforms are exactly known, except for the unknown delay and 

complex amplitude but can be noncooperatively exploited. The authors describe the GPS 

waveform as a LFM modulated, not distinguishing between code sets for the Global 

Positioning System (C/A or P) nor attributing the processing to Galileo (also CDMA) or 

GLONASS (FDMA) so some confusion resulted in attempting to interpret the processing 

described. Further no indication on discriminating direct measurement from scattered, 

termed “indirect” was made. 

A similar concept is described in a series of papers. Termed ‘Space Surface Bistatic SAR 

– SS BSAR’ [59] with no apparent association to [58], a much more complete systems 

description including the use of surveillance and reference antennas to generate 

waveforms which, when correlated, yield the bistatic range difference, is given. The test 

system cleverly uses a receiver mounted on a rail system on top of a 5 storey building, 
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and which can translate during data collection, emulating the airborne moving receiver. 

Image simulation results are presented in [59]. 

2.2.2.3 Stationary receiver/moving transmitter.  There are ample examples of bistatic 

imaging using a spaceborne SAR, one such is [60] and references. Again, we specifically 

look for examples of non-radar waveforms for noncooperative exploitation. 

Communications satellites in geosynchronous orbit are effectively stationary and require 

a moving receiver (though a geostationary transmit- geostationary receive bistatic concept 

is described below). There are mobile communications satellites such as Thuraya in 

medium earth orbit and Iridium satellites in low earth orbit which could potentially serve 

as transmitters. However the availability of GNSS satellites as persistent emitters of 

opportunity has enabled research along the lines defining this category. One was 

presented in the section preceding that fit that section class description. A derivative 

example is described in [61]. The bistatic receiver described resembles that of [59], 

operates against the GLONASS constellation and has an institutional relationship with the 

previously cited work. This research successfully produced two dimensional images from 

a fixed, elevated position. 

2.2.2.4 Stationary transmitter/moving receiver. There are only four known examples in 

this subcategory. The first, found in [62] and [63], was performed at University College 

London wherein an airborne receiver operating against FM radio signals successfully 

produced low resolution images of the English countryside, including suburban and urban 

terrain types. This, and related references from the author, including Ph. D. Thesis, is the 

first instance found for an airborne measurement campaign using PBR and commercial 

broadcast sources. The second [64], and related citations, was performed using the LORA 

system (LOw frequency RAdar, a CARABAS II follow-on system) in Sweden, exploiting 

DVB-T radiated from an elevated tower and producing two dimensional images from the 

fixed television transmitter and business jet-class airborne receiver. This effort, which 
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was concurrent with the research described herein, is the first known published two 

dimensional bistatic image using DVB-T illumination. The third known research program 

[65] was by researchers in Poland, carried out in 2013, after initial investigations using a 

ground vehicle-mounted bistatic receiving system. The final example was a concept 

proposed in [66] exploiting geosynchronous DAB satellites. 

The airborne collection in [63] employed a low wing civil aircraft (Piper PA 28-181) with 

two-channel receiver which down-converted, digitally sampled and stored analog FM 

signals in the 88-108 MHz band. The data were processed off-line to several purposes, the 

relevant one here being the processing of the returns to ground clutter maps (very low 

resolution images). A three second aperture (linear aperture) was selected and Doppler 

beam sharpening employed to create clutter maps with nominal resolutions 0.33 Hz, or 

100 m in cross range (at 10 km slant range), with 2 km of range resolution (derived from 

200 kHz bandwidth). A key part of the processing was the use of the NLMS adaptive 

filter [41] to reduce direct signal breakthrough and multipath contamination. This 

algorithm is functionally equivalent to the two channel spatial canceller but is extended to 

cancel multipath returns over range and Doppler in the context of a single coherent 

processing interval (CPI). This methodology is reported from the perspective of moving 

target detection and not imaging, but is clearly satisfactory for the limited dwell 

associated with the DBS maps. A clear constraint on the application of the full algorithm 

is the coherent processing interval duration and Doppler walk which would be 

problematic for longer, nonlinear apertures.  

Higher resolution images are reported in [64] and noncooperatively exploit DVB-T 

emissions. The LORA SAR collection apertures were linear and nominally 1 sec (160 m) 

and 13 sec (2000 m) in duration; collected from a Saberliner jet aircraft.  The 

reconstructed scenes included transmitting antenna and had theoretical resolutions of 20 

m and 5 m, respectively, with high dynamic ranges. The DVB-T signal was continuously 
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recorded; the system is composed of 8, 10 MHz receivers sampled with a 12 bit ADC. 

Image reconstruction was implemented via a fast back projection algorithm after RFI 

filtering and pulse compression. The method by which the reference signal is obtained for 

correlation processing is not detailed. Preprocessing describes the delayed and Doppler 

shifter ground returns being superimposed on the direct path signals. Reconstruction was 

aided through the application of a DEM. 

The third known example of noncooperative exploitation of a fixed commercial 

transmitter and airborne receiver for imaging is [65]. Again, a two channel system was 

employed which was adapted from an earlier vehicle test which employed three antennas, 

one reference and two surveillance and of which only one was used for the imaging study. 

Details on the receiver employed are not known, nor are antenna installations clearly 

evident. The citation details CLEAN processing using a lattice filter to remove the direct 

path signal [35], [39], an approach also cited in noise radar references [31]. The test 

aircraft was a single-engine civil model, the PLZ-104. Short time Fourier transform 

(STFT) processing was employed for reconstruction, resolution estimates not presented, 

describing the STFT as a rudimentary method for short apertures. 

The fourth and final example is perhaps the first in terms of when the concept was 

published. [66] describes an interesting concept wherein the anticipated proliferation of 

commercial Digital Audio Broadcast (DAB), provided by broadcast satellites in 

geosynchronous orbit, would be exploited for two dimensional imaging by placing a 

receive satellite in a geosynchronous orbit such that the plane of the orbit is slightly 

displaced from equatorial. This positioning creates the motion necessary, albeit very 

slowly, to construct the synthetic aperture. An aperture time of 8.3 hours at a relative 

speed of 2 m/sec results from this geometry. Reference signal (direct path/baseline) and 

correlation with the bistatically scattered terrestrial returns are processed, yielding an 

image resolution of 120 m by 120 m, based on a 4 MHz DAB bandwidth.  
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2.3 The Space-Frequency Aperture. 

The passive bistatic radar does not require the introduction of new signals into the already 

crowded microwave spectrum, and passive receivers are immune from directional 

electronic countermeasures. However, in all but the most fortuitous circumstances, the 

available resources may not provide the necessary, or acceptable, space-frequency 

coverage for imaging operation. The location/distribution, operating frequency and 

bandwidth of transmitters when combined with potential imaging locations may be in 

some manner incomplete; too sparse, poor coverage or access, etc. For monostatic radar 

the combination of spatially variant waveform with the collection aperture can produce 

excellent images as we show in Section 4.8 based on a adaptation of [67] to radar from 

the original Magnetic Resonance Imaging (MRI) application. Here instantaneously 

narrow band signals were set as a function of frequency and angle over a wide tunable 

bandwidth over the collection aperture. Reconstruction produced point spread functions 

with the same resolution as full bandwidth signals and good sidelobe structure while 

occupying a fraction of the space-frequency domain. 

The term space-frequency is used to represent locus of points, in the spatial frequency 

domain that is defined by the combination of the collection aperture and the composite 

frequency and bandwidth of the operating emitters/waveforms exploited. The application 

of the concept of space-frequency to passive bistatic radar is then fulfilled with the 

inclusion of multiple, distributed emitters with separable waveforms, potentially in 

concert with tailoring the collection aperture which could be comprised on multiple 

receivers. 

As noted, Bracken, et al [57] describes composing the aperture in the frequency domain 

where , (bistatic angle) and the bistatic bisector vector are used to describe the 

sampled Fourier space. All combinations of monostatic and bistatic pairs over frequency, 
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waveform and position define a space-frequency region of greater size than any 

constituent contribution, resulting in higher resolution than less filled sampling schemes. 

The combination of frequency, position and geometry can effectively produce low 

frequency/DC sampling, all conditioned on the target response. Cetin and Lanterman [68] 

model the PBR for ISAR (while using the term ’SAR’ interchangeably) assuming a 

noncooperative multistatic (multiple transmitter, single receiver) architecture based on 

VHF transmitters in the Washington, D. C. area. Simulated images of good quality, 

employing several reconstruction methods, are formed using the complex radar cross 

section generated from aircraft shapes and derived using a method of moments 

electromagnetic solver. The Fourier sampling pattern described in this work is another 

codification of the space-frequency spectrum from Bracken. 

Similar concepts can be seen in the work of the Air Force Research Laboratory [69] in the 

creation of a tomographic test range. The employment of a thinned constellation of 

sensors surrounding a test scene employing RF tones as the illuminating/probing signal 

and collecting all source/sensor/tone (CW signal) combinations, followed by calibration 

and reconstruction. Planned upgrades include arbitrary waveform generation.  
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Chapter 3 

Radio Frequency Reflection Tomography 

We introduce Radio Frequency (RF) reflection tomography with three derivations that 

illustrate the principles and properties from three distinct perspectives. The first is the 

inverse problem solution derived from first physical principles. The second is an ad hoc 

derivation that develops the inverse problem using representations that will be familiar to 

anyone with a background in radar systems. Finally, the third is realized more from an 

image processing perspective, bridging elements of the first and second. Neither the 

second nor the third approach can be realized without the assumptions inherent in the 

solution developed from first principles. The value of the second and third approaches, 

fundamentally the concept of projections, illustrates extensions beyond what might be 

considered a spatial-only phenomenology of the first principles development, as can be 

seen with the extensions to tomography using Doppler-based projections [70]. 

3.1 Reflection Tomography as Derived from First Physical Principles. 

In general scattering of energy from an unknown body, either acoustic or electromagnetic, 

is termed the forward problem. Given a description of the geometry of the object, the 

parameters representing the physical properties, and the form of the illuminating energy, 

the scattered fields can be found. The inverse problem is then the process of describing 

the geometry of a body given measurements of energy scattered or emitted from it. 

Tomography in its various forms addresses the latter. 

The development of solutions to the inverse problem involving reflection tomography 

begins with general solutions to the scalar wave equation [71] 
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where  the general potential, represents the field at a point (r’, t) in space-time due to 

source s at (r, t=0). Daveney [72] describes the overall process in terms of Potential 

Scattering. While the electromagnetic scattering process is vector in nature, the inverse 

problem, tomographic reconstruction is scalar. Norton and Linzer [73], developing 

acoustic reflection tomography, ascribe this to the use of the same antenna for 

transmission and reception and that the signal from the receiver may be treated as the 

result of integrals of spherical wave fronts over the target reflectivity function, producing 

a scalar function of space. Further that it is a consequence of the Born approximation 

(more below) and monostatic operation. This latter because the antenna presumably 

radiates and receives the same, single polarization, eliminating any vector dependencies. 

In [74, eqns. 4, 5] the authors make this point through the use of a TM radiated wave and 

identical receive antennas, not necessarily monostatically. Cheney and Borden [75] begin 

their development with the scalar wave equation as a given. Soliman and Boerner [76], 

discussing electromagnetic wave diffraction tomography, observe that depolarization 

effects require that the vector wave equation would be required to be inverted; 

“something beyond the current state of the art”. 

A fundamental solution to (3-1) is realized for the class of functions for an impulse 

excitation 
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This solution is, in one dimension for convenience,  
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This solution is called an outgoing Green’s function. In the frequency domain (3-2) and 

(3-3) become 
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The Green’s function permits solutions to this class of equations for any source term [77]. 

The Fourier relationships for the source and potential wave functions are 
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Equation 3-6 suggests that solutions to (3-1) for the individual frequency components of 

the field can be combined to develop the overall solution. Given (3-6) the frequency 

dependence is implicitly retained in that which follows. Various researchers treat the 

temporal (frequency) dependence differently; solutions to (3-1) are multiplied by a single 

frequency and Fourier techniques used to address waveform [71], [78] or the waveform 

effects are normalized out [73] and also [78], or carried completely [75]. 

Now define a bounded region R of compact support, with electrical properties, refractive 

index () or permittivity (), permeability (and conductivity (), as defined within an 

unbounded volume. The electrical properties of this larger volume are homogeneous, 

such that free space (constant velocity) propagation is observed. Let total( r


) be the total 

field at any point, which is the sum of the incident field (given by the solution to the 

homogeneous wave equation) and field scattered by R. Let the incident field be from a 

point source antenna in the free space region (outside of R, lossless and nondispersive) 

and at sufficient range that the incident waveform is planar (the paraxial approximation 

[77]). Otherwise stated 

).()()( rrr scatteredinctotal


      (3-7) 

The incident wave satisfies the homogeneous Helmholtz equation  

0)()( 22  rk inc


      (3-8) 

where r is a vector in ℝn
 (n=1, 2, 3). For inhomogeneous media we can more generally 

write the wave equation as 
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where k( r


) is a scalar function that defines the reflective/refractive properties of the 

media. If the electrical properties of R are expressed as a deviation from those of the 

isotropic, homogeneous, ambient region such that ( r


) = 1+ d( r


), the subscript ‘d’ 

indicating deviation, then 
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     (3-10) 

making the substitution of (3-10) into (3-9) and with some manipulation gives 
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     (3-11) 

where O( r


) is interpreted as the reflective (or refractive) distribution representing the 

object. Now substituting (3-7) and using (3-8), (3-11) can be written  
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     (3-12) 

As in (3-4), solutions of the form of (3-2) are sought 

)()()( 22 rrGk


     (3-13) 

where G( r


) is a Green’s function and  represents the source. In one, two, and three 

dimensions the Green’s function is given by 
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In 3-14b, Ho is the zeroth order Hankel function of the first kind. The Green’s function is 

only a function of position  rr

 . In [78] Kak and Slaney describe  rrG


  as a point 

inhomogeneity. However in equation 3-12 the scattered field is expressed as a function of 

the total field, itself the sum of the incident and scattered field. 

A solution to (3-12) is given by the Lippman-Schwinger equation [75] relating the 

scattered field to the total field through an integral expression over the region of 

nonhomogeneous reflectivity 
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R
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     (3-15) 
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If the reflectivity distribution and incident waveform are represented by a single function 

then equation 3-15 resembles Duhamel’s function [80]. Yet another variant invokes the 

Green’s Formula [82] to derive a similar relationship. In (3-15) we also have the scattered 

field recursively expressed as a function of the incident and scattered field (3.1-7). The 

elimination of the dependence of the scattered field on the scattered field as part of the 

total field is realized through application of a linearizing approximation, typically the 

Born approximation [72], [75], [76], and [79] or the Rytov approximation [79]. The Born 

approximation requires that the scattered field be much less than the incident field and 

can thus be ignored. Stated otherwise, there is no scatterer mutual interaction (multipath). 

This latter gives rise to the reference of the Born approximation as the weak scatterer 

approximation and is valid when |k(n-1)D| << 1 for n the index of refraction and D the 

object size. The linearizing approximation permits replacing the total field term in (3-15) 

with the incident field, giving. 
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    (3-16) 

which is essentially a convolution integral of the Green’s function with the product of the 

reflectivity function and the incident field. In the time domain the insertion of the Green’s 

function into (3-16) followed by taking the inverse Fourier transform produces a result of 

the form  
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The problem now becomes the reconstruction of the reflectivity distribution O( r


) given 

knowledge of the incident field and the measurements of the scattered field over a 

sufficient range of r and k. At this point electromagnetic arguments are essentially 

complete and the derivation of the inverse scattering solution is one of the collection 

aperture and geometry, as codified in the expansion of the Green’s function. Equation 3-

16 is a linear mapping of the reflectivity function to the scattered field which can be 
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essentially treated as the received signal from the probing field. Consider the geometry of 

Figure 3.1, and following the development of [71] and [78]. For convenience the 

geometry is considered in two dimensions. 

 
Figure 3.1. Two Dimensional Scattering/Sampling Geometry 

A monochromatic plane wave is propagating in a direction given by K


, or  

rKj
inc er

 )(       (3-18) 

where K


=(kx, ky) satisfies the relationship 

222
yxo kkk       (3-19) 

The practice is to now substitute the plane wave expansion (PWE) form of the Green’s 

function into (3-14), along with eqn. 3-18. The two dimensional plane wave expansion 

[82] in a frame rotated against the object coordinate frame is 
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where the PWE subscript identified the plane wave expansion, where r


=(x, y), r 


= (x’, 

y’), and  

.
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The plane wave expansion basically describes a cylindrical wave. This is intuitively 

satisfying with the earlier interpretation that the Green’s function behaves as a point 
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inhomogeneity and one can visualize the scattered result from a plane wave and a point. 

In this notation, r 


 is the center of the outwardly propagating wave. The terms ku and kv 

serve as wave numbers in the rotated frame in Figure 3.1. We are only concerned with 

outwardly propagating waves that can be sampled at large r. The definition in (3-21) is 

equivalent to ku and kv being real-valued. If |ku| > k0 then kv becomes imaginary (the so-

called evanescent wave) which exponentially decays and can be neglected after some 10 

wavelengths. 

Let the direction of the incident field be along direction s0 which is aligned with v’ 

vjk
inc es


 0)( 0      (3-22) 

Carrying out the substitution and rearranging the order of integration we have, for the 

reflected wave (v = -l0) 
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In Figure 3.1 this is illustrated by the lines of sensors sampling the scattered fields. In (3-

23) we have sampled along –l0, for reflection tomography, this location defined such that 

the sampling line nowhere intersects O( r 


). The inner integrals in (3-23) resemble a two-

dimensional Fourier transform over the reflectivity distribution in the rotated space, and 

so can be simplified 
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   (3-24) 

Equation 3-24 also includes the form of an inverse dimensional Fourier transform. Taking 

the transform of the scattered field (- form a transform pair) with respect to ku gives 
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Figure 3.2. Graphic Representation 

of the Generalized Fourier Slice 

Projection Theorem 

kx

ky ku

02k



k0

2k0ku

This result relates the forward (spatial) Fourier transform of the measurements of the 

scattered field along the line v = -l0 to the arc of the reflectivity function represented in 

the Fourier (frequency) domain. Slaney and Kak [78] describe this as a generalization of 

the Fourier Slice Projection (or Slice Diffraction) Theorem, generalizing from the case of 

straight line propagation of X-ray transmission tomography. This is depicted in Figure 

3.2. The locus of measurements for sampling in a diffraction geometry (semicircle 

passing through 0 in k-space) and a reflection geometry (the semicircle that closes the 

circle) are shown. For the monochromatic 

illuminating plane wave the radius of the circle 

is k0. Measurements conducted for incident 

fields from 0 to 2 relative define a disk of 

radius 02k  in diffraction tomography and from 

02k  to 2k0 in reflection tomography. 

This is shown in Figure 3.2 where the dashed 

semicircle represents the reflection mapping 

and the heavy the forward scatter (diffraction). The magnitude of k0 acts as a band pass 

filter for reflection tomography (yielding a torus-like shape in k-space when rotated 

overall; to) while emulating a low pass filter for transmission measurement 

geometries and yielding a disk of sampled spatial frequencies. Also, sampling at equally 

spaced intervals, which map uniformly onto ku, produces nonuniform samples along the 

arc. The method assumes either an array that simultaneously samples the scattered fields 

or a single element that is sequentially positioned. This approach has assumed a 

monochromatic plane wave, or components of a waveform with wider bandwidth that has 

been decomposed into its Fourier frequencies. As the geometry is rotated this will result 

in nonuniform sampling of the object. The implication of increased bandwidth is that the 
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Figure 3.3. Filling k-Space using 

Waveform Bandwidth 
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projection arc is different for each frequency. This is shown in Figure 3.3 for a limited 

number of discrete tones. Sampling over rotation is now denser, resulting in a more 

complete filling of k-space. 

3.1.1 Image reconstruction by filtered back 

projection. There are a number of methods 

for image reconstruction given the 

measurement set and phenomenology just 

described. One is selected, filtered back 

projection (sometimes termed filtered back 

propagation), because of the similarities to the 

technique used extensively in the remainder 

of this thesis. The development of this technique, following the original approach of 

Daveney [83] begins with the inverse two-dimensional Fourier transform of the 

reflectivity distribution as one means to obtain the reflectivity distribution 
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defined on a rectangular grid as (kx, ky) from (3.1-19). To overcome the need for 

interpolation over the rectangular basis a change of variable is made that represents K 

over circular arcs as shown in Figure 3.4, more appropriately representing the means by 

which the data were collected. We define  Ko as the ensemble of data representing 

forward transform with respect to ku of measured scattered fields along u at v=-l0 with  

as a parameter, sampling as shown in Figure 3.1. We also define K  as 
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Figure 3.4. Filtered Back Propagation 

Transform Domain Coordinates 
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where ))sin(),(cos(0 s


 is the unit vector describing the direction of the illuminating 

wave and ))sin(),(cos( s


 the direction of the scattered wave (both interpreted 

relative to the non-rotated frame in 

Figure 3.4) is defined by the locations of 

elements in the receive array or 

sequential sampling positions. Note that 

for monostatic collection 0ss


 . We 

make a change of variable from the 

Cartesian wavenumber basis (kx, ky) in 

(3-26) to a coordinate frame defined by 

the incident and scattered angles. Using (3-27) and 

ykxkK yx
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so that the Jacobian yields 
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using the trigonometric angle difference identity the RHS gives 

   ddkdkdk yx )sin(
2

0   or  ddkdkdk yx )(cos1 22
0   

the cosine angle difference is expanded to give        .sinsincos)cos(1
22

0  ddk   The 

expression in parenthesis under the radical is also the inner product of the incident and 

scattered unit vectors [84] 
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where  indicates inner product. With this (3.1-26) becomes 
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In diffraction tomography, with the presumption of reciprocity of scattering along 

reciprocal geometries (i.e., 0
o
 to 180

o
 or 180

o
 to 360

o
), there is an additional factor of 1/2 

outside the integral because of the double coverage of the angle space. For reflection 

tomography this reciprocity cannot be assumed.  

This initial transformed domain maps the data through two angles, but is not fully 

representative of the measurement geometry which was a distance along the transformed 

measurement line (ku, as noted in Figure 3.4) and angle . A final transformation is made 

to overcome this. Using a trigonometric identity and asserting that  is defined relative to 

the rotated frame and because the sample points lie on an arc in the frequency domain 

(also Figure 3.4) 
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This is found by interpreting 0s


with respect to the rotated frame where it propagates 

along v̂ . The radical reduces to 
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The differential for the change of variable in (3-31) is found by solving for ku, taking the 

derivative and solving for d. With these substitutions the inner integral in (3.1-30) 

becomes 
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where the integral limits are fixed by the non-evanescent wave constraint. We now use 

eqn. 3-25, the Fourier transform with respect to ku of the reflection measurements made 

along the line at v = l0, and solve for the scattered spectrum which is then substituted 

into (3-24) 
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where the negative sign was cancelled by shifting j to the numerator. Finally we address 

the dot product using (3-31) and the definition of 0s


 in the rotated frame.  
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Making this final substitution into (3-34) results in 
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It is common practice to represent (3-35) in a form which illustrates the filtered 

backpropagation implementation. The outer integral expresses the reconstructed image in 

the original coordinate (x, y) 
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The substitution  is then defined from 
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As will be seen, the methodology in this section reduces to that of the following sections 

as the distributed (multiple antenna) spatial sampling is reduced to a single 

sensor/antenna/transducer in a monostatic, pseudo-monostatic (transmitter and receiver 

aligned to a common angle of incidence), or bistatic geometry; and temporal bandwidth 

replacing spatial bandwidth in filling k-space. Also the form of (3-37) will be recognized 

in the generalization of the Radon Transform and projections as line integrals in Section 
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3.3. Back propagation also has similarities to the motion compensation applied to account 

for non-circular or non-spherical trajectories defining the collection aperture. 

This section was presented to demonstrate the justification for the use of convolution 

arguments concerning the interaction with radar waveforms with the target/object that 

will be employed in the remainder of this thesis. The first principles methodology 

establishes the connection between the forward and the inverse problems, generally not 

encountered in Radar Systems developments involving imaging modes or applications. 

3.2. Radar-Centric Derivation of Tomographic Reconstruction. 

Mensa presents in [21], [17] a heuristic development of tomographic reconstruction; one 

that leads through the Fourier Slice Projection Theorem before developing the expression 

for reconstruction via filtered backprojection (FBP) in two dimensions. The synthesis 

comes more from the radar perspective and tacitly employs the weak scattering 

approximation from Section 3.1, together with the far field approximation of a planar 

wavefront illuminating the target.  

Consider the geometry in Figure 3.5. An antenna illuminates a scene that is being imaged 

from successive angular positions at constant range (R). A rotated coordinate frame (u, v) 

is overlaid on the fixed scene/object coordinate frame (x,y), with the antenna line-of-sight 

defined along u. 

The returns from all points of constant delay, the isorange contour (aligned along v), 

combine coherently at the antenna terminals, e. g., the antenna performs integration along 

the line described by the locus of constant delay. The aggregate over all delay spanning 

the object or scene produces the projection as depicted in Figure 3.5b. The range samples 

defining a projection are entirely a function of the illuminating waveform bandwidth; 
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Figure 3.5. Reflection Tomography Geometry Definition  

with r representing the bandwidth resolving power in range. As shown, the projection 

represents received power as a function of range. Defining the reflectivity distribution of 

the object as g(x, y) then the projection of g(u ,v), a rotated form of g(x, y), onto u through 

the action of the antenna can be written as an integral over v at angle , or 






 dvvuguP ),(),(       (3-38) 

In (3-38) we have assumed that R>> so that curvature of the isorange contour is a plane 

wave and the projection expressed as a line integral extending indefinitely outside the 

extent of the mainbeam. Note that  is equivalent to  in the previous section. The finite 

physical extent of the object, from a controlled test or laboratory perspective, is 

commonly offered to physically justify the infinite bounds on the integral. In remote 

sensing applications the gain response of the antenna pattern and range sampling may 

also be argued, though perhaps more weakly, as a justification. Note also that projections 

are formed normal to the line of sight in reflection tomography (Figure 3.5b), and 

sampled along the line of sight (also termed the projection axis) but are parallel to the 

propagation direction in pure transmission tomography (Figure 3.1, without scattering) 

and sampled orthogonally to the propagation direction. 

The total signal received is given by the integral along u with a phase factor proportional 
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to the two way propagation distance with the assumption of a constant propagation 

constant k=2/ 
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   (3-39) 

and the factor of 2 is for two-way propagation (e.g., monostatic). Rotating into (u, v) in 

object coordinates is accomplished by the change of variable  
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Substitution into (3-40) yields an expression equivalent to the spatial Fourier transform of 

the object reflectivity distribution. This is 
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  (3-41) 

with g(u, v)=g(x, y) and =2/. The Jacobian of the variable change is unity. Equation 3-

41 directly illustrates the Slice Projection theorem: the forward transform of the range 

projection P at angle  given (3-39), is equivalent to the two dimensional spatial Fourier 

transform of the reflectivity distribution at angle . Making the change of variable 

fy=sin() and fx=cos() gives the transform in term of spatial frequencies (fx, fy) as 
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This development is slightly altered from [21] to be consistent with conventions used 

throughout this thesis: we reference the projection axis (u) as the normal to the 

illuminating plane wavefront (along or parallel to the radar line-of-sight for the planar 

wavefront) whereas Mensa uses v, and we define the rotation angle measured from the 

object coordinate frame x axis in the polar sense toward u (Mensa referenced the negative 

y axis, counter-clockwise). This has the effect of producing the form of the forward 

Fourier transform as e
-jkR

 as used herein but results in a somewhat awkward formalism in 
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(3-42) with the order of integration reversed. This is addressed by letting the reflectivity 

distribution g(x, y) be a bounded region B. The integration is performed over the area B; 

with integral limits not functionally dependent on the integral variables then the order of 

integration is simply reversed. 

Conversely, the inverse transform is given by 
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yx dfdfeffGyxg yx )(2
),(),(


   (3-43) 

where fx = 2/, etc.. Equation 3-43 represents an image reconstruction given the series of 

forward transformed projections, measured at a discrete set of angles around the 

object/scene origin. The forward transformed projections are defined on a polar map in 

measurement space () while the inverse transform is developed on a rectangular grid 

of spatial frequencies. For this derivation, in the narrowband approximation, the region of 

support of the object is a ring in spatial frequency domain (also called k-space), centered 

at the operating wavelength, going to infinitesimal thickness as the bandwidth goes to 

zero (continuous wave) as a circle of radius 222
/4  yx ff , and zero elsewhere. 

Employing the inverse Fourier transform for reconstruction would require interpolation to 

avoid reconstruction errors.  

Alternatively, using the spatial frequency definition a second change of variable is made 

in (3-41) from a rectangular to polar basis in physical/object space, given by x=rcos() 

and y=rsin() (Figure 3.6). From (3-41) and (3-42), G(fx, fy) = G(cos(),sin()). 

Making the change of variable, evaluating the Jacobian (||dd) and with simplification 

gives a reconstruction which is the two dimensional form of filtered back projection 

.),(),(ˆ
2

0

)cos(2

 







  ddeGrg rj
   (3-44) 

This form require no interpolation in reconstruction, as is the case with the inverse two-
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dimensional FFT where (kx, ky) define a rectangular grid). The implementation of (3-44) 

steers the inverse transform the projection at  to range r corresponding to the pixel (x, y) 

under reconstruction and is then summed over all .  

Note in the development of (3-44) that the customary integrand range for the angle 

variable (0,) is not employed. As noted in Section 3.1, in transmission tomography 

reciprocity can be argued for the path of integration wherein the same result is obtained 

for viewing angles  and +, and observation over the full range of angles represents 

redundant measurements. Ishimaru [71] and Kak and Slaney [78] apply this argument to 

diffraction tomography; both electromagnetic and acoustic. In reflection tomography the 

angular dependence of individual scatterers representing a reflectivity distribution 

invalidates this argument. This is not the case when the hypothetical point scatterer 

(rotation angle invariant response) is employed for calculating the point spread function, 

but will be the case in any real environment.  

 
Figure 3.6. Two-Dimensional Monostatic Geometry 

Figure 3.6 gives the general two-dimensional geometry that is used herein for any 2D  

monostatic applications. In the assignment of the spatial frequency as fx = 2/cos() or fy 

= 2/sin() (eqn. 3-42) Mensa departs from more customary definitions for spatial 

frequency (incorporating ). The radius of the tomographic aperture in k-space would be 

22
yx kkk  ; or k=, instead of  and would be more consistent with the broader 

x

y



R
antenna

g(x,y)
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literature. Further there is a factor of 2 for the two-way propagation. Incorporating this 

into the wave number, then defines an aperture radius of  and eqn. 3-42 becomes  

 









 .),(),(

)(2
dxdyeyxgkkG yx ykxkj

yx     (3-45) 

We see this latter definition in the description of the sampling aperture in Fourier space, 

for example, in [57]. Finally, the results in Section 3.1 collapse to those represented here 

when the sampling is performed at a single point represented by 0ss


 . 

3.3 Reflection Tomography Derived from Line Integrals  The Radon 

Transform.  

The heuristic method of Mensa in Section 3.2 invoked line integrals in his development 

of reflection-derived projections (eqn. 3-38). The integrals over the reflectivity 

distribution could be interpreted more from a radar engineering perspective, i.e., 

implicitly assumed the weak scatterer approximation. Likewise, the time domain integral 

term in the inhomogeneous wave equation solution (3-17) contains a delta function 

convolved with the reflectivity distribution. Mathematically, these approaches are 

examples of the Radon Transform [85]. This transform is a mapping from (x, y) into a 

new space (s, ) defined by the integral contour form; a displacement term and a rotation. 

This transform was first applied to the problem of absorptive media and straight-line, 

transmission tomography using X-rays. The Radon Transform in two dimensions can be 

generalized as 

 







 dxdysyxTyxgsTF )),,((),(),,(     (3-46) 

where g(x, y) represents the reflectivity distribution over a bound region. Eqn. 3-46 has 

the general form of a convolution of a contour over the reflectivity distribution at fixed 

rotation angle. Here T is the functional description of the curvilinear integration path, s a 

propagator which affects the delta function. For a linear propagator the Radon Transform 
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translates lines (or linear features) in the physical domain into points in the transform 

domain. Conversely, the Radon Transform maps a point in physical space to a sinusoid in 

the transform (s,) domain. Examples of these mappings are given in Figure 3.7. 

The two-dimensional, Cartesian Radon Transform is given by 

 







 dxdysyxyxgsG ))sin()cos((),(),(    (3-47) 

where s is the distance to the line xcos()+ysin() from the origin, orthogonal to the line, 

at angle  with respect to the x axis, as depicted in Figure 3.7a. Note that  is identical to 

the prior section, representing the normal to the probing wavefront. Equation 3-47 

generates projections by collapsing (integrating) perpendicular to s, all points along T. 

Figures 3.7b and 3.7c depict the mapping of a line by the Radon Transform to a point, 

including quantization effects due to finite array indexing. Here the 2 radian value for 

total rotation was used, and, as can be seen, the single defined line returns the point-pair 

response. The line slope is ~26 degrees, so  normal occurs at approximately 116 and 296 

deg with s roughly -5.4 and 5.4 respectively. Figures 3.7d and 3.7e demonstrate depicting 

an inverse-like operation where a point is mapped to a sinusoid;. Making a change of 

variable from a Cartesian representation to polar (x,y) = (rcos(), rsin()) the expression 

for s becomes 

).cos(   rs     (3-48) 

Specifically for Figure 3.7e, the point at (40,40) with origin at (32,32) yields an initial 

value for s (at =0) of 7.99, matching the initial value in the Figure. This representation, 

with lines mapped to points and points mapped to sinusoids, suggests the inverse 

processes which follow. 

The Radon Transform in a rotated frame (s, u), rotated at angle  from (x, y), is realized 

with the change of variable 
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   (3-49) 

The Jacobian associated with the change is unity so that (3-49) becomes 

 








 .))(sin)(cos())cos()sin(),sin()cos((),( 22 dsdusssususgsg  (3-50) 

The argument of the Dirac delta function reduces to (s-s) or identically 1. Using the 

filtering property of integrals of the delta function the inner integral is eliminated yielding 

.))cos()sin(),sin()cos((),( 




 duususgsg    (3-51) 

Associated with the Radon Transform is the back projection operation. Following the 

method of Jain [86] the backprojection operator B is given by 

 



2

0
))sin()cos(()),(( dyxgsgBB  or  .)),cos((

2

0 


 drgB  (3-52) 

The 0 to 2 range of the integral in (3-52) is a departure from the normal representation 

(0, ) [86], [87]. Whereas the Radon Transform “sums along rays” the backprojection 

operator accumulates rays through specific points. For applications where the scattering 

or propagation is reciprocal or symmetrical the range of the integral to  is adequate and 

carrying the procedure through a full 2 adds no new information, only serving to scale 

the result by a factor of 2. However for the reflection tomography problem we know that 

the majority of real objects, spheres being one exception, produce azimuthally variant 

responses. In many cases the azimuth response may be less than  radians, for example 

conducting planar areas many wavelength on a side. To maintain generality the full 

angular range is maintained. 

The operation of the backprojection operator is demonstrated in Figure 3.8. Here a sparse 

scene consisting of 4 points (Figure 3.8a) is filtered by the Radon Transform producing 

the result in Figure 3.8b, with points 1-4 mapping onto sinusoids 1-4 representing g(s,). 

The backprojection concept is illustrated in Figure 3.8c where two horizontal slices of g 
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(Figure 3.8b), at angles 0 and 81 degrees are projected onto the locus (x, y) such that 

s=xcos() + ysin() is satisfied. Figure 3.8d demonstrates this from the results in b) at 

three angles. The linear projection, four original points, plus ambiguous partial sums, can 

be seen.  

The backprojection operator is not the inverse operator to the Radon Transform, but 

rather the adjoint. Exercising the backprojection operator on the Radon Transform of a 

 
Figure 3.7. Line and Point Mappings under the 2D Linear Radon Transform 

reflectivity distribution (BR(g(x,y), where R represents the Radon Transform operator) 

produces a blurred reconstruction [86]. The blurring function is 22/1 yx  that if 

convolved with BR(g), the backprojection operator applied to the Radon transform of g(x, 

y), will result in a reconstructed image without blurring. This two dimensional 

convolution can be realized using Fourier transforms. However the set of projections are 

generally taken along radials as the sensor is sequentially positioned or translates about 
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Figure 3.8. Example Backprojection Operation 

the scene. This requires interpolation to match the data sample to the rectangular Fourier 

basis functions. To avoid interpolations, particularly for sparse collection apertures, an 

alternative is sought. 

The Fourier transform of the Radon Transformed reflectivity (g(s, )) at angle  is given 

by 






 dsesgkG jks),(),(      (3-53) 

where k=2. Substituting 3-51 gives 

 









 dudseususgkG jks))cos()sin(),sin()cos((),(    (3-54) 

and making the change of variable (s, u) back to (x, y) 

 









 .),(),( ))sin()cos(( dxdyeyxgkG yxjk     (3-55) 

Equation 3-55 states that the one dimensional (forward) Fourier Transform of the Radon 

Transform of a reflectivity distribution g(x, y) taken at fixed angle  is equivalent to a 
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slice through the two-dimensional Fourier Transform of g(x, y) at angle . Again we see 

the similarity to the heuristic development of Mensa (eqn. 3-41). Equation 3-55 is also a 

formal derivation of the Slice Projection Theorem.  

Image reconstructed is accomplished using an implementation of the inverse Radon 

Transform (among other formulations that are to be discussed in Section 4). The inverse 

transform is given by [88] 
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in Cartesian coordinates and 
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in polar. In [86] three methods of effecting the inverse Radon transform are described: 1) 

convolving the blur spot with the projections, followed by backprojection, 2) convolving 

a filter function with the projections, followed by backprojection and, 3) taking the 

forward transform of the projection (slice projection operation), scaling by a filter 

function, then inverse transforming followed by backprojection. Method 1 is the direct 

inverse transform, method 2 is termed convolution backprojection while method 3 is 

termed filtered backprojection. The implementation of the third option is well suited to 

this effort and is used herein. This is given in integral form as  

dke
k

kGsQ jks







 ),()(   such that .)(),(

2
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 dsQrg   (3-58) 

and in operator form with 
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where 1 indicates the one dimensional Fourier Transform and B the backprojection 

operator. 
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Reflection tomography has been introduced from three different perspectives: 

electromagnetic scattering and a more first principles approach, a radar system 

engineering perspective, and one more which might be considered more representative of 

image processing. In the next Section we examine the waveform and spatial aperture and 

sampling and the impact to microwave imaging using tomographic principles.  
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Chapter 4 

Tomographic Geometry, Waveform and Space-

Frequency Trajectory 

Section 3 gives the basic form for image reconstruction for our evaluation of aperture 

concepts, waveforms and trajectories in this section; invoking the weak scatterer 

approximation and thereby enabling the convolution model for projections. The concept 

of the sampling aperture and projection of the scene into the spatial frequency domain 

was also introduced without discussion of the rationale. In this section we consider more 

general tomographic geometries.  

4.1 Tomographic Evaluation. 

Section 3 introduced imaging using reflection tomography without discussing the imaging 

performance. Performance is defined in terms of both resolution and the sidelobe qualities 

of the point spread function associated with a collection geometry or waveform. We 

complete the development by establishing the reconstruction against an isotropic scatterer 

(reflection properties are invariant to illuminator or receiver angular position) before 

expanding the evaluation to encompass waveforms and more complex space-frequency 

trajectories. 

4.1.1 First principles development. The reflection tomography formulation in Section 3.1 

could be considered a pseudomonostatic geometry: we assumed an incident plane wave 

impinging on the object with the plane of the wave parallel to (coplanar with) the line of 
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the receiving antenna array. Referring to Figure 3.1 and again considering the antenna 

array at –l0 we arrive with the back projection solution in two dimensions (Equation 3-23) 
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with 
22

0 uv kkk  , )sin()cos(  yxu   and )cos()sin(  yxv  , and (u,v) the 

rotated Cartesian coordinates from Figure 3.4. scattered is the forward transformed 

projections wherein the transform is performed along the u axis in Figure 3.1, at each 

rotated measurement position, and collected over angle. We began with the assumption of 

single frequency illumination and the isotropic scatterer. We also treat the length of the 

receive array as a parameter. The phenomenology is generated by calculating the phase at 

each element of the array based on the distance of the scatterer to the element. Since only 

the relative phase is significant, the distance to the plane wave source is arbitrary. At each 

angular position (1 degree receive array rotation) the spatial frequency of each element is 

calculated (as a pair-wise bistatic combination). The expression from Bracken [57] is 

used  

BK












2
cos

4 




     (4-2) 

where  is the bistatic angle at each antenna element and B


 is the bistatic bisector vector. 

Applying (4-2) to the simulated geometry produces the spatial spectrum across the 

sampling array at a single position (0
o
). This is shown in Figure 4.1a. In this first panel, 

three array lengths (number of elements) are shown based on a 400 MHz CW frequency 

and half-wavelength spacing. The arc subtended indicates the spatial bandwidth. 

Figure 4.1b is then the ensemble of spatial spectra with rotation over 360 degrees in 1 

degree increments. Figure 4.1c is a zoomed image of Figure 4.1b showing fine structure. 

With only a single antenna and CW frequency a very thin ring is produced as described in 

Section 3.2. The use of the array of distributed elements generates a spectral width which 
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Figure 4.1. Spatial Frequency Spectra in “Classical” Reflection Tomography 

is proportional to the antenna length. With sufficiently dense sampling, an annulus is 

produced which, as will be shown, mimics temporal frequency. This equivalent 

bandwidth was calculated for a series of antenna lengths, shown in Table 4.1. 501 

elements at half-lambda at 400 MHz equates to an antenna length of 187.5 m. The 

circular surface for the spatial frequency suggests the limitation of antenna length to 

realize greater bandwidth which is also evident in Table 4.1. As the antenna length goes 

to infinity bandwidth approaches a modest asymptote. 

 

Table 4.1. Bandwidth Derived from Radial k Based on Linear Array Antenna 

Reconstruction was performed numerically (no analytic solution is known for this 

geometry). The CW plane wave reflecting of the point scatterer and sampled at each 

sensor/sampling along the  axis creates a phase response; which closely resembles the 

azimuth chirp associated with synthetic aperture radar (SAR). To illustrate, phase versus 

receive element number for three scatterer positions is depicted in Figure 4.2a with the 

spatial frequency spectrum for a single case shown in Figure 4.2b. The filtered back 
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propagation (back projection) result is shown in Figure 4.3 as a contour plot for a 

scatterer at (0.25, 0.25). 

Resolution and sidelobe structure can be visualized in Figure 4.4 which presents principal 

axis cuts for a scatterer located at (1, 0). The receiving array was modeled as offset 100 m 

from the point scatterer, as was for the previous cases. Two cases are shown: 251 element 

antenna and one 10 times longer (both listed in Table 4.1). Overlaid on both plots is the 

exact response for the2D geometry with a point scatterer at origin (response shifted to 

overlay the numerical simulation), single antenna element, and CW waveform (the only 

known case where an exact solution is available - Section 4.1.2). Identifying the value of 

bandwidth is one of the goals of this thesis section. 

 
Figure 4.2. Simulated Phenomenology for Isotropic Scatterer 

The modest spectral filling from this implementation of tomography and the 

impracticality of realizing antennas of the sizes suggested, particularly in non clinical or 

laboratory environment, indicate the limited utility of this implementation. Note the 1501 

element array subtended 40 degrees with respect to the target. 
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Figure 4.3. Filtered Backpropagation Point Spread Function 

4.1.2 Single antenna monostatic geometry. In Section 3.2 the heuristic development of 

Mensa represents a degenerate case from Section 4.1.1. Using only the center antenna 

 
Figure 4.4. Point Spread Comparison for Two Antenna Lengths against Closed Form 

element yields the same geometry as described therein. With the plane wave 

approximation we have the expression for reconstruction given in (3-44). With the use of 

an isotropic scatterer and CW frequency then (3-44) becomes 
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Making use of an integral sifting property of the delta function gives 
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The Bessel function of the first kind integral identity
1
 is  

.
2

1
)(
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)cos(
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Setting n=0 and making the change of variable = and noting that the effect on the 

definite integral limits of a simple rotation caused by the change of variable along the 

closed path of the start and stop points making no difference gives 
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Jrg
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which is the analytical solution referred to in the previous section. Equation 4.6 is 

evaluated for a 400 MHz CW signal with results displayed in Figure 4.5. magnitude-

squared and normalized to unity peak response with a point scatterer located at (1,1). The 

first Figure, 4.5a, is the response surface, with the plot z axis limited to -30 dB. 

 

Figure 4.5. Monostatic Point Spread Function – 400 MHz CW Signal 

The second Figure (4.5b) represents cuts along the cardinal axes of the scene coordinate 

frame, showing both X and Y axis results. There are several interesting attributes of the 

PSF. The first is the modest (peak) sidelobe level only 7.9 dB down, relative to the peak 

response, with a roll off at 3 dB per doubling of distance; basically a 1/r dependence. 

Secondly the spatial extent of the sidelobe structure is indefinite, which has implications 

when the imaged scene has a high dynamic range of reflectivity and the realizable 

                                                           
1
 http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html 
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contrast. Said otherwise, a single large scatterer could, through the sidelobe response, 

degrade the entire image.  

As waveform bandwidth is increased due to modulating an RF carrier, the two 

dimensional frequency spectrum fills. At each sampling angular position (k) a radial 

segment samples the scene. The segment length matches the waveform bandwidth. The 

Bracken derivation [57] applied to monostatic sampling collapses to a radial wavenumber 

kr=4. If klower and kupper define the wave numbers corresponding to the 3dB temporal 

frequency spectral bandwidth of the waveform, and the radar orbits around the object, 

then an annulus-like two-dimensional spectrum is created. An example appears in Figure 

4.6. This representation is commonly applied to Synthetic Aperture Radar as well e.g., 

[89] 

Modeling the sampled spectrum as an annulus for a 2D geometry allows the derivation of 

the dependency of the point spread function on temporal bandwidth using straightforward 

Fourier techniques (temporal bandwidth realized far more conveniently than spatial 

bandwidth as the noted in the previous section). Define the bandwidth (k) about some 

center frequency (k): k is the difference in the inner and outer radii and defines an 

annulus when observations are conducted over 2 radians relative to object coordinates. 

This is depicted in Figure 4.6. Let the annulus magnitude be such that the spectrum is one 

within the annulus and zero everywhere else in rectangular frequency domain 

coordinates. With phase equal to 0 this represents a target at the scene origin. Two cases 

are examined, both for 400 MHz center frequency (k=16.766, =0.75) with k=0.5 

(Figure 4.7a) and k=2.0 (Figure 4.7b). 

The inverse 2D DFT is computed, without explicit consideration of sample quantization 

in the frequency domain, finely sampled kx, ky = 0.078, 512 samples along each axis) 

with a frequency range from -20 to 20. Single axis cuts of the point spread function are 
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Figure 4.6. Spatial Spectrum Monostatic Sampling Illustrating Waveform Bandwidth 

given in Figure 4.8 (Y=0 axis) over the spatial range -4 to 4 meters with a sample spacing 

of approximately /40. Overlain on both plots for comparison is the analytic PSF for the  

2D CW (normalized). At 400 MHz k=0.5 is approximately equivalent to 12 MHz of 

 
Figure 4.7. Windowed Annular Spatial Spectra 

bandwidth, k=2.0 corresponds to 47.8 MHz.  

The effects of the temporal bandwidth are immediately obvious. The sidelobe structure of 

the wider bandwidth response exhibits a sharper roll-off. The addition of bandwidth will 

improve the contrast of the reconstructed by reducing the effect that large scatterers can 

influence nearby pixels, while retaining the resolution possible from tomographic 

processing. 12 MHz corresponds to ~12.5 m resolution and Figure 4.7a shows only the 
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slightest effect over 8 the meter range plotted. The second case (Figure 4.7b) corresponds 

to a range resolution of 3.2 m. 

 
Figure 4.8. Fourier Reconstructed Examples from Figure 4.7 

4.2 Two Dimensional Apertures. 

We now extend to propagation across the object or scene which cannot be modeled as a 

plane wave, the more general case. We address 

the monostatic geometry before extending to 

the bistatic case. We model the antenna 

effectively as a point object which radiates a 

two dimensional circular wavefront, as 

depicted in Figure 4.9. This wavefront defines 

the locus of points of constant delay, the 

isorange contour, along which integration occurs at the receiving antenna. 
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We begin with a generalization of the filtered back projection algorithm for 

reconstruction. Equation 3-58 is expressed in terms of the general Radon Transform 

operator t, line integral formalism. 
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kGrg ktj

 



     (4-7) 

4.2.1 Monostatic geometry. A circular wavefront is shown in Figure 4.9 propagating 

outwards from a radar at (X0, Y0) that is executing a circular orbit around the object/scene 

at constant radius (Rradar), scattering and propagating back to the radar as a circular 

wavefront from each scatterer. The path of the line integral described by the transmitted 

wavefront, that is the locus of points of constant one-way delay, is 

.)()( 2
0

2
0 YyXxt      (4-8) 

Defining the scatterer and radar positions in the object-centered polar coordinates, as in 

Figure 3.6, make the following change of variables 
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which gives  

.))sin()sin(())cos()cos(( 22  radarradar RrRrt   (4-10) 

Completing the squares, grouping terms and making use of the trigonometric sum and 

difference identities gives 

.)cos(2
22   radarradar rRRrt    (4-11) 

This is substituted into (4-7) and results in the 2D monostatic backprojection filtered 

expression, with a factor of 2 in the exponential term to account for two-way propagation.  

This approach was suggested in [52], the earliest citation found, in which a static series of 

acoustic transducers (circular transducer array) surrounded the object to be imaged using 

a reflection-based technique. The object was in the near field, motivating the use of the 

circular wavefront. Instead of translating a single sensor, the sensors are operated 
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individually with the active unit switched sequentially around the array. This method is 

indistinguishable from a sequentially positioned transducer or antenna. It should be noted 

that we assume no effects due to platform motion occur during transmission or reception. 

The platform executes a move-stop-move motion pattern; stopping for transmission and 

reception, then moving to the next sampling position. This is addressed in greater detail in 

Section 5. 

4.2.2 Bistatic geometry. The two-dimensional bistatic aperture is a direct extension of the 

2D circular wavefront, monostatic case. We show two platforms in uniform circular 

motion around a common origin; each at an arbitrary speed and radius, as shown in 

Figure 4.10. With no loss of generality, either platform may be stationary. The Figure 

indicates the incident and scattered wavefront, as well as the red contour indicating the 

bistatic range sum; the locus of points of constant bistatic delay (bistatic isorange 

contour). Analogous to the monostatic case, this is the physical form of the integration 

path for bistatic projections (sometimes referred to the as the bistatic Radon Transform 

[90]). The contours of integration are elliptical. 

The propagation path is composed of two terms, emitter-to-scatterer and scatterer-to-

receiver. Thus for the 2D geometry, to an arbitrary point (x, y) in the region to be imaged, 

the integration path is the sum of the two, or 

.)()()()( 2222
rcvrrcvrxmtrxmtrrcvrxmtr yyxxyyxxttt   (4-12) 

Making the same polar substitutions as the monostatic case (expanded with the receiver 

term) and generally expressing the transmitter position and receiver position as arbitrary 

states results in 

   rcvrrcvrrcvrxmtrxmtrxmtr rRRrrRRrt   cos2cos2
2222  (4-13) 

where r and  are again as defined in Figure 3.6. There is no platform velocity 

dependence in (4-13), the platforms may be at arbitrary radii and angular rates. The 
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Figure 4.10. Two-Dimensional Bistatic 

Geometry 
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instantaneous bistatic half-angle is shown in Figure 4.10. An earlier work by Mensa [17] 

which addressed a bistatic collection geometry in which the sensors (transmit and receive) 

operated synchronously (constant, fixed angle rates that yielded a constant bistatic angle). 

This permitted the use of the filtered backprojection derivation based on the position of 

the receiver and one-half the bistatic bisector angle. 

Extension to multistatic geometries 

offers a several alternatives. A 

single transmitter serving a 

multiplicity of receivers (1 transmit, 

M receive) each receiver in a unique
 

trajectory (or the reciprocal). 

Alternatively, all transmit and all 

receive, again using orthogonal 

waveforms, and including each 

platform also functioning monostatically (this would be a moving platform analog to the 

stationary elements in Lo Monte, et al [59]). Image reconstruction from such a collection 

aperture could coherently combine images reconstituted from each unique monostatic or 

bistatic pair [17], [91], or form a single data matrix from which a single image is formed, 

as in [59], using matrix operations.
 

There are two geometry classes for two-dimensional bistatic apertures: those with a 

constant bistatic angle over the aperture and those which where this is not the controlling 

variable ( is a function of time/space); this latter including one platform stationary. 

The first class (constant bistatic angle) requires that the angle rates of the two platforms 

are identical. The reconstruction derivation is an extension of that for the two dimensional 

monostatic geometry. Starting with equation 4-12 with the separate transmitter and 
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receiver positions, then defining the transmitter and receiver angles relative to the bistatic 

angle and the rotation angle of the bisector vector, let 
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Inserting (4-14) into (4-12) and expanding the squares and defining  as the rotation of 

the bisector with respect to the x axis 

)2/(cos(2)2/(cos(2
2222   rcvrrcvrxmtrxmtr rRRrrRRrt  (4-15) 

Now the angles are forced to a common angle reference/rate. For the bisector to be 

invariant the trajectory radius for both transmitter and receiver must be the same. In this 

manner (4-15) reduces to 

.)2/(cos(2)2/(cos(2 2222   rRRrrRRrt  (4-16) 

Now substituting (4-16) into (4-7) we can see that the inclusion of the /2 dependency 

exerts an influence on the resolution. This is shown in Figure 4.11 which compares the 

 
Figure 4.11. Resolution Dependency on Bistatic Angle 

monostatic PSF, for a CW waveform at 400 MHz, to two bistatic geometries 

distinguished by the bistatic angle; =45 and 90 degrees, for the case of a point scatterer 

at (1, 1). Tracking the dilution of resolution is the entire response surface. The peak 

sidelobe level is unchanged, only the spatial response is diluted with increasing bistatic 
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angle. Note that in the bistatic case, the factor of two in the exponent in (4-7) is dropped 

as t contains full propagation dependency. Figure 4.12 summarizes resolution versus 

bistatic angle. The red curve represents the one-sided resolution estimated from 

simulation runs (half-width, half-maximum, HWHM). The blue curve is the monostatic 

response normalized by the cosine of the half bistatic angle. 

 
Figure 4.12. 2D Resolution vs. Bistatic Angle, Constant  

For the second class, more general bistatic geometry we begin with the special case of 

one platform stationary. As will be seen in Section 4.6 the motion dependency is 

reciprocal: the same result is obtained independently of which platform is motionless. 

With either the transmitter or receiver stationary, the corresponding angle () becomes 

fixed. Let us assume a stationary transmitter and without loss of generality, let the 

transmitter angle be 0. Then (4-13) simplifies to  

 rcvrrcvrrcvrxmtr rRRrKt   cos2
22    (4-17) 

where Kxmtr is a pixel specific constant (unvarying over the aperture). Inserting into 

equation (4-7), the constant term comes out of the integral and can be ignored as a simple 

scalar. Figure 4.13 compares the monostatic to stationary transmitter bistatic for a 

scatterer at the scene origin. As both axes produce identical results, only a single axis is 

shown. The resolution is observed to be diluted by a factor of 2 relative to monostatic. As 

previously done, the CW frequency is 400 MHz. The monostatic HWHM is ~0.09 while 

the bistatic is ~0.18. 
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Figure 4.13. Comparison of Monostatic to Bistatic PSF for Stationary Transmitter 

The more general case within the second class, and that which complicates the bistatic 

analysis because of the number of options, is when the transmitter and receiver 

trajectories are not constrained, taking on arbitrary geometries. For example the platform 

angle rates relative to the scene are decoupled. For this geometry we express t by 

parameterizing the transmitter angle as a function of the receiver polar angle. This is 

)cos(2))(cos(2
2222

rcvrrcvrrcvrrcvrrxmtrxmtr rRRrfrRRrt    (4-18) 

Two such cases are presented for illustration. In the first example, shown in Figure 4.14, 

the transmitter angle rate is 2 times that of the receiver with both moving over circular 

trajectories with the same radius. The aperture duration is such that the receiver completes 

2 radians of motion while the bisector sweeps out 3, starting from an initial bistatic 

angle of 45 deg. As earlier the wavelength used for the unmodulated carrier is 0.705 m 

(400 MHz). 

The second example is configured such that the bisector sweeps out the full 2 radians of 

the two dimensional collection aperture. The PSF response is shown as a surface in 

Figure 4.14a and as a surface projection (contour) in Figure 4.14b. The normalized 

response is clipped at -40 dB to highlight image features. We observe that the resolution 

is largely unchanged and the circular sidelobe symmetry has decomposed with a finer 

sidelobe structure resulting. Additionally the and the peak sidelobe levels are slightly 

degraded, relative to a constant  geometry. This case is compared to a second example, 
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Figure 4.14. 2D Bistatic Example, Transmitter Angle Rate Twice Receiver Angle Rate 

Figure 4.15, where the bistatic bisector only traverses 2 radians of angle, and to one of 

the earlier constant  examples, in Table 4.2. In this Table image metrics are summarized, 

including an estimate of the integrated sidelobe ratio (ISLR).  

 
Figure 4.15. 2D Bistatic Example - Bisector Sweeps 2 radians 
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Table 4.2. Image Metrics Comparison for Example Decoupled Bistatic Apertures 

trajectories or apertures examined here exhibit any spatial dispersion, i.e., there is no 

change in the radius of motion of either transmit or receive platforms (range sum is 

constant). This will not be the case as we expand to three dimensional apertures. 

 
Figure 4.16. IPR When Transmitter and Receiver Motions are Equal and Opposite 

4.3 Three Dimensional Apertures. 

The extension to three dimensions closely follows that of two dimensions. We begin with 

monostatic collection apertures, followed by the bistatic case. 

4.3.1 Monostatic geometry. We expand the two dimensional monostatic geometry to 

three dimensions, as depicted in Figure 4.17, by redefining the angle variables used in the 

two dimensional case in Section 4.2. The initial method is an extension of the two 

dimensional case following the approach in [92]. The back projection filtering extension 
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to three dimensions, again based on plane wave propagation, begins with the inverse 

Fourier transform of the forward transformed, sampled projections comprising the object 

response. Starting from (4-12), extended to three Cartesian dimensions with coordinates 

defined in Figure 4.17 we have 
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     (4-19) 

 

Figure 4.17. Definition of Tomographic, Three-Dimensional Monostatic Geometry 

Let fx = 2cos()cos()/ , fy = 2sin()cos() / and fz = 2sin()/ and 222 zxxr  ,  

= arctan(z, r’), 22 yxr  ) and  = arctan(y, x). Note from Figure 4.17 that  is 

measured in increasing positive sense relative to the x-y plane toward the positive z axis, 

not relative to the z axis. Also arctan is the principal value function. Making the 

substitution and evaluating the Jacobian for the change of variable yields 
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where  = cos()cos(η)cos()+sin(η)sin() and = 2/. Again, using the generally 

defined backprojection operator Q(t), eqn. 4-7, we start with  
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Extending to non-plane wave propagation, consider the geometry in Figure 4.18. A 

spherical wavefront propagating outwards from a monostatic radar at (x0, y0, z0) that 

follows a trajectory around the object/scene at constant radius (Rradar), scattering and 

propagating back to the radar as a spherical wavefront. The path of the line integral 

described by the transmitted wavefront, that is the locus of points of constant one-way 

delay, is 

2
0

2
0

2
0 )()()( zzyyxxt     (4-22) 

 
Figure 4.18. Tomographic Monostatic Geometry – Spherical Wavefront 

Defining the scatterer and radar positions in the object-centered polar coordinates with 
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and expanding the squares, invoking the trigonometry difference angle identity, and 

substituting into (4-22) gives 

))sin()sin()cos()cos()(cos(2
22   radarradar rRRrt  (4-23) 

This is substituted into (4-20) and results in the exact expression for 3D monostatic 

backprojection. 

4.3.2 Bistatic geometry. And finally, the extension of the two dimensional bistatic 

geometry to three dimensional is straightforward and follows two dimensional 

development. As in Section 4.2, the propagation path is composed of two terms, emitter-
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to-scatterer and scatterer-to-receiver. The geometry is shown in Figure 4.19. Thus for a 

3D geometry the individual range terms are combined as t=txmtr + trcvr, or 

.
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t




   (4-24) 

 
Figure 4.19. Three Dimensional Bistatic Geometry Definition 

Making the same polar substitutions as the monostatic case (expanded with the receiver 

term) and maintaining arbitrary position versus time along the tomographic aperture (e.g., 

removing/avoiding the coupling enforced through a constant bistatic angle which supports 

dissimilar angle rates as well as orbital radii) results in 
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rcvrrcvrrcvrxmtrxmtrxmtr rRRrrRRrt     (4-25) 

with, analogous to (4-23), )sin()sin()cos()cos()cos( xmtrxmtrxmtrxmtr   , 

and for rcvr with xmtr and xmtr being replaced by the equivalent receiver angles. Finally, 

insertion of (4-25) into (4-21) yields the expression for bistatic, three dimensional 

reconstruction. 

4.4 Tomographic Imaging Dependence on Waveform. 

Tomographic performance was briefly addressed in Section 4.1 as part of the motivation 

for studying tomographic apertures. This was accompanied with a cursory assessment of 

the value of bandwidth in tomographic imaging. Using Fourier techniques we 
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frequency, the Point Spread Function (PSF) was improved through the 

reduction/suppression of the response sidelobes. This was realized without affecting the 

resolution (this is in marked contrast to Synthetic Aperture Radar where along-range 

resolution is a function of waveform bandwidth). We assumed a rectangular spectrum in 

the frequency domain and numerical Fourier techniques to illustrate the behavior. In this 

section we expand on the impulse response performance using commonly applied radar 

waveforms with tomographic reconstruction.  

For the determination of the PSF, and associated properties, of the aperture-waveform 

combination an idealized, isotropic scatterer is utilized; represented as a Dirac delta 

function. This scatterer reflectivity is spatially invariant, and is manifested only through 

the phase response as a function of frequency with radar cross section constant over 

angle. This permits development of the PSF, also called the impulse response, for a 

specific geometric aperture/waveform without consideration of the complex scattering 

from real objects or shapes. This gives, as will be shown, the imaging performance upper 

bound (together with error-free position knowledge for reconstruction). The single 

scatterer enables the assessment of imaging performance in terms of conventional image 

metrics (resolution, peak, and average sidelobe levels). 

An analytic representation of the forward transformed projection G(k,) is necessary for 

the calculation of the PSF. It is generally given by 

  drerrSrgkG jkr




  (),(),(     (4-26) 

where   indicates convolution, S the waveform (temporal dependence expressed as 

range), and k=2. Because the forward transform of a convolution is equivalent to the 

product of the forward transform of the constituent terms, (4-26) can also be written 

)()(),( kSkSkG waveform  
     (4-27) 
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where Swaveform is the wavenumber spectrum of the waveform and S the spatial frequency 

spectrum of the object projection at angle . 

Instead of a continuum of scatterers, let the object be represented by a Dirac delta 

function at range r0. The second term in (4-27) is then given by 

.)()( 0 drerrkS ikr




        (4-28) 

The filtering function (sifting property) of the integral of the Dirac delta makes evaluation 

of (4-28) very direct, or  

.)( 0ikr
ekS


      (4-29) 

We next evaluate a limited set of waveforms, each commonly employed. These are 

continuous wave (CW), simple envelope modulated carrier (i.e., pulsed) waveform, and 

pulsed linear frequency modulated (LFM). Table 4.3 presents the waveforms evaluated 

and relevant attributes. The expressions in Table 4.2 include the RF carrier, and also 

assumes complex sampling for the frequency domain representation. 

An arbitrary amplitude of A is shown (set at 1 for evaluation), while T represents pulse 

length,  is the LFM chirp (frequency) rate,  the carrier and B the bandwidth.  
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Filtered back projection includes the |k/| or || filter function in two dimensions (eqn. 4-

31 as example) and 2
 in three dimensions (eqn. 4-20). This has the effect of multiplying 

noise, resulting in poorer image quality [87]. Consequently several tapers have been 

developed for image reconstruction [86]. The filters are applied as 

),()(|)(|),(ˆ  kGkFkTkG      (4-30) 

where T(|k|) represents the taper and F(k) any receiver filtering, including pulse envelope 

matched filtering. Tapering is applied over the inner integral of the BPF reconstruction, 

over wavenumber. Additional discussion is presented in Section 6. 

Moving to aperture/waveform evaluation we mostly address monostatic configurations. 

With the exception of different trajectories with dissimilar speeds/trajectories (using 

kinematics to fill k-space) and such we have seen that bistatic results differ from 

monostatic only in resolution, again under the assumption of the ideal scatterer. 

4.4.1 2D and 3D monostatic apertures, CW waveform. The reconstruction of a two 

dimensional aperture using filtered backprojection is realized using equation 4-30. G(,) 

defines the set of forward transformed projections which includes the reflectivity 

function, the illuminating waveform, and any receiver processing, such as matched 

filtering, that affects the waveform and =2/. 

 







 

2

0

)cos((2),(),( ddeGrg rj
   (4-31) 

In that which follows we employ the standard radar definition of resolution: the full 

width, half maximum width of the point spread function along the image coordinate 

frame cardinal axes. We also employ the normalized, magnitude-squared response when 

describing impulse response properties such as mean and peak sidelobe levels.  

Five cases are examined for the 2D monostatic aperture point spread function following 

those listed in Table 4.2. Cases 4) and 5) represent a rectangular spectrum, corresponding 
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to a sinc(x) waveform in the time domain, with and without amplitude tapering. As noted 

elsewhere, and which will be discussed more completely in Section 4.6, the azimuth 

sampling is 1 degree in that which follows. This is set for reasons of computational 

expediency only. In elevation sampling for the 3D geometries, an increment of 1 degree is 

also used. 

The unmodulated CW waveform is given by e
jt

, with forward, temporal frequency, 

transform (0). The spatial transform, substituting t=2r/or equivalently t =r 

(=2/), is (0). As shown in (4-6), the two dimensional aperture and CW signal with 

isotropic scatterer has a closed form solution, with sample PSF depicted in Figure 4.5. 

Resolution at the FWHM points is 0.2 with sidelobes rolling off at a rate of 1/r. This is a 

demonstration of achieving high resolution without bandwidth. We next examine the 

effects of adding bandwidth to the signal. 

Extending to three dimensions we insert (4-23) into (4-21) with the result shown in Figure 

4.20. There are several potential apertures which will be discussed in detail in later 

sections. For this evaluation we assume a spherical aperture wherein the monostatic 

system illuminates and receives from discrete points, equally spaced, over 2 steradians; 

the upper hemisphere over a ground-located scatterer. A 400 MHz frequency CW was 

assumed with spatial samples every 1 degree over the upper half-space (in general 

contrast to the 1 degree azimuth sample increment used for the two dimensional 

apertures). We note that extending the aperture into three dimensions results in reduction 

of the first sidelobe level to -13 dB with a faster sidelobe roll off rate. Elevation 

resolution and sidelobe spacing are indicative of the shorter projected aperture than in the 

horizontal plane. 

A note regarding the distance reference in (4-31) and (4-23). Referencing the pixel 

position relative to the scene origin, as in (4-31), requires that the range to scatterer be 
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normalized against the range to scene center, given the radar position. When the 

projection integral form in (4-23) is employed then the true range is employed in 

simulating the scattered phenomenology. 

 

Figure 4.20. Three Dimensional Point Spread Function for CW Waveform 

4.4.2 Pulsed waveforms. The wave number spectrum for a rectangular envelope (rect) 

modulated sinusoid is given by (for a real sampled signal) 
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where Rpulse is the two-way length of the radiated pulse (duration converted to length). 

The underlying assumption is that the radar receiver performs wideband filtering so that 

the rect waveform is sampled without alteration and formats the signal in complex form 

via Hilbert Transform, or equivalent. In two dimensions the reconstruction is, evaluated 

with pulse length (spatial extent or bandwidth) as a parameter 
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In (4-33) the product of the spectrum of the waveform and the isotropic scatterer 

represents the forward transform of the convolution in the time domain. Equation 4-33 

was evaluated for waveform bandwidths from 100 kHz up through an instantaneous 
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bandwidth of 25%, or 100 MHz, technically ultrawideband given the 400 MHz carrier 

(fractional bandwidth defined as (fu -fl)/fmid). The purpose was to gradually increase 

bandwidth and confirm that low bandwidth pulsed waveforms essentially matched the 

CW case, as a validation (out to the physical limit of the pulse length), while 

demonstrating the improved contrast of the PSF through the more spatially confined 

response. It also demonstrates that the resolution is a weak function of bandwidth. Weak 

as there is only slight improvement in resolution with increasing bandwidth. The results 

are shown for the full response in Figure 4.21a and a cardinal axis cut (X axis), with the 

scale expanded around the scatterer position, in 4.21b. In this example the scatterer was 

positioned at (1,0). The immediate observation is the sharp delimiting of the spatial extent 

of the PSF response with the increase in bandwidth (100 MHz bandwidth yields 1.5 m of 

pulse envelope range resolution while a matched filter output to a rectangular pulse would 

be of extent 2Tpulse). 

 

Figure 4.21. Point Spread Function – 400 MHz Center Freq., Rectangular Pulsed 

Waveform (a) and Cardinal Axis Response with Bandwidth as a Parameter (b) 

 

The rectangular-envelope modulated carrier result assumes that the receiver passband 

exceeds the pulse bandwidth, resulting in no modification of the waveform envelope (or 

spectrum). We next consider the use of a matched filter, one implemented at the signal 

carrier (in order to preserve the waveform carrier and associated resolution). From eqn. 4-

32, the matched filter response will be S()
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and S() the signal complex spectrum). Repeating the evaluation of eqn. 4-33 with 

matched filter processing of the received waveform gives the results presented in Figure 

4.22. In this Figure the matched filtered result is plotted against the wideband receiver 

result (Figure 4.21b). The waveform bandwidth is the same in both cases (100 MHz) with 

a scatterer located at (1,1). As in Figure 4.21 the PSF is symmetric about the scatterer 

position so only the X axis cut is shown. The effect of the matched filter is akin to a taper 

that is centered on the carrier frequency: the sinc response roll off is increased in the 

frequency domain. The close-in sidelobes are reduced along but the farther out sidelobes 

are increased. 

 
Figure 4.22. PSF Cardinal Axis – 400 MHz rect Waveform, Match Filtered 

In filtered back projection (FPB) there is discussion regarding the effect of the 

multiplication (the filtering aspect) by || (e.g., eqn. 4-33). The argument is that the 

filtering enhances high frequency noise [86]. We test this without injected noise through 

examining spectrum distortion by evaluating a waveform with rectangular spectrum. This 

corresponds to an amplitude modulated signal in the time domain. This is also the case we 

evaluated in Figure 4.7 using Fourier-based reconstruction. Here FBP is used which 

alleviates sampling/quantization issues and which should illustrate any additive noise 

effects with results shown in Figure 4.21. The time domain sinc waveform (blue curve in 

Figure 4.23) does produce higher outer sidelobes which are suppressed with a frequency 

domain taper (black curve) which has the effect of slightly increasing the close in 

sidelobes which suppressing more radially distant ones. But the effects are small. A series 
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of cases, which are not presented, applied a Hamming taper in the frequency domain 

produced similar results to that of the matched filter(on the time domain rectangular 

pulse) but again with little effect. There will be more discussion on tapers in Section 5.5. 

The collection aperture evaluated for the monostatic three dimensional studies is a 

hemisphere that is centered relative to the image coordinate frame. This represents the 

upper bound for sampling above a ground plane. The constant radius hemisphere, 

eliminating any considerations of motion compensation or actual realization, is sampled 

at 1 degree increments in azimuth and elevation. A single monostatic example is shown 

for the simple pulsed waveform at 400 MHz with 100 MHz of bandwidth and the three 

 
Figure 4.23. Cardinal Axis Cuts - Rect Pulse, Rect Spectrum (Time Domain sinc), and 

Tapered Rect Spectrum 

 

dimensional hemispherical aperture in Figure 4.24. The first Figure (4.24a) contains the 

cardinal plane cuts against a point scatterer at (1, 1, 1). The sidelobe structure in the X-Y 

plane resembles that of the 2D case, extending to twice the pulse length and with similar 

levels (Figure 4.24b with bandwidth as a parameter). Figure 4.24c presents the PSF 

structure, also with bandwidth as a parameter, for the reconstruction Z axis. It is 

interesting to observe the smoothing of the Z axis response as the frequency content of 

the waveform increases.  

A taper example in 3D reconstruction is shown in Figure 4.25. The cardinal axes results 
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contrasting tapered versus non-tapered PSF. AS in the 2D case there is slight 

improvement only. Note that in Figure 4.25a the untapered PSF was reconstructed only 

over half the axis extent of the tapered case. 

 

Figure 4.24. Cardinal Plane Perspective View – Pulsed Waveform with 100 MHz 

Bandwidth (a), and Cardinal Axis Cuts: X-Y (b) and Z (c) 

 

Figure 4.25. Effects of Taper on 3D Reconstruction - Pulsed Waveform 

4.4.3 Linear frequency modulated waveforms. The use of coherent modulation allows 

longer pulses for increased energy while meeting bandwidth/resolution requirements to be 

met via pulse compression. The use of an LFM waveform in a monostatic geometry with 

the same bandwidth as the simple pulse. Monostatic operation is examined in this section. 
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0) with a waveform of 140 MHz chirp bandwidth centered at 1.3 GHz resulted in the 3D 

reconstruction cardinal axes cuts shown in Figure 4.26. The LFM was match filtered prior 

to reconstruction. The point spread function demonstrated the resolution expected for the 

frequency used. 

Figure 4.26. Point Spread Function for LFM with Matched Filtering 

The effects of bandwidth can be seen in Figure 4.27 where the bandwidth is varied from 1 

MHz to 140 MHz, keening the expanded pulse duration constant. As was demonstrated in 

Figure 4.8 the effect of increased bandwidth was the increased rate of sidelobe level roll 

off with distance. 

 
Figure 4.27. PSF of Match Filtered LFM and Dependence on Bandwidth 
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presented, were comparative cases for the LFM waveform without matched filtering. The 

results were similar in form to those of Figure 4.22, with the PSF sidelobe peaks lower 

with matched filtering. 

4.4.4 Bistatic CW waveforms. Using the three dimensional bistatic geometry in Figure 

4.19 we move to the bistatic point spread function for CW waveforms. Simple variations 

on the monostatic three dimensional case(s) is made. In all examples, as in the monostatic 

case, the platforms are not constrained kinematically as a “real” vehicle would be. 

The first case uses a single fixed transmitter while the receiver trajectory is sampled 

identically to the 3D monostatic hemispheric aperture. Figure 4.28 presents the point 

spread function, Figure 4.28a the cardinal plane slices and Figure 4.28b the principal axis 

result. Also, as for the monostatic results, the dynamic range of the plotted result is 

limited to 40 dB for readability. The resolution for the 3D aperture (termed here bistatic 

Case 0) is exactly one-half that of the monostatic case, with a similar sidelobe structure, 

also scaled by a factor of 2 (spatially). The images from this geometry are independent of 

the location of the transmitter. 

 
Figure 4.28. PSF for 3D Bistatic Case 0 

A second trajectory (Case 1) placed the transmitter in a circular orbit at a fixed elevation 

angle relative to the image coordinate frame. The receiver executed a hemispherical 
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regardless of the receiver elevation angle about the hemisphere, i.e., the transmitter and 

receiver were always on the same “longitude” of the hemisphere (the bistatic angle 

projected onto the X-Y plane). A series of runs were made varying the transmitter 

elevation angle from 0 degrees to 70 in 15 degree increments and the results are 

summarized in Table 4.4. Calculated full-width, half-maximum resolution, peak and 

average sidelobe levels are presented.  A single example point spread function is  

 

Figure 4.29. PSF for 3D Bistatic Case 1: Transmitter Elevation Angle 45 Degrees, Single 

Orbit with Receiver Executing Hemispherical Aperture  

 

presented in Figure 4.29 for a transmitter elevation angle of 45 degrees. The format is the 

same as Figure 4.28. A quick look at the dependency on the bistatic angle was made by 

executing a single case where  was set to 45 degrees. The bistatic angle () used was 

defined by the projection of the transmitter and receiver vectors at the start of the aperture 

onto the X-Y plane. 

The results in Table 4.4 indicate that the transmitter position exerts no influence on the 

vertical resolution. This is not the case in the horizontal plane. A degradation in X-Y 

plane resolution as the elevation angle of the transmitter is increased is seen, which is 

well described by an inverse-root-cosine dependency. The average sidelobe levels reflect 

the use of 250 data points along the X-Y axes, instead of the 125 values used earlier. To 
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yield equal axis lengths 125 elevation points are used. It is interesting to note that the 

peak sidelobe level in the X-Y plane was positively impacted by increasing the 

transmitter elevation angle while the X-Z and Y-Z cardinal plane results were unaffected. 

The final example might be considered the bistatic equivalent of circular SAR (bistatic 

Case 2). In this geometry both platforms move in a simple circular orbits that are offset in 

elevation. This example places the transmitter at 60 degrees elevation and the receiver at 

15. degrees. Both platforms maintain a constant range relative to the origin. In Figure 

4.30a the platforms are in synchronous motion with a bistatic angle of 0 (which is 

constant through the aperture). In the second example (Figure 4.30b) the transmitter is 

moving in the opposite direction from the receiver, but in the same initial geometry. As is 

the case for low resolution circular SAR there is no resolving power in elevation. 

Table 4.4. Bistatic Case 1 Image Metric Compilation 

4.5 Reflection Tomography Image Properties. 

In this section we examine the dependencies of resolution for both full and partially-

executed apertures. A derivation is presented for an expression for the two dimensional 

case which is augmented with repeated operation of tomographic simulations. 

Transmitter

Orbit

Elevation

Resolution (FWHM, m)

X Y

Peak SLL (dB)Average SLL (dB)

Z XY XZ YZ XY XZ YZ

0 deg

15 deg

30 deg

45 deg

60 deg

75 deg

45 deg (45o) 0.08 0.08 0.26 -11.3 -9.1 -9.1-32 -25.5 -25.5

0.11 0.11 0.26 -32.3 -23.8 -23.8 -17.7 -9.1 -9.1

0.09 0.09 0.26 -32.7 -25.1 -25.1 -13.4 -9.1 -9.1

0.072 0.072 0.26 -32.7 -25.8 -25.9 -13.4 -9.1 -9.1

0.065 0.065 0.26 -32.8 -26.3 -26.3 -10.7 -9.1 -9.1

0.06 0.06 0.26 -32.9 -26.6 -26.6 -10.4 -9.1 -9.1

0.058 0.058 0.26 -32.9 -26.6 -26.6 -10.2 -9.1 -9.1
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Figure 4.30. Bistatic Case 2, Offset Orbit Geometry 

 

4.5.1 Resolution. Mensa [93] offers a resolution relation derived from Doppler principles 

for the 2D tomographic geometry, given as x = /4. The collection aperture 

transformed to the Fourier domain (k-space), for a CW waveform and isotropic scatterer 

at the origin, has radius 4 (or 2k) [100] and [87]. Thus the spatial resolution of the 

reconstructed image can be expressed in terms of the inverse of the collection aperture 

radius in k-space.  

This is tested below. Two-dimensional backprojection filtering using a Riemann sum 

integral approximation and the closed form expression of the PSF for a scatterer at the 

origin in target/object coordinates (eqn. 4-7) were used to generate PSF response as a 

function of radial distance and the half-width, half-maximum point found by 

interpolation. This was done as a function of frequency. The resolution metric that is 

commonly encountered in the tomographic literature is based on the first PSF null. We 

use the HWHM (half-width, half-maximum), or the full-width, half-maximum (FWHM) 

as the customary practice of the radar community. Figure 4.31 gives the result compared 

with the Mensa result. The Figure shows a (nearly) linear relation between resolution and 

wavelength over the range 200-600 MHz. This result yields an error in the resolution 

prediction of about 12% as indicated in the Figure. 

a) 60o Transmitter, 15o Receiver Orbits Parallel  b) 60o Transmitter, 15o Receiver Orbits Antiparallel  
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Figure 4.31. Calculated Resolution (HWHM) vs. Frequency 

An improved estimate of resolution is found using the closed form solution, solved for the 

radial distance that produces the normalized response of 0.5 (the HWHM point). The 

Bessel function can be alternatively expressed as [94] 
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Beginning with the interpolated HWHM result and setting an error bound of 1%, (4-34), 

for order 0, is inserted into eqn. 4-35 and the number of terms required to meet the error 

tolerance found (three). Since J0(0)=1 the 4/ term in (4-34) normalizes out, leaving the 
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The solution to (4-35) is straightforward. Setting r = x, yields 
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The comparison of the value derived in equation 4-36 to the calculated resolution yields a 

match within 0.2%. The full-width, half maximum result (resolution) is twice that of (4-

36). 

To test the robustness of this result, the pixel location was increasingly displaced from the 

origin, out to the sampling ambiguity limit (Section 4.6). The PSF mainlobe dimensions 

were determined for pixels on radials at from 0 to 90 degrees in 15 degree increments. 
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Cardinal axis dimensions of the response mainlobe were estimated at each position. The 

result demonstrated a response insensitive to radial distance. 

Three dimensional resolution was investigated in a similar fashion, as reported in [95]. 

The cardinal axis PSF responses were calculated along the X, Y, and Z axes and the 

HWHM estimated using a table look-up and linear interpolation routine. Unlike the 2D 

result, the 3D were calculated over the frequency range 300-800 MHz, in 5 MHz steps 

and are based on a CW waveform. The resolution result is seen in Figure 4.32. Overlaid 

on the 3D result is the 2D result from Figure 4.31 with the ordinate rescaled from 

wavelength to frequency. It is noted that for the 3D comparative cases (monostatic) where 

waveform bandwidth was treated parametrically, the resolution realized is a weak 

function of bandwidth (Figure 4.24) slightly improving along the Z dimension but no real 

differences in the X-Y plane. This was not evaluated more critically. The X and Y curves 

overlay and are intentionally slightly offset in the Figure. 

 
Figure 4.32. Three Dimensional Aperture - Resolution versus Frequency with 

Comparison to the Two-Dimensional Result 

 

4.6 Partial Apertures. 

In complex target geometries/environments where, in spite of the selection of low 

operating frequencies, full aperture visibility of constituent scatterers may be 

compromised, we evaluate the resolution properties of partial apertures to emulate such a 
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condition. We define “partially sampled” to be the collection over a solid angle region 

smaller than the limiting hemispherical aperture (or the two dimensional equivalent). This 

is investigated for both two and three dimensional apertures, monostatic and bistatic 

geometries. We seek to extend the full aperture resolution approximations to partial 

apertures. This is a straightforward exercise for the monostatic aperture but is more 

complex for bistatic case due to the added degrees of freedom, examples of which have 

also been presented earlier. The approach is straight-forward: the integration limits for 

image reconstruction are hard-limited. This introduces a binary “access” to the idealized 

scatterer, without any amplitude (radar cross section) modulations as might be evidenced 

by a real scatterer. A significant effort was expended, without success, to develop an 

analytic expression for the two dimensional monostatic aperture resolution with arbitrary 

integration angles. This led to the technique used here.  

4.6.1 Monostatic apertures. Monostatic partial apertures are divided into three classes for 

this exploration. The first consists of a full aperture azimuth (2 radians subtended by the 

radar, the polar angle in the X-Y plane of the scene coordinate frame) with a contiguous 

elevation aperture of variable angular extent and elevation position(s). The second is a 

full elevation aperture ( radians, in the half-space above the X-Y plane) and partial 

azimuth aperture of variable extent. The third variation simultaneously combines both 

azimuth and elevation partial apertures. In all cases the aperture sampled is a subset of the 

hemispherical collection surface. Though not specifically partitioned, two dimensional 

geometries are placed into the second class. The partial aperture assessment was 

conducted for CW waveforms only. We begin with the two-dimensional monostatic case. 

As discussed in Section 4.6, there is a closed form solution for this geometry. However it 

only is valid for apertures that span 2 radians: several months’ effort was spent 

attempting to derive a closed form result for partial apertures, without success. Replacing 

the limits in eqn. 4-7 with the start and stop angles (relative to the X-axis) as variables in 
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the numerical integration, we develop curves that define the cross range (along Y) and 

down range (along X) resolutions, as defined from the geometry in Figure 4.33. The cross 

range resolution for the aperture, as a function of aperture angle, in 5  

 
Figure 4.33. Geometry for Partial Aperture Response Calculations 

degree increments (5-360 deg.), is shown in Figure 4.34a for CW signals with 

wavelengths 0.5 m, 1 m, and 2 m. Figure 4.34b is the calculated down range resolution 

using the same aperture angles. In both cases three frequencies were used. As expected, 

as the aperture angle decreases the locus of points at matched phase quickly increases to 

the point where the resolution becomes essentially undefined in range, consistent with the 

CW waveform. The degradation of cross range resolution occurs more slowly, in terms of 

the rate of change of resolution versus aperture angle because of the projected aperture 

length, the basis of traditional SAR. We see that the cross range resolution is largely 

unchanged until the angle subtended by the aperture becomes less than 180 degrees. 

 
Figure 4.34. 2D Monostatic Resolution for Partial Apertures 
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A comparison of the calculated cross range resolution for a partial tomographic aperture 

is compared to a rule-of-thumb for SAR in Figure 4.35a for the cross range dimension. 

The SAR integration angle range was more restricted than the tomographic result. Also 

included is an approximation for the tomographic cross range resolution based on the 

aperture radius in k-space. The functional forms of the approximation (cross range) and 

coarse fit (down range) are where  is the total aperture angle subtended. These 
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approximations, derived for the 1 m wavelength case in Figure 4.34, are intended only to 

loosely convey the resolution achievable in a given aperture configuration. Down range 

results are shown in Figure 4.35b. 

 

Figure 4.35. Cross Range and Down Range Resolution and Approximations 

Moving to three dimensional apertures, Figure 4.36 presents the X, Y and Z (principal) 

axis resolutions when a variable sector of angular extent  (azimuth) in the image x-y 

plane is collected, together with full sampling in elevation (=90 deg), using a 400 MHz 

waveform. This is the first case referred to at the top of this section. As in the 2D case this 

is a highly idealized geometry and was examined to evaluate the degree of 

interdependency between the azimuth and elevation sampling apertures under the likely 

scattering effects of actual targets. The azimuth window was maintained symmetrically 

around the image X axis which affects the instantaneous X or Y resolutions over angle, 

0.1

1

10

0 90 180 270 360

Approximation

Tomographic result

SAR rule-of-thumb

Aperture Angle (deg)

F
W

H
M

 C
ro

ss
 R

an
g
e 

(m
)

a) Cross Range Result and Aperture Approx..

0.01

0.1

1

10

102

103

0 90 180 270 360

Aperture Angle (deg)

F
W

H
M

 D
o

w
n

 R
an

ge
 (

m
)

Approximation

Tomographic result

b) Down Range Result and Aperture Approx.



100 

 

though the voxel area in the X-Y plane is independent of the angle origin. As  goes 

below 90 deg., the Y axis resolution begins to dilute; an artifact of the ultra-narrowband 

waveform. With the Z axis fully instrumented (sampled) there is no change in vertical 

resolution with decreasing azimuth sample extent. Further there is a layover effect on the 

X axis resolution where the vertical aperture extent projected along the X axis determines 

the X axis resolution (Figure 4.36a).  

Figure 4.36a suggests that the horizontal and vertical resolutions are independent. This 

was tested by evaluating the second case identified above; the full azimuth with a limited 

elevation aperture. Results appear in Figure 4.36b. In developing this result a fixed 

elevation window of 10 degrees was sampled while a full azimuth aperture was collected. 

The elevation window was positioned in increasing elevation increments from 5 to 85 

degrees, the PSF calculated and resolution (HWHM) determined for each position in 

elevation. As the elevation angle to the window midpoint increased toward zenith, the 

projected k-space radius of the aperture onto the kx-ky plane decreases. This dilution is 

equivalent to sampling the azimuth aperture at lower elevation angles using a lower 

frequency (longer wavelength). The right-hand axis of 4.36b is the HWHM resolution 

calculated along the Z axis as the elevation angle to the 10 degree window increases. 

Visualizing the projection of the vertical extent of the elevation window, as the center 

angle is increased, as nonlinearly collapsing matches the degradation in vertical resolution 

observed.  

This suggests an area relationship for resolution based on the collection aperture in k-

space. For the CW waveform the aperture radius is 4/. In producing the results in 

Figure 4.36c, the full azimuth aperture was sampled with three elevation sampling 

strategies; he angle extent of the elevation aperture varied from 5 degrees to 90, the 

sequentially positioned 10 degree elevation window, or a 50 degree, sequentially 

positioned elevation window. Resolution is presented as a function of the fraction of the 
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area of the collection surface in k-space. A value of 1.0 represents the complete 

hemisphere over the object. As the elevation aperture decreases there is a corresponding 

degradation in resolution. All sample curves fall onto the same curve. As the angle to the 

center of the window increases the k-space surface area decreases with corresponding 

reduction in resolution along the Z axis. This observation was tested using a 20 deg 

elevation window with similar results; horizontal plane resolution was increased and 

linearly tracked the positioning elevation of the collection aperture. Finally Figure 4.36d 

compares the z axis resolution with an approximation based on the projection of the 

height of the Z aperture onto the Z axis ( )sin(4.4 ratioapprox AaZ  ). 

 

Figure 4.36. Resolution Dependencies (a) Partial Azimuth, Full Elevation Aperture, (b) 

Horizontal Plane Resolution of Partial Elevation Aperture, (c) Vertical Axis for Partial 

Elevation Aperture, and d) Elevation Aperture Resolution Approximation 
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sidelobe structure was equal in level but diluted (fewer sidelobe peaks per unit radial 

distance) by this same dependency. Here we examine partial apertures, as in the 2D 

monostatic case, testing the effect on resolution through the angle subtended by the 

bistatic bisector vector. Only apertures with synchronous motion of transmitter and 

receiver are considered. 

The results are summarized in Figure 4.37. Three bistatic angles (45, 90 and 135 deg.) 

were assessed over apertures of varying length from 5 to 360 degrees (as defined by the 

arc swept by the bisector). Results are given for the down range (i.e., along X, see Figure 

4.33) and cross range axes, as in the 2D monostatic case, calculated for a 400 MHz tone. 

Figures 4.37 a) through c) depict resolution along each axis for the specific bistatic angle. 

Figure 4.37d takes the cross range result from each bistatic angle and scales it, over 

aperture, by cos(/2), again highlighting the dependency on the bistatic angle. 

 

Figure 4.37. Summarized Results for Partial 2D Bistatic Apertures 
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this is indeed the case. The downrange resolution comparison in Figure 4.38a with the 

cross range resolution vs. aperture angle in Figure 4.38b.  

 
Figure 4.38. Comparison of 2D Monostatic Resolution to Bistatic with =0

o 

 

4.7 Spatial Sampling Requirements. 

In [93] Mensa defines the angular sample spacing for 2D imaging of rotating objects 

based on Nyquist arguments. The result is given based on Doppler arguments and has 

been widely cited. In this section the result is developed using spatial arguments and the 

derivation extended to the elevation dimension for three dimensional reconstruction. 

4.7.1 Two-dimensional monostatic geometry. Consider the geometry in Figure 4.39 with 

the antenna in uniform circular motion of radius Rradar about the origin with position 

defined in object/scene coordinates. Let a scatterer be positioned at radius r and angle  

delimiting the maximum extent of the object or scene to be imaged. Analogous to array 

beamforming we require sample spacing such that there are no phase ambiguities (grating 

structures) in the area to be imaged. In the array problem we require that the element 

spacing/scan angle combination be such that the path length difference between adjacent 

elements be less than 2 radians (a wavelength). Here the radar problem requires that the 

two way range difference meet that constraint. That is 
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Figure 4.39. Imaging Geometry for X-Y Plane and Phase Ambiguity Derivation 

The absolute phase is derived from the two-way path from radar-to-scatterer. However it 

is the relative phase which is the observable exploited in image formation. Given the 

geometry, the instantaneous phase vs. rotation angle is, for a given scatterer position 
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 rR   (4-39) 

where  

)cos(2),,( 22   radarradar rRrRrR    (4-40) 

Defining a change in range as R = 21 RR  we can define the range (and hence the 

phase) difference in terms of the angle change,  between the two positions as 

)cos(2)cos(2)( 2
22

1
22   radarradarradarradar rRrRrRrRR (4-41) 

considering Figure 4.39, the radar position with respect to a scatterer which produces the 

largest change in range is (-) ~ 90 degrees. Letting =0 and defining two radar 

positions at =/2 +/- /2, then, with factoring Rradar out of the radical and with the 

assumption that Rradar>>r, (4-41) becomes 
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)
22

cos(
2  


radarR

r
x     (4-43) 

and since the cosine argument is bound to the interval [0, 2, and r<<Rradar then |x|<1 

and the Taylor expansion for the square root can be invoked. The first three terms are 

retained due to diminishing magnitude of higher order terms. The first term in (4-42) is 
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Some manipulation (cosine sum angle substitution and invoking the small angle 

approximation for the sine term resulting) gives 
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Equation 4-45 reduces to R()=r. Returning to equation 4.38 





  r

4
2   or 

D


     (4-46) 

An example of the magnitude of the ambiguous phase is shown in the point spread 

function in Figure 4.40. In this example sample angle spacing is parametric at 1, 2 and 4 

degrees. In each case the point spread function is found at pixel positions that straddle the 

calculated unambiguous response limit. The single scatterer is located at (2,0),  = 0.75 m  

 
Figure 4.40. PSF Response for X-Y Plane Demonstrating Phase Ambiguous Responses 

vs. Sample Spacing 
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(400 MHz) with a sample spacing of /50. The predicted image/scene diameter for these 

three angle increments is, respectively, 21.5 m, 10.7 m and 5.4 m. The calculated/sampled 

positions of the peak response of the first ambiguity are 24 m, 13.2 m and 7.6 m (from 

Figure 4.40). 

In three dimensions a scatterer in the X-Y plane in object coordinates has the response 

versus radial position and azimuth sample spacing, with the elevation spacing used 

throughout (1 deg.) that is shown in Figure 4.41. Though the form of the impulse 

response is slightly altered relative to that in Figure 4.40 (both Figures 4.40 and 4.41 are 

not normalized), the location of the onset of phase ambiguous responses is nearly the 

same as the 2D case. 

4.7.2 Elevation sampling requirements. The expression for monostatic filtered back 

projection in three dimensions is (eqn. 4-21 using eqn. 4-23) 
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22

)()cos(),,( dddeGrg radarradar rRrRj
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where )sin()sin()cos()cos()cos(   and recalling that there was a change of 

variable definition in transitioning from the 2D to the 3D geometry. In the elevation  

 
Figure 4.41. PSF Response in X-Y plane with 3D Aperture, Sample Spacing in Azimuth 

as Parameter 
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dimension we constrain the target to the Z axis and again determine the angular step size 

that results in the path length difference exceeding a wavelength (two-way). 

Again we are interested in determining the spacing in elevation sample points before the 

image is perturbed by phase ambiguous responses. From a usage perspective this is a 

slightly softer dimension since, in a remote sensing context, the elevation extent of the 

scene is expected to be generally much less than the horizontal extent. Using the range 

term from the exponent in (4-47) and with the Dirac delta point scatterer, as used 

throughout, we define 

))sin()sin()cos()cos()(cos(2 22
22

2   radarradar rRrRR  (4-48) 

with R1 similarly defined. By confining the scatterer (or test voxel) to the Z axis r=z, 

/2, and =0 and the range difference again by R = 12 RR   . With this R2 becomes  

.)sin(2 2
22

2 radarradar zRzRR     (4-49) 

Factoring the Rradar term and making the assumption that z<Rradar then gives  

.)sin(
2

1 22 
radar

radar
R

z
RR      (4-50) 

Making the same substitution and using the series expansion as in eqn. 4-44 and letting 

=0, 2= (a difference from the azimuthal or 2D case because of the physical limits 

on the aperture) then gives 

.21  zRRRR radarradar     (4-51) 

produces, using equation 4.38, the same result as in the 2D portion zmax=. 

Exercising eqn. 4-47 over a range of z with a point scatterer located at (0, 0, 2) gives the 

result shown in Figure 4.42. The peak responses (7.85 m/4 deg, 13.2 m/2 deg, 24m/1 deg) 

closely match the 2D result. 
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Figure 4.42. PSF Response Along Z axis as a Function of Sample Spacing in Elevation 

4.8 Combining Space (Aperture Shape) and Waveform. 

We have demonstrated that the resolution of the tomographic aperture is largely 

established by the illuminating frequency with no significant contribution resulting from 

bandwidth over the range explored. We have also demonstrated the effect of increasing 

bandwidth on the properties of the point spread function; specifically the spatial extent of 

the sidelobe structure (in the case of simple pulsed waveforms, Figures 4.21 and 4.24) 

and/or the rate of roll off of the sidelobe peaks (LFM waveform, Figure 4.27). The 

truncation of the spatial extent of the envelope-modulated sinusoid is a consequence of 

the physical length of the pulse, while the sidelobe roll-off is the result of the complex 

interference of a greater number of frequency terms in the inverse transform integral in 

back projection. 

Reflection tomography is generally characterized by the torus-shaped spatial spectrum, 

centered at DC in two dimensional monostatic tomography, with the obvious extension to 

three dimensions. This indicates bandlimited operation when constrained by hardware, 

environmental and regulatory realities. Mapping a scene to a partial aperture then to full 

aperture is conceptually shown in Figure 4.43, with a notional scene in Figure 4.43a, a 
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spectrum illustrated in Figure 4.43c. We observed similar behavior to that depicted in 

Figure 4.43c for bistatic two-dimensional apertures with the center of the receive aperture 

in a pseudomonostatic relationship with the illuminating plane wave and with the physical 

receive aperture at the beginning of this section. 

 

Figure 4.43. Spatial Frequency Representation of Two Dimensional Apertures 

We briefly explore the limiting case where the spatial spectrum is filled; the general case 

for transmission tomography that is not realized in bandlimited, reflection tomography. In 

doing so we ignore realities on ultrawideband (including DC) signal radiation (and 

reception). Conceptualizing an impulse-like waveform, yielding a uniform spectrum, 

spanning fmin = 0 to fmax, and sampling over a two dimensional monostatic aperture creates 

a disk-shaped spatial spectrum representing an isotropic scatterer located at the scene 

origin which we assume is of unity magnitude. We define the point spread function as in 

Section 3.2, starting with equation 3-43; 
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and where the integral limits reflect the radius of the disk (maximum frequency, m) and 

full angular range integration. Since  is by definition positive the absolute value is 

ignored for the remainder of the derivation. Also since we are assuming a disk of constant 

amplitude G(cos(),sin()) = 1. The cosine angle difference identity gives the final 

form  
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Evaluating the inner integral results in 
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in which the substitution = jr
2
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2
() was made. Following the approach suggested
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taking the derivative of the integrand with respect to m and with simplification 
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where the change of variable , d=d was made. This result derives from the 

integral form of the Bessel function (Bessel’s first integral) of order 0. The solution is 

given for the derivative of the scene function. If we let z = 2rm and define a chain rule 

differentiator as 
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Using the identity 
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resulting in 

                                                           
2
 https://adriftjustoffthecoast.wordpress.com/2013/06/06/2d-fourier-transform-of-the-unit-disk/ 
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Equation 4-60 is evaluated and compared to the reconstruction for a CW signal of the 

same upper frequency (m = 15,  =0.419m) with unanticipated results, depicted in Figure 

4.44. It was expected that sidelobe levels would taper off more rapidly (without the 

incorporation of a taper, the literature associates window functions with this class of 

spatial spectra, cf [86] and [96] as examples). What was not expected was the slight 

reduction in resolution in the IPR mainlobe given the frequency range. Also, evaluated, 

but not presented, is the conventional application of a window function, resulting in the 

expected impulse response sidelobe levels, another benefit. 

 
Figure 4.44. Radial Cuts, Monostatic Fully-filled Spatial Spectrum and CW Spectrum 

Image quality is the rationale behind this examination of the “limiting case” spatial 

spectrum. The value of filling k-space in this manner is clearly evident in the improved 

sidelobe structure which translates into higher contrast images. However the waveforms 

which would provide such ultra wideband capabilities are problematic for the reasons 

noted: regulatory, RF hardware and antennas (physical size and efficiency), not to 

mention sensitivity. One can generate monocycle L-band waveforms with 100% 

bandwidth [97] but with concomitantly low energy.  

In Section 4.1 we employed a method of mapping geometry/sampling aperture into 

spatial spectrum ([57]) which suggests another alternative: the combination of waveform 
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and collection aperture, a form of space-frequency trajectory, to fill k-space in like 

manner to the disk spectrum. In the general case spatial frequency is given by  

brcvrxmtr URRK
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     (4-61) 

where R represents position vectors,  the bistatic bisector angle and Ub the bistatic 

bisector vector. In the monostatic case this simplifies to 
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where  and  describe the radar position. An example mapping is shown in Figure 4.45 

for a CW waveform. Whereas in the 2D case, the monostatic spectrum was an 

infinitesimally thin ring, the three dimensional spherical spiral produces a hemispherical 

shell of the same thickness. Evaluating (4-62) in two dimensions over all frequencies in a 

waveform would produce the result shown in Figure 4.43c, weighted by the waveform 

spectrum and assuming an isotropic scatterer. 

 Figure 4.45. Three-Dimensional, Monostatic CW Aperture in k-space 
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bistatic k-space mapping for a CW waveform with  constant produces a spectrum 

centered on the origin in k-space with radius (“equivalent” frequency) decreased in 

proportion to the bistatic angle . This is shown in Figure 4.46a for  = 45
o
 and 90

o
.  

If  is not constant, for example because one platform is stationary, then the aperture 

mapping is displaced from the origin. The orientation of the offset (angle to the center of 

the mapped aperture) is a function of the initial position of the stationary platform or the 

initial bistatic angle. Spectrum diameter is one-half, reflecting that one platform is non-

moving, and the origin offset is 2. Three examples are shown in Figure 4.46b. It is 

easy to visualize how increasing the number of combinations of transmitters, receivers, 

and frequencies will begin to fill k-space. This illustrates the approach of Lo Monte, et al. 

[59]. Incorporating multiple frequencies and simultaneous monostatic and bistatic 

operation, with only one moving platform creates the 2D spatial spectrum in Figure 4.46c, 

where no effort was made to isolate the individual platform-mode-frequency 

contributions. As can be seen, very low spatial frequencies result, even DC (k = 0), 

simply from geometry. Figure 4.46d illustrates the impact on the aperture form when 

transmitter and receiver rates are unequal, and non-zero. Two curves are shown for the 

case where the transmitter angle rate is 1.5 times the receiver with initial  of 45
o
 and 90

o
. 

These results suggest potential strategies to improve image quality while minimizing the 

spectral footprint of the collection waveform. We consider waveform trajectories in k-

space that have reduced instantaneous bandwidths while in some manner either 

simultaneously or sequentially subtending a larger bandwidth cumulatively (e.g., over the 

aperture duration). This includes varying the geometry/collection aperture using a 

constant waveform (spatially invariant) and coupling waveform and position in some 

deterministic or random manner (spatially variant). 
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Figure 4.46. Example 2D Bistatic Apertures Mapped to k-space 
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images generated using multiple, orthogonal, CW waveforms collected over a full spatial 

aperture. The purpose was to cancel image sidelobes at one frequency using nulls 

generated at a second frequency, reducing sidelobe levels. The selection of tones was ad 
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in three dimensions, using Figure 4.45, where the lower frequencies “nest” within the 
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 (4-62) 

where  and =j2r(cos()). In this approach each tone is constant over the 

aperture. 

We extended this approach into three dimensions and over a more general frequency set 

to assess the image improvement using a limited set of tones. This was done by 

generating images over a 2:1 frequency band (400-800 MHz) in 5 MHz steps and then 

examining coherent combinations of 2, 3 and, in a single instance, 4 tones. The collection 

apertures were full (1 deg sample spacing in azimuth and elevation) monostatic 

hemispheres. The 2:1 frequency band was judged a sufficiently stressing upper bound for 

the system antenna. Image quality parameters of resolution, peak and average sidelobe 

level were determined. The goal was to identify the “best” combination using minimum 

entropy as the metric from the 4950 (2-at-a-time), 161700 (3-at-a-time), and 3.92E+06 

(all cases) combinations. To facilitate the evaluations the PSF responses were computed 

only for cardinal axis. The work here was reported in greater detail in [95] and [98].  

The results are presented in Table 4.5. The baseline, single frequency aperture image 

metrics are given along with the improvements realized for the best combination of 

frequencies from the 100 frequencies employed. These results demonstrate that a sparsely 

populated k-space does offer improved image quality relative to a single tone. Resolution 

most obviously benefits, dominated by the higher frequency contribution. It was hoped 

that a greater improvement in the elevation sidelobes might have been realized. A brief 

effort was made to apply a taper to the elevation integral in an effort to improve the 

performance, without any measureable success.  

It should be noted that during this process the citation in [91] was found which was a 

more rigorous, two dimensional evaluation of this approach. Using the closed form 2D 
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Table 4.5. 3D Monostatic Image Quality Improvement Using Multiple Narrowband 

Tones 

solution (see eqn. 4-6) permitted the use of more tones and allowed several tone selection 

strategies to be evaluated. The results show significant reduction in sidelobe level. 

However, the spatial extent of the sidelobe response may remain problematic when 

imaging scenes with high dynamic range. 

4.8.2 Spatially variant waveforms. Several examples are considered here; the first two 

are adapted from research into improving the collection time of Magnetic Resonance 

Imaging (MRI) images: the rosette and the spiral trajectory [67]. The technique is adapted 

to RF by modulation of the carrier waveform as a function of time/angle over the 

collection aperture. The potential for these methods is explored over a 2D monostatic-

only aperture with the operating bandwidth constrained to a 2:1 wavelength band. The 

rosette trajectory in two dimensions is given by 

      12cos5.0 minmaxmin   pNffff   (4-63) 

where Np defines the number of cycles (periods) over which the full frequency range 

varies over the aperture, and fmax and fmin define the frequency extrema, bounding the 

aperture area in k-space (Figure 4.47a shows a 16 period rosette), and  the instantaneous 

aperture angle which is coupled to the frequency switching. The aperture is sampled at 1 

degree increments. 

Unlike the MRI, the monostatic tomographic aperture with finite wavelength cannot 

produce the null wave number (k=0) so the RF rosette oscillates between min and max. 

Aperture

Resolution (FWHM, m)

X Y

Peak SLL (dB)Average SLL (dB)

Baseline

Three Frequency

Two Frequency

0.069 0.069

0.065 0.065

0.156 0.156

Z

0.133

0.123

0.306

X Y Z

-13 -13 -13

X Y Z

-26 -26 -26

-33.9 -33.9 -30.6 -18.1 -18.1 -14.7

--- --- ----35.9 -35.9 -30.2



117 

 

 
Figure 4.47. Rosette Trajectory and 2D PSF 

With this waveform the instantaneous bandwidth is CW but the cumulative bandwidth 

over the aperture is ultrawide. The resulting PSF is shown in Figure 4.47b. Cases run with 

a few periods, but not shown, had quadrant-like regions of high and low sidelobes. As the 

number of periods increased the sidelobe level becomes more uniform, though this is a 

limited observation as the greatest number of periods examined was 16. Figure 4.47c and 

d are cuts of the PSF along cardinal and main diagonal cuts. Image metrics are listed in 

Table 4.6.  

The relative performance of the rosette, compared to the CW waveform can be seen in 

Figure 4.48. Here we contrast CW with three rosette periods (4, 8, and 16 periods per 

orbit) in three dimensions. The left half of each plot is on an expanded horizontal linear 

scale to depict image artifacts resulting from the waveform while the right half gives finer 

detail close-in to the main response lobe. The space-frequency trajectories are constructed 

by repeating the number of rosette periods each elevation position, where an idealized, 
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hemispherical collection aperture is defined which uniformly samples in azimuth and 

elevation relative to the scene coordinate frame. The phasing of the rosettes is constant at 

each elevation position, though this is another degree of freedom for potential future 

study. The resolution achieved with the rosette trajectory in three dimensions relative to 

the CW case was degraded, as were the X-Y plane sidelobes. However, the rosette did 

yield an improved peak and average sidelobe level along the Z dimension. Results are 

summarized in 2D in Table 4.6 and in three dimensions in Table 4.7. 

 
Figure 4.48. Cardinal Axis Cuts of Rosette Space-Frequency Trajectory in Three 

Dimensions 

The second example of space-frequency trajectory is the spiral trajectory, also from [67]. 

Here a series of tones, or spectral components, are continuously tuned, in parallel - 

representing turns around the spiral - as a function of angle. The number of simultaneous 

components is the degree-of-freedom. The spiral trajectory is constructed by radiating at 

each spatial sampling position a single pulse envelope of multiple, offset carriers. The 

trajectory is defined by an Archimedean spiral (r=a+b). The spiral separation given the 

number of spirals (Ns) is 

      (4-64)  

with kup=/cFmax and klow=c/Fmin. With this the k-space trajectory is, in two dimensions and 

isp the spiral index 

    (4-65) 
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For this investigation the waveform was not a CW, but rather a 1 MHz bandwidth (1 sec 

duration), simple pulse envelope on a carrier. This is essentially a number pulses 

simultaneously transmitted with center frequencies a progressive value of angle. With 

multiple frequency offset narrowband pulses the spectrum is 

  







spN psp

psp

Rikk

Rikk
kkS

)),((

),(sin
),( 0,




     (4-66)  

The return from a point scatterer at range r0 is given, in the spatial frequency domain, by 

    (4-67) 

Figure 4.49 is presented in the same format as for the rosette case; a) presents the 

trajectory in k- space for the lowest frequency component (of the five) and, b) the PSF 

presented as a surface plot. The spiral demonstrates a very nice, symmetrical PSF with 

sidelobe structure improved substantially over the CW case. Figure 4.49c is a radial cut, 

while Figure 4.49d is an extended cut along the Y=0 PSF axis. Here the effects of the 

 
Figure 4.49. 2D Spiral Trajectory in k-Space and Reconstruction Results 
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sparse frequency aperture can be seen through the presence of the regular sidelobes. Also 

noted is the ambiguous phase response limit (Section 4.7). Image quality metrics are 

summarized in Table 4.6. 

We define a third space-frequency trajectory, this of a random frequency, envelope 

modulated carrier. A uniform random draw is carried out at each spatial sample position. 

The frequency extent (total bandwidth) of the waveform set is common to the examples 

above. The random frequency waveform was pulsed with 1 MHz bandwidth using 

frequencies defined by 

  .1,0),( min, FBWrndBWfS      (4-68) 

The k-space mapping for such an aperture, in two dimensions is exemplified in Figure 

4.50. This space-frequency trajectory was evaluated in three dimensions. 

 
Table 4.6. Image Properties of Example Rosette and Spiral Apertures in Two Dimensions 

  

Figure 4.50. Two Dimensional Example – Random Frequency vs. Position 

The random waveform and the spiral results are graphically depicted in Figure 4.51 in the 

same format as Figure 4.48, with the X and Y axis response plotted in Figure 4.51a and 

Aperture

Resolution (m)
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ISLR (dB)

Peak SLL 

(dB)
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(dB)
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0.181 0.181 -4.0 -9.3 -17.6
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the Z response in Figure 4.51b. These results show a much more rapid decrease in 

sidelobe level relative to the baseline CW waveform. This would produce a better image 

as the contract would improve with lower sidelobes. It was a surprising result that both 

the spiral and random waveform responses virtually overlay one another. As in Figure 

4.48, the simulated scatterer was positioned at (1, 1, 1). Both waveforms were further 

explored in which the spatial analysis extent was expanded, looking at both waveform 

and sampling artifacts when there is no harmonic or periodic waveform dependencies.  

 

 
Figure 4.51. 3D Principal Axis Cuts of Spiral and Random Space-Frequency Trajectory 

The results are shown in Figure 4.52. The random space-frequency trajectory results are 

in Figures 4.52a and b with the spiral waveform (5 pulse frequencies) in Figures 4.52c 
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and d. Interestingly, the sampling phase artifact is not observed in the X-Y results for 

either waveform with the 1 degree sample spacing in elevation visible. Numeric results 

for all three space-frequency trajectory types are summarized in Table 4.7. These results 

were calculated from the first null out to 6 meters for the close-in sidelobe summary, and 

from 6 meters out to 15 meters for the far out sidelobe summary. Resolution, as can be 

seen in Figures 4.48 and 4.51 is largely unaffected. Z axis results are all very similar and, 

on average 2.5 to 3 dB better than the CW baseline and also similar in form to the 

 

Figure 4.52. Random and Spiral Waveforms – Responses over Expanded Spatial Range 

pulsed results shown in Section 4.4. The greater frequency content of the wideband 

pulsed waveform contributing to a smoother response with Z position (e.g., Figure 4.38) 

than the sparse waveform results in Figure 4.51. The far out sidelobes are biased high  

Trajectory X,Y Ave. SLL Z Axis Near SLL Z Far out SLL 

Baseline (CW) -26.68 dB -23.85 dB -37.58 dB 

Rosette 4 Periods -22.29 dB -26.31 dB -39.51 dB 

Rosette 8 Periods -27.07 dB -26.31 dB -39.51 dB 

Rosette 16 Periods -26.95 dB -26.31 dB -39.51 dB 

Spiral 5 Freqs. -28.75 dB -26.02 dB -39.51 dB 

Spiral 10 Freqs. -28.73 dB -26.02 dB -39.51 dB 

Random Freq. -28.71 dB -25.93 dB -38.10 dB 

Table 4.7. PSF Metrics Summary of Space-Frequency Waveforms- 3D 
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because the calculated results were clipped at -40 dB (relative to the peak response) prior 

to the metric calculation. The uniformity of the Z axis results was unexpected, with all 

cases nearly overlaying. 

Finally we present three dimensional views of the reconstructed point spread functions for 

the three space-frequency trajectories presented here. Figure 4.53 presents contour plots 

from the principal planes. 

 
Figure 4.53. Principal Plane Contour Visualization of Reconstructed IPR 

4.9 Doppler-based Projections and Reconstruction.  

Sensor configuration, probing modality and phenomenology all contribute to the form of 

the measured projections and hence tomographic reconstruction. In prior sections we have 

detailed plane wave, spherical (circular) and ellipsoidal (elliptical) projections. Others 

exist as well, for example fan beam projections in real beam, scanning applications [87]. 

In Section 4.1 we described an array technique wherein a linear array of elements which 

was sequentially positioned around a collection aperture. Combination of simultaneous 

b) Random Frequency

a) Rosette 8 Periods b) Spiral 5 Frequencies
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measurements, in this pseudo-monostatic geometry, from all elements formed the basis 

for back projection reconstruction. In this section we examine a variation of this method 

but one in which we use sequential measurements to create a synthetic aperture based on 

Doppler-principles. 

For an elevated radar system moving relative to and illuminating the ground there is a well 

known relationship between the Doppler frequency of a the return from a fixed scatterer 

and its geometry relative to the velocity vector of the platform [99]. The clutter Doppler 

shift of a point scatterer, is given by 

   deprsqu

plat

dop

V
f 


cossin2 int     (4-69) 

where the squint angle (squint) is measured from the normal to the velocity vector and 

depr the depression angle from the local horizontal at the platform (level flight). 

It is common to represent the mapping of the lines of constant Doppler (isodops) as 

hyperbolas [99] on a plane parallel to (for level flight) and below the moving platform. 

For the development of the integral (projection) contours we need to express the 

dependency in spatial terms: test pixel and platform positions relative to a scene-based 

coordinate frame. The development of Doppler-based projections is based on the 

geometry in Figure 4.54. The geometry is presented in two dimensions and is readily  

 
Figure 4.54. Analysis Geometry for Doppler-based Projections 
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extensible to three dimensions. Both scene-based and platform centered coordinate 

systems are shown with elements identified by subscript. In the left hand drawing (Figure 

4.54a) both the scene geometry and SAR geometry are shown. The SAR geometry is 

rotated by angle  with respect to x, representing the angle to the midpoint of the 

synthetic aperture. The synthetic aperture angle is denoted W: as distinct from the 

tomographic aperture angle of 2. Figure 4.54b defines the tomographic variables: Lr is 

the distance from radar to point (xs, ys) which is defined by (r, ) in scene-based polar 

coordinates, and  the angle between the synthetic aperture boresight and (xs, ys). The 

variable t represents the normal from the normal to the synthetic aperture, passing through 

scene center. The tomographic aperture therefore contains a series of measurements 

representing the outputs from SAR-based subapertures. 

Beginning with the two-dimensional case (el =0), we require the projection to be 

expressed in terms of the scene coordinate frame. Writing the azimuth angle in SAR 

coordinates gives.  
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    (4-69) 

If the position of the center point to a specific synthetic subaperture in scene coordinates is 

(x
0
, y

0
) then we can find the SAR frame coordinates (x

SAR
, y

SAR
) of a point in the scene (xs, 

ys) by 
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where R() is a rotation matrix, with as  defined in Figure 4.54. Consistent with back 

projection filtering (4-70) is converted to polar coordinates with the substitutions 

(x
0
,y

0
)=(Rorbitcos(), Rorbitsin()) and (xs, ys)=(rcos(), rsin()). With these substitutions 

and some algebra (4-70) becomes 
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With (4-71) then (4-69) becomes  

 


sin2
plat

dop

V
f       (4-72) 

where = atan(rsin()/(rcos()-Rorbit). Figure 4.55 was created from (4-72) and 

demonstrates that the points of constant Doppler are, in two dimensions, linear, radiating 

as spokes relative to the platform over the scene. Each color represents a different cross 

range resolution cell based on the coherent dwell. When performing Doppler processing, 

the essence of SAR processing, spatially unresolved points of constant Doppler combine 

in a single cross range response. The ensemble of filters for a subaperture produces the 

Doppler-based projection. This is indicated by the single, unweighted filter response 

overlaid on Figure 4.55. 

 
Figure 4.55. Line Integral/Projection Shape for Doppler-based Sampling 

The equation for the integration contour that describes the locus of points of constant 

Doppler is realized directly from (4-72), or 

 sinrLt        (4-73) 

where Lr is defined as in Figure 4.54 and  from (4-72). Because the loci of constant 

Doppler are dependent on angle relative to the SAR subaperture midpoint, the rays are 

divergent. Thus this reflection geometry also parallels that of the fan beam reconstruction 

problem [87]. 
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The signal model follows from Soumekh [100]. Referring to Figure 4.54a we have 

defined a local, Cartesian, SAR coordinate frame relative to the scene coordinate frame. 

The SAR frame has origin located on the collection aperture with ySAR tangent to the 

circular path, positively oriented, as shown. We define K uniformly spaced (equiangular 

relative to scene coordinates) sample points along the circular motion segment which are 

grouped in sets of n corresponding to a specific subaperture. The total angle subtended by 

the SAR aperture is W. The local SAR frame origin is at angle  with respect to the scene 

coordinate frame and represents the midpoint of the subaperture midpoint.  

The range as a function of time to a specific scatterer at (xs, ys) in scene coordinates, after 

rotation into SAR coordinates (xSAR, ySAR) and motion compensation to the line 

representing the linear SAR subaperture (Figure 4.54a) is 

   22
nSARSARn uyxR      (4-74) 

where un is the radar position along the subaperture (-0.5L < un < 0.5L). The geometry is 

defined such that the scatterer position is at constant xSAR position over the synthetic 

aperture. Equiangular sampling projects onto the linear aperture in this geometry with a 

maximum difference of 0.18 rad; receive data is resampled to uniform along track 

spacing, consistent with [100]. The scattered signal is then 

      














 
22

00 2expexp),( nSARSARn uyxkjtjts 


   (4-75) 

where  is the scatterer cross section (dropped in what follows for convenience), 0 the 

carrier frequency and k0 the associated wave number. Taking the forward transform with 

respect to the along track dimension of (4-75) after down conversion to baseband gives 
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    (4-76) 

with 2L the length of the subaperture. This yields [100 page 68]  
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The nonzero range of ku for a specific point scatterer in (4-77) is  
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whereas the range of ku is defined by the scene size (here a 100 m radial distance is 

applied) so that min(ku)= 2k0sin(tan
-1

(Rscene/Rorbit)). 

Focusing occurs relative to scene center. The signal model contains an along line of sight 

from subaperture center to scene center term (independent of position along the linear 

subaperture) wherein the projections reconstruct along t, normal to the radial. This term is 

the projection of xSAR onto the radial and is a function of subaperture angle ().  








 


pu xkkj

u ekR

22
04

)(      (4-79) 

In equation 4-79 the term xp represents the x position in SAR subaperture coordinates of 

the pixel under reconstruction. Reconstruction is performed using (4-7) with the integral 

contour t from (4-73). For each subaperture the complex conjugate of (4-79) is multiplied 

with (4-77) before the back projecting (inner integral) is evaluated.  

The specific case evaluated employed an orbit radius of 1000 m and platform speed of 25 

m/sec. The 2 m cross range resolution required an aperture time of 7.45 sec (a single orbit 

would require ~253 seconds) at the 400 MHz frequency used. The sample rate was 

266.845 Hz resulting in 2000 along track sample points, corresponding to an aperture 

length of 187.375 m. Subapertures were formed at 1 degree intervals; an equivalent arc 

length of 159.155 m, so a slight overlap of samples between adjacent subarrays was 

employed. The wavenumber range used was based on a scene size of + 100 m with the 
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isotropic scatterer located at (25, 1) in scene coordinates. Sample points were spaced /20 

for a smoothly reconstructed profile.  

Doppler-based reconstructions along the scene cardinal axes, passing through the 

scatterer position are shown in Figure 4.56. Overlaid on the X and Y axis cuts is the 

closed form result for the 2D CW aperture. We see good agreement, with a slight offset of 

the sidelobe peaks relative to the Bessel function result.  

 
Figure 4.56. 2D Aperture Reconstruction using Doppler-based Projections 

Note that the derivation and results shown in this section correct an error that was 

included in the paper presented in [101]. The error used an incorrect expression for the 

forward transformed phase history; significantly under-predicting the resolution. 
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Chapter 5 

Digital Broadcast Signals as Bistatic Illuminators for 

Tomography 

5.0 Introduction. 

In the tomography development in earlier sections the analysis specifically addressed 

operation with radar waveforms known a priori; whether monostatic or bistatic. These 

“for-purpose” waveforms were pulsed and continuous wave, and with or without the 

additional modulations commonly used to increase waveform energy (via pulse duration) 

without sacrificing bandwidth. In Section 4 we demonstrated the use of ensembles of 

discrete tones, Doppler-based projections, and coupling of waveform with aperture 

geometry to fill in k-space such that an improved point spread function, e.g., lower, 

spatially-constrained sidelobe levels, could result while maintaining resolution as the 

main figure-of-merit. Here we extend the tomography application from controlled 

waveforms to exploiting emitters-of-opportunity which generate modulated, continuous 

wave signals which are not known a priori (except for class descriptions) and the 

additional considerations associated therein. 

Significant active research into bistatic radar applications has demonstrated the 

exploitability of high power commercial transmitters (digital television and digital 

broadcast radio) for surveillance. Transmitters are available in quantity, are relatively 

widely dispersed, use stable clocks for generating the signal(s), and exhibit high ERP. 
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These features allow radar research with affordable, receive-only electronics such as the 

software-defined radio/radar (SDR). The preponderance of the work has been performed 

against moving targets from stationary receivers using terrestrial sources. e.g., [23]-[25] 

and [27]-[29]. However, imaging has been demonstrated using airborne receiver and 

ground based transmitter in [64] and spaceborne emitters in a synthetic aperture context 

with a stationary receiver [102], [103] and [104]. ISAR imaging research has also been 

conducted; fixed transmitter and receiver as described in [105]. Example programs which 

employed an airborne (moving) receiver are [62] where clutter measurements based on 

digital broadcast radio were obtained, and [106] where detection of moving targets from 

an airborne platform was investigated with a multi-channel receive system. SAR imaging 

using an airborne receiver and ground based digital television was reported in [64] and 

[65]. 

A key attribute of this type of bistatic radar, and in distinct contrast to the prior chapters 

where a known, pulsed waveform was employed, is the necessity of creating a template of 

the transmitted waveform (which is not known a priori), measured along the bistatic 

baseline via a reference or auxiliary antenna. The signal from the direct path is cross 

correlated with the signal(s) received from the scattered or bistatic path via the main 

antenna in order to develop a measure of scatterer delay: the range difference. This 

process, often referred to as ambiguity function processing,  explored in detail in a later 

section, is analogous to a pulse compression process as the waveform bandwidth is 

realized in a resolution sense, there is coherent processing gain, and the effects of 

platform motion during the “pulse” necessitate consideration and the narrowband 

assumption can begin to weaken.  

This chapter covers the specifics of the digital television waveform used in the United 

States as applied to bistatic radar in general and bistatic three-dimensional tomography 

specifically. Because of the random nature of the terrestrial digital television signal, the 
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random nature a combination of program encoding and the channel format/modulation; 

an analytic waveform model is first described which is used for the development of 

processing algorithms and image reconstruction evaluations to assess performance 

potential. The chapter then applies the narrowband approximation and the move-stop-

move model to develop a signal model which is reconstructed using filtered back 

projection. We follow this with the exact solution taking into account platform motion to 

allow longer waveforms or higher platform speeds which violate the narrowband 

assumption. We finish with the design, development, test, and analysis of the 

experimental radar used in flight test that demonstrates the principles developed herein.  

5.1 DVB-T US Domestic Protocols (HDTV). 

The standard modulation for digital television in the United States (HDTV – High 

Definition Television) is termed 8VSB which was defined by the Advanced Television 

Systems Committee (ATSC). 8VSB is an amplitude modulation scheme using 8-level 

vestigial sideband, digital modulation [107], [108], and [109]. The total modulation 

scheme consists of a base transport packet of 187 bytes which are randomized using a 

pseudo-random bit stream to produce a noise-like spectrum and reduce interference to 

NTSC channels. This step is followed by forward error correction and application of 

Reed-Solomon encoding. This produces a 20 byte data block that is appended to the end 

of the 187 data bytes.  Trellis encoding (8 states) follows then the segment synch and 

frame synch multiplexing; segment synch replaces the original MPEG-2 synch byte 

which is removed after the synchronizer. The pilot tone is inserted by adding a fixed 

offset to the Trellis encoder states, followed by vestigial sideband modulation (partial 

suppression of one sideband), up conversion, power amplification and filtering. There is a 

closed loop feedback function which can monitor the radiated signal. This allows 

developing pre-corrections to compensate for the transmission process. The 8VSB 

modulation carries a symbol rate of 10.76 Mbaud, a gross bit rate of 32 Mb/s, and a net 
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bit rate of 19.39 Mb/s of usable data. The use of forward error correction codes enable the 

lower net bit rate and results in the nominal spectrum with a data bandwidth of 5.38 MHz. 

The structure of the waveform (magnitude) spectrum is depicted in Figure 5.1a, on a 

linear scale. Key features are the flat response over the central 4.76 MHz of the 6 MHz 

channel allocation and the presence of the pilot tone at 2.691 MHz below the center of the 

channel allocation, 0.309441 MHz from the channel lower (allocation) bound. There are 

three variations of the waveform spectrum dictated by an emissions mask: a primary 

commercial version (full service transmission emitter limits), intended for application to 

high power commercial operators. The second (stringent emission limits) and third 

(simple emission limits) have identical shape in the passband, differing only in the out-of-

band sidelobe levels and shape, and are applied to low power repeaters which 

complement the full service transmitters to overcome line-of-sight masking. The structure 

of the full emission mask is shown in Figure 5.1b [109], with the sideband emissions 

masks, stringent and simple, overlaid (less restrictive sidebands). Emission amplitudes are 

referenced to a 500 kHz bandwidth and must be less than the emission levels indicated. 

The regulatory metric for signal level is dB relative to total allocated channel power or 

dBDTV. The work herein is concerned exclusively with the full service mask. 

 
Figure 5.1. U. S. 8VSB (HDTV) Waveform Spectrum and Mask 

b) US 8VSB Emissions Masksa) US 8VSB Channel Structure
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An example HDTV data set is presented in Figure 5.2. Figure 5.2a is a single power 

spectrum for an 80 sec aperture time (12.5 kHz resolution); while a waterfall spectrum 

representing a 0.5 second data segment composed of 50,000 contiguous sample windows, 

each also 80 sec long, is shown in Figure 5.2b. The signal examples demonstrate a 

temporally uniform, as well as spectrally white, signal (excepting the presence of the pilot 

tone). The time interval was selected randomly. 

In the time domain the complex voltage signal has clear Gaussian tendencies as indicated 

by the amplitude and phase histograms in Figure 5.3. The data set, burst duration and 

 
Figure 5.2. Spectral and Temporal Properties of HDTV Signal 

broadcast channel (frequency) used for Figure 5.3 being different than that of Figure 5.2. 
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noise. To define the edited filter extent around the pilot tone the filter count was increased 

until no noticeable contribution to the response around zero delay was observed (a lesser 

filter extent produced autocorrelation residuals which perturbed the shape of the near zero 

delay response) and the close in sidelobes of the autocorrelation were equivalent to the 

expected level for a noise-like waveform. The mean close-in sidelobe level in Figure 5.4 

is -35.3 dB. The equivalent number of chips, derived from the waveform bandwidth and 

burst duration) for this sample is 4664 or 36.68 dB. Processing a longer sample set 

(10000 bursts, different collection run) yields an average sidelobe level of -36.07 dB 

(again after pilot tone removal).  

 

Figure 5.3. Sample HDTV Signal Statistics in the Time Domain (including phase) 
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selected in time are included for illustration. The second Figure (5.5b) contains estimates 

of the resolution based on the full width, half maximum width of the magnitude-squared 

of the autocorrelation. The nominal 3 dB bandwidth suggests a resolution on the order of 

55.7 m. However the sample mean of the results in Figure 5.5b (estimation error less than 

0.3 m at SNR=40 dB) yields a value of 49.78 m.  

 
Figure 5.4. HDTV Autocorrelation Example 

 
Figure 5.5. Demonstration of Time/Waveform Dependent Resolution 

5.2 Simulating the HDTV Waveform. 

As we saw in Section 4, the filtered backprojection-based, reconstructed IPR resulting 

from purpose-designed waveforms depended both on the operating frequency and the 

waveform modulation. CW waveforms yielded nearly the same resolution as finite (large 

fractional) bandwidth waveforms (taking into consideration the highest frequency in the 

waveform, not necessarily the carrier), while the spatial extent of the sidelobe structure 

and the rate of sidelobe roll-off with radial distance from the steered (focus) pixel/voxel 

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

Delay (sample number x 104)

L
o

g
-m

ag
n

it
u

d
e 

S
q

u
ar

ed

a) Sample HDTV Autocorrelation 

Delay (sample number x 104)

-60

-50

-40

-30

-20

-10

0 0.05 0.1 0.15 0.2 0.25
L

o
g
-m

ag
n

it
u

d
e 

S
q

u
ar

ed

0

b) Zoomed View 

W
av

ef
o

rm
 R

es
o
lu

ti
o
n

 (
m

)

46

48

50

52

54

0 10 20 30 40

Sample Burst Number

b) Sample Full-width, Half-max.(power) Resolutiona) Random Selection of Mainlobe Responses

0

0.2

0.4

0.6

0.8

1

Delay (sec)

-0.2 -0.1 0 0.1 0.2-0.2 -0.1 0 0.1 0.2

burst 1

burst2

N
o
rm

. A
u
to

co
rr

el
at

io
n
 M

ag
.

main

ref



137 

 

depended on the waveform modulation and bandwidth (cf section 6.1.3.2). In analysis and 

simulation, it was convenient that these waveforms could be expressed as relatively 

simple mathematical functions, even though, with the exception of the circular, two 

dimensional, monostatic aperture with CW waveform, the generation of the tomographic 

IPR with arbitrary collection cannot be accomplished in closed form (though solutions for 

several specific geometries are found in [19]). 

The pulse compressed/match filtered HDTV waveform exhibits properties strongly 

reflective of noise waveforms. This includes a sharp, unambiguous, correlation peak and 

(relatively) uniform, but random, time sidelobe levels. This assertion is also borne out by 

the statistics of the signal as shown in Figure 5.3. In this section we develop a functional 

approximation of the HDTV waveform after compression. We then use the move-stop-

move approximation to reconstruct the point spread function from an isotropic scatterer 

(as in Section 4). Suitability of the approximation is demonstrated by comparing the IPR 

from high fidelity waveform simulation to the approximation. The purpose of the 

functional approximation is to support the analytic development of the exact solution 

incorporating the effects of platform motion during pulse compression and reconstruction. 

A key difference from Section 4 will be the generalization of the bistatic collection 

geometry. There we evaluated bistatic geometries with transmitter and receivers in 

uniform circular or spherical motion (if moving) and that the image scene was at the 

center of motion. We now broaden the synthetic aperture to arbitrary bistatic geometries. 

The specific geometry evaluated relates to the flight test program described in Section 6. 

5.2.1 Without platform motion (the move-stop-move approximation). Figure 5.6 

illustrates the general bistatic geometry. The bistatic receiver executes a three dimensional 

path around the scene to be imaged (Figure 5.6a). A wide elevation beamwidth pattern is 

notionally projected in the geometry, and the stationary bistatic illuminator is at some 

distance outside the collection orbit. The projections thus formed are elliptical in two 
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dimensions (with foci at the transmitter and receiver), and ellipsoidal in three dimensions, 

as shown in Figures 5.6b and c, respectively. Image reconstruction in three dimensions is 

executed using filtered back projection given by 
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where S(k) is the forward Fourier transform of the projections over the reflectivity 

spatial distribution which includes the waveform influence, k
2
 is considered a window 

function and k the spatial frequency, x, y, and z are the voxel positions in scene-referenced 

Cartesian coordinates and r, in spherical coordinates, as shown in Figure 5.6c. The 

general bistatic projection contour, t(), is given in (5-2) where the distinction between 

two- and three dimensional apertures is, in addition to the elevation integral, the functional 

form of  [114] 
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In (5-2) Rr and Rx are the radii of the receiver and transmitter orbits (relative to scene-

based reference), respectively, and  is given by

)sin()sin()cos()cos()cos( iii   , where the subscript i represents transmitter or 

receiver as appropriate. The received signal or imaging path (emitter-to-scatterer-to-

receiver), or R1 + R2 is the range sum (Rs) and the direct path is the bistatic baseline (Rb). 

The move-stop-move approximation [100] assumes that the platform/radar executing a 

synthetic aperture is motionless during intervals of transmission and reception. The 

platform is positioned at successive sampling points, stops, and then resumes motion. 

Thus there are no waveform dispersion or distortion due to Doppler effects experienced. 

5.2.2 Continuous random waveforms. Passive radar based on 100% duty factor, 

opportunistic signals creates a template of the signal, received via a reference channel, 

which is correlated against the signal received in the main/surveillance/imaging antenna to 
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Figure 5.6. General Bistatic Imaging Geometry  

extract delay information along the bistatic path. This correlation is, in effect, a pulse 

compression operation and is given in (5-3) from [105], among many.  
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The waveform coherent processing interval is T, and Xs represents the main channel 

signal and Xr the reference channel. We can generally write both the transmitted and 

received waveforms as 
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where A(t) is the envelope of the signal modulated onto the carrier of frequency 0, C is a 

system transmission voltage scalar with C’ incorporating propagation and reception gains, 

and  is the time delay equivalent to range r. We can equivalently write 0=k0r. After 

down conversion to baseband and substituting the baseline range for the reference 

channel (direct path with no scene energy) and the main channel (without direct path 

contribution) are 
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In (5-5) Cs has absorbed the complex scatterer response and space loss for the main 

channel while Cr represents the direct path term. Substituting into (5-3) yields 
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Making the change of variable t’=t-Rs/c and substituting ’=r/c-t gives  
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with (’) the autocorrelation of the waveform envelope with delay referenced to the 

range difference R=Rs - Rb. 

The autocorrelation is also equivalent to the Fourier transform of the auto-power 

spectrum of the waveform complex envelope.  
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Reabsorbing the constants in (5-7) into (5-9) 
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with k as wave number and k0=0/c. 

Considering equations (5-6) and (5-10) there are two approaches to model the HDTV 

waveform used opportunistically: in the time domain or the frequency domain. In the 

first, there are two sub-options: 1) replicate the signal modulation process using MPEG 

formatted content segments as inputs and as described in Section 5.1, or 2) simply 

emulate the statistical behavior in the time domain with spectral shaping as mandated by 

regulation. In the frequency domain there are also two options: 1) emulate the statistical 
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variation over frequency (versus sample-to-sample as in the time domain), or use the 

ensemble average of the voltage spectrum. An advantage in the frequency domain 

approach is that the projection forward transform is not needed as a conditioning step that 

would be necessary if the data were time domain. In the search for a mathematically 

simple way to describe the underlying waveform, we look at both frequency domain 

approaches. 

We initiate the analysis using the frequency domain, statistical representation. Because 

the amplitude statistics are Gaussian-like in the time domain, a Gaussian model is 

appropriate in the frequency domain. The number of burst points may exceed the 

modulation bandwidth (in terms of independent sampling) but the spectrum envelope 

constrains the content. The voltage mask (magnitude) of the HDTV waveform is given by 

[108], and is altered to produce a baseband spectrum centered at 0 Hz as given by 
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where Fsym = 10.762238E+06, Fp = 309.441E+03, = 2BW/Fsym-1 and BW=6.0E+06. A 

baseband spectrum is constructed spanning + Fsample/2 centered at 0 Hz. The number of 

frequency points, with uniform spacing, is based on the sample duration. At each point 

(frequency value) a Gaussian random amplitude is draw from N(0, 1) and a uniformly 

distributed phase is drawn from the range [-, ]; intrinsic MATLAB functions are used. 

The burst process is repeated for each spatial sample position.  
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The synthetic tomographic aperture phenomenology was generated using the cylindrical 

spiral trajectory (Section 6.3 Flight Test Design) sampled at 1 degree increments 

(recalling the angular sampling dependence of the reconstruction ring-phase artifact, also 

from Section 4). The collection aperture spanned 200-1250 m in elevation at an orbit 

radius of 1.25 km. The scattered bistatic signal (587 MHz) is created with the idealizing 

assumptions of perfect isolation of the direct path from the signal path and that the point 

scatterer is isotropic. The sample rate used was 10E+06 complex samples/sec and an 

equivalent burst duration of 0.8 msec, intentionally selected to be less than the interval 

between successive spatial points such that no overlap of processed bursts results. This 

also limits the coherent gain realized via correlation and fixes the burst time sidelobe 

noise floor. Figure 5.7 depicts the impulse response (IPR) for a point scatterer located at 

(20, 20, 0) in both contour and perspective. The principal axis cuts for Figure 5.7 are 

shown in Figure 5.8 and illustrate the achievable resolution. Using the full-width, half 

maximum metric, the resolutions in each axis are: X and Y axes 0.12 m (about 0.2 

midband) and Z axis 0.46 m. Sidelobe levels match expectations for the bistatic geometry 

with only one platform moving (8 dB in X-Y and 13 dB along Z). We also assume for the 

initial image performance evaluation that there is perfect isolation between the 

illuminator and the main receiving antenna such that there is no Direct Signal 

Breakthrough (DSB). The implications of DSB (and impacts on sensitivity) and method 

for mitigation are addressed in Section 5.4. 

Figure 5.8 was initially an unexpected result given the random waveform nature. It is 

contrasted with the CW waveform at 587 MHz center frequency in the same collection 

geometry and sample interval in Figure 5.9, and is virtually identical (note: the CW case 

was truncated at – 40 dB and -30 dB for X and Z axes, respectively). No resolution 

differences were expected as the difference between the CW frequency and the HDTV 

channel upper edge is very small, but some effect was expected due to the random 
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Figure 5.7. IPR for Randomly Drawn HDTV Simulation 

 
Figure 5.8. Principal Axis Results for Randomly Drawn HDTV Simulation 

waveforms. However, considering the extent of the processed spatial window for 

reconstruction against the resolution of the waveform (roughly a 1:10 ratio) we are only 
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compressed mainlobe. This is explored in Figure 5.10 where the X axis was reconstructed 

out to over 100 m from the target pixel position. All parameters are the same as Figure 

5.8. Sidelobe levels roll off until the radius equivalent to the phase ambiguity radius is 

reached (at approximately 46 m). However no judgment can be made that the sidelobe 

shape is due to the random waveform. Indeed it is likely not when previous results are 

considered (e.g., Figure 4-40). 

 

Figure 5.9. Reconstruction Comparison: HDTV Simulation to CW 

 
Figure 5.10. Extended X-Axis Reconstruction 
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which is a pure Gaussian autocorrelation response. This also eliminates the slight 

variations in the response width from burst-to-burst. 

Using (5-11) we compute the autocorrelation analytically, starting from 

  



 dfefSR fj  22)(     (5-12) 

where we use R to distinguish from the pulse compression response (). The spectrum is 

effectively 0 outside the channel boundaries (|S(f)| > 3 MHz) and we can decompose the 

integral into three discrete terms  
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The first and third terms of (5-12) yield expressions of the form 
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with a change of variable and k and b constants. We use the double angle trigonometric 

identity 

)(sin21)2cos( 2 xx      (5-16) 

to arrive at a form found in integral tables 
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The second term is more straight-forward since at the peak to the channel response the 

magnitude is 1, resulting in  
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The form of the third term is nearly the same as the first term. Full derivation of the 

autocorrelation function can be found in Appendix A. The function resulting can be seen 

in Figure 5.11. The time sidelobes are seen, like the Gaussian case from Kulpa [31], to be 

much less than the limited sample duration HDTV signals (Figure 5.4).  

The bistatic tomography simulation from Figure 5.7 was modified by eliminating the 

random amplitude and phase draw, using only the spatial frequency weighted voltage 

spectrum as in (5-10). The results along the cardinal axes, compared to the Monte Carlo 

 Figure 5.11. Autocorrelation of the HDTV Power Spectrum – Closed Form Derivation 

results in Figure 5.8, are shown in Figure 5.12. The ensemble averaged spectrum results 

are offset in order to visualize the match. The Figure demonstrates that the reconstructed 

IPR may be accomplished without need to consider the random waveform nature 

(sidelobes from finite duration random signal do not contribute). The simulation uses the 

equivalent burst duration (frequency resolution) as the random waveform simulation and 

the same collection aperture.  

The closed form for the power spectrum (5-11) or autocorrelation (Appendix D) are both 

very unwieldy. Simulation of digital broadcast video using PN codes to represent digital 

broadcast signals was suggested in [111] and [112]. Specifically, Kouemou [112] 

indicates that as replication for white noise signal, in terms of correlation at the receiver, 

is, or can be, difficult to achieve, PN sequences can be used instead. Such sequences are 

deterministic waveforms which yield noise-like behavior and which are easily generated. 
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PN waveforms have good autocorrelation properties and high spectrum efficiency. We 

next examine ideal phase codes to emulate the HDTV waveform thereby allowing 

development more convenient closed form expressions for correlation in either the time 

or frequency domain.  

 
Figure 5.12. Reconstruction Using the Ensemble Average Method Compared to Monte 

Carlo Simulation 
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The baseband PN code is defined by [113] 

0

17 18 19 20 21 22 23
-50

-40

-30

-20

-10

0

X (m)

N
o

rm
a
li

z
e
d
 R

e
s
p
o
n

se
 (

d
B

)

Monte Carlo sim.
Ensemble Ave.

a) X Cardinal Axis Comparison 

-50

-40

-30

-20

-10

0

N
o

rm
a
li

z
e
d
 R

e
s
p
o
n

se
 (

d
B

)

Monte Carlo sim.
Ensemble Ave.

17 18 19 20 21 22 23
Y (m)

b) Y Cardinal Axis Comparison 

-40

-30

-20

-10

0 0.5 1 1.5 2 2.5 3 3.5
Z (m)

N
o

rm
a
li

z
e
d
 R

e
s
p
o
n

se
 (

d
B

)

Monte Carlo sim.
Ensemble Ave.

c) Z Cardinal Axis Comparison 



148 

 
















 


N

m

j

p

p
me

t

tmt
recttA

1

)1(
)(


    (5-19) 

where t represents time, tp is the code chip duration, and m has two states {0,} in the 

work here, but may represent an arbitrary number of code bits. Implicit in the use of (5-19) 

as the modulation is that the pilot tone has been filtered. The phase code produces a white 

(uniform, random) spectrum, in which individual filter voltages are Gaussian distributed, 

while the overall spectrum is modulated by the spectrum of the envelope of the code chip, 

a sin(x)/x response. 

Equation 5-19 is an idealized representation which assumed that sampling is perfectly 

synchronous with respect to the code chip. A more general representation from [38] is 
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   (5-20) 

where u(t) is the unit step function. Example spectra are shown in Figure 5.13 for both 

binary (5.13b) and hex bit (16-state, 5.13a) phase codes of length 1000. The codes are 

pseudo randomly drawn using MathCAD built in functions. The sample rate used was 50 

million complex samples/sec (MCS/s). 

 

Figure 5.13. Example Spectra and Compressed Pulses for PN Codes 
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Interestingly, Doerry in [111] has evaluated spectrum shaping of PN codes, as purpose-

designed radar waveforms, to achieve range sidelobes that emulate those of pulse 

compressed LFM signals. Though not applicable the paper represents an interesting 

approach to improve the application of phase-only codes. 

We start with the forms in (5-4) and (5-5) and substitute (5-15) to get  
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where * indicates complex conjugation and  is delay. Making the change of variable 
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  (5-23) 

A second substitution introduces a modified delay variable tprime=(n-m)tp- together with 

taking the complex conjugate and reversing the order of integration and summation  
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  (5-24) 

where R= Rs-Rb. Now the limits of the integral are changed from the full burst duration 

to reflect the code chip duration with the interchange integral-summation interchange. 

The products of the rect functions are nonzero when the ranges of the two functions 

intersect. This is shown in Figure 5.14. 

 
Figure 5.14. Rect Function Evaluation and Integral Limits 
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The two halves of the solution are  
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Evaluating the integrals yields 
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Reverse substituting for ’ and with some manipulation yields the final expression 
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  (5-27) 

The absolute value is used as the result is symmetrical with respect to the delay reference. 

The cross correlation in (5-27) is evaluated by performing a random draw on a uniform 

random number generator and performing the double summation with delay as the 

independent variable.  

Sample autocorrelations for the two code cases are also included in Figure 5.13c 

corresponding to the specific codes (when normalized) regardless of the phase code 

resolution, at zero delay. drawn for the power spectra in the same Figure. The mean 

sidelobe levels for these cases are -30.53 dB (16 bits) and -30.83 dB (binary) relative to 

peak. The rule-of-thumb is that the mean sidelobe level (magnitude-squared, relative to the 

peak response) is 1/N (1000 chips ~ -30 dB). We observe that the code phase resolution is 

not a dependent factor on the portion of the autocorrelation response of primary interest, 

only the chip duration. 

Equation 5-27 is used with the cylindrical spiral aperture (spiral vertical extent 200-1250 

m, 120 kts/63 m/sec with sample interval of 1 degree along-orbit and 1000 chip sample 
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burst duration) to evaluate the PN code as a surrogate for the HDTV signal. The cross 

correlation is evaluated using a unique code sequence for each burst and 100 lag terms 

retained (equivalent  range greater than scatterer range over the full aperture) and forward 

transformed to the frequency domain using a DFT. The results are shown in Figure 5.15. 

The Figure compares the PN code substitution for the HDTV signal with, again, excellent 

results. As with Figures 5.13, the results are offset vertically to visualize both sets of 

curves.  

For reconstruction we generally need only be concerned with the mainlobe portion of the 

correlation result. The distance over which we perform reconstructions are less than the 

resolution distance of the compressed waveform. Thus the steered positions in the back 

projection operation are all to positions where the range response is functionally well 

behaved (e.g., not random as in the time sidelobe region). Consider only the region 

between the mainlobe response first nulls. 

 
Figure 5.15. Reconstructed Cardinal Axes using PN Code Compared to HDTV Random 

Waveform Results (vertical offset is intentional) 
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This expression is exactly known, except for voltage scaling, mainlobe response (-

tp<R/c<tp)  

c
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RRrA /1),(


   for  .

c

t

c
R

p



   (5-28) 

centered on the range difference defined by the scatterer position. This defines a triangular 

waveform which approximates the full code correlation. The derivation of the forward 

transform, representing the frequency domain form of the projections for a point target, 

can be found in Appendix B. The result, to simulate the scattering phenomenology, is 
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     (5-29) 

where rp is the pulse length (one way). The details of the development of (5-29) can be 

found in Appendix B. We see from Figure 5.13 and (5-29) that the spectrum derived from 

the zero delay response lobe is equivalent to the ensemble average of the PN code 

performed in the frequency domain (as was done for the Gaussian noise waveform and the 

HDTV channel mask earlier in Section 5.2). This is also referred to as the Triangle 

response approximation. 

Using the same collection aperture we evaluate (5-29) in simulate the bistatic scattering 

phenomenology, again without the presence of the direct path signal, via reconstructing 

the IPR. The number of frequency points used in the initial evaluation (and published in 

[114]) was low (only 100) and resulted in higher than expected image sidelobes, and 

filled nulls, starting at about the 8
th

 sidelobe . That effort was repeated using a higher 

count of 1000 frequency points, with the results shown in Figure 5.16. This Figure 

compares the PN code, triangle approximation to the HDTV Monte Carlo simulation of 

Figure 5.7. As in Figure 5.12 the curves are slightly offset along the response axis for 

comparison.  
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In terms of the structure of the responses compared in Figure 5.16, we see virtually no 

difference. The two waveforms have subtly different spectral envelopes, which translate 

into slightly different mainlobe responses in the time domain. As a final test for the 

suitability of this approximation, we perform a reconstruction to parallel the range 

extended one in Figure 5.10. The results are presented in Figure 5.17. 

 
Figure 5.16. PN Triangle Approx. Compared to HDTV Random Waveform Results 

Qualitatively mainlobe and sidelobe reconstruction within the radius of the phase 

ambiguity artifact are equivalent (the radius is increased with respect to the monostatic 

case because the transmitter is stationary). Extending to the sidelobe region beyond the 

anomaly radius the sidelobe level is slightly lower using the analytic approximation. This 

comparison indicates that the Triangle approximation is well suited as a proxy for the 

random waveform. We apply it, and the time domain representation using the PN code, to 

the effects of motion on the bistatic imaging process that follow.  

The results presented in this section indicate that subtle differences is the shape of the 
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waveform result in subtle differences in the impulse response of point target 

reconstructions based on these waveforms. Again, as shown earlier, bandwidth is the 

dominant contribution.  

 
Figure 5.17. Extended X-Axis Reconstruction with Triangle Approximation 

5.3 Reconstruction with Full Platform Motion Incorporated. 

The move-stop-move approximation assumed that any platform motion is arrested while 

transmission and/or reception (or both) are exercised, followed by translation to the next 

spatial sample point. However, longer coherent processing intervals may be necessary to 

yield the sensitivity level necessary for image formation against small scatterers. As the 

burst duration increases, the possibility that the effects of platform motion can no longer 

be neglected arises and a (more) exact formulation is necessary for reconstruction without 

Doppler introduced distortions.  

5.3.1 Introducing platform motion dependence. In this section we include the effects of 

platform motion over the period of reception of the signal corresponding to a single 
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uniquely processed at only one spatial sample point. Also we do not address the presence 
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signal with the formulation in both the time and frequency domain developed in Section 

5.2 and Appendix B. We begin again with the general form of the transmitted waveform 

and the received signal when the motion of the platform modifies the received signal.  

tj
T etCAtx 0)()(


  and  )(0)()( 





tj

R etACtx   (5-30) 

The change in platform position between signal radiation and reception, or changes due to 

motion between the leading and trailing portions of the waveform are captured with the 

recursive delay function 

 .
1

  tR
c

     (5-31) 

The bistatic form of the delay function, which addresses one-way propagation, is given in 

(5-31). Rihaczek [32] and Skolnik [115] both follow the approach of Wishner and Kelly 

[116] in developing a non-recursive solution to (5-31) by expanding Δτ as a Taylor series, 

evaluated at an arbitrary but consistently applied point on the received waveform, and 

keeping the nonzero terms under the assumption of constant speed over the waveform 

duration. This implies all higher time derivatives are equal to zero. The result of the 

truncated expansion is that (5.31) becomes 

 t
c

R

c

r 
 0

      (5-32) 

where r
0
 is the initial range and R  the range rate: delay is a monotonic function of initial 

range and range rate.  

There is a second effect of motion and that is the distortion of the waveform complex 

envelope when employing matched filtering and the reference function does not include 

motion effects. Setting an acceptable phase error over the waveform duration at /2, 

Rihaczek [32] then defines that the effect on the waveform envelope of platform motion 

is negligible when the time-bandwidth of the waveform satisfies the inequality  

V

c
TB 1.0~        (5-33) 
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where T is the waveform duration, B the waveform bandwidth and V the platform (or 

scatterer)  velocity. The implication of (5-33) for the digital television signal is the 

coherent processing interval associated with the pulse compression process. This is shown 

in Figure 5.18 using a constant bandwidth with a variable coherent processing time 

increasing the time-bandwidth product. The coherent processing time for the imaging 

application is in tension between the time sidelobe levels, absent considerations on the 

leakage of the direct path signal into the signal channel (Section 5.4): levels are reduced – 

along with increasing sensitivity - as T increases, and the angular separation of spatial 

samples, which affects reconstruction phase ambiguity artifacts, is constant or decreases. 

The range of interest of the planned flight test (Section 6) is indicated in Figure 5.18 by 

the black oval. Rihaczek’s Rule (5-33) holds for those points which lie below the plotted 

dashed contour. For those points platform motion can be ignored. 

 
Figure 5.18. Time-Bandwidth and Platform Velocity Considerations for HDTV Signal 

The combination of (5-30) and (5-32), when satisfied, let us write the received signal 

envelope  

).()( 0ttAtA       (5-34) 

Here t0 is the arbitrary point on the received waveform (assumption noted above) and is 

typically assigned to the leading edge of the received signal. With (5-34) we can rewrite 

the received signal in (5-33), before down conversion, as  
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The development of the exact solution follows the approach used earlier but incorporating 
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(5-35). We form the signals in the main (imaging) antenna channel and the reference 

channel using the single scatterer model present only in the main channel and without 

reference signal leakage (Section 5.4). After down conversion and making the 

substitutions 0r0/c=k0r0 and  dopcR  /0
  (5-35) becomes 
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The signals received in the reference channel and the imaging channel are each given by 
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where the range terms and constants are as defined in Section 5.2. In (5-37) the Doppler 

terms ref and scat represent the frequency shift impressed on the received signals from 

platform motion, the temporal axis compression replaced by a simple shift. Note: 

equation 5-37 assumes that the two antennas share a common phase center. The 

magnitude of the Doppler is given by the projection of the velocity vector in the direction 

of the emitter  

)cos()cos( __ xmtrelxmtraz
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      (5-38) 

and, since the transmitter is fixed only the platform motion contributes. The angles in (5-

38) are defined in a velocity-vector referenced coordinate system centered at the receiver: 

the velocity vector defines the X axis. Y is defined in the plane of the local horizontal 

(orthogonal to the earth radial through the center of the vehicle). The Z axis is X crossed 

into Y, nominally the left wing. Translation about the collection aperture makes (5-37) 

and the main channel Doppler, functions of position. 

When the cross correlation is formed for compression using (5-3) with (5-37) 
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The signal channel (5-39) contains the cross-Doppler terms with time dependency 
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which, when letting Rs-Rb=R, can be simplified to 
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The expressions for the code sequence are substituted for the general complex envelope 

term before proceeding. Also, for notational convenience, the constants leading the 

integral are briefly omitted, yielding 
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As in Appendix A, the following substitutions are made. Let t’=t-Rs/c-mtp or 

t=t’+Rs/c+mtp and dt’=dt. At the same time, define -’ = Rs/c+ (m-n)tp-Rb/c-. Then (5-

42) becomes 
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Eliminating  so that only the primed time (t’) or delay (’) remain, taking the complex 

conjugate of the expression in the second (rightmost bracket), and rearranging the order 

of summation and  integration gives 
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Factoring constants from the integral 
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which will be included with the other constants (Zc) briefly dropped for notational 

convenience. 

Removing non-t’ dependent terms from within the integral and after some simplification 

we arrive at a form similar to (5-24) 
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The limits of the integral under the definition of the rect function range over the nonzero 

convolution of the two integrand terms. The limits 0 and T become –tp to tp as we 

constrain the solution to the nonzero correlation range of the delayed rect functions. 

Using 
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The nonzero convolution regime, as previously shown in Figure 5-14, has two cases 

based on the sign of ’. With this, as in Section 5.2, (5-46) is broken into two solutions (’ 

< 0) and (’ > 0) 
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In both cases it is required that pt . Evaluating the definite integral in (5-49) first 
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Substituting (5-51) back into (5-49)  
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The exponential terms not related to the PN code sequence (index) are expanded, then 

simplified, giving 
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With (5-53) inserted into (5-52) and defining  

  

 






















 


)3)(2/1()2/1()2/1(

4

2

2
sin

scatrefprefpscat jtnjtmj

refscat

prefscat

eee

t

K  (5-54) 

the solution is given (for ’>0) then has the same form as (5-27), or  
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With |’| < tp (as earlier) or 
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with 
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As indicated in (5-56) the Doppler-derived phase contribution is a function of delay and 

will be present in the combined, pulse compressed signal result. 
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Returning to (5-48) (’<0) and following the same series of steps as above we get the 

solution of the same form as (5-25) with the constant in (5-26) slightly modified as  
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with  as defined in (5-56). 

Equations 5-55, 5-56 and 5-57 represent the time domain solution using the PN code as a 

surrogate for the HDTV signal. We complete the analytic development in this section by 

constraining the temporal response to the interval plus and minus one code chip duration 

about the matched delay and develop the frequency domain Triangular approximation, 

which incorporates the effects of platform motion. In the time domain this expression is 

of the form (Appendix C equation C-10) 
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The derivation of the spectrum function with Doppler contributions can be found in 

Appendix C. The results in (5-55) to (5-58) are subjected to the same assumption as the 

move-stop-move case: only the dominant response is considered. The range response is 

delimited to R-tp to R+tp, eliminating the time sidelobe region or concentrating on the 

main response lobe. The spectrum for the signal component including motion is  
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where =1/(2c)(3ref-scat). As a final step, if we rewrite the sinc-squared term as the 

product of two sinc terms, factor a (-1) from the denominator -1(k-) and argument of the 

numerator and use the identity sin(-x)=-sin(x). The negatives cancel and we are left with 
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  (5-60) 

with =1/(2c)(scat -3ref).  

We see from the development above a dependence on both the Doppler impressed on the 

reference channel, which is necessarily different from the Doppler on scatterers within the 

intended image scene, and the main channel. The signal in the main channel contains the 

contributions from the myriad of scatterers in that channel while the reference channel 

contains, preferably, only the transmitted waveform (absent multipath). The Doppler 

contribution in the reference channel could be compensated prior to pulse compression. 

The derivation of the pulse compression product in this condition was found in Appendix 

D and in the time domain is 
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In the frequency domain the equivalent result is given by 
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   (5-62) 

We see in (5-60) two perturbation sources to tomographic reconstruction. Both are 

spatially varying, one a phase term. The first error source is a phase contribution which 

results in mismatch during reconstruction. This phase term has two components: one a 

function of position and the other related to burst time bandwidth. Equation 5-58 is 
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consistent with the move-stop-move result from earlier: when the platform speed goes to 

0 then (5-60) reduces to (5-59). The second distortion source is the envelope term which 

is very slightly shifted under the Doppler influence (the value of  is very, very small 

with the speed of light in the denominator). This is in contrast to the result in the time 

domain (5-56) where the Doppler contribution is a function of the code index and thus a 

function of time.  

The magnitude of the effect on image reconstruction in the presence of uncompensated 

platform motion can now be assessed. We have two approaches to model the impact 

which are relevant to the remainder of Section 5. We first illustrate the degree of image 

degradation resulting from platform motion while holding the time-bandwidth (TB 

product) constant. Spatial variations in the distortion are briefly surveyed with platform 

speed and constant TB product. Finally, the contribution due to TB product with constant 

speed is covered.  

Figure 5.19 presents the calculated point spread function realized based on using (5.58) 

without compensation and for the kinematic regime represented by the planned flight 

collection. A small, low speed, civil aircraft (Cessna 170) executing a cylindrical spiral 

trajectory with a time-bandwidth product representative of the planned collection. Three 

different airspeeds are run; 120, 240 and 360 knots (62, 124, and 185 m/sec). In order to 

keep the number of spatial sample constant (for run time considerations, only) the rates of 

climb were increased as a function of speed; 100, 200 and 300 fpm (0.51, 1.02 and 1.52 

m/sec) producing essentially identical sampling apertures (and the angle between spatial 

samples held constant at 1 degree). Maintaining a constant sample count also means that 

the density of vertical samples is approximately equal: the number of spiral orbits 

completed in the elevation aperture of 200-2000 m. The burst duration is 1.67 msec or 

TB= 10,000. With increasing speed the X-Y plane sidelobes are seen to degrade, relative 

to the peak response and the peak response shifts off the simulated scatterer position. 
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Slightly asymmetric sidelobes occur along the X cardinal axis with a more severe lobe-

splitting seen along the Y axis. The Z axis is largely unaffected but does show effects as 

the vertical component of platform speed increases. It should be noted that the simulation 

geometry used a test location different from that flown so geometry discussions here are 

relevant only to this analysis geometry. 

 

Figure 5.19. Reconstruction w/out Doppler Comp. – Dependence on Platform Speed 

Spatial variance in the reconstruction is seen in the next two Figures. In Figure 5.20 the 

points on the corners of a square are defined (constant radial distance from scene origin) 

and reconstructed without compensation. In this example the highest platform speed from 

Figure 5.19 was used (185 m/sec) with the same TB product (10
4
). The responses along 

the X and Y axes nearly overlay, matching the corresponding results in Figure 5.19. 
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However we experience a slight degradation in the sidelobe levels and resolution of the Z 

response for those voxels located at X < 0 relative to those (two points) in the plane 

positive half-space. Only the Z axis responses are shown.  

 
Figure 5.20. Reconstruction without Doppler Compensation, Z axis Only 

 

Figure 5.21 also examines spatial variation, this case we vary the radial distance from the 

origin along a line of constant polar angle. The flight condition and collection aperture 

used matches the two previous cases. Again the X and Y axis results are predominately 

unchanged (a slight increase in the Y axis lobe at the position of the simulated scatterer 

with increasing radial distance) but the lobe splitting is equally pronounced. Again the Z 

axis results show the most variation where sidelobe level decreases with increasing radial 

distance. 

 
Figure 5.21. Reconstruction without Doppler Compensation – Spatial Variation with 

Fixed Speed (185 m/sec) and Time-Bandwidth (10
4
) Z axis Only 

Finally, the effects of the coherent integration time are seen in Figure 5.22. Figure 5.22a 
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speed: three burst durations, incrementing by a factor of 10, were chosen to illustrate the 

effect. Processing runtimes were again the only consideration in depicting cardinal axis 

performance. The results in the Figure are based on the same geometry as the preceding 

graphs and a platform speed of 120 knots. The simulated isotropic scatterer was 

positioned at (20, 20, 0). Increasing the burst duration introduces the same effect as 

platform speed. Comparing Figure 5.22 to the X-Y plots in Figures 5.19 and 5.20 show 

the same trend. The increasing phase error introduced by motion results in peak response 

shifting with degradation in sidelobes along the X axis. Along Y we see the mainlobe 

response split into two lobes as TB increased. The generation of Figure 5.22 is different 

than the previous three cases in that direct signal leakage into the main channel was 

enabled. A fixed, low side/backlobe level was used over the full aperture. More on this in 

the next Section. 

The differences between the X and Y axis results in the presence of uncompensated 

Doppler were unexpected. The Doppler contribution to the phase mismatch is dominated 

by the direct path contribution in the reference channel (again this section has assumed  

 
Figure 5.22. Reconstruction without Doppler Compensation – Dependence on Coherent 

Integration Time/TB Product 

perfect isolation between main and reference signals). This is unsurprising given that the 

main antenna is oriented at 90 degrees to the flight vector. We make a cursory 
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examination to the root cause or dependency of the mechanism for the different responses 

experienced along X and along Y before proceeding to compensation. Figure 5.23 is 

composed of several plots which represent the underlying processes as calculated for a 

single orbit of the multiple orbit cylindrical spiral. Figure 5.23a shows scatterer and direct 

path Doppler versus angle, demonstrating the observation above. Two speeds are shown 

for both the direct path (solid curves) and the scattered path (dashed curves), referenced 

against a single point in the scene (20, 20, 0). The Doppler-induced phase distortion, for 

this same point, which is the real argument of the second exponential term in (5-59), as a 

function of both platform speed (for fixed TB product) and TB for fixed speed, is shown 

in Figure 5.23b. The change in total phase due to position over the aperture is much 

greater than Doppler, though both increase with radial distance from scene origin. It 

should also be noted that the degree of reconstruction mismatch is less evident when the 

individual runs, along each axis, are self-normalized then displayed on the same scale. 

Examples which illustrate the phase error in X and Y are shown in Figure 5.23c. 

In Figure 5.23, four points are symmetrically defined, along the cardinal axes, with 

respect to the scatterer. The phase error due to the spatial-only mismatch between each 

position and the scatterer position is given by the solid curves. This mismatch in the no-

Doppler case is anti-symmetric along both axes (sign). When Doppler is introduced the 

response along +X has increased magnitude while –X is compressed and the error along 

Y shifts in angle in opposite directions depending on the half-plane that the point lies in, 

producing the shifted peak response upon reconstruction  Figure 5.23d illustrates the 

locus of the minimum total phase error, the value along X corresponds to the 

reconstruction peak in Figure 5.19a. The phase error is larger along Y but nearly 

symmetric. 
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Figure 5.23. Phase Mismatch due to Platform Motion 

We examine the Z contribution separately. This is motivated by the near independence if 

the aperture vertical extent contribution from the overall resolution. The form of the point 

spread function has been shown to be, in the X-Y plane, virtually unaffected by the 

vertical aperture extent, and that the Z response resembles that of an antenna-like 

aperture. The (limited) results presented in this section, in the presence of platform 

motion, show a dependence on voxel location with +X half space realizing a degree of 

sidelobe reduction, as though a taper or window was applied, while those in the –X half 

space experience degraded sidelobe levels. The behavior between Figures 5.19, 5.20, and 

5.21 is as though, at some positions, the phase error virtually extends the vertical aperture 

(decreased mainlobe width as well as sidelobe nulls at decreasing separation) while at 

others the phase mismatch degrades the sidelobe peak level. 
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It is interesting to note that examining the Doppler generated phase error over elevation 

and at the same azimuth position demonstrates that the total phase error at each azimuth 

position is small and is periodically modulated. Figure 5.24 depicts the total spread of 

Doppler phase at each azimuth increment. This Figure displays the results for the four 

points in Figure 5.20 with the same geometry and attributes. It is interesting that a 

(sometimes) positive artifact is introduced along Z while simultaneously the PSF 

degradation is experienced in the X-Y plane. Note that the slight discontinuity at 310 

degrees is the result of the total number of points in the aperture not being an integer 

multiple of 360. When binning points in elevation, 310-360 degrees only occupied 27 

orbits instead of 28. The lower altitude for these angles yields a smaller depression angle 

and correspondingly altered the Doppler error. This range, not the actual values, is solely 

due to scene scatterers (only a single scatterer shown). The phase function in elevation is 

cubic with a general slope that is a function of the azimuth sample position; slope the 

highest at the angles with the largest extent.  

 
Figure 5.24. Periodic Modulation of Phase Error Extent over Elevation vs. Polar Angle 

5.3.2 Compensating for the effects of platform motion. Equations 5-55, 5-56 and 5-57 

represent the time domain compressed pulse solution using the PN code as a surrogate for 
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index in the compressed response. Equations 5-59 and 5-60 contain the same for the 

representation in the frequency domain. The frequency domain result contains a clear 

contribution due to platform motion that is easily separable in the sense that it, though 

complex, is a simple multiplicative term which is dependent on the spatial position and 

platform kinematic state. The phase term solely contains Doppler and TB product 

dependencies and is spatially variant. A single correction can be applied during 

reconstruction using the conjugate of the phasor based on the location of the voxel-under-

test and the kinematic state of the receiving platform at the sample burst time. This latter 

is provided by the radar navigation (motion solution) function. 

The simulated phenomenology used to create all the results including platform motion 

was generated in the frequency domain using (5-58). This represents the forward 

transformed projections. As the collection spatial aperture is exactly simulated, it was a 

simple matter to apply the conjugate phase expression during reconstruction. Without 

system errors the compensation is perfect (the product of the error and correction phasors 

is unity) and the IPR reconstruction is compensated. Two examples are shown in Figure 

5.25. On the left (Figure 5.25a) the slower, but larger TB product (10
5
) case (Figure 5.22) 

while on the right (Figure 5.25b) the faster scenario from Figure 5.19. 

 
Figure 5.25. Reconstructed Response after Doppler Compensation 

The need to implement Doppler compensation was primarily driven by the motion effects 

superimposed on the reference channel which are then mixed into the compressed burst 
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through correlation processing. We saw that when the motion-Time-Bandwidth product 

was low that little to no degradation was observed. By compensating the reference 

channel ahead of the pulse compression operation we are left with the result in (5-62) 

where only the scatterer contribution to Doppler remains. The magnitude of this term is 

much smaller with a side oriented antenna with the scene Doppler being filtered through 

the receive antenna pattern. There remains dependence on the coherent integration time 

associated with the cross correlation. As we saw from Figure 5.22 though the Time-

Bandwidth component easily dominates over the range of Doppler evaluated. 

5.4 Direct Path Signal Influence. 

Several sources illustrate the problems associated with the imperfect isolation between 

the main and reference channels that unless the direct signal breakthrough is managed a 

usable radar product is unlikely to result: the leakage signal time sidelobes mask returns 

of interest. Continuing our reliance on the single scatterer model [117], we codify the 

impact due to direct path energy entering through the finite sidelobes of the main channel 

and implement mitigation as also suggested in [118]. 

The signal at the imaging antenna is the linear combination of signal from the scattered 

(bistatic) path with a component of the direct path received through the sidelobes of the 

imaging antenna. Following (5-5) 
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   (5-63) 

where Cs is a voltage scalar which includes gain in the direction of the scatterer, scatterer 

bistatic radar cross section, bistatic range sum, and any systematic contributions. Crl is the 

main antenna gain in the direction of the transmitter (sidelobe gain) and includes the 

baseline range and other system scaling factors.  The direct path signal received in the 

reference antenna with voltage scalar (Cr) including the antenna gain in the direction of the 
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transmitter and has the same form as the second expression in (5-5). We assume that no 

scene energy enters the reference channel, though direct path multipath may be present. 

Inserting into (5-63) and the reference antenna term from (5-5) permits the derivation of 

the compressed pulse containing both contributions using (5-3) 
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   (5-64) 

As earlier, Rs is the range sum (R1+R2), Rb the baseline range.  

Equation 5-64 can be factored into two integrals which are evaluated independently.  

).()()( 21       (5-65) 

The second (2() is the scattered path signal which has been addressed in Sections 5.2 and 

5.3 (as the term ()). The first term represents the leakage of the direct path signal in the 

reference channel correlated with the direct path signal (direct signal breakthrough) in the 

main channel  
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Substituting the surrogate PN code (m represents the m
th

 code bit) 
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  (5-67) 

Making a substitution for time 
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A second substitution introduces a modified delay variable tprime=(n-m)tp- reduces to the 

well known form for phase codes (taking the complex conjugate and reversing the order of 

integration and summation (as earlier), we get 
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  (5-70) 

The evaluation of the integral proceeds as shown in Figure 5.19 for ’<0 and ’>0 
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The solution to (5-66) is the autoambiguity function for the waveform modulation A(t). 

The solution to (5-71) is 
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where K1 is defined as (after reversing the substitution for ’) 
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   (5-73) 

tp the code chip duration, um=exp(jm); =(0,), and Nc remains the number of code chips 

in the coherent processing interval. In the direct path response there is no geometry 

dependency (the baseline range delay terms cancel). The delay reference (=0) 

corresponds a range difference of 0 (we could have developed and carried a delay term, 

r=Rb-Rb, in equation 5-70, analogous to the derivation for the 2 in Section 5.2). Thus the 

peak response of the directly leaking signal occurs at 0 delay reference and is only scaled 

by an R
2
 (one-way propagation) dependency.  

We can use the results derived for the individual channel contributions in (5-72) and (5-57) 

in (5-65) which gives the solution depicted notionally in Figure 5.26, to address the single 
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burst sensitivity of the random waveform. Note that in this development we have assumed 

that no other signals are present, such as multipath scattering in the reference channel.  

 
Figure 5.26. Graphical Illustration Direct Path Imposed Noise Floor 

Scaling of the results in (5-73) and (5-57) are realized by evaluating both at peak 

(autocorrelation) response; the cross correlation in (5-57) yields an impulse of magnitude 

atR/c=0 (or t=(Rs-Rb)/c) of 

pcrs tNCC
c
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 )0(2     (5-74) 

where Nc is the number of chips (PN code or effective equivalent) in the coherent 

integration time T (=Nctp). For nonzero delays the response from (5-74) is a nominally 

uniform time sidelobe [113] with level |2(-R/c)|/Nc
1/2

, if the magnitude is taken, and 

2(-R/c)/Nc if the magnitude-squared is employed. Likewise evaluating (5-73) 

  pcrlr tNCC 01      (5-75) 

with the same sidelobe structure resulting from the same code (in a single burst). The 

scaling voltage constant for the signal channel is given by 
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The reference channel scalar (Cr) does not include a scatterer cross section () and the 

range terms are replaced by the baseline range. The time sidelobes of 1() create an 

effective noise floor, as shown in Figure 5.26. As the platform executes the collection 

aperture the response will be a function of position as the (installed) antenna gains in the 

direction of the transmitter vary during sampling. 
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Simulating the combined system response using (5-65) resulted in the image shown in 

Figure 5.27. In the example the isotropic scatterer RCS was 1 m
2
, baseline range 29 km 

with a 1000 chip PN code employed. The direct signal breakthrough clearly masks the 

underlying scatterer, the image is the result of essentially averaging over 3240 noise like 

samples. The measurement system represented the initial design configuration of the 

bistatic collection system described in Section 6 in terms of the antenna gains and expected 

sidelobe levels. Figure 5.27 was generated based on the cylindrical spiral aperture used 

earlier, with vertical aperture extending from 200-2000 m and platform speed of 62 m/sec. 

5.4.1 Direct signal breakthrough mitigation. This can be realized in several ways: the 

approach used in this work is that of using the reference antenna as the auxiliary antenna 

for an adaptive sidelobe canceller prior to pulse compression. The configuration of the 

adaptive sidelobe canceller is of a low gain, wide angular coverage antenna that is co-

located with the sensing antenna, in this case the imaging antenna. A notional 

configuration is shown in Figure 5.28, along with antenna patterns specific to the sidelobe 

cancellation application. The antenna patterns were derived from initial analytic pattern 

derivations (three element main antenna with binomial weights and turnstile). The goal of 

the adaptive process is to maximize the signal to noise ratio in the main channel. We 

define the signal measurement vector x(t) as 

x(t) = s(t) + n(t)    (5-77) 

where s(t) is the desired signal and n(t) is the unwanted or noise component. The 

derivation of the optimum weights for the two channel canceller requires knowledge of the 

second moment statistics of the interfering signal. With the covariance R the optimum 

weights are given by 

wopt = R
-1

s     (5-78) 

In (5-78) there is a constant of proportionality which we have set to 1.  
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Figure 5.27. Image Formed with DSB Present 

This result is obtained through maximization of the output signal-to-noise ratio [119, 

among many]. Other methodologies which might be selected are Mean Squared Error 

(MSE), Maximum Likelihood (ML) and Minimum Noise Variance (MV). All yield 

essentially the same formulation for the realization of the optimum antenna weights 

[119]. 

 
Figure 5.28. Adaptive Beamformer Schematic and Antenna Patterns 

As the waveforms and statistics are not known a priori the covariance must be estimated. 

As we are dealing with a narrowband signal (1%) there are no bandwidth considerations 

[119] and we use Sample Matrix Inversion (SMI) [120] to estimate the degree of 

X (m)

Y
 (

m
)

18.5 19 19.5 20 20.5 21 21.5

18.5

19

19.5

20

20.5

21

21.5

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Reference

Main

xmain(t)

xref(t)

w1

X

S

w2

X

y(t)

-90

-30

-60

0

30

60

90

120

180

-150

-120

20-

10-

0

Aircraft nose - VVLH Frame

150a) Sidelobe Canceller Schematic

b) Free Space Pattern Orientation on Aircraft



177 

 

correlation between signals in the main channel and the reference channel. A requirement 

that the interfering signal be the most strongly correlated avoids cancellation of the signal 

of interest in the main channel. The implication is that the antenna gain in the reference 

channel in the direction of the interfering source be greater than the main channel, hence 

the gain configuration in Figure 5.28b. If this is not met then the adaptive beamformer 

trains on signal of interest resulting in self nulling. The SMT estimated covariance is 
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where x is a 2×1 vector formed from stacked synchronous samples of the antenna 

channels and * represents conjugate transpose. The row vector s in (5-78) is the steering 

vector. For the discrete antenna case here (as opposed to an array application) this vector 

selects the channel to be maximized. With the formation of x as  
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The cancelled output is then given by 

)()(
*

tty opt xw     (5-81) 

where the weights have been normalized to unity magnitude. Equation 5-81 is evaluated 

using the PN code surrogate for the HDTV signal with two examples shown in Figure 

5.29. The first case (Figure 5.29a) is specifically intended to illustrate a scenario where 

the point target return is at the level of the time sidelobes due to direct path signal leakage 

(10
3
 code chips) prior to cancellation while the second case (Figure 5.29b) with the target 

visible before the canceller is applied (10
4
 code chips). In both cases the effective noise 

floor (1/Nc) can be observed. The geometry used in the generation of Figure 5.29 is from 

preliminary flight test planning, and are based on the antenna patterns in Figure 5.28 

which represent uninstalled estimates. 
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Figure 5.29. Sample Sidelobe Canceller Results 

The antenna separation must be such that the interference signal is correlated between the 

two channels. The 5.83 MHz HDTV bandwidth equates to approximately 50 m of delay 

to the first null. Consequently antennas mounted in the cockpit of a small aircraft with a 

maximum separation of 1-2 m will easily meet the spatial constraint. Unlike the typical 

radar application, where the interference term is assumed to be a noise-like signal with 

the same (or similar) bandwidth but different in form to the signal of interest, in this 

bistatic application the signal of interest is a delayed version of the signal-as-interference. 

Because the waveform has a 100 percent duty factor there are no intervals for sampling in 

the absence of signal. Delay more than one inverse bandwidth effectively decorrelates the 

scene scattered signal from the direct path component in both measurement channels.  

This is shown by examining the covariance matrix.  
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where the superscript ‘c’ indicates conjugate and E denotes expected value. As earlier we 

expand the main channel as the sum of signal and leaking direct path component 
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where the subscript ref_l refers direct path term leaking into the main channel. Taking the 

expected value of the covariance matrix term wise after completing the multiplications 
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then using the sum identity for the expected value we have (after absorbing the 

exponential into the gain ratio constant) 
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Now we interpret the expected value as the time average of the sampled process. The 

expected value then for a random process and a delayed version of that same random 

signal is zero, the delayed form being indistinguishable from a separate random signal 

and under the condition that the delay exceeds any signal correlation time. With this (5-

84) reduces to 
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The signal xref differs from xref_l only through a complex scalar; the ratio of the antenna 

gains in the direction of the transmitter and the separation projected onto the line of sight 

(with the assumption that the receive chains are exactly matched). With this 
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With this (5-85) becomes 
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In (5-87) Pscat and Pref are power terms from the scene, direct path and leakage, 

respectively. Taking the matrix inverse gives, with some simplification 
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Using the steering vector from (5-80) the optimum weights are given by (5-78)  
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Then forming the product for the canceller output  
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and the second two terms are equal and the signal of interest passes the canceller.   

An example of such a canceller with weights defined for a specific geometry (hence 

constant) then applied as the geometry rotates is shown in Figure 5.30. This example uses 

the antenna patterns from Figure 5.28b over the range 90-180 degrees (relative to peak 

mainbeam directivity), sampled at 1 degree increments, with the weights determined with 

the transmitter held constant at 150 degrees. Total power is plotted versus angle, the 

matched angle representing the signal power clearly evident. An antenna separation of 1.2 

m was used in the calculation with maximum projected antenna separation at 180 deg (the 

projected separation is 0 at 90 deg). 

 

Figure 5.30. Canceller Response over Angle – Response with Antennas Displaced  

We applied the adaptive sidelobe canceller to the reconstruction example shown in Figure 

5.27 with all other parameters maintained. The reconstructed results are presented in 

Figure 5.31 and Figure 5.32. The first shows the principal plane reconstruction 

individually. One can observe interaction or influence from the adaptive canceller as the 

X-Y plane results (see Figure 5.7 for comparison) in the slight departure from circular of 

the interim sidelobe rings (resembling the gain pattern of the reference antenna). In Figure 
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5.29, as well as the generation of the phenomenology used for the images reconstructed in 

Figures 5.27 and 5.31 it was assumed that the main and reference antennas shared a 

common phase center. In the results shown in Figure 5.30, and the derivation leading up 

to the Figure, this assumption was not made, the spatial phase change as the antenna 

doublet rotated with respect to the weights generated at a single angle giving rise to the 

mismatch at angles away from the matched geometry. The relative antenna patterns in the 

direction of the interference are a lesser consideration as long as the reference (also called 

auxiliary) gain is greater than the main antenna gain. 

 
5.31. Reconstruction with Adaptive Canceller – Principal Plane IPR Contour View  

5.5 Apodization. 

The use of apodization (also called tapering or windowing) to control/improve the 

sidelobes of the point spread function is a common imaging practice [121], [122] and 

[89]. Window functions overcome the effects of the finite sampling window in time, 

frequency or space; by smoothing the response to the sampling window edges, reducing 
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the peak sidelobe level from -13 dB to some lesser value, depending on the specific 

function. This positive effect occurs as the expense of a slight coarsening of the resolution 

as the sample aperture is effectively shortened. In application the taper is applied in one 

data domain before transform into the conjugate domain where the effects of the sampling 

sidelobes are to be mitigated. In SAR applications, the taper can be applied in the 

frequency domain to both range and cross range, as orthogonal functions (along kx and ky) 

for joint reduction of image sidelobes (for example in polar format processing, [121]). 

Likewise, the tapers can be applied radially and circumferentially, along kr and k. A one 

dimensional taper along k was applied to the 2D apertures focused in Section 6, with a 

positive result of sidelobe reduction in two spatial dimensions. 

 

Figure 5.32. Reconstruction w/ Adaptive Canceller –IPR Slice Projection View  

Applying the taper as an element-wise multiplication before the Fourier transform is 

equivalent to convolving the taper function in the image (or conjugate) domain. For taper 

function t and image domain functional representation f with   representing the forward 

transform 

     ftft 1
     (5-92) 

where the dimensionality is arbitrary. 
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Apodization in tomographic reconstruction when the collection aperture spans 2 radians 

is much less obvious (which is also reflected through the sparsity in the literature). This is 

most easily visualized in Figure 5.33a where the frequency domain mapping of an 

isotropic scatterer being illuminated by a waveform of bandwidth kmin - kmax in a two-

dimensional aperture. The isotropic response insures a uniform response over angle and 

frequency (modeled as a rectangular spectrum), hence the toroidal response. In light of 

the previous paragraph one might taper radially, as might also be suggested by examining 

(5-1), e.g. a window on the transformed projection (S(k)), as shown in Figure 5.33b. 

However has the only effect of reducing the effective bandwidth while having no impact 

on the sidelobes of the IPR (whereas higher bandwidth was shown to increase the rate of 

sidelobe roll off in Section 3). With the radial taper could be combined a circumferential 

one (along k). However, with the continuous aperture this has dubious effect, as 

suggested by Figure 5.33c. If orthogonal tapers were applied along kx and ky they combine 

to yield a radially symmetric circular taper. When applied a weighted frequency response 

is produced, resembling Figure 5.33b without the lower frequency (inner) edge 

smoothing. These approaches were all attempted in simulated tomographic images with 

the results described and are not shown. In [123] it is suggested that range tapering be 

performed prior to the forward transform. For the phase coded waveform this contributes 

little to the realizable range sidelobe level [124] because of the large waveform 

discontinuities; shift invariant tapers as opposed to mismatch filtering (pulsed, repeated 

code sequence). It is also noted that mismatched filtering was evaluated for the cross 

correlation-based pulse compression of the CW phase coded waveform with very limited 

results [114]. 
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Figure 5.33. Window Functions Applied in the Frequency Domain 

A complex image, reconstructed from a simulated HDTV signal, is processed with a two-

dimensional taper, a 35 dB Taylor, following (5.92) with results shown in Figure 5.34. 

The forward transformed image appears in Figure 5.34a with the weighting function in 

Figure 5.34b. The frequency domain depicts the isotropic scatterer spatial spectrum offset 

from the origin, a property of the bistatic aperture and transmitter position relative to the 

scene. The y=0 cuts of the input image and the weighted image appear in Figure 5.34c. 

Clearly there are no effects from the taper. The small sample spacing means that the 

transformed frequency range is large (the /20 sample intervals corresponds to a spatial 

frequency of ~240 rads/m) so that the modeled aperture only subtends 12 of the FFT-

derived frequency bins. Thus the taper effectively only imposes a constant weight where 

the spectrum has significant content. Consideration was given to compress the taper 
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function and resample more closely matched to the aperture spectrum. But the spectrum 

offset DC in X and Y would only result in something resembling Figure 5.33c. 

 

Figure 5.34. Window Functions Applied to HDVT Waveform-based Reconstruction 

Centering the 2D taper only on those bins which contain the significant spectral energy, 

instead of more broadly across the full spectrum produces the same result. As noted in 

Section 5.4, the virtually separable vertical aperture might be suitable for a taper applied 

vertically, as a function of Z and independent of the polar angle. 

One technique that is potentially applicable to improve the image sidelobes in the 

tomographic reconstruction is a nonlinear technique called Spatially Variant Apodization 

(SVA). SVA relies on nonuniform frequency domain weighting of the image data [125], 

doing so using a weighting function which is dependent upon the location within the 

image. This technique reduces image sidelobe levels, doing so without degrading the 

resolution. Developed in 1994 [126] the technique is now widely employed in imaging, 

super-resolution, and bandwidth extrapolation [127]. SVA is based on the cosine-on-a-

pedestal weighting functions 
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Taking the length-N Fourier transform of (5-93) yields the Nyquist sampled impulse 

response 
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Equation 5-94 demonstrates that the IPR in the image domain only has three nonzero 

points. Application of the taper is a three point convolution using (5-94). The term 

Nyquist-sampled refers to one image sample per resolution cell (complex). Next consider 

an image g defined in the image domain as composed of (m, n) complex values at the 

Nyquist sample spacing. The convolution (5-94) defines an apodized image point 

),1()(),(),1()(),( nmgmnmgnmgmnmg     (5-95) 

The weighting coefficients are obtained by solving for the (m) which minimizes 

|g’(m,n)|
2
 given the underlying constraint of the cosine-on-a-pedestal taper; 0 < (m) < 

0.5. If (m) is unconstrained the weight obtained is 
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which results in g’(m,n)=0. When 0 < u(m) < 0.5 then 

 

















.5.0),(

5.0),(0

0),(

,),1(),1(5.0),(

,0

),,(

),(

nm

nm

nm

nmgnmgnmg

nmg

nmg

u

u

u







 (5-97) 

In (5-97) we used a two dimensional notation but performed the convolution in one 

dimension. The may be serially applied, first along the row dimension followed by 

columns to extend this technique to two dimensions [128]. Arguing by analogy, this could 

further be extended to serial application three dimensions. The convolution is extended to 

two dimensions via simultaneous operation in [127] and [128] using the same principles. 

The convolution kernel in two dimensions contains nine nonzero points given by 
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Defining three input scene-derived quantities 
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 the output image is given by 

nnmmnm QQPnmgnmg   ),(),(     (5-100) 

The procedure again is based on minimizing |g’(m,n)|
2
 with the dual constraint 0 < {m, 

n} < 0.5. For any m or n, (5-100) is a linear function of the other. Therefore, for any 

pair (m, n) inside the interval [0, 0.5] × [0, 0.5], the value of the pair (m, )(m, 5) 

will be less than or equal to (m, n). Extending the argument leads to evaluation of the 

(5-100) at the four corners (0, 0), (0, 0.5), (0.5, 0) and (0.5, 0.5) which will yield both 

maximum and minimum. As g’(m,n) is a monotonic function it passes through zero only 

if there is a sign change within the interval. This leads to the SVA algorithm of [127]: 1) 

calculate g’(m,n) for (m, n) = (0, 0.5), (0.5, 0) and (0.5, 0.5), 2) if the sign of any of the 

three values are opposite set g’(m,n)=0, otherwise g’(m,n)=min(|g(m,n)|, |g’(m,n) (, 5)|, 

|g’(m,n) (5, )|, |g’(m,n) (5, 5)|). Reference [129] offers a slightly different algorithm: 1) 

calculate g’(m,n) at the four pairs of weights at the interval bounds (gcorner(i), i=1:4), 2) if 

any are opposite sign (pair-wise comparison of 4 elements, 6 combinations) then 

g’(m,n)=0, otherwise g’(m,n)=min(|gcorner|). 

The algorithms above are specifically for Nyquist samples images. Algorithms also exist 

for non-integer sampled images [125]. Variants are available that process complex-

sampled images jointly or by serially processing the in-phase and quadrature images. 

Also, the weights in 2D processing may be uncoupled, as above, or coupled.  [128] 

presents a summary of the four algorithm cases. 
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In [129] the authors are specifically operating against a sampled sinc function: 

characteristic of the sinc is that the null positions are harmonically related. Nyquist 

sampling and SVA produces excellent sidelobes (though a linear scale is used). The 

tomographic IPR does not exhibit that null position behavior. We test SVA against a two-

dimensional tomographic reconstruction using the exact solution. This choice allows easy 

spatial sampling for the test reconstruction (though it is real-valued-only) on a square 

grid. The sample interval was set to the distance from peak response to the first null, as 

projected along the X or Y axis. Three algorithm cases were evaluated: the two 

dimensional algorithms from [127] and [129] and the serial 1D case from [128]. Figure 

5.35 summarizes the principal axis (Figure 5.35a) and 45 degree inter-axis results (Figure 

5.35b). Performance along the X and Y axes was identical. For each case the overall 

reduction in sidelobe level reduction is computed by summing the total sidelobe power 

and normalizing by the input image total sidelobe power. Each of the three algorithms 

produced nearly identical sidelobe reduction with the serial 1D algorithm slightly under 

performing the other two -7.68 dB to -8.18 dB and -8.18 dB. The greatest sidelobe 

reduction occurs along the cardinal axis directions. The 45 degree inter-axis cut shows the 

least improvement.  

 

Figure 5.35. SVA Assessment Against 2D Tomographic Reconstructions 
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Chapter 6 

Bistatic Tomography Flight Test and Results  

This final section details the analysis, design, planning, radar instrumentation, calibration, 

signal and data processing and, reconstruction which tests the HDTV-based bistatic 

tomography developed in Section 5.0. Included are high resolution images formed for the 

region of the test target for each orbit of the three-dimensional aperture as well as 

reconstructed three dimensional images of the same target. Point spread functions for the 

processed flight data are compared to simulated responses because of unknowns in the 

target scene and lack of controlled targets, and to evaluate error contributions within the 

limits of the instrumentation. 

6.1 Bistatic Instrumentation Radar System. 

This section presents the analysis, design, and test of the two channel, bistatic radar 

system. Receivers are addressed in the first section, followed by the development of the 

flight antennas. The third section specifically addresses band pass filters, including 

alternatives sought when purchase of filters with necessary attributes looked to be 

unlikely. The final section addresses the position measurement and navigation devices as 

well as the explorations and fabrication of calibrated target(s).  

6.1.1 Flight test radar – bistatic receivers. We have described at the top level the receive 

instrumentation associated with a bistatic imaging system. This section describes the 

tradeoffs, design, assembly and test of the analog and digital portions of the system used 
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in the flight test. The geometry which evolves from the use of terrestrial transmitters at 

stand-off collection distances imposes challenging requirements on the receive system: 

dynamic range against high ERP emitters (the imaging mainbeam oriented at the 

transmitter), spectrum occupancy in the commercial broadcast bands (contiguous 

channels, spatially distributed), and the need to cohere and synchronize multiple receive 

channels when constrained by prime power available in civil aircraft.  

In this section the constraints are outlined and requirements are defined, allocated and 

discussed, leading to a electrical description of the two channel receiver assembled for the 

test campaign.  

6.1.1.1 Requirements. The planned test geometry emerged from the theoretical 

developments in Section 5.0; a regular orbit offset some distance from the elevated 

illuminator. The receiver would be required to support the UHF frequency range allocated 

to broadcast high-definition television operation with digital conversion which supports 

the allocated channel bandwidth (6 MHz), at a minimum. Two tightly synchronized 

receive channels are also required, at a minimum. Sample rates and analog filtering must 

be sufficient to avoid aliasing of adjacent channel signals with a dynamic range that 

would permit collection without loss of sensitivity as the antennas sweep past the 

illuminator in the collection aperture. Digital transfer bandwidth must be compatible with 

available commercial laptop (battery powered) capabilities (240 Mbps, minimum over 

burst duration). Total power must be supported, including conversion losses, by the 

limited capacity of civil aircraft of the type envisioned for the flight test (typically a 10 

ampere auxiliary circuit for the cigarette lighter).  

To establish system sensitivity requirements the test geometry was modeled. This was 

performed at the initial planned test location (Section 6.3.3), a location, generally rural, 

with orbit center 24.74 km from the transmitter, generally flat with a transmitter grazing 
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angle of 1.4 degrees at scene center. The system model included a constant gamma, 

geometric mean clutter model [30]  

    2
1

__
10/

0 sinsin10 rcvrgrazxmtrgraz      (6-1) 

where i, i=xmtr, rcvr is the grazing angle due to transmitter or receiver, with three 

reflectivity values,  = -15, -14, and -13 dB. The clutter integrator was exercised at the 

lowest collection altitudes to estimate mean received clutter power and results were 

weakly dependent on reflectivity. The clutter model divided a large area, including the 

scene, into 5 m square pixels on a spherical earth (eliminating flat earth approximations 

though, on the scale analyzed, the differences would have been small). A range profile is 

created by integrating along the ellipsoidal isorange contour with range delay as the 

parameter. The pixel power level is given by 
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with c=xy0, x and y the edge lengths of the clutter cell, R1 the range from 

transmitter-to-cell, R2 the range from cell-to-receiver, Lrcvr the receiver losses and G() 

and G() the relative gains, referenced to the peak receive gain Grcvr, in azimuth () and 

elevation (). The range difference profile is generated by the integration of those pixels 

that lie along an isorange contour with physical origin within the resolution width defined 

by a 12.5 MSPS sample interval. This is given by 

 
 
 


























max

min

max

min

,

;0

1
,,

X

Xix

Y

Yiy

rcvrxmtriyixxmtriyixrcvr

pixel
i

otherwise

i
T

XXCXCX
croundifP

P iyix




(6-3) 

In equation 6-3 C represents the clutter cell (pixel) location vector and T is the sample 

interval and c the speed of light. The position vectors of transmitter and receiver are Xi, i 

= rcvr, xmtr. 
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The simulation covered a 10 km by 10 km region centered on the scene origin with the 

point geometry the receiver orbit 1 km offset to the east (bistatic angle at scene center ~74 

deg). In this sample geometry the domain of clutter integration spans an angle greater 

than the main antenna null-to-null angular extent. Clutter power versus range delay 

relative to the receiver is shown in Figure 6.1a for a reflection coefficient of -15 dB. To 

give an indication of the potential dynamic range, the estimated direct path signal strength 

in the main and reference antennas is shown in Figure 6.1b. The range of the projection of 

the scene over the collection geometry is approximately indicated in Figure 6.1a, showing 

the region of interest.  

 
Figure 6.1. Clutter Power vs. Range Difference, Simulated Geometry 

Dynamic range overall can be inferred from Figure 6.1. Mean clutter-to-noise is of the 

order of 50 dB and direct path leakage-to-clutter is, outside the main beam, in the range 

35-50 dB. Since, as was demonstrated in Section 5, performance limiting, in terms of 

sensitivity, is primarily due to the compressed time sidelobes, noise level considerations 

on dynamic range are not driving receiver requirements.   

6.1.1.2 Bistatic system architecture. Two options were considered, a multi-channel, 

direct sampling system from the University of Washington (Dr. John Sahr) or a 

commercial software defined radio. The first option required more power than could be 

supplied for envisioned experiment duration (minimum 90 minutes). An array of heavy-

duty marine batteries was considered but was heavy and offered flight safety concerns. 
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Likewise, backup power supplies of reasonable cost/weight could not supply sufficient 

power for the planned test duration.  

The software defined radio choice was relatively straight forward because Boeing 

Research and Technology (BR&T, Dr. Gary Ray) had acquired an Ettus Research N200 

for evaluation. Ettus (http://www.ettus.com/) offers complete system solutions that were 

very affordable and which operated within the tight power constraints. In addition to 

several classes of digital chassis spanning a range of capabilities, there were several 

analog tuners (termed RF daughterboards). An integrated GPS disciplined oscillator 

(GPSDO) card was also available. In particular the WBX analog assembly provided a 

wideband (though without preselection filter) tuner covering 50-2200 MHz with both 

receive and transmit capabilities. The Ettus units also included enclosures. A formal loan 

was arranged to University College London for the BR&T unit and a second, matching 

unit was purchased, including the GPSDO (approximately $4000 US total). The Ettus 

architecture also facilitated two chassis synchronization with a special purpose “MIMO 

cable”. Two units share a single GPSDO with the slave unit locked to the master and 

digital data transfer controlled by the master. The top level receiver system is shown in 

the block diagram in Figure 6.2. 

Figure 6.2. Top Level Two-channel Bistatic Instrumentation System Block Diagram 
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The UHD (Universal Software Radio Peripheral (USRP) Hardware Driver) driver library 

supports a variety of platforms, operating systems ranging and programming and control 

languages including Gnuradio, C++, Python and others. An IBM ThinkPad operating 

under Windows 7 was configured as the controller using Windows C++ Development 

Environment. A more powerful, Windows 8 machine was configured but was too 

unreliable as no Windows 8 UHD drivers had been released and applying backward 

compatibility through Windows proved to be too unstable. A key component of the digital 

chassis is the Spartan FPGA which provides real time signal processing under user 

control. Table 6.1 provides a tabulation of the Ettus N200, WBS and GPSDO features and 

parameters. 

USRP WBX RF Daughterboard 

Power dissipation – 6V @ 1A Noise Figure – 5 dB (nominal) 

Independently operable Tx and Rcv. channels 31.5 dB tunable gain range  

40 MHz instantaneous bandwidth Tunable 50-220 MHz in 1 kHz steps 

Maximum input power 0 dBm IIP3 – 0 dBm 

N200 Digital Receiver 

Power dissipation – 6V @ 1.3A Spartan 3A DPS 1800 FPGA 

ADC Sample rate – 100 MSPS @ 14 bits SSB/LO Suppression - >35/50 dB  

ADC SDFR < -88 dBc phase noise 80 dBc/Hz @ 10 kHz (internal 

clock) 
Stability 2.5 ppm (internal clock) Direct digital tuning, quadrature demodulation 

(I, Q) 
Up to 50 Ms/s streaming Weight – 1.2 kg 

GPS Disciplined Oscillator (GPSDO) 

10 MHz stable clock Freq. stability over temp +/- 2.5E-08 

Power dissipation < 1.8W (max), 1.35 W (typ.) Phase noise @ 10 MHz 

1 Hz, 10 Hz, 100 Hz, 1 kHz:  -80 dBc/Hz, -110 dBc/Hz, -135 dBc/Hz, -145 dBc/Hz  

Table 6.1. Ettus Research N200 Unit Attributes  

Additionally, precise navigation data are required for reconstruction. Leasing an 

instrument capable of decimetric-level accuracy, which was battery operated (as was the 

control laptop and two channel receiver) consumed the available aircraft power (provided 

via a 150 W inverter). These are detailed in Section 6.1.3. 

Not shown in Figure 6.2 is prime power conversion (conditioning). The Cessna 170 

aircraft provided only 10A at 12V via a cigarette lighter. A Cobra CPI-150 BK inverter 

(DC to 110V AC at greater than 78 % efficiency) was used to provide AC power which 
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was converted back to conditioned DC for the digital receivers (80.6% efficiency based 

on vendor AC-DC convertor specifications). With the circuit rating and the specified 

converter efficiency, only ~93.6 Watts remained for instrumentation. The power budget is 

rolled up in Table 6.2. The N200 power does not include the efficiency of the unit power 

supply. Using the vendor value (80.6%) the power dissipation for the receivers in Table 

6.2 is increased by 3.45W (each) for a total of 6.9 W.   

Component Power Component Power 

N200 21.3 W (each), 42.6 W Trimble GEOHX battery 

GPSDO 1.35 W GPS X160 battery 

Laptop Battery iPad map display battery 

Table 6.2. Total Power Budget – Flight Experiment 

6.1.1.3 WBX analog receiver. Top level attributes of the WBX tuner were outlined in 

Table 6.1. Additional detail is provided in this section. A block diagram of the tuner card 

can be found in Figure 6.3. Table 6.2 contains specifics on the RF cascade used to 

develop noise figure estimates and to aid in gain setting. Under external control the RF 

daughterboard can be tuned from 50 to 2200 MHz in 1 kHz steps (integer tuning is 

recommended with the UHD drivers). There is no provision for dynamic tuning in the 

UHD driver library so gain settings had to serve all points along the collection aperture, 

including those times when the mainbeam was oriented at the transmitter. No transmit 

functionality was needed/employed so that capability is not discussed. Note in Figure 6.3 

the tuner has no preselection filter. Given the dense RF environment in the broadcast 

spectrum such filtering was necessary to avoid serious aliasing. The filter requirement 

development is covered in Section 6.3.4 with the design exploration in Section 6.1.3. 

The parameters for the components in the receiver, with the exception of the filters and 

the ADC were extracted from part datasheets. The filter insertion losses were calculated 

using the ABCD method with specific inductance and capacitance values from the 

detailed WBX schematics (without consideration of parts tolerances). The ADC (TI 
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ADS62P4X) is actually contained in the digital chassis (next section) but is included here 

for the purposes of noise figure calculation. 

 
Figure 6.3. RF Daughterboard Block Diagram 

Component Fn P1dB Pmax Gain 
Insertion 

Loss 
Comments 

RF Switch 0.3 dB 38 dBm 39 dBm n/a 0.3 dB 30 dB isolation 

LNA 0.9 dB 17.8 dBm 21 dBm 22 dB n/a Pin absolute max 

Variable Attenuator 
1.5 dB 

(min) 
20 dBm 27 dBm -30 to 0 dB 

1.5 dB 

(min) 
0.5 dB steps 

Driver Amp 2.2 dB 17.4 dBm 13 dBm 14.7 dB n/a VSWR 1.8:1 

Low Pass Filter One 6.0 dB -- -- n/a 6.0 dB 

20 MHz BW 

Chebychev 0.1 

dB ripple 

Quadrature 

Demodulator 
13.5 dB 12.7 dBm 15 dBm 4.4 dB n/a  

Low Pass Filter Two 6.19 dB -- -- n/a 6.19 
50 MHz BW 

Butterworth 

Differential Amplifier  13.5 dB -- 10 dBm 0 dB n/a  

ADC 33 dB  < 3V p-p n/a n/a  

Table 6.3. Detail Tuner/Analog Receiver Daughterboard  

The ADC noise figure was calculated using a method outlined in 

http://www.maximintegrated.com/en/app-notes/index.mvp/id/1197. The noise figure is 

given by 
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where B is the bandwidth, R the input resistance, kB Boltzmann’s constant, and T is 290 

K. The full scale voltage rating of the ADC is VFS. The total noise figure then calculated 

with the cascade equation 
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where the subscript indicates the cascade stage and F is the stage noise figure and G the 

stage gain and is a function of the attenuator setting. For a gain value of 25 dB (attenuator 

setting for a loss of 6.5 dB), and using the values in Table 6.2, a noise figure of 7.87 dB 

results. In this calculation the passive losses of the RF switches are booked with the 

cabling losses. These are, in each channel, 1.82 dB (measured). The GaAs RF switches 

yield 0.3 dB loss each and the band pass filter employed added an additional 3.95 dB for 

a total of 6.37 dB in each channel. To this is added the 3:1 combiner loss in the main 

channel (2.1 dB). 

The cascade analysis was used to fix the receive gain which was verified by ground 

measurement. Maximum signal levels were complied for each stage of the cascade, then 

reduced using recommended de-rating values (from datasheets or the community postings 

on the USRP listserve). The levels are shown in Figure 6.4. The signal power for the 

transmitter at the initially planned test condition (27 km from the transmitter) as a 

function of stage of the receiver is shown for both main and reference channels with a 

user gain of 25 dB (set attenuation of 6.5 dB) the value later used in flight (and which was 

confirmed to not saturate based on ground testing). This setting places the transmitter 

power at approximately 1 bit below maximum power level for the receiver, at ADC 

saturation, when peak mainbeam gain is directed to the illuminator. Also shown on Figure 

6.4 is the mean clutter power from Figure 6.1a for the 1.5-2.5 km swath region (~-83 

dBm), together with the noise floor represented by the effective number of A/D bits. This 

demonstrates sufficient dynamic range for the planned experiment. 
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Figure 6.4. Peak Signal Power through Receive Cascade 

6.1.1.4 N200 digital receiver. The digital receiver, as indicated, was a pair of Ettus 

Research N200s. Provisions are available to mount the RF daughterboards within the 

chassis case, as well as for the internal GPSDO (in the master unit). The digital receiver 

accepts conditioned baseband (single stage down conversion by the analog card) with 

dual 100 MSPS analog to digital converters. A general block diagram of the digital 

assembly appears in Figure 6.5.  

The ADCs continuously operate at a 100 MSPS rate with 14 bits of resolution (11.8 bits 

effective). UHD instructions from the control laptop set the sample rate in the 

DDC/decimate stage of the FPGA processor. User selectable sample rates are strictly-

limited to an integer ratio of the sample rate to the requested sample rate. There are 
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Likewise, if the required decimation exceeds 256, the resulting decimation must be 
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streaming capacity has to be shared between two units in the MIMO configuration or 12.5 

MSPS I and Q, each. 

 

Figure 6.5. N200 Digital Receiver Block Diagram 

Data are transferred in packets of 363 samples. Sampling may be interrupted or operated 

in a burst manner. However Ettus recommends that continuous sampling be performed (to 
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sample rate resulting in 5.12 Mb/s transfer rates to an external solid state drive. The total 

collection (1 hour spatial aperture plus channel calibration) requires 27.648 Gb/channel.  

The various components were attached to a plywood pallet for easier handling and cable 

management when in the back seat of the aircraft. The pallet is pictured in Figure 6.6. 

 
Figure 6.6. Bistatic Instrumentation System Pallet  

6.1.2 Antenna design, analysis and fabrication. Antennas for the flight collection have 

been described variously within this thesis. In this section the idealized antennas are 

converted to practice. We begin with a collection of the antenna requirements as derived 

from the analytic developments, undertake a physical design and analysis using FEKO 

[130], and compare modeled results with measured using local broadcast transmitters and 

the bistatic receiver described in Section 6.1.1. This section is composed of two main 

subsections: reference antenna and the main antenna. 

6.1.2.1 Reference antenna. As has been described, the bistatic imaging radar is 

comprised of two dissimilar antennas: the imaging or main antenna and the reference 

antenna. Antenna requirements are driven by the tomographic collection aperture and 

issues that are unique to the HDTV transmitter, while being constrained by the 

installation in a small civil aircraft (the Cessna 170 – class civil aircraft).  
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The reference antenna serves two purposes; the first is the reception of the reference 

signal which is used as the waveform template for the cross correlation, or ambiguity 

function, processing; a process which is equivalent to pulse compression. The reference 

antenna also serves as an auxiliary antenna for adaptively cancelling the direct path signal 

component in the main antenna. There are two main considerations: bandwidth and 

channel matching to produce a high fidelity replica of the waveform, and gain over angle. 

The difference in instantaneous antenna gains only affects the magnitude of the response 

but not the SNR. Effects of pattern modulation, which will certainly result once installed 

in the aircraft, would be indistinguishable from scatterer RCS variation over angle, 

changing the instantaneous magnitude but not the SNR. As the image reconstruction 

employs back projection, as opposed to Doppler-based techniques, is was expected to be 

immune to magnitude variations. Therefore, from the waveform and imaging perspective, 

the degree of uniformity of the azimuth response of the reference antenna is a goal. 

The SNR invariance is demonstrated in Figure 6.7 where a PN code of length 1000 was 

used, in the flight test geometry (Section 6.3) and based on the ideal response of a 3×1, 

binomially-weighted, linear array and an omni-directional reference antenna with three 

gain values varying in 10 dB steps. The specific geometry had the TV illuminator located 

in the vicinity of the 90 degree (end fire) null of the main antenna pattern (receiver at =0 

degrees relative to test scene geometry) so that SNR could be observed without the 

necessity of invoking the sidelobe canceller. The plot includes a 10 dBsm isotropic 

scatterer with an SNR of ~22 dB. The SNR can be seen to be independent of reference 

antenna gain. 

The use of the reference antenna as an auxiliary antenna in a sidelobe canceller 

configuration places more stringent requirements on the antenna gain pattern. To provide 

the correct canceller weights, the gain of the reference antenna in the direction of the 

interfering signal must exceed the primary (main) antenna gain [131] over that angular 
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region where cancellation is required, while having gain less than the main antenna in the 

direction of signals of interest (the mainbeam region). When the illuminator is in the 

mainbeam the sidelobe canceller causes cancellation of the signal of interest, or when 

main channel gain exceeds the auxiliary channel in the direction of the interfering signal. 

The receiver gain settings for the flight experiment were set such that the ADC would be 

at saturation in the main channel when the transmitter was at the peak of the mainbeam 

(note: no saturation was observed in the data).  

 
Figure 6.7. Example Ambiguity Function with Reference Antenna Gain as a Parameter 

The antenna design, analysis and evaluation of the complete radar were performed using 

free space assumptions. The potential for limited reconstructed regions were absolutely 

expected due to the anticipated negative impacts of the air vehicle on the radiation 

pattern, particularly with the antenna housed within the aircraft cabin (with passengers).    

The requirements for the reference antenna are summarized in Table 6.4. Not listed, but a 

strong driver nonetheless, are ease of fabrication and cost. 

Parameter Value Comments 

Polarization Horizontal Matched to Source 

Center Frequency 587 MHz UHF Chan. 33 KWPX 

VSWR 2:1 Bandwidth >2% of Matched Channel 

Carrier 

Support multiple TV channels for c/o 

Gain 0 dBi Min. in azimuth principal cut at =90
o
 

Azimuthal Coverage Omni-directional Gain variation < 3 dB over 2 radians @ =90
o
 

Elevation Coverage 
> 90

o
 beam width 

Near constant directivity over vertical extent of 

collection aperture 

Size/Volume < /2
3
 Located within aircraft cabin (4 passenger) 

Interface 50 ohm coax/SMA Matched to USRP (receiver) input 

Table 6.4. Reference Antenna Requirements 
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Three antenna types were considered that had potential to simultaneously meet the 

polarization and azimuthal pattern constraints: an electrically small loop (radius <~ 0.1), 

a slot antenna (folded or half wavelength resonant slot) in a cylinder, and a turnstile, 

crossed dipole (coplanar crossed dipoles configured for circular polarization). The 

antennas are depicted in Figure 6.8. A single, vertical dipole was not considered because, 

while easier to fabricate and to install on/in an aircraft window, of the effective gain with 

polarization mismatch would have been insufficient to cover the main antenna sidelobes. 

While receiver gain might be considered to offset this (with the resulting noise 

imbalance) the gain settings of the receiver did not have sufficient range from the 

sensitivity-derived settings to offset the cross polarization mismatch.  

 
Figure 6.8. Candidate Reference Antennas Evaluated 

6.1.2.1.1 Electrically small loop. The electrically small antenna, total conductor length  

 (circumference) <~ 0.1, is characterized by a nearly constant current distribution over 

the antenna. The loop satisfied the dual requirements of horizontal polarization (plane of 

the loop aligned horizontally) with an omni-directional gain pattern aligned with the 

polarization. The far field electric field is given by 
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In (6-6)  is the angle from the Z axis (the axis of symmetry, loop in the X-Y plane), A is 

the loop area, and [I] is the retarded current. Azimuthal symmetry is observed by the 

a) Electrically Small Loop b) Cylindrical Slot c) Crossed Dipoles (Turnstile)  
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absence of  dependency. As the circumference increases the pattern becomes less 

“doughnut-like” with the appearance of narrower elevation lobes while retaining the 

azimuthally uniform response [132].  

The directivity of a loop antenna with uniform current is given by 
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The angle  is the value at which the maximum field strength occurs (for the loop it is 90 

deg.). Equation 6-7 evaluated for the small loop (C <1/3) yields D=3/2. Directivity is 

converted to gain through the efficiency of the antenna. The efficiency combines 

radiation resistance (Rr) and resistive losses (RL) which is given by 
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The issue with the loop antenna is that the impedance is dominated by a large reactive 

component which requires a matching network to compensate.  The radiation resistance 

for a small loop (C < 1/3, radius a) is given by [132] 
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The resistive loss of solid conductor (wire) of diameter d, conductivity , frequency f, and 

length L (= C, C=C/) is 
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From (6-8), (6-9) and (6-10) the antenna gain can be expressed as 
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For 12 gauge copper wire d=2.05 mm. The loop circumference is 0.161 m (a=0.05, 

meeting the condition the C<1/3 for the uniform current distribution assumption). At 587 

MHz the resistive loss is 0.306 W and the radiation resistance is 1.919 W yielding a gain 

of 1.294. 

The antenna impedance is the sum of the internal and external impedance contributions 

   eLLrLoop LLjRRZ       (6-12) 

using Le as the external inductance and LL the internal contribution (subscript L matching 

the resistive loss – internal wire  component). The external inductance [133] is  
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Straight wire impedance is used to approximate the internal component, from [134]. 
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Combining (6-9), (6-10), (6-13), and (6-14) into (6-12) gives the antenna impedance of 

2.225+j1.929E+04.  

The bandwidth is estimated using the Q-factor of the antenna. Following Kraus [132], as 

modified for a single wire loop and without ferrite core or similar, Q and the bandwidth 

are given by 
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    (6-16) 

Yielding 67 kHz at midband, insufficient for the HDTV signal.  

6.1.2.1.2 Cylindrical slot. A second antenna that offers omni-directional coverage in the 

same plane as the incident polarization is the cylindrical slot (Figure 6.8b). Also known as 
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the Alford antenna, the antenna is basically a slot cut into a ground plane which is then 

formed into a cylinder. The antenna is fed across the slot using a coaxial cable [135]. 

According to Kraus [132], if the diameter of the cylinder is a sufficiently small fraction of 

a wavelength, and D< /8 is offered to define this condition, a vertically oriented slotted 

cylinder generates a horizontally polarized field which is nearly omni-circular. The slot 

dimensions are established to be at resonance, length slightly longer than the 

corresponding planar slot or dipole (a loading effect of the cylinder). Rule-of-thumb 

dimensions for the resonance condition are D=0.125, Lslot=0.75 with Wslot=0.02. The 

Alford slot may employ a longer slot (1.2 to 2 for higher directivity and a narrower 

elevation beamwidth [136].  For a 587 MHz resonant slot design center frequency these 

dimensions are diameter=0.069 m, slot length 0.413 m and slot width 0.011 m.  

The impedance from a resonant /2 slot is 530 W. The longer cylindrical slot for 

resonance has impedance on the order of 200 W [137]. A 4:1 coaxial balun would be 

needed to operate efficiently with the 50 W receiver load. The advantage of the cylinder is 

that feed cables can be integrated internal to the cylinder, including balun.  

The antenna sized for the target transmitter was modeled in FEKO (FEKO LITE student 

version 6.3), as shown in Figure 6.9, unfortunately there were insufficient number of 

degrees of freedom enabled in the student version to evaluate the configuration. 

Consequently this antenna option was not taken forward. 

An example of the performance of the antenna, more generally, was found in [138] 

having been evaluated using 4NEC2. The dimensions modeled were specific to VHF 

frequencies (diameter 0.15 m, more appropriate for 250 MHz) and the results 

demonstrated the desired pattern and gain performance, together with a very wide 2:1 

VSWR bandwidth. Interestingly, from this example, the resonant frequency was 620 

MHz (zero reactance) with an antenna resistance of 500 ohms though the front to back 
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ratio was of the order of 3:1 at that frequency. 

 
Figure 6.9. FEKO Model Cylindrical Slot Element 

6.1.2.1.3 Turnstile antenna. The crossed dipole antenna in its simplest form is pictured 

in Figure 6.8c [139] and [140]. The antenna consists of two resonant dipoles (antenna 

impedance – 77 Ohms  has no reactive component, length ~0.48) and that may be 

offset slightly in the Z direction (the plane represented by the dipoles is the X-Y plane). A 

90 degree phasing line, a short segment of impedance matched, semi-rigid, coaxial 

waveguide connects the two driven dipole arms via the center conductor. The length of 

the phasing line must take account of the group velocity in the coax to realize the 90 

degree delay (placing the two driven arms into quadrature). When fused the antenna 

exhibits an impedance of one-half the individual dipole (35.5 ohms). The antenna is 

oriented with the effective plane of the crossed dipoles co-linear with the incident 

polarization (horizontal and the antenna X-Y plane). The combination of dipole responses 

result in a near omni-directional response in azimuth through the phasing across the 

driven arms. The electric field ( the polar angle) is a function of angle and time [132]; 
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As the angular width of the main lobe of the antenna pattern of a single dipole is slightly 

less than 90 degrees, at the 45 degree inter-arm angles the combined response is sufficient 

to nearly circularize the gain. The George Brown turnstile using resonant dipoles should 

be circularized to within +5% [139]. Reference [140] indicates that gain should be at a 

maximum when either dipole is parallel with the incoming wave and slightly reduced at 

45 degrees (centered between the dipole arms). Equation 6-17 confirms this assertion. 

Turnstile performance was evaluated using FEKO. The antenna is constructed of wire 

segments that have a feed gap defined by the intrinsic FEKO function ”wire port”. The 

dipole cruciform forming the coordinate basis with the arms of one dipole pair located at 

Z=+2.5 mm along the Y=0 axis, each with length 12.2 cm and the other at Z=+2.5 mm 

aligned on the X=0 axis with the same length. This corresponds to a 5mm feed gap on 

both dipoles. FEKO requires the generation of a network to represent the electrical 

connection of the phasing line (defined as a transmission line) to the driven arms and the 

outer shield to the non-driven arms. The physical geometry is shown in Figure 6.10a with 

the inset representing the transmission line model used to emulate the phasing line. The 

calculated gain pattern is shown in Figure 6.10b as a polar plot with a 10 dB scale; the 

nearly uniform azimuthal pattern easily evident and compares nicely with Figure 16-15a 

in [132].  

The turnstile was selected for use. Design details are shown in Figure 6.11a. Fabrication 

was straight forward, performed in a home workshop. Material used for the dipole arms 

was 12 gauge solid copper wire. Semi-rigid RG-59 was employed for the phasing line 

because of the radius of curvature, as it would hold shape during assembly. It was also 

selected because the impedance (73 Ohms) was a relatively good match to the dipole 

impedance (77 Ohms). The dipole arms were bonded to a low dielectric foam block to 

make handling and assembly easier (Figure 6.11b). After bonding, which set the feed gap, 

the dipole arms were trimmed to length. The phasing line was formed over a mandrel to 
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avoid kinking the inner dielectric insulator (then reshaped to fit the tube opening). The 

phasing line inner conductor was soldered between both driven arms (labeled 1A and 2A) 

with the non-driven arms soldered to ground as shown in Figure 6.11c. A rigid polyvinyl 

tube was bonded through an opening in the foam block to sheathe cabling and provide a 

convenient means of handling and mounting the antenna.  

 

Figure 6.10. FEKO Calculated Reference Antenna Gain Pattern 

The 37 Ohm antenna is coupled to an impedance transformer which consisted of a 

parallel 1/4 wave transmission line using RG6U, 93 Ohms, as the best commercially 

available match (design value of 85.44 Ohms would have been optimal). The transformer 

appears in Figure 6.11d. Field test measured patterns from this antenna for two different 

trials at two different sample resolutions are shown in Figure 6.11d. Measurements taken 

in an anechoic chamber can be found in the calibration Section 6.2, Figure 6.33. 

6.1.2.2 Main antenna. The window opening on the test aircraft, both front and front and 

rear combined, set the outer bound on the main antenna length. Further, per FAA rules, 

the antenna had to be mounted internally (to avoid the complexities associated with 

structural and outer mold line modifications. Further, for safety reasons the aircraft door 
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Figure 6.11. Turnstile Antenna Design, Assembly and Test  

had to operate when the antenna was installed. This effectively limited the antenna length 

to that of the window opening. Finally the antenna could not completely cover the 

window opening (visibility). The antenna pattern would be constrained by the window 

opening, but required a gain/sidelobe pattern that did not exceed the reference antenna at 

angles outside the mainbeam region. The main antenna requirements are summarized in 

Table 6.5. Unable to drill holes for mounting, the antenna support brackets would have to 

clamp to the inside of the window opening.  

Installation limitations virtually mandated a planar antenna design. Two variations of a 3 

× 1 linear array were designed and evaluated. Both used variations on a patch element. 

The first an edge shorted, air dielectric patch and the second a dielectric loaded patch 

using fiberglass FR4. At a nominal half-lambda spacing this size would fill the aircraft 

forward cockpit window. This activity had begun before the specific test aircraft had been 
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identified. However all Cessna aircraft in the 17X model series have windows that are of 

similar size. 

Parameter Value Comments 

Polarization Horizontal Matched to Source 

Center Frequency 587 MHz UHF Chan. 33 KWPX ( = 0.511m) 

VSWR 2:1 Bandwidth >2% of Matched Channel 

Carrier 

Support multiple TV channels for c/o testing 

Gain 10 dBi Limited by opening 

Azimuthal Coverage ~20 degree beamwidth Also limited by window opening 

Elevation Coverage > 90
o
 beam width Maximum collection altitude 

Size/Volume < 0.78 m by <  0.254 m by < 

0.025m 

Limited by window opening with thickness 

limited by proximity to passengers seat 

position 

Mounting No structural modifications  Brackets affix (clamp) to window frame 

Weight < 3 kg Support brackets and ease of installation 

Interface 50 ohm coax/SMA Matched to USRP (receiver) input 

Table 6.5. Main Antenna Requirements 

6.1.2.2.1 Dielectrically loaded patch array. Patch elements were sized using standard 

rules of thumb for microstrip patch antennas. Beginning with the choice of FR4 (FR for 

flame retardant) as the loading dielectric: FR4 glass epoxy is a high-pressure thermoset 

plastic laminate with near zero water absorption [141]. The two electrical/mechanical 

properties of interest are the density (1850 g/cm
3
), the relative dielectric constant (4.70 

max., 4.35 @ 500 MHz, 4.34 @ 1 GHz), and the loss tangent (0.008 for frequency range 

100 MHz to 3.0 GHz).  

The patch thickness (substrate height, h) is taken from the rule of thumb; 0.0030 < h < 

0.050 where 0 is the free space wavelength [142]. Alternatively, the height can be 

calculated from [143] 
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From (6-18) for 587 MHZ resonant (radiating) frequency we get h< 0.0119 m (0.023 or 

0.468 in). The initial patch dimensions are given by 
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and finally the patch length is found from 

.2 LLL eff       (6-21)  

These expressions for FR4 combine to give the dimensions in Figure 6.12. Single element 

patch size (copper) was calculated to be (L, W) = (0.121 m, 0.158 m).  These result in a 

width to length ratio of 1.312 (1.5 is a typical value). The width is defined as the y 

coordinate and the length the x coordinate. The dimensions of the dielectric slab were 

calculated as (LFR4, WFR4) = (19.2 cm, 22.98 cm). The width supports half-lambda spacing 

for a 3 × 1 element array. The E-plane for the TM10 mode is coincident with the x axis. 

The original placement of the feed probe, along the patch width bisector, the y=0 axis, 

was based on the calculated edge resistance of 208.04 W. Per standard practice the feed 

would be positioned on the y=0 axis. Using  
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and solving for x with R(x) set to 50 W for the receiver load, the calculated feed position 

is 4.1 cm from the x=0 axis. This is also indicated in Figure 6.12. The calculated radiation 

efficiency and bandwidth, based on the Pozar enhanced CAD equations from [144] were 

67% and 2.98%, respectively. The element was defined in FEKO as shown in Figure 

6.12c. 

Commercially available FR4 occurs in 1.113 and 1.27 cm thickness with slabs cut to 

length. For sizing calculations the thicker size was selected to preserve the estimated 

bandwidth. FR4 density is 1.850 g/cm
3
 [141] so if individual dielectric slabs were cut, the 

weight would be 0.45 kg, and three would be 1.35 kg. To support the dielectric, 18 gauge 

rolled steel was selected for both structure and ground plane. The total weight of a three 
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element antenna, without cabling, connectors, brackets, and the 3:1 combiner would have 

been 3.04 kg and was judged too heavy for a safe window mount. 

 
Figure 6.12. Horizontally Polarized Dielectrically-loaded Rectangular Patch  

6.1.2.2.2 Edge-shorted patch array. As a more lightweight option to the patch array 

with elements dielectrically loaded with FR4, an array of edge-shorted, air dielectric, one 

quarter wavelength patch elements was evaluated. Suggested by Dr. Gary E. Miller, this 

version has approximately the same ground plane area with slightly increased element 

depth with the air dielectric. The use of the shorting wall is a common technique and 

allows the patch size to be reduced from the half-lambda size to one quarter-lambda 

[145]. The increased air dielectric thickness was needed to provide sufficient bandwidth. 

The single element and full array designs are shown in Figure 6.13. The location of the 

feed point on the three elements was determined by trial and error, the condition of 

success defined by the best match of mutual coupling impedance. The initial position is 

indicated in Figure 6.13a. Detail of the individual patch is shown in Figure 6.13b. The 

design was implemented in FEKO, as shown in Figure 6.13c. 

Mutual impedances were minimized through the location of the feed point. Iterations 

using FEKO with minimized return loss mismatch amongst the three elements as the 
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metric resulted in shifting the feed 0.275 in (6.5 mm) away from the shorting wall relative 

to the dimensions identified in Figure 6.13a. The results of the FEKO evaluation are 

given in Figure 6.14. The original intention was to employ a binomial taper (0.5, 1.0, 0.5) 

across the three elements to effectively eliminate the first sidelobe. The taper was 

implemented using 3 dB pads on the outer elements. This configuration was carried for a 

while but was dropped: the 4.26 dB taper loss was excessive and the sidelobe control not 

needed. However the results in Figure 6.14 all include the weighting. The final return loss 

versus frequency results are shown in Figure 6.14a. The feed position, as indicated, 

slightly offset from the initial position. Gain versus angle in the cardinal azimuth (in 

Figure 6.13c the red axis and blue axis define the azimuth plane) and elevation (red and 

green) cardinal planes. Polar plots of gain are presented in Figures 6.14c (azimuth) and 

6.14d (elevation). Predicted peak gain is 6.6 dB, again with the taper. As expected due to 

the small ground plane size, a modest front-to-back ratio was realized (a consideration 

related to direct path breakthrough).  

 
Figure 6.13. Edge-shorted Patch Array Design 
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This configuration had acceptable performance and would be straight forward to build 

with the materials and tools available. The patches were fabricated from 20 gauge copper 

sheets from a hobby store using a printed paper pattern for the cuts and bend lines. The 

patch is center-fed using an SMA bulkhead connector mounted from the ground plane 

back side (bottom), slightly protruding through a hole drilled in the patch, secured with 

four attach screws and soldered. The ground plane initially was composed of 16 gauge 

rolled steel (cut to size by the metal vendor) and was assembled 6 months prior to testing. 

This was replaced after corrosion was observed at the bulkhead connector attach points to 

the ground plane. The replacement was thinner brass which required an aluminum frame 

for stiffness. The center patch was soldered to the ground plane along the shorting wall 

fold with less than ideal results (large heat sink) so all were clamped with bolt-washer- 

 

Figure 6.14. Horizontally Polarized, Dielectrically-loaded, Rectangular Patch Results  
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nuts and taped with copper tape to insure grounding. To support the open end a small 

block of very lightweight, open pore foam was bonded between the patch edge and the 

ground plane. The initial antenna build (on rolled steel) appears in Figure 6.15, in several 

perspectives. An enlargement of the center patch is shown in Figure 6.15b with rear and 

edge views in Figures 6.15c and d, respectively. Figure 6.16 is a photo series of the 

antenna with the replacement (brass) ground plane. 

 
Figure 6.15. Fabricated Main Antenna  

The three elements were manifolded with a surplus 3:1 combiner (I. F. Engineering PD-

3003-S) and matched length coaxial cables (visible in Figure 6.15c) which exhibited an 

insertion loss per unit length of 0.669 dB/m (midband). The combiner was specified only 

up to 500 MHz. However the measured insertion loss at 587 MHz was less than 0.5 dB 

above the specified value (2.1 dB measured): so the part was deemed acceptable.  

Measured pattern attempts outside of an anechoic chamber produced unacceptable results 

in spite of several attempts at different locations. A comparison of the FEKO model 

results (with binomial weights) against the calibration measurement from the anechoic 

a) Front Perspective View

b) Center Element (Enlarged) d) Edge View

c) Rear View
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Figure 6.16. Main Antenna with Brass Ground Plane  

chamber (detailed in Section 6.2) is made in Figure 6.17a. To facilitate the comparison 

the FEKO result is normalized to the calculated peak gain. Figure 6.17b is a comparison 

of a non-anechoic lab measurement using a Vector Network Analyzer (VNA) and 

compared to field measurements using a single channel of the bistatic receiver described 

in Section 6.1.1. 

6.1.3 Support instrumentation. Support instrumentation is briefly described in this 

section. Support instrumentation includes the GPS instrumentation and designed and 

partially and completely fabricated calibrated targets. These latter were intended for use 

at the original test location to the south and east of the target transmitter where permission 

to access the test location had been obtained, and for a test wherein the receiver was to be 

automobile-mounted. This ground two-dimensional aperture test was planned as a 

precursor to the flight collection but which ultimately was not conducted because of 

inability to obtain permission to access test locations with emitter visibility.  

a) Front View

b) Reverse Side View
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Figure 6.17. Pattern Comparison - Flight Configuration to FEKO Model 

6.1.3.1 Navigation instrumentation. The GPS test components were shown in the block 

diagram in Figure 6.2. These consisted of the Trimble GEOXH hand-held, survey-quality 

receiver, the SkyPro XGPS160 GPS WAAS (Wide Area Augmentation System) receiver, 

and the 3V Garmin GA25 MCX antenna used with the GPSDO integral to the N200. 

The Trimble GEOXH is shown in Figure 6.18. The unit measures 234 mm by 99 mm by 

56 mm, weighing 0.925 kg (2.0 lbs). The receiver has 220 channels and services the GPS, 

GLONASS and SBAS (Space Based Augmentation Systems; the latter including WAAS 

(Wide Area Augmentation System), EGNOS (European Geostationary Overlay System) 

and MTSAT Satellite-based Augmentation System (MSAS), with an integrated L1/L2 

antenna. The Trimble update rate is only 1 Hz but provides decimetric-level accuracy. 

The Trimble also includes Wi-Fi and cellular capability for real-time corrections to this 

level of accuracy (10 cm plus 1 ppm) or the data can be stored for off-line processing (as 

was done in this experiment). Horizontal RMS error with the real time WAAS is better 

than 1m. The single unit height error with SBAS/WAAS is less than 2m. With post 

processing the height error can equal the horizontal error (decimetric). Horizontal 

decimeter accuracy is obtained via post processing. Battery lifetime is 10 hours. The 

Trimble was rented from GeoPlane Services (A Division of Universal Ensco Inc., 4848 

Loop Central Drive Houston, Texas 77081). Also delivered with the hand unit was 

Trimble GPS Pathfinder Office. The software package facilitated data transfer and post 
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processing using atmospheric corrections obtained from the Washington State Reference 

Network (WSRN), Continuously Operating Reference Stations (CORS). As described in 

Section 6.4.3, GPS Pathfinder provided turnkey implementation of the multisite 

corrections. 

The XGPS160 is also pictured in Figure 6.18. The unit also supports both GLONASS and 

GPS constellations with SBAS (WAAS/MSAS/EGNOS/GAGAN) and can operate as 

high as 10 Hz data rate with a 99 channel receiver. GPS L1 (1575.42 MHz) and 

GLONASS L1 (1598.0625~1605.375 MHz) are supported. Published accuracy is +/- 2.5 

m CEP. A rule- of-thumb is that the vertical error is 1.5× to 4× the horizontal error
3
.  

However, data are not stored in format which is suitable for post processing as was the 

 
Figure 6.18. GPS Instruments (not to same scale) 

Trimble. The flexible, no skid rubber base allows the unit to sit on the aircraft glare shield 

and transmit position data via Blue Tooth 2.4 GHz wireless link to an iPad or similar 

viewing device. On the display device the data is integrated with map or navigation 

software. Collected position data are stored on the WGPS160 unit and downloaded via 

Wi-Fi to the vendor who, in turn, transmits the data as a text file attachment to email. The 

                                                           
3
 https://groups.google.com/forum/#!topic/giscolorado/TMfGmFAePxA 

a) Trimble 6000 Series GEOXH b) XGPS160
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unit size is 55 mm by 70 mm by 22 mm (H x W x D). 10 hours of battery life are 

available with Blue Tooth functionality enabled.  

All the GPS antennas were positioned in the glare shield in order to maximize the view of 

the sky (satellite access). This position worked quite well with greater than 10 satellites, 

GPS and GLONASS, visible to both GPS units. Installation is described in Section 6.3.2. 

6.1.3.2 Calibrated targets. Early studies had a monostatic focus and the inclusion of 

target(s) with a known response under three-dimensional imaging aperture was planned. 

Simulated response would provide a known benchmark against which flight test 

reconstruction results could be compared. An L-band monostatic radar was a flight test 

candidate and access to the image scene for placement of known targets for both spatial 

and radiometric effects was coordinated. Most simulation activity utilized the 

hypothetical isotropic (angle and frequency invariant) scatterer and realizable targets 

which would support wide aperture scattering were sought. The conducting sphere, a right 

circular cylinder with length/circumference ratio of approximately one, the spherical 

trihedral (three circular planes intersecting at 90 degrees), and the tophat were all 

considered. As the focus of study shifted to bistatic tomography using HDTV the list of 

potential targets was modified, the trihedral being dropped. This section presents 

scattering analysis results and the associated reconstructions. 

Scattering from the PEC (perfectly electrically conducting) sphere is exactly known. The 

well known normalized response (radar cross section) derived from the Mie Series [146] 

is shown in Figure 6.19a. In Figure 6.19b the scattered spectrum from a simple, envelope-

only modulated pulse of 223 MHz bandwidth and after reception by a frequency 

independent antenna and match filtering, is shown. A 1.5 m radius sphere is assumed and 

the spectrum is centered at 587 MHz. 
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 Figure 6.19. Monostatic RCS and Example Scattered Field 

The broadband monostatic response in the time domain appears in Figure 6.20. Range is 

relative to the sphere centroid. The dominant response (-1.5 m) is the specular return. The 

secondary response is that of the creeping wave. Delay (two-way) of the creeping wave, 

relative to the specular, is one radius plus one quarter the circumference. With the sphere 

symmetry, this response is invariant to aspect angle. 

 
Figure 6.20. Sphere Time Domain Response (from Fig. 6.19b) 

The scattered field in Figure 6.19b was then computed over two pi radians, and applied to 

a two dimensional aperture reconstruction. The results are shown in Figure 6.21. There 

are two results, the first a linear scaled contour view (which illustrates only the specular 

return), in Figure 6.21a and a cut along the X=0 axis (Figure 6.21b). 

To test the reconstruction, the bandwidth of the illuminating rect pulse was reduced to 6 

MHz and the scattered field recomputed. The results are shown in Figure 6.22. The 

narrowband reconstruction does not resolve any features, collapsing to a point. 

Effectively this is the same result as the isotropic scatterer. 
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Figure 6.21. Two Dimensional Aperture, Monostatic Reconstruction (Wideband) 

 
Figure 6.22. Two Dimensional Aperture, Monostatic Reconstruction (Narrowband) 

The bistatic scattered fields from a PEC sphere no longer exhibit aspect independent 

symmetry. Defining the bistatic angle as the angle between incident and scattered 

directions, in the plane defined by those directions with the Mie series [146], the RCS of a 

sphere as a function of bistatic angle, when observed along an equatorial cut, is presented 

in Figure 6.23a. A single sphere radius (1.5 m) and 1 m wavelength were used for this 

calculation. 

Bistatic angle (beta) varies from 0 to  radians. The response strongly resembles the 

monostatic (normalized radius 1.0 in Figure 6.19) in the region out to around 50 degrees 

(the pseudo-monostatic region). Between 50 deg and 150 degrees the RCS oscillated in 
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 Figure 6.23. Bistatic Response of a PEC Sphere 

the bistatic region and beyond 150 degrees we see the RCS bloom in the forward scatter 

regime. Figure 6.23b depicts the range response of the sphere when observed bistatically 

with the same wideband waveform as the monostatic case. At =0 deg we have the 

monostatic response (Figure 6.20). As  increases the apparent range of the specular point 

reflects the migration of this point around the sphere and the angle at which the creeping 

wave is observed, foreshortening separation relative to the specular. Thus we have an 

angle dependent response that will introduce distortion during image formation. For the 

bistatic case three cases are considered for the two-dimensional aperture: wideband (223 

MHz), narrowband (6 MHz) and CW, this latter to verify the reconstruction code. Figure 

6.24 contains cuts of the reconstruction of a 2D aperture along the Y=0 axis (Figure 

6.24a), the X=0 axis (Figure 6.24b) and a contour plot (Figure 6.24c). The transmitter 

location is along the Y=0 axis at X=1000. The radius of the collection aperture was also 

1000 m with the origin of the sphere coincident with the scene origin. In both cases the 

direct (unscattered) path contribution is neglected. 

The 6 MHz waveform result is shown in the same format in Figure 6.25 and also exhibits 

the reconstruction distortion relative to the monostatic case. To test the reconstruction, a 

single tone from the scattered spectrum was used as input. The result, which is not shown, 

resembled Figure 6.22, as expected, with the mainlobe resolution twice the monostatic 
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Figure 6.24. 2D Bistatic Reconstruction of Perfectly Conducting Sphere (Wideband) 

case. This gave confidence that the reconstruction code was operating correctly, but does 

not explain the distortion in Figures 6.24 and 6.25. 

 
Figure 6.25. 2D Bistatic Reconstruction of Perfectly Conducting Sphere (Narrowband) 

The use of the sphere illustrates the variation of the target point spread function when the 

aperture is extended to 2 radians as in the tomographic reconstruction, and as the 

bandwidth is varied. With respect to known targets for flight test, the first observation is 
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that the bistatic geometry which might give rise to forward scatter blooming will not be 

experienced. And, though speculars from large objects might be encountered, they are 

unlikely from man-made structures as buildings have vertical walls, the illuminating 

signal is arriving only 1.4 degrees from tangential to a smooth Earth (grazing angle), and 

flat and shallowly pitched roofs (particularly metal) would be expected to scatter above 

the altitude of the highest operating altitude of the test aircraft. A sphere was purchased (3 

m diameter, inflatable weather balloon) but was too difficult to “conductorize”. Silver-

based paint was too expensive and application of aluminum foil with copper tape too 

unwieldy. 

The vertical cylinder was evaluated using FEKO specifically for an automobile-based 

ground test. A 1.5 m (high), 0.56 m diameter aluminum foil-covered test was built for 

vertical orientation against the horizontally polarized illuminator. Estimated RCS was 5.8 

m
2
 (ka=3.142). The short range and 90 degree aperture would have largely been a pseudo-

monostatic test. However access permission for the test location was not obtained and this 

was not performed. The cylinder is pictured in Figure 6.26a. 

 

Figure 6.26. Candidate Test Targets 

a) Foil-covered Cylinder (Ground Test) b) Tophat (wooden frame and foil-covered)

Ground plane (Diameter = 6 m)

Cylinder (Dia. = 2 m)

Cylinder

(Ht = 2 m)
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The tophat target in Figure 6.26b was also constructed, but never (fully) assembled. The 

tophat was sized using monostatic arguments (it was intended for the originally planned 

monostatic flight test and carried over into the bistatic work with access to the initial test 

location). Sizing was done based on [147] presented from a monostatic SAR perspective: 

RCS at 587 MHz for a 6 m ground plane, 2 m high, 2 m diameter cylinder exceeds 10 m
2
 

between 10 and 85 degrees elevation aspect angle. To develop bistatic scattered 

phenomenology the tophat was modeled in FEKO and weighted by the voltage spectrum 

of the forward transformed waveform (see Section 5.0 and Appendix B, (B-9)). 

Symmetry is exploited to reduce the run times. Several elevation cuts of the predicted 

RCS at midband are presented in Figure 6-27. As in the case of the sphere, complex 

scattered fields were calculated in 14, 0.5 MHz steps symmetric with the channel center 

frequency.  

 

Figure 6.27. Bistatic RCS at 587 MHz – Select Aspect Cuts 

6.2 Calibration. 

Calibration serves twofold purpose: 1) compensating for the effects of nonlinearities and 

additive delay, resulting in a linear system of known electrical length to derive measured 

delay as referenced to the main antenna phase center, and 2) to force the transfer function 

response of the two channels into alignment (e.g., channel matching) in order to obtain 

the highest cancellation ratio from the adaptive sidelobe canceller. Implementing 2) 
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results in the highest system sensitivity by suppressing the direct signal breakthrough 

[113], maximizing the effective SNR. These two requirements are not necessarily realized 

in a single operation. This section describes the approach and static (ground or laboratory) 

measurements made, as well as flight test data collected and processed to correct for 

systematic errors or deviations in the receiver hardware 

The original approach was for a completely deterministic calibration and compensation. 

Channel matching, and spatial corrections would be applied to project the displaced 

reference antenna onto the main antenna to realize a phase stable range difference profile 

for each equivalent pulse repetition interval. As will be seen (Section 6.4) this was not 

(completely) the case. 

The receiver system is a cascade of active electronics components, which exhibit 

temperature-dependent characteristics, and passive components which tend to be more 

stable. The responses of quiescent (passive) components, external to the receiver, are 

characterized in the laboratory, under controlled conditions while active components 

require the sampling of some probing signal(s) with processing required prior to 

application (and with the unit at operating temperature). In receiver calibration, 

particularly multiple receivers which must operate coherently, a controlled, known signal 

is injected at some point in the receive chain, normally after the antenna elements (which 

are stable and can thus be statically measured), and the receiver output sampled. The SNR 

of the probing signal is high so that the estimation error of amplitude and phase are 

controllably small, especially when combined with averaging or similar means to smooth 

random errors. 

Also in the multichannel receiver, particularly when each channel employs an 

independent, though phase locked, master oscillator, the initial phases of the oscillators 

are a consideration. While the phase locked channels are coherent in that the time rate of 
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relative phase change is made small through the action of phased locked loops, the initial 

phases are random. The absolute phase difference is a consideration in that range/delay 

errors might result in the cross correlation process. 

Several approaches were considered for channel-to-channel calibration before ultimately 

electing to use of the illuminating HDTV signal. These are briefly discussed before 

moving to the calibration details. The first method is the most obvious, the incorporation 

of a calibrated source, combined with a suitable means to couple the calibration signals 

into the receive channels after the antennas. The second is to exploit an external or 

environmental signal. Before proceeding we have a brief discussion on the use of the 

N200 as the digital receiver. The N200 is controlled via an operating program on the 

control processor. Any sampling change, gain, tuning or sample rate changes, or transmit 

or receive operation requires a restart. Calibration application would be run and 

terminated, followed by the collection application. Each restart results in different initial 

phases in the oscillators and thus one reason for calibrating would be defeated. There is 

no automatic gain control. Thus it is preferential to perform calibration with the unit 

continuously operating in the sampling mode. 

As described in 6.1.1.2, the receiver system consumes about one-half the available prime 

power (10 amp circuit at 12 VDC with inverter conversion efficiency of the order of 78%, 

or 93.6 W). During experiment planning and design, 15 W overhead was reserved should 

the addition of low noise amplifiers ahead of the bandpass filter be necessary. With this 

insufficient power remained for a dedicated signal source, such as a laboratory generator. 

Signal could be injected to each receiver via 2:1 couplers or use of manual coaxial 

switches. The both would increase the system noise figure and require an additional set of 

static measurements to calibrate as part of the cascade. But the former, with the gains set 

for collection, would have external TV signals combined with the calibration signal. The 

calibration signal could not use a significantly higher SNR as the receive gains are gains 
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are balanced to just bring the ADC into saturation when the main antenna is facing the 

target illuminator. The use of A-B coaxial switch, one per channel, would overcome this. 

The switch locations, however, would have to be in the rear seat of the aircraft and would 

be difficult to actuate simply because of the cramped cockpit. 

The WBX daughterboards of the N200 have an independent transmit channel that could 

be used to generate signals that could be coupled into the receive chain. LFM/swept tone, 

OFDM or noise signal at high SNR are all supported. Configuring the channels then 

launching a separate calibration routine (after the hardware had thermally stabilized) was 

a possibility. The WBX can also be configured to simultaneously transmit while receiving 

and the GbE and MIMO interfaces could handle the necessary bandwidth (12.5 MHz). 

However this would require a separate routine and was discarded for the reasons above 

Examination of the temporal and statistical properties of the HDTV waveform suggested 

another alternative, that of using the illuminating waveform. As described in Section 5.0, 

the HDTV waveform, with temporally changing channel content in addition to the 

spreading code PN employed is essentially a random waveform. Figure 5.3 demonstrated 

that the voltage distribution is zero mean Gaussian (by inspection) and that phase is 

effectively uniformly distributed. Figure 5.3 is based on a sample size of 50E+07. Since 

this could be accommodated with the sampling application and since we are not 

concerned with radiometric calibration, only channel matching, it was made the baseline. 

In Section 6.2.1 the calibration methodology is broadly described. This primarily relates 

to developing transfer functions for the receiver channels and includes details on the 

passive channel components. Section 6.2.2 specifically describes the development of the 

spatially varying transfer functions for the two flight antennas. Section 6.2.3 covers the 

use of the broadcast signal to derive the relative responses of the active electronics in 

flight. This is done in the context of the generalized, adaptive sidelobe canceller 
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necessary for mitigation of direct signal interference (DSI). Section 6.2.4 addresses the 

several corrections to reference zero range to the phase center of the main antenna. This 

includes reference-to-main phase center physical (range) offset due to geometry and 

residual corrections. 

6.2.1 Passive component calibration. The bistatic receiver system design was presented 

in Figure 6.2 with a detailed block diagram shown in Figure 6.3. The system block 

diagram is presented in a calibration-centric perspective in Figure 6.28. The system 

consists of two different antennas (main or imaging antenna directed at the scene and the 

near-omni directional reference), each instrumented with the same model software-

defined radio (SDR) analog tuner and digital receiver. Each channel also includes a 

custom designed, steep rejection band, bandpass filter (see Section 6.3.4, RFI Analysis) 

ahead of the somewhat limited anti-aliasing filters found in the WBX tuner. Both 

channels employ slightly different coaxial cable lengths between antenna and bandpass 

filter. 

Each channel is represented in the frequency domain by cascaded transfer functions 

representing contributions of antenna, filters, amplifiers coaxial cabling, etc. We write the 

total transfer function in the frequency domain as 

    i

K

irm HH 1,      (6-23) 

where Hi()) represents the i
th

 stage of the receiver, up to the analog-to-digital convertor, 

and the subscript m, r indicates the main or reference channel. 

The principal method for component compensation/channel matching/equalization is the 

Zero Forcing technique [149] or Zero Forcing Equalizer (ZFE). The basic concept of ZFE 

is shown in Figure 6.28, implemented in the frequency domain. In the taxonomy of [149] 

ZFE is a linear equalizer. Linear phase response of a component is equivalent to a 

constant delay between the terminals of that component, group delay group=-(d()/d), 
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whereas nonlinear phase results in dispersion as some frequencies propagate at different 

speeds between the terminals. The implication of employing ZFE is that delay, as 

evidenced by group delay, is eliminated (to within the measurement and other systematic 

tolerances). This allows the establishment of the range/delay reference at the antenna 

phase center, matching physical position with electrical position. Gain corrections are 

based on normalized, averaged spectra to capture only relative changes. The inverse 

dependency in the equalizer can act to amplify system noise so care is taken to only 

operate in the portion of the allocated channel spectrum above the 6 dB roll-off points. 

Likewise, in generating the estimate of the transfer function avoiding zeros is necessary. 

 
Figure 6.28. Zero Forcing Equalizer Operation 

The calibration cascade is decomposed in Figure 6.29. This includes serial application as 

well as the cross channel operations necessary for channel matching: ZFE is employed 

stage-to-stage as described in Section 6.4.  

 
Figure 6.29. Calibration Perspective Block Diagram 

Instrumental calibration of the passive components was performed using a vector network 

analyzer. Analog components (filters and cabling) were measured on the lab bench using 

an Agilent 5818A, providing S21 measurements over frequency. Figure 6.30 is the 

magnitude and phase response for the channel bandpass filters and coaxial cable over a 50 

MHz measurement range. The cable-filter pairs, once assigned, were not mixed 
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throughout testing. Figure 6.31 presents a zoomed response, limited to the 10 MHz band 

of the flight test data. 

 
Figure 6.30. Bandpass Filter Characterization 

 
Figure 6.31. Zoomed Plots - Bandpass Response 

The responses in both Figures 6.30 and 6.31 include the assigned coaxial cable. Nominal 

mean insertion loss (averaged over the 50 MHz range) is 3.8 dB, reducing the minimum 

insertion loss of the filters to slightly more than 2 dB. The insertion phase was linear over 

the 6 MHz center portion of the response spectrum with slope 0.161 rad/MHz.  
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6.2.2 Antenna calibration. The static transfer functions of both antennas also include 

contributions from spatial dependencies as well as responses in the frequency domain. 

Spatial dependencies arise from phase center variation (essentially an angle dependent 

group delay) and fabrication errors. This is most notable in the reference turnstile antenna 

where the 90 degree phase delay between driven arms of the crossed dipole introduces a 

/2 phase advance from 90 degree sector-to-sector. Channel-to-channel phase errors will 

introduce phase errors in the cross correlation/pulse compression process, resulting in a 

nonzero, potentially spatially variant initial phase at zero delay (Section 6.2.4).  

Antenna calibration was more complex than the bench top measurements of passive 

components. The general procedure involved making measurements using two identical 

log periodic dipole (LPDA) antennas in an anechoic chamber, solving for the transfer 

function of the LPDA under a strict reciprocity argument, then replacing one antenna with 

the antenna-under-test (either the main or the reference antenna. This is shown in Figure 

6.32. A vector network analyzer generates a frequency swept signal which is coupled to 

the transmit antenna through a coaxial cable with a known (measured) transfer function, 

 
Figure 6.32. Antenna Calibration Schematic  

radiated toward the receive antenna a known distance away (taking into consideration any 

phase center frequency dependency), received and sampled by the VNA via a second 

cable of known properties. The forward scattering parameter S21 is given by 

)()()()()()(21 2__1  CRXLPDAspaceTXLPDAC HHHHHS    (6-24)  

b)  Only Unknown is the Antenna Under Test a)  Developing Single Antenna Transfer 
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With the identical antenna/reciprocity assumption we can solve for the antenna transfer 

function, giving 

)()()(

)(21
)(

21 




CspaceC
LPDA

HHH

S
H      (6-25)  

Then when substituting the receive LPDA with the antenna under test (AUT), the transfer 

function of that antenna is given by 

)()()()(

)(21
)(

21 




CspaceCLPDA
AUT

HHHH

S
H     (6-26)  

The experimental test setup is shown in Figure 6.33 in two perspectives. Antennas were 

set several wavelengths from the chamber walls (as only a portion of the room was 

utilized). Distances were measured carefully to account for the spatial/propagation term in 

Equation 6-26. Included in the spatial distance are estimates of the radiating phase center 

over the narrow band of frequencies tested.  

The log periodic antennas were the Ettus LP0410 [150] variant on the WA5VJB, 

bandwidth 400 to 1000 MHz. The log periodic radiates at the resonant distance along the 

antenna (the active region) so that the phase center location is estimated as the distance 

from the feed where the effective half-lambda element would be located. This antenna has 

a spread half-angle () of 22.5 degrees with 10 alternating dipole arms and an overall 

length of 9.1 inches (23.1 cm). The active region was estimated at 7.5 in (19.1 cm) from 

the leading (feed) edge, and termed Lpc. Twice this distance is added to the leading edge-

to-leading edge to define the Hspace term in (6-26), expanded in (6-27) to incorporate R  

R

e
H

Rjk

space








2
)(   pcant LRR 2    (6.27)  

One half the value of Lpc is used with the antenna under test with the distance reference 

either the ground plane (main antenna) or the feed location/dipole crossover (reference 

antenna). 
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Figure 6.33. Antenna Calibration – Anechoic Chamber Setup  

Instrumentation was located outside the chamber with the operator exiting and closing the 

chamber door for each measurement. Several S21 sweeps were made in the event that any 

measurement averaging was necessary. The bistatic radar antennas were mounted on the 

stand nearer the door for ease of access, to minimize time between measurements and the 

amount of walking over treated surfaces. S21 was measured in 15 degree increments for 

both antennas. Results shown are truncated to 10 MHz bandwidth to match the sample 

rate actually employed in the flight collection. The zero degree reference for the main 

antenna is the normal to the ground plane representing the location of the mainbeam peak 

response. The zero degree reference for the reference antenna is the midpoint between the 

driven arm and the grounded crossed dipole arm. This was chosen so that the antenna 

square side was flush with the aircraft window when installed. Which of the four faces 

selected was arbitrary, but consistently applied throughout testing. Additionally the sense 

b) Top View Antenna Measurement Setup
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of angle employed is opposite for the two antennas. This was an accident during 

calibration but was maintained throughout application. Azimuth angle for the main 

antenna was measured clockwise from boresight which it was measured counter 

clockwise for the reference antenna.  

Reference antenna phase and magnitude results over frequency and angle appear in 

Figures 6.34 and 6.35, respectively. To avoid perturbing the channel-to-channel gain (and 

possible impact to the adaptive sidelobe canceller) the gain curves are normalized to the 

value at the channel center frequency. The magnitude plots illustrate the gain ripple 

across the channel bandwidth.  

 
Figure 6.34. Phase Response over Angle - Reference Antenna 

The calibration data for the main antenna appear in Figures 6.36 and 6.37, phase and 

magnitude, respectively. The main antenna data were generally well behaved with the 

exception of the 135 degree dataset and the 315 degree data from the main antenna (both 

points 180 degrees apart. Only the 135 degree phase response failed to match the broad 

trend of the surrounding angular values, while both angles were out of the ordinary when 

the magnitude was considered. 
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Figure 6.35. Magnitude Response over Angle - Reference Antenna 

The group delays of both antennas, at a single angle, are illustrated in Figure 6.38 with 

the main antenna response in Figure 6.38a, the reference in 6.38b. Both sets of curves are 

found from the negative of the first difference phase as a function of frequency. 

 

Figure 6.36. Phase Response over Angle - Main Antenna 
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Figure 6.37. Magnitude Response over Angle - Main Antenna 

For the main antenna this represents to the output terminal of the 3:1 combiner while for 

the reference antenna this includes the RG-59 coaxial cable (64 inches long, 1.626 m 

including SMA gender adapter) which was intrinsically part of the antenna feed. The 

mean value of the group delay for the main antenna was 4.559 nsec or a free-space 

equivalent delay of 1.367 m. The reference antenna mean value was 11.121 nsec 

(equivalent delay of 3.36 m). Applying the calibration functions normalizes the group 

delay to the physical phase center of the antenna in preparation for the projection of the 

reference antenna onto the main antenna, including relative positions (installed). 

Relative gain patterns were produced for both test antennas. Two patterns are re-created 

from the measurements; the main antenna at midband (587 MHz) in Figure 6.39a, and the 

reference antenna at two frequencies, both below mid-channel (6.39b). 

Figure 6.38. System Antennas Group Delay  
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Figure 6.39. Anechoic Chamber Measured Antenna Patterns  

The reference pattern as simulated showed (Figure 6.10) four broad, but discernible, 

peaks; one at each dipole normal, or every 90 degrees.  While not representing the design 

as simulated, the gain pattern is sufficient, less air vehicle installation effects, to cover the 

main antenna side and backlobes. 

6.2.3 Channel matching. To this point we have considered the calibration of passive 

components which are expected to have static, stable responses (except for the effects of 

the air vehicle on the antennas when installed). As discussed at the beginning of Section 

6.2 we elected to make use of the illuminating signal as the means to make simultaneous 

measurements of both channels against an external probing signal because of limitations 

on space or power. Section 5.0 demonstrated the random nature of the HDTV signal in 

the time domain and presented examples of the signal spectral showing the flat response 

across the channel bandwidth. The need for matching the transfer functions of the two 

channels derives from the need to remove the direct signal breakthrough in the main 

channel, as discussed in Section 5.1. A secondary consideration is to minimize the 

introduction of resolution errors in the pulse compression process. 

The adaptive canceller configuration is depicted in Figure 6.40. Two channels with 

nominally equal receiver gain and phase responses, with the requirement that auxiliary 

antenna gain in the direction of the interference source must be greater than the main 
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antenna gain (maximizing the gain in the direction of the interference and minimizing in 

the direction of signal would the optimum). 

 
Figure 6.40. Adaptive Sidelobe Canceller Geometry 

In the discussion that follows we assume sampled data, processed offline, with LO and 

antenna offset corrections implemented (this latter implements the spatial phase offset 

between channels), that the pilot tone has been removed, and that the static component 

ZFE corrections have been applied. An adaptive weight is calculated by estimating the 

covariance between channels using sample matrix inversion (SMI) and steering vector t 

as defined by 
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where H indicates conjugate transpose. The filtered output in the time domain is then  

   
nrefnmainn

T

n shwshwXwy  21   (6-30)  

where * indicates convolution, superscript T for transpose, and sn is the sampled signal. 

The frequency domain form of (6-30) is 

)()()()()( 21  SHwSHwY refmain    (6-31)  

To minimize the output power of the interference signal requires that w2=-w1 and 

Hmain=Href. 

 .)()()()(  refmain HHwSY     (6-32)  

xmain(t)
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Equation 6-32 illustrates the canceller dependency on the degree of similarity of the 

channel transfer functions. 

The canceller performance is defined in terms of a cancellation ratio (CR), Po/Pn, where 

Po is the canceller output power and Pn the channel noise power. In [119] cancellation 

ratio is defined as a function of amplitude and phase mismatch for a simple two-channel, 

narrowband canceller with identical antennas. For the case of magnitude-only errors a 

channel mismatch of 0.5 dB (10log(Pchan1/Pchan2)=0.5dB) limits the CR to -25 dB while in 

the phase only case the same level of performance is met at 2.8 degrees of phase error. 

Performance versus mismatch for each quantity individually is shown in Figure 6.41.  

The quantities in Figure 6.41 are defined in the time domain with the amplitude mismatch 

defined as 10log(G1/G2), G1 and G2 the channel gains (G2 assumed to be 1). Likewise the 

phase mismatch is given as =1-2. As we are operating over the channel bandwidth 

we need a representation of the mismatch over frequency. Define the mismatch between 

two channels as  

)()(
)(

)(
)( 




 j

ref

main ed
jH

jH
jD      (6-33)  

where d is the magnitude mismatch and  the phase mismatch. The mean and root mean 

 
Figure 6.41. Cancellation Ratio versus Magnitude and Phase Mismatch (after [119]) 
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This representation supports both linear and higher order error functional descriptions. 

Equalization approaches for multichannel radar systems, such as [151], [152] and [157] 

use estimates of the individual channels, with one of the channels designated a reference, 

to normalize all responses to the reference channel, as shown in (6-35) for relative 

calibration and (6-36) for absolute calibration [152]. For K parallel channels (k=1: K-1)  

)(ˆ/)(ˆ)();()()(
~

 krefkkkk HHEEHH  ; channel K = ref  (6-35)  

)(ˆ/)()()(
~

 kkk HHMH      (6-36)  

where the tilde indicates a calibrated channel response and the caret indicates the estimate 

of the transfer function of the channel.  In (6-36) M() is a specific, desired response. Our 

approach for the two channel system is based on eqn. (6-35). We do not want to perturb 

the gain relationships between the two antennas so the magnitude is normalized to unity 

at the channel center frequency. In this manner relative magnitude variations are 

equalized between channels. 

During test design a goal cancellation ratio of 35 dB was established, based on expected 

signal levels from mean clutter using vegetated farmland-level clutter reflectivity in 

conjunction with the planned test geometry. This requires amplitude matching of 0.1 dB 

and phase matching to 0.8 deg (or some similar combination). The matching metrics are 

realized after the application of the zero forcing equalizer using the estimated transfer 

function of each channel. The time domain matching requirements are decomposed to the 

individual filter. The time domain mismatch errors can be flowed directly to the 

individual filters (to all filters equally). This can be seen by exercising mean value 

expressions from eqn. 6-34. We equate the mismatch error as the estimation uncertainty 
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in measuring the channel parameters. Otherwise stated, the amplitude mismatch equals 

the amplitude estimation error. The same is true with the phase. 

Using the illuminator as the calibration probing signal requires that the data be sampled, 

converted to the frequency domain where it is averaged to improve the estimate of the 

magnitude and phase at each filter in the passband. In the time domain, as shown in 

Section 5.0, the HDTV signal is Gaussian distributed in amplitude and uniform [0, 2] in 

phase. When transformed into the frequency domain, the voltage statistics in each filter 

remain Gaussian in amplitude, though with a change in scale, and we have an ensemble 

of parallel estimates of magnitude and phase of a noise signal. On average, as required by 

the channel mask, the mean signal power in any filter is constant. The signal/information 

content adds a random component. Thus we effectively have the problem of estimating a 

constant amplitude and phase signal embedded in noise. We use the signal power as the 

proxy for relative channel gain.  

The instantaneous error in estimating the magnitude and phase of a signal (HDTV signal 

competing with receiver noise) in the presence of additive Gaussian noise are, 

respectively, given by 

SNRSNR
ampl


 

21
     (6-37) 

where SNR is the signal to noise ratio in the individual filter. We see from ground test 

examples (Section 5.0) that the SNR for the 0.8 msec burst is > 40 dB (for flight test 

examples see Section 6.3.4). Using these as typical (ground based measurement trials 

returned similar results) we can estimate the single observation accuracy of magnitude at 

0.01 and phase at 0.063 deg.  

While the individual estimates are themselves very accurate, the measurements reflect the 

underlying statistics where we need to estimate the mean amplitude and the mean phase 

of a random process. To improve the accuracy of the estimate a sufficiently large number 
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of samples must be collected and averaged so that the sampling error (difference between 

true mean and estimated mean magnitude and phase) meets an allocated accuracy. Define 

A and  as the amplitude and phase estimates. We set the sample size based on the 

variance of the estimator (also called the error of the mean). This is given by 

.
)(

)var(;
)(

)var(
22

NN

A
A





    (6-38)  

where A  and   indicate mean values. To get an estimate of the variance of the 

amplitude and phase, ground measurements were made with an antenna with similar gain 

to both the main and reference antennas and analyzed to produce (A) and (). With 

these in hand we can develop a sample size requirement for the flight test. 1.6E+06 

samples were processed, yielding var(A)=60.068 and var()=3.2837 (rads). Setting the 

mean variance to be equal to 0.1 of the channel mismatch (either amplitude or phase) and 

solving for N yields 587 samples (amplitude) and 2352 samples (phase, 0.08 deg).   

Dedicated test geometry was designed for the estimate of the channel transfer functions 

that held the antenna gains in the direction of the transmitter, and the range constant. The 

flight path was an arc centered on the transmitter with radius equal to the range from the 

transmitter to the test scene. The arc ground track can clearly be seen in Figure 6.53. The 

duration of the calibration leg was 408 seconds, allowing the collection and processing of 

8028 bursts for smoothing the channel gain and phase estimates. The condition was 

started after the receivers had been powered up for 20 minutes at altitude (4000 ft/1219 m 

initially, climbing to 5500 ft/1676 m due to airspace limitations). The duration was longer 

than required to provide ample sample margin.  

Estimates of the relative magnitude responses for both channels are shown in Figure 6.42 

with the main channel in Figure 6.42a and the Reference (slave) channel in 6.42b. After 
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averaging 8028 bursts the magnitude is normalized to the band center frequency. Further, 

filter-wise, the data were further smoothed using a 5 filter sliding window. Two curves  

 

Figure 6.42. Individual Channel Response Estimates – Magnitude 

are thus shown for each receiver smoothed (red) and unsmoothed (blue).  The phase 

responses are presented in Figure 6.43. For phase, four figures are presented because of 

the more random nature, for readability. 

There is a noticeable difference in the channel gain characteristic, less so in the phase. We 

judge the level of channel similarity by dividing the main channel complex response by  

 
Figure 6.43. Individual Channel Response Estimates – Phase 

the reference channel, then form the magnitude and phase of that result and calculate the 

overall magnitude and mismatch after equation 6-36. The degree of channel similarity can 
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be seen in Figure 6.44. Numerical evaluations of eqn. 6-34 are found in Table 6.6 which 

summarizes the channel degree of similarity. 

Parameter Mean Value RMS Value 

Magnitude 1.0227 (0.97 dB) 0.047 (-13.28 dB) 

Phase 3.9293E-04 (0.023 deg) 0.0296 (1.696 deg) 

Table 6.6. Channel Matching Results Summary 

Figure 6.44. Channel Response Similarity – Amplitude and Phase   

The calibration run-derived amplitude and phase matching met the matching requirement 

goal. The effectiveness of the canceller can be seen in Section 6.4 (Figures 6.72 and 6.73) 

where only static calibration corrections were performed. Removal of the direct path 

signal was expected to lower the overall compressed pulse sidelobes. This expectation 

was based on a limited number of point scatterers simulated. Reviewing of the noise radar 

literature [36] and [37], the noncoherent combination of the all ground returns (which 

have compressed responses that are scaled and shifted version of the autocorrelation 

response) defines the actual range sidelobe noise level. 

6.2.4 Offset corrections. A series of offset corrections were identified as part of the 

calibration process. These include the random start up phase of the local oscillators of the 

two receive channels (LO offset), the range offset of the two antennas (separated by the 

cabin width), and differential delay between the two (ostensibly identical) receivers. 

These corrections are detailed in this section. 
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6.2.4.1 LO offset. The receiver system consists of two local oscillators that are 

individually slaved to the stable clock provided by a GPS disciplined oscillator (GPSDO, 

installed internally in the main channel, or master, N200). A phase locked loop in each 

unit locks against the local oscillator (LO). After tuning the RF front-ends, each local 

oscillator may have a random phase offset due to the dividers in the VCO/PLL chains 

[154]. This offset will remain constant after the device has been initialized, and will 

remain constant until the device is closed or re-tuned. In this section the impact of the 

phase offset on the pulse compression process is defined and a method which exploits 

features in the HDTV signal to determine the LO offset is described. This process results 

in a correction factor which is incorporated prior to cross correlation. 

As was shown in Section 5, pulse compression via cross correlation, for the PN code 

signal model and a point scatterer there are two components to the compressed pulse 

response. One component the Direct Signal breakthrough, the other the range profile of 

the received scene scattered energy. Solutions to the two components are (given that the 

phase centers are coincident)  

)()()()(
)(

2211
0  bs RRjk

rs eCCCC


    (6-39)  

where C1, C2, Cs and Cr are systems constants that primarily account for antenna gains 

and range along the direct path main antenna (C1) or reference antenna (C2) or the 

scattered path main antenna (Cs) or reference (Cr). The code autocorrelation is given by 

(). 

If there is a phase difference between the two exactly tuned and phase-locked oscillators 

then, after down conversion (and absorbing the phase difference into a single term on one 

channel), and repeating the derivation, we are left with  
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In (6-40) R refers to the point scatterer range sum (Rs) minus the baseline range (Rb). 

This result shows that the unknown phase shift adds a phase error, potentially shifting the 

range response by up to a wavelength. For the planned illuminator this is up to 0.511 m 

and will be on the order of the image resolution. Though constant, without correction this 

will add errors in back projection, potentially resulting in image defocusing. 

To compensate the pilot tone was evaluated as a stable calibration source, the phase 

difference between the two antennas could be found for each burst. The tone itself is ultra 

stable, per FCC regulation and confirmed with the KPWX station chief engineer 

(“absolute stability of 1 Hz”). If all other factors were constant, antenna separation and 

platform attitude relative to the illuminator, and the presence of the pilot and radar 

operator in the small cockpit did not perturb the propagation, then we could estimate the 

phase difference, averaged over bursts, and apply a fixed correction before cross 

correlation. This was a secondary requirement of the calibration leg. However the radar 

crashed after the calibration leg completed. The restart resulted in a new, unknown phase 

offset. This was ultimately accommodated via the adaptive channel matching described in 

Section 6.4 (after adaptive sidelobe cancelling). 

6.2.4.2 Antenna phase center offset. The aircraft antenna installation (Figure 6.48) and 

variable geometry over the planned three dimensional collection aperture (Figure 6.67) 

means that the two-antenna baseline is a function of position along the aperture. The 

separation means that the phase center location for pulse compression is, absent other 

factors, at some point between the reference and the main antenna. Starting from 

equations 5-63 through 5-65 where, as in the preceding developments, we assumed that 

main and reference antennas have coincident phase centers we expand the range 

difference (R) term, first for coincident phase centers.  

orRRR bs   R   .xrxppm XXXXXX    (6-41)  
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In (6-41) X is a position vector, the subscript m represents the main antenna phase center, 

p a point scatterer, r the reference antenna phase center and x the transmitter. Explicitly, 

Xr = Xm and we obtain the result that is presented in equation 5-8. In the more general 

case, when Xm Xr, the correlation establishes the range difference reference relative to 

the reference antenna phase center. The expression for 1() (e.g., 5-72) now exhibits a 

range offset of the peak response equal to the range difference between main and 

reference antennas projected onto the line of sight to the transmitter (r). A longer range 

to main than reference gives a positive delay, shorter range yields a negative delay. 

This also means that the range difference (R) tracks the reference antenna position, 

whereas we want to use the main antenna phase center as the delay reference for 

reconstruction. The range sum (Rs) to the same fixed scattering point is still defined 

relative to the main antenna position but the baseline is now changed (Rb’). The range 

difference becomes R=Rs-Rb’. With Rb’ less than Rb the apparent range difference is 

increased, resulting in a range error. The converse is also true: in both cases the range 

error would result in defocusing.  

The correction for the phase center offset is a spatially variant shift that projects the 

reference antenna range relative to the transmitter onto the main channel, the correction 

which  must occur prior to the cross correlation. We shift the baseline to zero offset by 

using the known relative positions of the GPS receiver and main and reference phase 

centers. From the positions in the aircraft coordinate frame the antenna range separation 

was calculated as a function of time, including vehicle attitude/yaw (Figure 6.69). The 

reference channel burst was transformed to the frequency domain, multiplied by e
-jkR

, 

before inverse transform and pulse compression. The worst case offset is of the order of a 

meter (Table 6.7). The antenna positions relative the aircraft firewall position reference 

are given in Table 6.7. These combine to give the radial separation of the antennas when 
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projected onto the line of sight with respect to the transmitter. After static correction the 

data were adaptively corrected using the post canceller residual signal. 

6.2.4.3 Mismatched delay in digital electronics. The N200 receiver digital stages also 

introduce group delay. This results from analog bandpass filtering prior to the ADC, 

digital filtering following the ADC and FPGA operations including digital down 

conversion (DDC) and down sampling to the requested complex sample rate (in MIMO 

operation this is hard limited to 25 MSPS, 12.5 from each device). A member of the user 

community has calculated this for the N210
4
 (the number of 100 MHz, 10 nsec clock 

cycles). The result is of the order of a microsecond, but no similar work has been done for 

the N200. As two identical units were used which were identically configured and both 

clocked off an external, common reference, and because the cross correlation output 

produces the range difference, it was expected that this factor could be ignored in terms of 

adding a channel-to-channel correction. 

However, bench top testing against a surrogate HDTV transmitter revealed a slight 

channel misalignment. If all delays are properly matched between both channels then a 

symmetrical zero delay response, similar to that shown in Figure 6.45 would be expected. 

Identical log periodic antennas, aligned at the same range, with cabling matched to the 

receiver from VNA testing were used to collect multiple bursts from a station at 575 MHz  

 
Figure 6.45. Ideally Matched Channels After Pulse Compression 

                                                           
4
 USRP-users [mailto:usrp-users-bounces@lists.ettus.com] On Behalf Of Ian Buckley via USRP-users, 

N210 DSP Group delay, 6 Dec 2014. 

  

2/B
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(KONG-TV Capitol Hill, Seattle). The cross correlation shows a bias in the resulting 

delay (without pilot tone editing) in Figure 6.46a. The compressed pulse response is not 

exactly centered but is slightly skewed to negative delay. The figure displays five 

successive 10164 sample bursts after pulse compression. 

 Figure 6.46. Channel Alignment with and without Final Correction 

Using a bandwidth of 5.83MHz (slightly higher that the calculated 3dB bandwidth of the 

8VSB spectral envelope, FCC exact expression is 5.595MHz) a minimum mean-squared 

error estimate of the residual delay offset was made. The mean magnitude response of 5 

successive samples was taken and upsampled and the delay calculated given as the mean 

of the MSE. The value estimated was -1.20e-08 sec (-3.59760 m). Correlation prior to 

compensation is shown in Figure 6.46a. Application of the delay, using the same 

technique as described in the previous section for R, appears in Figure 6.46b. 

6.2.5 Pilot tone editing. This is not a calibration function but is addressed here as an 

essential step to realizing the time sidelobes related to the code and processed time-

bandwidth product for the HDTV waveform. The pilot tone is clearly evident in the signal 

spectrum (Figure 6.61, for example). If the pilot tone is present in the data then the time 

sidelobe level is very high and signal returns are masked. Pilot tone editing occurs in the 

frequency domain, as one of several processing steps that occur prior to pulse 

compression. The approach is straight forward; the 13 filters centered on the pilot tone 

b) Cross Correlation After Observed 

Delay Compensated = -1.20e-008 sec (-3.59760 m)

a) Cross Correlation After Static 

Calibration and FPGA Processing Delay 
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frequency (fpilot +/- 6 filters) are replaced with random voltages based on the mean I, Q 

voltage magnitudes and a uniform random phase.  

6.3 Flight Test Design (Collection Aperture, Aircraft and Installation). 

6.3.1 Aircraft. The flight test aircraft was a 1950 Cessna model 170. The four seat vintage 

aircraft is pictured in Figure 6.47. The pilot flew the collection route from the right-hand 

seat and was aided by the iPad map and GPS overlay (Section 6.1.3). The main antenna 

was installed in the forward port window and the reference antenna in a starboard rear 

window location. Both are described in greater detail in Section 6.3.2. Control laptop was 

operated in the passenger lap (forward starboard seat) with the radar instrumentation on a 

wooden pallet and secured in the rear seat. Prime power (12 V at 10 Amps DC) was 

available from the cigarette lighter with a 150 W (max) inverter providing 120 V AC 

power for the N200 receivers via a standard power strip. 

Nominal airspeed of this model is in the 90-100 knot range (46-62 m/sec). Maximum 

(design) elevation was fixed by predominately by the proximity of class C airspace 

associated with Seattle-Tacoma International airport. Permission was received to operate 

in the lower ranges of the airspace given the traffic because of the approach-departure 

flow on the specific test day. The initial elevation angle (50 degrees), relative to scene 

center was designed also with elevation beamshape and dilution of geometry for the 

cylindrical spiral (Section 6.3.3). A 100 ft/min (30.48 m/min) rate of climb (descent) was 

chosen to sample the three dimensional aperture. Practice runs demonstrated that it was 

easier for the pilot to hand-fly a descending orbit than an ascending one. 

6.3.2 Antenna installation. As has been indicated, main and reference antenna sizing was 

performed explicitly for the window mounting in a four-place civil aircraft. The Cessna 

172 was used as a model to establish an upper size limit with the intent of using mounting 

brackets to adapt to a specific aircraft model (antenna design and build began before the 
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Figure 6.47. Cessna 170 Flight Test Aircraft 

specific aircraft was identified). Antenna installation is depicted in the Figure 6.48 

(graphics aided by [161]), showing the location of all five test antennas (two radar and 

three GPS) in two perspectives. After installation the positions of the geometric centers of 

the antennas were measured (a challenging proposition in the small cockpit). The 

reference point selected was the planar portion of the instrument panel which was 

orthogonal to the longitudinal waterline. The point was selected at the same offset from 

the left/right symmetry plane as the GPS navigation antenna (Figure 6.48a), or y=0. 

Antenna positions relative to this point are listed in Table6.7. Note that precise positions 

were not required for either the XGPS 160 (flight navigation/visualization aid) or the 

GPSDO which was only used to provide the 1 pps signal for the master clock. 

 
Figure 6.48. Antenna Installation Positions 

Figures 6.49 and 6.50 are photographs of, respectively, the main and reference antennas 

as installed. Orientation of the reference antenna was made so that the angular reference 

b) Aircraft Port Side Perspective 
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Antenna Position x, y, z (cm) ACLS 

Main -81.915, 37.084, 0      

Reference -153.035, -53.918, -1.27     

GPS Nav (GEOXH) 8.89, 0, 5.715 

GPS Visualization  8.89, 21.844, 2.54 

GPSDO N/A 

Table 6.7. Measured Antenna Positions in Aircraft Coordinates 

 
Figure 6.49. Main Antenna Installed 

from the calibration measurements was opposite of the main antenna (Section 6.2). 

Measurement of the location of the main and reference antenna phase centers as installed 

in the aircraft was with an estimated accuracy of + 0.3 cm. The GEOXH was placed on 

the glare shield (near centerline) and secured with bungee cords. This position resulted in 

excellent visibility of the sky (satellite access) but made establishment of the antenna 

phase center difficult. It is estimated that the GPS phase center is known within + 0.635 

cm (developed using a replica of the handset). 

 
Figure 6.50. Reference Antenna Installed 

a) View with Starboard Door Open b) View with Starboard Door Closed

a) Interior View Installed b) Exterior View Installed
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6.3.3 Flight test location and collection aperture. Initial flight test planning involved a 

location to the south-southwest of the transmitter at a private airfield. Selection was made 

based on visibility to the illuminator, access for the installation of calibrated targets (a 

large top hat reflector was planned, sized and materials testing was performed), and 

lacked large stands of tall, mature trees between illuminator and scene location. However 

in final flight planning with the test pilot it emerged that the location, while suitable in all 

other regards, was positioned too close to Seattle-Tacoma International Class B airspace 

(a Federal Aviation Administration designation given to those airports with the heaviest 

traffic loads) such that the access ceiling was too low to support the planned vertical 

aperture. The location is highlighted in Figure 6.51
5
. This position mandates a ceiling of 

10000 ft with floors of 3000, 5000 or 7000 ft depending on the aircraft position in the 

collection aperture (3040 m and 914/1524/2134 m), depending on location, and below the 

planned maximum altitude of greater than 4500 ft (1372 m). This location also had higher 

levels of civil aviation traffic.  

The test pilot suggested an alternative to the north of the illuminator position which was 

outside of the class B controlled volume. The Snoqualmie valley had line of sight (though 

more heavily forested in places) and it was possible to negotiate a single transit of the  

 Figure 6.51. Aeronautical Navigation Charts with Test Locations 

                                                           
5
 https://skyvector.com/?ll=47.449888889,-122.311777778&chart=128&zoom=3  

a) Initial Flight Test Orbit Location b) Flight Test Orbit Location - as Flown
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Class B airspace for the calibration leg. It also offered to possibility of a ground test, 

placing the test antennas on automobile roof top fixtures and the collection of training 

apertures with calibrated targets over a wide angle, coplanar (two-dimensional) aperture. 

Targets and fixtures were built but permission was not received from the county 

authorities to operate at the ground test location (Evergreen State fairgrounds).  However 

the northern location did not afford any locations to place the large top hat target (6 m 

ground plane, 2 m tall, and 2 m diameter cylinder) so the test site was based on the 

alternative target of a grain silo as shown in Figure 6.52. The silo was cylindrical with 

segmented concrete walls and topped with a segmented metallic hemisphere. There is 

external structure, such as ladders. The silo also has the advantage in that it projects 

above the lines of trees between the scene area and the transmitter, and the very low 

grazing angle at scene center. No modeling of the specific geometry was performed prior 

to flight, though prior modeling of monostatic spheres demonstrated that such shapes 

collapse to a point when narrowband and ultra-narrowband waveforms are employed 

(Section 6.1.3.2).  

 
Figure 6.52. Google Earth Scene Center Image 

The planned versus executed flight trajectory appears in Figure 6.53, generated by kml 

overlay on Google Earth. The test aircraft departed Paine Field (KPAE) to the south and 

Scene Origin

47o 49’ 38.03”

-121o 59’ 35.54”

44 ft (13.311 m)

Silo ht. 80 ft

Dia. unknown
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climbed out to 2500 ft. GPS was enabled during climb out (1). Temporarily orbiting at (2) 

while waiting for clearance to transit the lower portion of the Class B airspace (daily flow 

was southbound). The initial point for the calibration leg is indicated by (3). Constant 

bearing relative to the transmitter was held at a slight rate of climb to position the aircraft 

for the descending cylindrical spiral at (4). The only radar (soft) fail was experienced 

slightly before (4) and about two thirds of the first orbit was spend bringing the system 

back online. 

Three collection apertures had been evaluated for possible monostatic operation and nine 

for bistatic operation as detailed in [155]. With a fixed transmitter the three monostatic 

apertures; spherical spiral, cylindrical spiral and the planar spiral were considered for the 

bistatic receiver. 

A series of constraints were established or existed: maximum altitude for the laboratory-

quality N200 digital receivers (6000 ft/1829 m, 5000 ft set for margin), maximum safe 

bank angle for the 65 year old airplane (30 deg), and a subjective criterion on relative 

ease to hand-fly. A planned orbital radius of 1250 m for the cylindrical and spherical 

 Figure 6.53. Planned (white) vs. Executed (black) Flight Trajectory 

spirals was established with a minimum height above terrain at scene center of 200 m 

(this to set a minimum elevation angle which translated into the initial range for the 

planar spiral). The apertures are shown in Figure 6.54 in both physical and k-space 

Planned
Actual

(1)

(2)
(3)

(4)
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(frequency domain) forms for a narrowband signal source. For each of the three apertures 

there are two renderings: the first (Figures 6.54a, c, and e) are the spatial apertures. The 

second (Figures 6.54b, d, and f) are the frequency domain representation of the sampling. 

Two colors are used in the frequency domain to indicate the bandwidth of the probing 

waveform with red the band upper edge and blue the lower. All the apertures are 

distributed essentially the same in k-space, meaning that there is no difference in 

resolution. The apertures in the frequency domain are all thin shells. Both the planar  

 
Figure 6.54. Collection Aperture Options  
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spiral and the spherical spiral require roll up turns (of increasing bank) with position, 

making collection more difficult. Also the planar spiral has substantially more range 

dependence (>4000 m versus a 1500 m maximum for the cylindrical spiral).The spherical 

spiral maintained a constant range with time. Ultimately the cylindrical spiral was 

selected for ease of collection.  

6.3.4 RFI analysis. To insure that image quality is not affected or degraded by interfering 

RF signals mitigation steps are necessary in the bistatic receiver. The degradation is 

realized by the inclusion of non-target signals (defined as those emissions from the target 

transmitter) in the pulse compression. The composite spectrum at the receiver(s) in the 

frequency domain can be expressed as the sum of the spectra of N commercial broadcast 

emitter signals as  

  





1

0

)(
N

i
iimain SAS      (6-42) 

where Ai is the voltage scaling of the i
th

 transmitter due to receiver frequency response, 

range, transmit gain in the direction of the receiver, power level and receive gain in the 

direction of the transmitter. The channel spectrum is Si including coding and 

programming. A similar expression is generated for the reference antenna. The pulse 

compression process (cross correlation) can be written as 

   )()()( 1  refmain SSs     (6-43) 

where  represents delay, 
*
 complex conjugation and 1  the inverse Fourier transform. 

Also in (6-43) we have not included the adaptive sidelobe canceller stage because the 

number of signals (emitters) is much greater than 1 (the single reference antenna acting as 

a single auxiliary element or a single loop canceller) thereby significantly diluting the 

nuisance signal rejection [131]. The rule of thumb for adaptive cancellation is one 

narrowband jammer per spatial degree-of-freedom [156]. In principle, the spectrum in (6-

42), assuming no aliasing, could be channelized (given adequate sampling) and each 6 
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MHz segment relating to a specific source, in both channels, could be extracted and 

individually processed as a frequency dependent single-loop canceller  The product in (6-

43) can be expanded as 

   .)()()()()()( 11

   rNrmNmrefmain SSSSSS   (6-44) 

Taking advantage of the orthogonality realized through regulatory control and spectrum 

shaping (and for the moment ignoring aliasing), the product SiSj
*
, i  j is 0. The 

expression in eqn. 6-44 reduces to the sum of the auto-spectrum products for each emitter. 

This assumes that both channels are identically matched, etc. The inverse transform can 

be taken term wise. This produces a final compressed pulse which is the sum of the 

emitter pair wise cross correlations   

        Nsss  21     (6-45) 

If the emitters were all received with equal strength this would result, on average, in 

degradation in SNR by N1 through the elevated time sidelobes of the summed 

autocorrelations, with the image scene only illuminated by the target emitter, since each 

autocorrelation peak response is, by definition, at 0 delay with the range sidelobes 

combining to increase the effective noise floor [113]. This is a particular consideration for 

the elevated receiver while allocation of television coverage is based on ground-based 

receivers. 

 

The URSP unit (N200) chosen employs the model WBX tuner which provides a 40 MHz 

instantaneous bandwidth (Section 6.1.1), with a tuning range of 50-2200 MHz. The tuner 

does not employ any band-limiting (preselection) filtering prior to the single stage (direct) 

down conversion/quadrature demodulation to complex baseband; the 40 MHz bandwidth 

is realized through an analog filter after the down conversion mixer, prior to analog-to-

digital conversion. The N200 ADC samples at 100 MS/s and can stream 25 MS/s in 16 bit 

complex mode. However when operated via the MIMO cable this reduces to 25 MS/s for 

both receivers, or 12.5 MS/s each. This was ultimately derated to 10 MS/s (complex) 
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because of laptop controller issues (incompatibility of hardware drivers with Windows 

8.1 forcing use of a slightly slower laptop operating under Windows 7 and resulting in 

elevated occurrences of dropped packets). Consequently an additional analog filter was 

necessary minimize aliasing and to preserve the effectiveness of the single loop adaptive 

canceller to maintain sensitivity.  

In addition to signal-to-noise ratio degradation from undesired signals, the receiver gain 

settings were set such that when the main antenna is directed at the target emitter during 

the repeated orbits constituting the aperture, the signal level would be at ADC saturation. 

The N200 has a single gain control stage and no provisions to dynamically manage 

receive gain; the driving code/program must be restarted for a new gain setting. The 

design gain settings are based on the targeted transmitter (station ID/call sign KPWX) and 

the system gain cascade, including the main antenna. Other transmitters in the field of 

view have the potential to saturate the ADC if unmitigated, thus potentially denying large 

angles of collection aperture.  

In this section the RF environment and RFI analysis leading to the specification, design 

and fabrication of a narrowband analog prefilter is described. Note: this portion of 

analysis was performed on a preliminary test location to the southwest of the transmitter 

location, not the location ultimately tested (to the north). However, the requirements for 

the filter performance are independent of location because of the density of transmitters 

and the action of the airborne receiver effectively rastering the mainbeam to all bearings 

about the test scene. 

6.3.4.1 Spectrum allocation and emitter density. As described in Section 5.0, television 

spectrum is rigorously allocated with analog and digital channels in a common spectrum 

block, with digital channels exhibiting a nominal 5.83 MHz bandwidth on 6 MHz channel 

centers. The US UHF allocation is defined in contiguous 6 MHz bands from 470 MHz 
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(channel 14) to 890 MHz (channel 83). The VHF High band is composed of 7 channels 

spanning 174-216 MHz. Figure 6.55 is the total allocation from the NTIA (National 

Telecommunications and Information Administration [157]). Within this allocation we 

are interested in large Effective Radiated Power (ERP) signals which may cause imaging 

degradation. This includes radar systems and broadcast television. A lower bound of 100 

MHz is chosen under the rationale that any mitigation that addresses the megawatt-class 

television signals will address lower power, lower frequency emitters (e.g., audio 

broadcast) that are farther out-of-band. Using a commercially available web tool [158] a 

listing of TV channels with potentially usable signal, as defined from a television receiver 

perspective and which includes line-of-sight, single and double edge diffraction, or a 

tropospheric path, is obtained at an antenna height 500 ft (152.4 m) above ground level 

(AGL), at the coordinate representing the test scene origin (that altitude being a limit of 

the online tool). The listing (Table 6.8) was used to populate a database with frequency, 

antenna type and height, average power and gain in the direction of the 

 

Figure 6.55. U. S. Radio Frequency Spectrum Allocation 100-608 MHz 
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test scene, derived from FCC (Federal Communications Commission) filings (Table 6.8). 

The spatial distribution of TV transmitters in Table 6.8, which may contribute non-

negligible energy to an airborne receiver at the test scene location. is given in Figure 6.56. 

As of June 2008, only full-power transmission of digital TV was permitted in the US with 

more relaxed transition of low power stations/translators. There are three spectrum masks 

that are assigned to manage out-of-band emissions of digital television transmissions. The 

mask assigned to a particular transmitter depends on whether the unit is full service, or 

low-power digital TV (LPTV) transmitters, Class A digital transmitters and digital TV 

translators. One mask is termed “Simple”, another “Stringent”, and yet a third “Full 

Service” [159]. The individual channel masks are shown in Figure 6.57 [113], a more 

detailed representation than initially given in Figure 5.1. As seen, the masks define the 

adjacent channel signal spill-over levels. The Full Service mask refers to full power 

HDTV operators wherein the Stringent and Simple masks were authorized for low power 

transmitters [160]. As seen from Table 6.8, low power stations exhibit ERP values that 

are 20 dB or more below the full power, megawatt-class stations resulting in beyond-

second-adjacent (channel) levels that are comparable to the full power stations in the  

 

Figure 6.56. Distribution of TV Transmitters Relative to Test Location 
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Call 

Sign 

Freq 

(MHz)/ 
Channel 

Antenna Type/Pattern/Manufacturer 
ERP 

(kW)/Gain 

Location/ 

Altitude 

Altitude 

(m,MSL) 

KZJO 536-542 

chan. 25 

Directional 0.75° Elec. Beam Tilt; 

Dielectric TFU-20GTH O4 

1000/1 47o 36’ 56.8” N 

-122o 18’ 30.2” E 

325 

KWPX1 584-590 

chan. 33 

Directional DIE,  TFU-31ETT-R CTSP Major lobes - 

N/A, Beam Tilt 1o (elec.) 1o (mech., 270oT) 

400/1 47o 30’ 17” N 

-121o 58’ 06” E  

948.2 

KIRO 620-626 

chan. 39 

Directional DIE, TFU-32DSC C164 Major lobes 25, 155o, 

Beam Tilt 0.5o 

1000/0.971 48o 38’ 1” N 

-122o 21’ 20” E  

297.7 

KUNS 686-692 

chan. 50 

Directional 0.75° Elec Beam Tilt; 

ERI ATW28H3-ESC1-50H  

1000/0.963 47o 37’ 55” N 

-122o 21’ 09” E  

285 

KING 674-680 

chan. 48 

Directional DIE, ODD980227KF 

Major lobes 0, 180o  

Beam Tilt 0.5o  

960/0.597 47o 37’ 55” N 

-122o 20’ 59” E  

279 

KONG 572-578 

chan. 31 

Directional DIE TFU-24DSB-I 

Major lobes 30, 190o Beam Tilt 1o 

700/1.0 47o 37’ 55” N 

-122o 20’ 59” E  

258 

KOMO 614-620 

chan. 31 

Non-Directional ERI ATW28H3-ETO-38H Major lobes - 

N/A 

Beam Tilt 0.65o  

1000/0.996 47o 37’ 55” N 

-122o 21’ 09” E  

300.2 

KWDK 638-644 

chan. 42 

1° Elec. Beam Tilt 

Systems With Reliability SWED16OI 

144/1.0 47o 30’ 17” N 

-121o 58’ 06” E  

926.6 

KSTW 198-204 

chan. 11  

1° Elec. Beam Tilt Dielectric TUV-24GTH/8HV-R 

4BP250/P220 

100/0.76 47o 36’ 56.00” N 

-122o 18’ 29.00” E  

311.3 

KBTC 548-554 

chan. 27  

1.25° Elec. Beam Tilt 

ERI AL-12O-27 

100/1.0 47o 16’ 44.00” N 

-122o 30 ‘42.00” E  

258 

KBTC 482-488 

chan. 16  

1.75° Elec. Beam Tilt 

ERI AL8-16-OC 

1/0.88 47o 36’ 57.0” N 

-122o 18’30.4” E  

225 

KCTS 186-192 

chan. 9  

0.8° Elec. Beam Tilt 

Dielectric TW7B9-R(S)  

21.7/1.0 47o 36’ 58.00” N 

-122o 18 ‘32.00” E  

284.7 

KCPQ 210-216 

chan. 13 

1° Elec. Beam Tilt 

Andrew ATW13V4-ETO1-13  

30/1.0 47o 32’ 53.00” N 

-122o 48 ‘22.00” E 

718 

KCPQ 518-524 

chan. 22 

0.75° Elec. Beam Tilt; Dielectric TFU30-EBT/VP-R 

SP155)  

15/1.0 47o 36’ 57.00” N 

-122o 18 ’30.4” E  

284.7 

KTBW 470-476 

chan. 14  

0.75° Elec. Beam Tilt 

Andrew ATW18H3-HSC-14S 

90/0.94 47o 32’ 50.00” N 

-122o 47 ‘40.00” E  

581 

KRUM 530-536 

chan. 24  

1° Elec. Beam Tilt Propagation Systems PSILP12RUM-

24-CP  

4/0.95 47o 36’ 55.6” N 

-122o 18 ‘28.5” E 

293 

KIRO 692-698 

chan. 51 

unknown or 0 deg tilt 

ERI ALP4L1-HSP 

0.95/0.728 48o 38’ 1” N 

-122o 21’ 20” E  

934 

KIRO 590-596 

chan. 34 

unknown or 0 deg tilt  

Kathrein 1X2KBBU 

0.5/0.9 47o 0’ 57” N 

-122o 54’ 59” E 

168 

KIRO 554-596 

chan. 28 

unknown or 0 deg tilt  

Kathrein 1X2KBBU 

0.5/0.05 48o 29’ 1” N 

-122o 19’ 24” E  

282 

KFFV 650-656 

chan. 44 

0.5° Elec Beam Tilt; 

Bogner B16UG  

169/0.4 47o 36’ 56” N 

-122o 18’ 29” E 

244.7 

KUSE-

LD 

662-668 

chan. 46  

0.75° Elec. Beam Tilt 

Systems With Reliability SWLP8EC 

0.5/0.94 47o 30’ 17.00” N 

-121o 58’ 10.00” E 

934.2 

KUSE-

APP 

494-500 

chan. 18  

unknown or 0o tilt  

 Dielectric DLP-8H 

10/0.94 47o 30’ 17.00” N 

-121o 58’ 10.00” E 

934.2 

K47LG-

D 

668-674 

chan. 47 

unknown or 0 deg tilt  

Kathrein 4DR-16-2HW 

1.1/0.983 47o 25’ 43.0” N 

-122o 26’ 16.0” E 

91.7 

K26IC-D 542-548 

chan. 26 

unknown or 0 deg tilt  

Kathrein 4DR-16S 

0.9/0.08 47o 38’ 27.0” N 

-122o 43’ 28.0” E 

189 

KVOS 596-602 

chan. 35 

1o beam tilt 

Dielectric TFU-31JTH-R O4SP 

580/1.0 48o 40’ 50.0” N 

-122o 50’ 22.0” E 

834 

KBCB 500-506 

chan. 19  

0.75o beam tilt  

RF Systems R032UA16  

165/0.77 48o 40’ 46.0” N 

-122o 50’ 31.0” E 

792.5 

K24IC-D 530-536 

chan. 24  

unknown or 0o tilt 

RF Systems RD32UA16  

15/0.77 48o 40’ 46.0” N 

-122o 50’ 31.0” E 

792.5 

KCKA 500-506 

chan. 19 

1o  Elec. beam tilt 

Dielectric TLP-24H 

187/0.51 46o 33’ 16.0” N 

-123o 03’ 30.0” E 

499.8 

K49IX-D 680-686 

chan. 49 

unknown or 0o tilt 

Kathrein 4DR-16S 

2.2/0.813 47o 10’ 25.0” N 

-122o 15’ 51.0” E 

499.8 

CIVT-

TV 

578-584 

chan. 32 

Non-directional no rotation 33/1.0 49o 21’ 29.0” N 

-122o 57’ 9.0” E  

740.3 

1 Target Emitter for Tomographic Experiment 

Table 6.8. Emitter Listing for RFI Analysis 

sidelobe level allocation. Since individual channel emission masks were not available 

with station licensing (where RF specifics are listed), this permits the use of a single mask 
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for the RFI analysis (1000 kW station with -110 dB mask roughly equates to 1 kW ERP 

with -76 dB mask. Original system design indicated a higher digital sampling rate than 

was ultimately realized. This would have permitted a combination of analog and digital 

filtering to isolate the single channel of interest. Wider passband, steep roll-off analog 

filter would have yielded a reduced insertion loss. It also would have permitted channel-

to-channel adaptive cancelling for the adjacent channel signals.  

From Figure 6.55, while we are concerned with all potential interfering signals, we focus 

on high power-aperture, CW HDTV signals (analog operation is effectively ended) in the 

UHF band. Station KPWX is roughly in the middle of the broadcast TV allocation. 

Addressing these adjacent interference sources will then cover low power 

communications, industrial and scientific emitters. Some of the allocations in frequencies 

adjacent to broadcast television include civil and military radar systems. Of most concern 

would be ground based systems with mechanically scanning antennas and 10-12 second 

revisit times. 

Figure 6.57. Emissions Masks U. S. Digital TV   

An initial analysis was performed to establish analog filter requirements. We proceeded 

by generating a single orbit of the tomographic collection aperture (300 m AGL). This 

permits the dynamics of the gain in the direction of each source in both main and 

reference channels to be included over the measurement geometry. This is mostly driven 

by the main antenna with approximately 20 dB of front-to-back ratio (the gain variation in 
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the reference channel based on FEKO modeling is essentially flat – Figure 6.11). In this 

analysis the individual channel signals are simply modeled as rectangular spectra with a 

uniform power spectral density over the 6 MHz channel allocation. At each spatial 

position the unambiguous spectrum was calculated, including gain and range 

contributions, weighted by the analog bandpass filter (BPF) response (magnitude only). 

Two example calculated spectra, main and reference channel, are shown in Figure 6.58. 

The spectra operate span both UHF and VHF ranges to illustrate the filter suppression. 

The analog bandpass filter (BPF) was parametrically represented by  
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    (6-46) 

with  the filter gain at midband, B the bandwidth (angular frequency), n the filter order 

and 0 the filter center frequency. Figure 6.58 illustrates analysis results for a 5
th

 order 

BPF using the emitters listed in Table 6.8 with the receiver positioned 1250 m East of the 

scene origin and a heading of 0
o
. Several order and bandwidth combinations were  

 

Figure 6.58. Snapshot Calculated UHF/VHF Spectra with Analog Filtering 

evaluated in deriving the filter requirements. Figure 6.59 shows two examples, 4
th

 order 

and 5
th

 order filters using a 587 MHz center frequency and 8 MHz 3 dB bandwidth. 

Figure 6.59a spans the frequency range of VHF and UHF emitters while Figure 6.59b 
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zooms around the design center frequency. The calculated spectra are then aliased based 

on the (then) planned sample rate (25 MCSPS), discretely evaluated in 1 MHz frequency 

intervals. For convenience the spectrum is referenced to 0 Hz representing down 

conversion of the target channel center frequency. Also, the frequency range of the target  

 

Figure 6.59. 4
th

 and 5
th

 order Band Pass Filter Magnitude-squared Responses 

station is shown (with received power as indicated in Figure 6.58) in the aliased spectra in 

Figure 6.60. This result indicated that the 5
th

 order filter was adequate for adjacent 

channel filtering. The determination that the actual sampling rate would be one-half the 

value used in the analysis above occurred prior to bandpass filter purchase. At that time 

the 3 dB passband was reduced to 6 MHz, introducing a slight signal loss. 

 

Figure 6.60. Aliased Spectrum after 8 MHz 5
th

 order BPF 

The emitter database included Canadian stations, due to the relative proximity of the test 

location to the Canadian border. After the analysis of US stations was complete, the 
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Canadian channels (which use the same allocation as the US channels) were inspected for 

any allocations on the target channel (none) or adjacent channels (one, relatively low 

power). 

Figure 6.61 contains examples of an adjacent channel signal in the measured flight data, 

from two different times. In Table 6.8 a Canadian station and another lower power US 

station are listed as adjacent channels. Both were to the north of the scene and were only 

visible in the antenna mainlobe during the portions of the collection aperture when the 

main antenna was oriented to the north, and only at the higher elevation, early in the 

aperture. The attenuation of the channel spectrum from the bandpass filter can be seen. 

The actual sample rate and channel spacing results in the pilot tone for the adjacent lower 

channel to alias to the same frequency as the pilot tone in the adjacent upper channel. 

Both cases are noted in Figure 6.61. The actual location of the channel can be inferred 

from the shape of the spectrum portion above +3 or below -3 MHz. 

As noted earlier, during signal conditioning, prior to cross correlation/pulse compression, 

a rectangular mask was applied in the frequency domain (matched to the target emitter 

spectrum) to remove out-of-band signals, after static calibration and before recovery of 

the time signal.  

6.4 Signal and Data Processing. 

This section covers the signal conditioning necessary to prepare the two-channel, digitally 

recorded flight data for reconstruction. This is broken into three main portions: 

preprocessing (initial data assessment, time alignment, and estimation of unmeasured 

flight parameters), navigation data conditioning, and signal processing resulting in 

forward transformed range strobes written to data file(s) formatted for image 

reconstruction. 
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6.4.1 Preprocessing. Flight data were stored as binary formatted files. Four flight data 

files were collected: a data overflow caused the laptop radar controller to crash, resulting 

in four files instead of two. This occurred, fortuitously, between the calibration leg and 

the imaging leg. The main effort here was the alignment of sample burst receiver time  

 
Figure 6.61. Examples Adjacent Channel Signal Spectrum 

with GPS time. The former was derived from the GPS disciplined oscillator (GPSDO), 

clock cycles converted to time (seconds) after receiver initialization, and recorded at the 

start of each sample burst for both channels. GPS time was available only at the 1pps rate 

(integer GPS seconds in UNIX format) through the GPSDO. Using an available hardware 

call set_time_next_pps() to set the master clock was followed by a five successive calls to 

get_gps_time which were saved at the top of the data file. The first A/D sample occurred 

7.28000025 seconds after receiver clock initialization as an absolutely repeatable delay. 

Elapsed receiver time from the GPS pps used to initialize the receiver clock (master clock 

was distributed to slave receiver via the MIMO interface cable) to first sample was 

5.2800025 sec allowing the GPS time of the first sample burst to be set at 156980 sec for 

the imaging leg (156138 calibration leg). In other words, the set_clock_next_pps time 

was one second before the first GPS time call. This aligned the radar data to the 1Hz 

navigation GPS data. From the measured data the actual burst rate was confirmed at 

a) 157215.279 sec Adjacent Channel Below  F0 b) 157215.279 sec; Adjacent Channel Above F0
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19.67729240456513 bursts/second; equivalent to an interburst interval (first-sample-to-

first-sample) of 0.0508200 second. 

Table 6.9 outlines the preprocessing steps, largely unrelated (e.g., stand alone), which 

assessed the flight data quality and supported troubleshooting early data analysis 

problems. The various preprocessing tasks were largely mutually independent.  

Preprocessing Step  Description 

Out of band power Received in adjacent channels in sampled range 

 Installed Effects Antenna patterns for main and reference antennas in-flight  

Missing/dropped 

packets 

Time gaps to correct file pointer function (data read pointer positioning) - 

bursts 

Missing/dropped 

packets 

Serial correlations within burst, searching for dropped packet/alignment 

(intraburst) 

I, Q Balance Sampled data quality 

Multipath In the reference channel 

Table 6.9. Data Preprocessing Listing 

Three preprocessing assessments of note include the amount of out-of-band power from 

adjacent channels that was received and the quick look installed antenna patterns. 

Sampling at 10 MCSPS (instead of the 12.5 MCSPS planned) means that portions of the 

adjacent channel (2 MHz worth on either side of the design channel) can alias into the 

desired signal region. The bandpass filter attenuates the edge aliased frequencies (f0+5 

MHz) by 33 dB so the impact was expected to be minimal. The two potentially 

“offending” transmitters were both to the north and both at longer ranges (Section 6.4.3). 

Figure 6.62 illustrates the received power integrated from design band edge to the 

sampling limit (a 4 MHz span, -5 to -3 and 3 to 5 MHz) as a function of time (aircraft 

altitude) and antenna pointing. After the first orbit (25 second sample duration from Orbit 

1 is shown) out-of-band power was inconsequential;. levels are 20-30 dB down. 

The (I, Q) balance assessment sampled the received data and estimated the mean value of 

the square of both terms, along with the product (I × Q). The measures of merit are a zero 

mean to the in-phase and quadrature voltages and an I-Q product of 0 (a measure of 

orthogonality). As covered in the Calibration section the (I, Q) balance for the single 
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Figure 6.62. Adjacent Transmit Channel Power Level 

stage, down converting receiver is a UHD function. The results of the I, Q assessment are 

listed in Table 6.10. Master channels are significantly greater than slave/reference. 

Channel Mean I
2
/Mean Q

2
 IQ product 

Master 0.0008899 (-30.51 dB) / 0.0008911     0.0000001   

Slave 0.0000087 (-50.6 dB) / 0.0000087     0.0 (precision limit) 

Table 6.10. In-phase and Quadrature Channel Balance Results 

Several measurement attempts were made of the (uninstalled) antenna patterns of both 

antennas with limited success. Patterns derived from the calibration measurements in the 

anechoic chamber were not radiometrically calibrated but showed expected trends with 

the peak magnitude of the chamber/VNA measurements suggesting a higher peak gain in 

the reference channel than from the main channel, as well as similarity to simulated 

patterns. It was expected that the antenna radiation patterns would be significantly 

impacted by the presence of the metal airframe and the pilot and operator. To examine 

this each burst over the full one hour aperture (some 55155 bursts in total – 2600 seconds 

of data) was forward transformed and masked to the allocated channel bandwidth and the 

total power calculated by summing over frequency. Results are presented in Figure 6.63. 

There are a couple of notable observations in Figure 6.63. First is that the elevation 

pattern of the HDTV transmitter can be seen as the aircraft descends, in both the main and 

reference channels, through the envelope of power versus time. The periodicity of the 

orbit is clearly seen, though the patterns are quite unexpected. Main channel power when 
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Figure 6.63. Quick-look Installed Antenna Patterns  

mainbeam is oriented toward the transmitter is less than the reference channel (no 

absolute gain references were developed during calibration with predicted main antenna 

gain, less combiner losses, of 6 dBi and less than 0 dBi for the reference antenna). The 

gain responses of both installed antennas are strangely rectangular, and roughly constant 

for both antennas, with a nominal 10-15 dB front-to-back ratio exhibited. This was as 

expected for the main antenna and more than expected for the reference antenna. The 

longer duration of mainbeam oriented toward the transmitter (in red) is due to the winds 

aloft with upwind flight in this portion of the geometry (aircraft speed 20 knots slower), 

while the downwind leg had the transmitter in the back half-space of the main antenna 

(20 knots faster). The angular extent of nearly constant received power is broader than the 

azimuth mainbeam (not shown but determined by overlaying gain vs. time with power vs. 

time). Finally, there is a repeatable ~5 dB dropout in the main pattern as indicated the 

vertical arrows in Figure 6.63. 

Of main importance are those regions, illustrated by a downward half-bracket, where the 

gain of the reference channel exceeds the gain in the main channel (as evidenced through 

the signal power). This defines the region over which the adaptive canceller can be 
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applied without negative effect on the signal channel. These intervals are used to guide 

orbit arc selection for image reconstruction.  

The multipath check was motivated by the conditions in the valley that ran from nearly 

the base of the mountain the transmitter was located on to the scene, where winter 

flooding had occurred. Unlike an airborne transmitter, multipath scattering potentially 

begins at the tower base (and tower structure) to the nadir point of the aircraft. Sample 

bursts were randomly selected and the reference channel return was autocorrelated, 

checking for delay peaks ground bounce that might necessitate filtering. Two such, 

representative examples, appear in Figure 6.64. Appearance of secondary correlation 

peaks was common, derived from programming content, AM/PM code, as they are 

symmetric with respect to zero delay. Both plots exhibit a slight skew at the first delay 

increment but are otherwise symmetric. Tower height (82 m AGL) should set the first 

delay, unless scattering was occurring from the tower itself. 

 

Figure 6.64. Example Reference Channel Autocorrelation (Multipath Check) 

6.4.2 Coordinate systems. Several coordinate frames were used in this effort. These are 

briefly defined before details on navigation data processing are covered (Figure 6.65). 

Position data from GPS devices was provided as defined with respect to the WGS84 

datum. Position date were defined in an Earth-centered, Earth-fixed (ECEF) coordinate 

system: latitude, longitude and altitude. The working coordinate frames were Cartesian: 
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first an ECEF Cartesian with the X axis defined as the axis originating at Earth center 

which intersected with the geoid at 0 degrees latitude () and 0 degrees longitude () as 

seen in Figure 6.65a. The Y axis intersects the geoid at 90 degrees east longitude and the  

 
Figure 6.65. Coordinate Frame Definitions 

Z axis is (X x Y), intersecting the geoid at the point defined by 90 degrees latitude. 

Translation from ECEF spherical to ECEF Cartesian made use of a WGS84 earth radius 

model. Scene coordinates are defined by an East-North-Up (ENU) Cartesian system 

where XENU is aligned to due east at the reference point, YENU is aligned with local north 

and ZENU is oriented normal to the geoid surface at the reference point, outward from the 

Earth center. For reference point defined by (latitude, longitude, altitude) = (, , h), 

rotation to-from Cartesian ECEF to ENU are given by 
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 (6.47a) 
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ECEFENURot

 (6-47b) 

The dynamic coordinate systems relating to the aircraft are a velocity-vector local 

horizontal (VVLH) Cartesian frame where XVVLH is aligned with the velocity vector of 

the aircraft. ZVVLH is parallel to the earth radial vector at the platform position (velocity 

vector defined level flight). YVVLH is then defined as (ZVVLH x XVVLH). For the case of no 

crab this is the aircraft left wing. The rotation to/from VVLH from/to an ENU system 

centered at the aircraft is a single rotation given by the heading angle (Figure 6.65b) 

defined against XENU in the classical polar sense and is given by 
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(6-48) 

Antenna positions are defined in a Body-Centered Coordinate System (BCCS) Cartesian 

frame which defines XBCCS as the aircraft longitudinal axis, YBCCS as the left wing, and 

ZBCCS the normal to the XBCCS-YBCCS plane. This is shown in Figure 6.65c where the 

origin of this frame is shown at the position of the GEOHX unit. The translation between 

VVLH and BCCS is through the aircraft attitude rotation; pitch, yaw and roll. Roll was 

not instrumented and is not needed as all motions were small combined with large 

elevation beamwidths and the fact that reconstruction is not dependent on attitude (roll 

could be indirectly calculated through the angular turn rate and ground speed). Yaw was 

estimated (as described below) as part of the static compensation scheme, projecting the 

reference antenna phase center onto the main antenna phase center such that 0 degree 

phase/zero range were referenced to the main antenna. A static pitch angle was assumed, 
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based on pilot’s experience with this aircraft and the rate of descent (100 ft/min, 0.508 

m/sec). Rotation matrices to/from BCCS and VVLH are  
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Antenna coordinates were covered in the calibration section (Section 6.2) but are revisited 

here briefly. The main antenna, placed in the forward port window, boresight was defined 

as the YMAIN axis with XMAIN facing forward. Positive azimuth angle was defined from 

YMAIN into XMAIN in the increasing positive sense (e.g. toward the aircraft nose). Hence 

the main antenna coordinate system is the same as BCCS and the no rotation is necessary 

(only care in computing azimuth). The reference antenna coordinate frame was arbitrarily 

defined using driven arm 1 of the crossed dipole as the XREF axis with YREF aligned with 

the fuselage and azimuth angle defined XREF into YREF. This is the opposite sense as the 

main antenna and results in 90 degrees for the main antenna and 270 degrees for the 

reference antenna defining the same physical direction with respect to the BCCS frame. 

Likewise 0 degrees main is equivalent to 180 degrees for the reference antenna. 

6.4.3 Navigation data and data processing. Navigation data were available from two 

sources, the Trimble GEOXH unit mounted on the aircraft glare shield (so located to 

maximize the view of the satellite constellations) and the XGPS160 which interfaced via 

Blue Tooth to an iPad to overlay measured position with the planned flight route. The 

XGPS160 was also positioned on the glare shield.  Data were stored on both units and 

offloaded following the flight. The GEOXH via Cat-5/Ethernet cable and the XGPS160 

via a somewhat roundabout means via email through the vendor and delivered via email. 

The XGPS160 data were translated into standard .kml format. The overall processing 

flow for the navigation data is shown in Figure 6.66.  
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The GEOXH data in native format were post processed using the Trimble GPS Pathfinder 

Office suite which was included in the lease package. This primarily consisted of turnkey 

operation of the differential correction. Three Washington State Reference Network 

(WSRN, http: http://www.wsrn3.org/About.aspx) Continuously Operated Reference 

Stations (CORS) ground locations were identified as part of test site selection, forming a 

rough equilateral triangle around the scene origin. The WSRN sites are listed in Table 

6.11. Bearing is relative to East in the scene centered East-North-Up (ENU) frame. Static 

correction data was delivered and processed to produce very precise aircraft position 

estimates (code correction and carrier phase). The Trimble GPS Pathfinder tool 

assessment was that 99.07% of the data points from the imaging leg were within 5-15 cm 

absolute position accuracy (endpoints being those points which exceeded the accuracy 

 

Figure 6.66. Navigation Data Processing 

band). Again, these accuracies are specified in the horizontal plane. GEOXH data were 

exported to working text files but a problem was experienced getting time so the start 

time was derived by overlaying with the XGPS160 data. Also, as noted, there was a 4.6 
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second data gap in the GEOXH data which was filled using the XGPS160 data with the 

altitude adjusted to match the ionosphere-corrected result on both sides of the missing 

window. Ultimately this time period did not correspond to a reconstructed interval. 

Station ID Lat. (deg) Long (deg) Bearing 
(deg) 

Range (km) 
PFLD 47.898503 -122.282165 159.764 23.028 
SSHO 47.682295 -122.315148 -146.393 29.024 
LSIG 47.695197 -121.689826 -32.728 27.076 

Table 6.11. Washington State Reference Network Sites 

Specifics of the imaging collection aperture, as flown, are given in Figure 6.67. The full 

three dimensional aperture is depicted in Figure 6.67a, as flown as the descending 

cylindrical spiral. Range to scene center versus time is seen in Figure 6.67b with the ramp 

up after 2500 seconds occurring when the aircraft as exited the spiral pattern. The 

elevation extent of the aperture can be seen in Figure 6.67c. In total the aperture 

 

Figure 6.67. Collection Aperture Details 

subtended 30 degrees relative to the scene origin. No IMU was available (again power 

limits) and both units provided GPS position at 1 Hz rates. The winds aloft (forecast and 

experienced) were high and introduced a significant yaw as a function of position. GPS 

unit velocity was derived by differentiating the position data. This yielded a velocity 

vector and speed estimate, the latter shown in Figure 6.68a as a function of time. The 

points on each orbit which produced maximum and minimum speed align with flight 
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directly upwind and maximum directly downwind (zero yaw case), giving the wind 

bearing (Figure 6.68b). The assumption of a uniform wind velocity field over the 

intervals between minimum and maximum, and using the average speed over the orbit, 

then allowed estimation of the wind speed as a function of altitude (Figure 6.68c). The 

vector difference between GPS-derived velocity and the vector wind field gave the yaw 

estimate and is shown in Figure 6.69. 

In Figure 6.69a the heading derived from the velocity vector, after unwrapping, is plotted 

along with the estimated heading of the aircraft body (the angle between XBCCS and Xscene 

against time during the imaging leg. The scale does not adequately highlight the 

differences so Figure 6.69b is that difference, again plotted versus time. 

 Figure 6.68. Wind Vector Estimation for Imaging Leg 

 

Figure 6.69. Final Wind Vector Estimation for Imaging Leg 
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of any channel to channel mismatches in the receiver active electronics. The derived 

antenna separation as projected onto the transmitter radial through the main antenna is 

shown in Figure 6.70. The horizontal axis is seconds from the start of GPS recording 

(155220 sec) and includes the calibration leg; the approximately 550 second interval 

ending at 1500 seconds. Positive range indicated the main antenna is farther downrange, 

relative to the transmitter, than the reference antenna.  

6.4.4 Signal processing. This section describes preparation of the recorder flight data for 

reconstruction. The overall flow of processing steps is shown in Figure 6.71, followed by 

detailed description of each step. The dual N200 receive system supplied sampled 

complex voltages. The received signals in both channels were output from the FPGA as32 

bit complex words (16 I and 16 Q), decimated to an equivalent sample rate of 10 million 

complex samples per second.  The synchronously sampled data were stored in a 

continuous file in binary format. Sample time of the first sample of the first packet (363 

samples) was stored with each burst.  

 
Figure 6.70. Main-Reference Antenna Projected Separation vs. Time 
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navigation/position data also reference to the main antenna reconstruction would be 

facilitated. 

As shown in Figure 6.70, the processing is performed burst-to-burst over specific time 

intervals within the overall data set, and is predominately in the frequency domain. Input 

data are converted from binary to complex format and forward transformed. To eliminate 

the out-of-band power a binary, rectangular mask filter is applied (a filter-wise multiply); 

defined as 1 over the spectral extent to the transmit channel and zero elsewhere. The 

measured transfer functions of the individual channel analog RF cables and band-pass 

filters are then used on the zero forcing sense to normalize out insertion loss and phase, as 

was described in section 6.2. Transmitter position as a function of time, quantized to the 

sampling resolution of the indoor range measurements (15 degrees) was then used to load 

 Figure 6.71. Signal Processing Flow Diagram 

the proper antenna transfer functions which were also applied to the sample spectra. 

Sample HDTV spectra where given in Figure 5.2.  
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At this point the signals were (or should have been) referenced to the phase centers of the 

respective antennas. With identical digital receivers and with identical software loads, the 

group delay from A/D to decimated data samples should have been identical as well. The 

calibration section results showing no relative contribution (group delay), confirming the 

expectation, and only a slight difference in channel-to-channel amplitude match. This left 

the compensation of the (dynamic) spatial separation of the antennas. Using the measured 

moment arms relative to the GPS unit location (a challenge to measure manually and in 

the small cockpit) the separation was calculated off line at the GPS sample times then 

interpolated using the MATLAB interp1 function to the sample burst time. The reference 

antenna was projected onto the main antenna as in equation 6-51. 

    rj
rr eXX   23      (6-51) 

The RF reference is coherent across the two channels, implemented via the MIMO cable, 

but the tuners in each receiver initialize to a random phase relative to each other when the 

collection program is run. Coherency is maintained through the master clock/oscillator 

resulting in a constant phase offset for the duration of the collection run. To compensate 

for this, which could result in a deterministic range error, the phase offset was estimated 

as the mean difference between the phases of both spectra and applied to the main 

channel spectrum in manner analogous to equation 6-51. 

The pilot tone can clearly be seen in the burst spectrum, typically some 15-20 dB above 

the mean signal level (e.g., Figure 5.2). If the pilot tone is not removed then close-in, 

periodic correlation sidelobes might result. The pilot tone location is exactly known per 

the regulatory signal definition. The approach taken to edit (filter) the pilot tone was to 

zero 21 filters, centered on the tone frequency, were set to 0 and replaced with a complex 

random value. In each filter the magnitude was Gaussian drawn using a mean magnitude 
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estimated over the 1 dB defined (regulatory) bandwidth (some 6000 points) and using a 

uniformly distributed in phase.  

Pilot tone editing was followed by inverse transforming both channels to the time domain 

and performing the cross correlation (MATLAB function xcorr). Though this could have 

been done in the frequency domain directly, because fftshift was used to order the 

spectrum naturally around zero frequency the (perhaps) more roundabout method was 

used for bookkeeping. Examination of the immediate region around zero delay indicated 

that a residual delay remained between the two channels after calibration. An adaptive 

estimator was developed that exploited the triangular response of the points in the 

immediate region of 0 delay (the combined amplitude and phase modulated 8VSB was 

not as well behaved as the PN code, as discussed in Section 5.0, but + 2 samples were 

reasonable well represented). On each burst the range offset of the peak response from the 

0 range sample index was estimated and applied to the reference channel spectrum, 

Xr4(), in the same manner as equation 6.51, with the delay estimate replacing r. This 

result was again forward transformed (after reversing the fftshift). 

In Section 5.1 the problem of the direct path leakage and the impact associated with the 

time sidelobes masking small signal returns was addressed. The use of an adaptive 

sidelobe canceller was identified as a means to cancel the reference signal received in the 

backlobes of the main antenna. A Generalized Sidelobe Canceller (GSC) was developed 

for this purpose. As the data was processed, and there were no computational restrictions, 

the entire sample segment of the reference channel burst was used for training using 

Sample Matrix Inversion (SMI). The covariance matrix estimate being given by 
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where the subscripts are referenced to Figure 6.70, N is the number of samples in the 

burst (=10164) and * represents complex conjugation. R̂  is a 2 × 2 matrix. The adaptive 

weights are determined using 
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un
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n

WW

W     (6-53) 

In (6-53) the subscript ‘un’ indicated un-normalized. The adaptively cancelled main 

channel is then the vector product of the row vector with the input data and the column 

vector containing the weights 

     nrmm Wnxnxtx 545 )(       (6-54) 

Taking the cross correlation of the fifth stage main and reference channels produces the 

compressed pulse range profile. Figure 6.72 is an example over the full range of the cross 

correlation. Each delay increment is approximately 30 m so the total range extent is 

equivalent to ~300 km. Ground returns are clearly seen at positive delays.  

 
Figure 6.72. Example Pulse Compressed Result with Adaptive Sidelobe Canceller 
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adaptive canceller on the compressed data. Both magnitude and phase effects are shown. 

Burst 115 from the 157230 (GPS time) segment is shown as Figure 6.73a contrasting the 

uncancelled result (red trace) to cancelled (blue). A second burst some 18.6 seconds later 

appears as Figure 6.73b. The delay axis is truncated to an equivalent bistatic range delay 
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was sufficient to provide a cancellation ratio on the order of 30 dB, as observed by the 

ratio of the cross correlation at 0 delay between the two cases. Calculating the average  

Figure 6.73. Comparison of Compressed Result with and without Canceller – Magnitude 

cancellation ratio over the approximately 12,000 bursts used for the three dimensional 

aperture yielded 24.86 dB. 1160 bursts from orbit 1 (the highest altitude orbit) were 

processed to estimate the average time sidelobe level for the 8VSB waveform fragments 

sampled. 1500 negative delay (no ground return), compressed values were extracted, for 

each burst, starting 150 samples from the zero delay index using the non-adaptively 

processed compressed burst. The mean sidelobe level, referenced to the cross correlation 

peak, was calculated to be nearly -33 dB. The ground returns in the examples in Figure 

6.73 are in the approximate range 12-17 dB above the mean interference floor derived 

from the sidelobe cancelled (compressed) results. The mean sidelobe level of the 

cancelled bursts was only slightly reduced at -32.3 dB relative to the peak of the 

uncancelled cross correlation product. 

The phase responses over the same delay interval are shown in Figure 6.74, for the same 

bursts. In these examples the effect of the removal of the direct path leakage contribution 

can be seen prevalently at short delays with the effect decreasing with delay. The 

mechanism is believed to be the high, close-in time sidelobes without the canceller  
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Figure 6.74. Comparison of Compressed Result with and without Canceller - Phase 

Initial attempts at image reconstruction using the compressed pulse result were failures. 

The images were essentially noise-like, indicating incoherent input data. Returning to 

Section 5.1, the analytic development of the compressed pulse result using the HDTV 

waveform indicates that the compressed pulse phase at zero delay should be 0 (equation 

5-8), which can be seen by letting the range difference term go to zero representing both 

antennas at a common phase center with no group delay mismatch. Evaluation of the 

phase of the uncancelled compressed bursts at zero delay found a nonzero initial value 

and what could be described as a random phase from burst-to-burst (note that the 

examples in Figure 6.73 had the adaptive correction applied and so do not exhibit this 

behavior). The analysis devolved into an evaluation of the system coherency and search 

for potential unknown modulations that might have introduced a channel-to-channel non-

stationarity, or temporally variant mismatch.  

As has been noted there was a significant leakage of the transmitter signal into the main 

channel. This contribution was effectively removed by the adaptive canceller, as 

demonstrated. The reference signal component in the main antenna signal exhibits the 

antenna offset and cabin propagation environment and main channel and receiver 

response. It is possible to isolate this component by subtracting the post-cancelled result, 

xm5(t), from the pre-cancelled signal xm4(t), the difference being the leakage signal 
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weighted by the main channel response.  This residual was then forward transformed and 

divided by the reference channel spectrum at that stage of processing (Xr5()). The phase 

as a function of frequency over the channel spectrum was calculated and applied to the 

reference channel spectrum, followed by inverse transformation, or 

       residualsj
rr eXtx 5

1
6

  where  
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This process aligned the reference signal with the main channel. The final cross 

correlation was performed, the delay extent was trimmed from 20328 to 218 points (0 to 

6500 meters range difference) for the adaptively cancelled case (5()) and 224 points for 

the nonadaptive case (5 negative delay points were retained around the zero delay peak). 

In preparation for reconstruction the truncated range strobes were forward transformed 

using a DFT and the results written to disk file with GPS time on a burst-to-burst basis. 

The results for zero range delay phase angle are presented for all 9 orbits over the azimuth 

windows selected for processing in Figure 6.75. The phase errors after pulse compression 

at the zero delay range are listed in Table 6.12. These values are influenced on each orbit  

Orbit Number RMS phase error 

 

 error 

Orbit Number RMS phase error 

1 0.0020842 rads 6 0.0010135 rads 

2 0.00085015 rads 7 0.0017481 rads 

3 0.0020417 rads 8 0.0014198 rads 

4 0.0016919 rads 9 0.0019071 rads 

5 0.0024804 rads   

Table 6.12. RMS Zero Delay Phase Error Summary by Orbit 

by a relatively short duration (in the angular sense) somewhat repeatable. This can be 

seen from the plot sequence in Figure 6.75, representing the zero delay phases for each 

burst, over the processed duration of the orbit segment. The results all show a residual 

phase error burst which is approximately an order of magnitude more severe than the 

majority of the processed interval. Reploting the zero delay phase against aircraft heading 

indicates that the burst occurs when the heading is between 30-40 degrees south of east; 
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around 30 degrees on the higher orbits (which exhibit a higher crab angle) increasing to 

40 degrees SE (-40 deg re the scene ENU) in the lower orbits (Figure 6.69).  Under the 

hypothesis that the aircraft was contributing or the source of the effect the position of the 

transmitter was considered with respect to the antennas at these heading angles. The peak 

effect occurs in the region 40-50 degrees to the right of the aircraft nose (Figure 6.76b).  

The line of sight to the transmitter does not pass through the propeller (Figure 6.76a); 

however some scattering may be occurring due to the propeller shape/angles toward the 

tips. The phase difference may result from scattering only into a single channel. 

 

Figure 6.75. Zero Delay Phase vs. Orbit/Position 
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Figure 6.76. Geometry of the Phase Artifact 

6.5 Image Reconstruction. 

The bistatic tomography simulation functions in MATLAB were adapted for 

reconstruction with only minor changes. Most notable was the interpolation (via cubic 

spline) of the 1 Hz GPS position-time data to match the sample time of the first ADC 

sample of each burst.  Pulse compression processing was performed over an angular 

segment of each orbit, as detailed in the last section. The segment was defined semi-

symmetrically around the transmitter-scene center vector; each segment is approximately 

90 deg in extent when measured in the “plane” of the orbit (e.g., polar angle ignoring the 

height component). The processed segments are shown graphically in Figure 6.77 with 

three views, and in tabular form in Table 6.13. In the table degrees are rounded to the 

nearest 0.01 deg and GPS time to the nearest millisecond. The azimuth values are relative 

the scene-based ENU coordinate frame. 

 
Figure 6.77. Processed Segments of Full Aperture 
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The azimuth regions, portions of each orbit, where the reference antenna pattern covers 

the sidelobes and backlobes of the main antenna (the adaptive sidelobe canceller 

condition), as seen in Figure 6.63, are identified in Table 6.14. The shorter aperture 

segments were further motivated by processing speed limits and image formation time (a  

Orbit 

Numbe

r 

Start Az. (deg) Start El. (deg) 
Start Time 

(sec) 

End Az. 

(deg) 
End Az. (deg) 

End Time 

(sec) 

1 -124.3 36.72 157200.785 -33.33 38.052 157263.299 

2 -129.13 38.05 157495.029 -51.99 30.278 157557.045 

3 -135.42 32.5 157806.210 -44.91 34.544 157871.205 

4 -136.83 29.19 158095.904 -45.18 30.978 158158.921 

5 -136.66 21.41 158364.455 -46.14 25.361 158433.471 

6 -136.59 21.41 158647.247 -44.88 22.18 158718.245 

7 -136.52 17.51 158925.773 -48.49 17.644 158994.791 

8 -140-11 11.43 159192.545 -46.82 11.187 159263.601 

9 -138.03 8.64 159459267 -48.36 11.152 159518.267 

Table 6.13. Processed Orbit Segment Details 

126 by 126 by 100 voxel aperture at 0.3048 m spacing required a 9 day continuous run 

time in MATLAB). An examination of the arc segments in terms of the height change 

over the processed portion indicates that 20-40 m of elevation change was occurring 

(Figure 6.78), with the exception of the last, which would serve to sample the vertical  

 
Figure 6.78. Elevation Angle Subtended for each Orbit Segment  

aperture along the slant descending path. However, when the actual trajectory is 

converted to elevation angle the change with respect to scene center, the angle subtended 

during the processed portion, diminishes. This is the result of the platform horizontal 
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position changing over the orbit segment. 

Orbit 

Number 
Start Az. (deg) Start El. (deg) 

Start Time 

(sec) 

End Az. 

(deg) 

End El. 

(deg) 

End Time 

(sec) 

1 -166.362 37.615 157160 10.339 35.774 157292 

2 -157.187 36.842 157470 -6.492 29.1 157592 

3 171.805 33.692 157755 19.141 29.945 157908 

4 178.77 30.15 158055 4.81 29.003 158188 

5 -165.853 27.459 158340 15.388 24.909 158473 

6 -160.074 22.674 158625 -8.572 21.632 158742 

7 178.355 17.864 158885 8.47 18.121 159027 

8 -159.57 12.427 159175 -17.05 12.687 159282 

9 -143.277 8.776 159455 13.049 9.847 159552 

Table 6.14. Times and A/C Position where ASC Condition Met 

6.5.1 Two dimensional reconstruction. To test the input data and reconstruction a shorter 

aperture was processed to a two-dimensional image. Using a 25 second segment of orbit 1 

which was approximately centered about the scene-transmitter baseline a two dimensional 

image was reconstructed at the focus height equal to that of the center of the scene 

(steering is done in scene coordinates which are connected to WGS 84 through the scene 

origin coordinate). The scene center is the estimated center of the target grain silo as 

depicted in Figure 6.52. This geometry represents an aperture angle of 42.645 deg (polar 

angle subtended projected into X-Y plane) while the vector difference of the starting and 

ending positions yields a total angle of 33.67 deg. The reconstructed image is shown in 

Figure 6.79b. The elongation was expected due to the low resolution waveform. To 

confirm the result, the flight GPS data was used as truth and a simulated signal generated 

(as in Section 5) and reconstructed. The simulated point spread function appears in Figure 

6.79a. Both Figures 6.79a and –b are intensity plots with a linear scale and normalized to 

the largest scene pixel. Principal cuts taken along the image X- and Y-axes for the real 

and simulated image are shown in Figures 6.79b (along Y) and 6.79d (along X). The 

overlay was manually generated and is shown in Figure 6.79c. 



292 

 

 
Figure 6.79. Test Image 25 Second Test Aperture Orbit 1  

Resulting resolution was estimated along the cardinal axes in image coordinates, not in 

the along-range direction suggested by the 14 degree rotation of the primary response 

(this angle graphically estimated. Though resembling bistatic SAR imaging modeled by 

Soumekh (with a stationary transmitter and wideband, CW, noise waveform) in [162], 

this apparent rotation is a combination of the fact that the transmitter is slightly offset 

from scene Y as well as descending. A linear fit to the synthetic aperture X-Y trajectory 

yielded a value of 12.75 deg between the synthetic aperture and the scene coordinate 

frame. The slight aperture asymmetry with respect to the transmitter position at -87.4 

degree polar angle in scene coordinates also contributes to the rotation. The resolution 

projection along Yscene (more downrange) is 3.679 m/12.069 ft while the projection along 

Xscene is 0.793 m/2.602 ft (more cross range). In Section 4.7 (eqn. 4-38) monostatic 

resolution approximations were suggested for partial apertures in two dimensions (based 
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on a CW waveform). Degrading by a factor of 0.5 for the stationary transmitter suggest a 

cross range resolution of the order of 0.6 m. Alternatively, [163] offers the (monostatic) 

expression 

 
2

sin4 





xr      (6-56) 

where  is the angle at the target subtended by the aperture. Dividing (6-56) by 2 for the 

stationary transmitter yields a cross range value of 0.71 m for the 25 second test aperture. 

The expected form of the IPR is an “hourglass” shaped response with the constriction at 

the point of peak response along the response axis representing the longest projection of 

the sampling aperture (cf [165]). For monostatic SAR and the bistatic case where the 

collection aperture is symmetric with respect to the transmitter line of sight the long axis 

of the IPR is parallel to the aperture bisector or, in the bistatic case, the line of sight from 

the transmitter to the scene. As the bistatic aperture departs from the symmetric case, the 

IPR exhibits a rotation (noted above) with the direction and angle reflecting the degree of 

asymmetry. Further, the shape of the IPR is a function of position within the scene. Model 

results, which are not presented, demonstrate a positive rotation (in the scene polar angle 

sense) when the pixel is located at x>0 and a negative rotation for the converse. With a 

large scene, and short range to scene center from the receiver, we experience a spatially 

variant resolution over the scene; the projected aperture angle is greater for pixels at 

shorter range (y<0) and reduced for pixels at y>0. Finally, receiver descent over the 

collection aperture induces additional rotation of the IPR. 

This result in Figure 6.79 gave confidence that the images were coherently focusing and 

that the upsampled navigation data were of sufficiently low error. To further build 

confidence, we then continued by processing the full angular extent of each of the 9 orbits 

to a set of two dimensional images. The scene size was small (+/- 19 m in both 

dimensions) centered on the silo position from Figure 6.52. The same approach was used 



294 

 

as Figure 6.79; a simulated image was generated using the actual (upsampled GPS) flight 

trajectory, to create an expected point spread function, followed by the flight data 

reconstructed image. Each orbit processed result is represented by 4 plots: the simulated 

point spread function on both linear and logarithmic magnitude scales, followed by the 

images derived from flight data, also plotted using both linear and logarithmic scales. All 

the runs (the individual orbit segment processed) were over the same geometry but there 

was a slight mismatch in the height of the focus plane. The simulated target was placed in 

the scene at (1, 1, 0) but the focus height was 14 m. The selected focus height was an 

error, discovered after the fact. The terrain elevation at scene center is 14 m but all the 

focus height (and trajectory data) is referenced to the scene origin, removing this 

contribution. 

The results are presented in 9 sequential Figures, Figures 6.80 through 6.88 on the 

following pages, representing orbits 1 through 9. The use of trajectory as-flown (and as 

interpolated) incorporates the exact trajectory into the phenomenology simulation, 

removing position/navigation as an error source in the reconstructed point spread 

function. The differences then, between the simulated as-flown and the actual flight data 

include any aircraft parasitic scattering effects, errors in pulse compression and phase 

errors resulting therein (Section 6.4), and other environmental effects. The low contrast of 

the back projection algorithm, and aperture contributions, can be seen in the 

logarithmically scaled images. 

To check the IPR for the focus height correctly set at the scene ground level; all 9 2D 

images were rerun, both the simulated data and the flight data, though over a smaller area. 

A scene size 31 pixels on a side, samples at 0.3048 m spacing were rerun with the focus 

height (Z) set to 0.  Each of the 18 image chips is approximately 9.5 meters on a side and 

appear as pairs in Figure 6.89 with a) corresponding to orbit 1 (the highest) and i) orbit 9. 

The full-width, half-maximum of the simulated point target responses for each orbit was 
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then estimated. Because the image was normalized to unity peak magnitude, and because 

the simulated target was not placed at a location that would not straddle when sampled 

spatially, the results are approximations. In addition, the IPR resolution (FWHM) was 

estimated from the focused flight data image chips in Figure 6.89. The results are 

summarized in Table 6.15. It is clear that the images are focusing from both the IPR 

responses and the calculated resolutions.  

The images presented in Figures 6.80 through 6.88 were, to a degree, unexpected, 

exhibiting no resemblance to that from the Google Earth overhead image of the test scene 

(Figure 6.52). The metal-walled, and roofed, buildings can be expected to scatter 

specularly. The very low grazing angle of the illuminator at vertical wall and the lowest 

orbit altitude means that the receiver avoids the flat plate responses, though a large return 

is seen at the lower orbits may be the larger metal barn in that location. Heavily rusted, 

corrugated metal comprises the exterior of the older structure to the west, anticipated to 

further diffuse the return. It was thought that the horizontally polarization and (thin wire 

equivalent) horizontal roof edges might provide a visible return but none is observed. The 

silo was expected to focus somewhat to a point given the symmetry (though it is 

segmented), and there are such observed at/near scene center, and that the silo cap would 

exhibit the ~24 m height in the 3D imagery. Finally, substantial shadowed areas were also 

expected, again because of the low grazing angle of the incident energy. The poor 

contrast (IPR sidelobes) resulting from using back projection may be masking such. The 

logarithmic scale simulated IPR results clearly exhibit the hourglass response noted 

earlier. However the as-flown simulations, which reflect the measured trajectory, indicate 

an imbalance. First the near range and far range nulls are unequally distant from the peak 

response (more than a factor of 2) and that the intensity (sidelobe levels) are asymmetric. 

The asymmetry can be seen, or appears to be more evident, in Figures 6.80a-6.88a than 

Figure 6.89, but where it is still observable. This will be explored in more detail later. 
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Figure 6.80. Orbit 1 2D Reconstruction: Simulated As-Flown and Flight Data 

 
Figure 6.81. Orbit 2 2D Reconstruction: Simulated As-Flown and Flight Data 
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Figure 6.82. Orbit 3 2D Reconstruction: Simulated As-Flown and Flight Data 

 
Figure 6.83. Orbit 4 2D Reconstruction: Simulated As-Flown and Flight Data 
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Figure 6.84. Orbit 5 2D Reconstruction: Simulated As-Flown and Flight Data 

Figure 6.85. Orbit 6 2D Reconstruction: Simulated As-Flown and Flight Data 
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Figure 6.86. Orbit 7 2D Reconstruction: Simulated As-Flown and Flight Data 

 
Figure 6.87. Orbit 8 2D Reconstruction: Simulated As-Flown and Flight Data 

a) Orbit 7 Simulated PSF - Linear

X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

119.05

S
c
e
n

e
 Y

 (
m

)

12.7

0

6.35

-19.05

-12.7

-6.35

19.05
Scene X (m)

12.70 6.35-19.05 -12.7 -6.35

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

b) Orbit 7 Simulated PSF - Log-Magnitude

X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120

-70

-60

-50

-40

-30

-20

-10

019.05

S
c
e
n

e
 Y

 (
m

)

12.7

0

6.35

-12.7

-6.35

19.05
Scene X (m)

12.70 6.35-19.05 -12.7 -6.35

0

-10

-20

-30

-40

-50

-60

-70

-19.05 -80

X (index number)

Y
 (

in
d

e
x

 n
u

m
b

e
r)

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

119.05

S
ce

n
e 

Y
 (

m
)

12.7

0

6.35

-19.05

-12.7

-6.35

19.05
Scene X (m)

12.70 6.35-19.05 -12.7 -6.35

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

c) Orbit 7 Flight Image- Linear

19.05

X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120
-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S
ce

n
e 

Y
 (

m
)

12.7

0

6.35

-12.7

-6.35

19.05
Scene X (m)

12.70 6.35-19.05 -12.7 -6.35

0

-10

-20

-30

-40

-50

-19.05

d) Orbit 7 Flight Image - Log-Magnitude

a) Orbit 8 Simulated PSF - Linear

Scene X (m)

S
c
e
n

e
 Y

 (
m

)

X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

119.05

12.7

0

6.35

-19.05

-12.7

-6.35

19.0512.70 6.35-19.05 -12.7 -6.35

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

S
ce

n
e 

Y
 (

m
)

Scene X (m)X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

119.05

12.7

0

6.35

-19.05

-12.7

-6.35

19.0512.70 6.35-19.05 -12.7 -6.35

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

c) Orbit 8 Flight Image- Linear

S
ce

n
e 

Y
 (

m
)

Scene X (m)X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120
-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

019.05

12.7

0

6.35

-12.7

-6.35

19.0512.70 6.35-19.05 -12.7 -6.35

0

-10

-20

-30

-40

-50

-19.05

d) Orbit 8 Flight Image - Log-Magnitude

b) Orbit 8 Simulated PSF - Log-Magnitude

S
ce

n
e 

Y
 (

m
)

Scene X (m)X (index number)

Y
 (

in
d
e
x
 n

u
m

b
e
r)

20 40 60 80 100 120

20

40

60

80

100

120
-80

-70

-60

-50

-40

-30

-20

-10

019.05

12.7

0

6.35

-12.7

-6.35

19.0512.70 6.35-19.05 -12.7 -6.35

0

-10

-20

-30

-40

-50

-60

-70

-19.05

-80



300 

 

Figure 6.88. Orbit 9 2D Reconstruction: Simulated As-Flown and Flight Data 

A single, shorter aperture (40 degrees) was focused over a 1.25 km by 1.25 km area [164] 

and appears in Appendix E, Figure E.1. Each orbit was also focused over a larger region 

than shown in Figure 6.89, 240 m by 240 m by sampling the scene at the Nyquist 

resolution for the particular orbit. Each image was convolved with a two-dimensional -35 

dB Taylor taper, followed by clipping the dynamic range 20 dB below the scene peak 

response. Orbits 1 through 9 results appear in Figure E-2 through E-10, respectively. The 

images in Appendix E show clear correlation and registration between geographic and 

reconstruction features. The most obvious being clusters of large trees. 

Finally, two additional steps were taken to confirm that the reconstruction was 

functioning correctly (e.g., that measured PSF matches simulated). In the first, two 

idealized orbit sets were generated which were perfect in the trajectory sense (ideal 

cylindrical spiral segments) and with the same radius as flown and using a rate of climb 
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Figure 6.89. 2D Reconstructions: Simulated As-Flown & Flight Data Focused to Z=0 

(actually descent) derived from the flight data. The first was a single orbit segment, 

emulating orbit 1, and spanning 90 degrees of arc in the XsceneYscene plane at a mean 

altitude of 1020 m with 40 m of altitude change over the aperture. The second orbit set 

was the idealized three dimensional collection aperture (used later). The second method 
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was based on constructing the as-flown sampling aperture in Fourier Space and 

generating the PSF via the inverse two-dimensional Fourier Transform. 

The isotropic target for the ideal orbit simulation was located at (10, 10, 0) in scene 

coordinates. Figure 6.90 presents two contour plots of the two dimensional point spread 

function in the scene X-Y plane. The first (Figure 6.90a) was generated using a sample 

spacing of 0.3048 m (1 ft.) and the second (Figure 6.90b) at 10 cm spacing (4 inches). 

Resemblances to the results from Figure 6.89 are clearly evident, particularly in Figure 

6.90b. Likewise, though not shown completely, the first nulls are not symmetric in range.  

  
Figure 6.90. Ideal Orbit Segment Point Spread Function (2-D Contours) 

The Orbit 1 trajectory was converted to the equivalent frequency domain representation, 

as was portrayed for the candidate orbits in the test design section (Figure 6.54) as shown 

in Figure 6.91a. The two colors represent the channel band edges. A square matrix with 

wave number resolution of 0.1 and spanning -25 < kx < 25 and -25 < ky < 25 was defined 

and the trajectory was down sampled into the frequency domain matrix, as shown in 

Figure 6.91b, the quantization clearly visible. The inverse two dimensional FFT was 

taken and FFT shifted to place the peak response at the center of the PSF. That result 

appears in Figure 6.91c. The X and Y axis resolutions were graphically estimated 

yielding 0.5 m in X and 0.9 m along Y. The scene size in Figure 6.91 is approximately 62 

m square. 
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Figure 6.91. Point Spread Function Reconstructed from 2D Fourier Aperture 

All the derivations of the two dimensional response agree with the measured result, both 

qualitatively and quantitatively, so that we can reasonably assert that the measured data 

are suitable, the aperture(s) are focusing, and the results reflect the scene bistatic 

reflectivity (albeit with poor contrast). However there are some results in Figure 6.89 and 

6.90 which were unanticipated. The response peaks demonstrate a slight offset from the 

simulated target position. The displacement is 0.35 m along Y (peak response at 9.65 m) 

and X (peak response at 10.35 m) in Figure 6.90. This was also observed when the 9 orbit 

segments were simulated with the as-flown trajectory, with the peak response shifting 

from orbit-to-orbit. As previously stated, the simulated scatterer was not positioned to 

avoid straddle. The mean cross range resolution resulting from the 9 apertures (orbits) 

based on (6.56) is 0.37 m with an average (in-plane) aperture angle of 88 degrees, with 

some dilution because of the sample lattice was not aligned with the aperture, as noted for 

the 25 second aperture. The actual shape of the collection aperture may be the cause. As 

noted in Figure 6.78 the receiver elevation change over the aperture create a slight 

rotation when projected into the scene focus plane, resulting in the observed shift.   

150200250300350

100

150

200

250

300

350

400

c) Point Spread Function (mag.-squared, linear scale)

ky

-5 0 5 10

-22

-21

-20

-19

-18

kx

Flow

Fhigh

a) Orbit 1 - Frequency Domain

b) Orbit 1 Quantized

-5 0 5 10

-22

-21

-20

-19

-18

ky

kx



304 

 

Additional details on the response are seen in Figures 6.92 and 6.93. In Figure 6.92 the 

contours of Figure 6.90b are presented as a surface, with the response (Z) axis on a linear 

scale. Cuts along the X and Y cardinal axes, as well as along the peak intercardinal axis, 

defined as the locus of points with the maximum response away from the peak pixel, are 

presented in Figure 6.92. Using the cuts along the X and Y (Figure 6.93a) axes the 

resolution is estimated at the full-width, half-maximum points. Using a cubic spline 

interpolation resulted in the calculated lobe width along X of 0.3831 m. The calculation 

 
Figure 6.92. Ideal Orbit Segment Point Spread Function Surface 

along Y yielded 1.7483 m. The intercardinal cut, which is identifiable visually in Figure 

6.89b, runs at an angle of approximately 60 degrees to the X axis. The horizontal axis is 

the row/column index number of the reconstructed response (Figure 6.93b).  

The same calculations (resolution estimates) were made for the 2D reconstructions in 

Figure 6.89 and are summarized, along with the ideal single orbit above, in Table 6.15. 

The rerun cases corrected for the focus height error so that matched estimates could be 

formed. The measured results were based on selecting the brightest pixel and then X and 

Y cuts were extracted around this peak magnitude pixel. 
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Figure 6.93. PSF Cuts along Cardinal and Intercardinal Axes 

The reconstructions based on an ideal aperture with wide aperture angles are symmetric 

with respect to range and cross range [165] and as evaluated herein when the aperture is 

symmetric with respect to the transmitter line-of-sight. The scatterer modeled height and 

reconstruction plane mismatch in Figures 6.80-6.88 result in the breaking of that 

symmetry with respect to pseudo cross range (that direction parallel to the longest 

aperture projection with respect to the scene and with the highest resolution). This also 

creates a layover effect and results in a displacement of the peak response in the pseudo 

range dimension. These errors are eliminated in the results in Figure 6.89 but we still 

observe, in some cases, only a two-fold, mirror-like, symmetry (6.89a, and slightly e and 

g) and which in clearly evident in Figure 6.91c (matching 6.89a). Being guided by [89] 

we examined the aperture in the frequency domain (following 6.91) and found that the 

effect was most pronounced for the most asymmetrical spectra. The endpoints differ by 

>2 rads/m along ky and >3 along kx for orbit 1 (6.89a). This was the most pronounced 

asymmetry. Orbit 5 (6.89e) differed by >1 rads/m along kx and ~1 along ky.  

We conclude from the agreement between theoretical, simulated, and measured 

resolutions that the data are correctly focusing, even though the images produced do not 

obviously resemble the optical images of the scene (likely an unrealistic expectation, 

particularly considering the carrier frequency). All ranges used to steer the back 
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projection algorithm are derived from WGS-84 referenced coordinates (scene center and 

GPS-based position measurements), range errors mapping the compressed data into 

range, and into scene/pixel coordinates, would degrade the images, producing a more 

randomized scene.  

Orbit Number X Res. Sim. Data Y Res. Sim. Data X Res. Flight 

Data 

Y Res. Flight 

Data 
Ideal Orbit 0.3831 m 1.7483 m N/A N/A 

Fourier Reconst. Orbit 

1 

0.5 m 0.9 m N/A N/A 

1 0.41 m 1.582 m 0.67 m 1.714 m 

2 0.63 m 2.505 m 0.41 m 2.26 m 

3 0.45 m 1.63 m 0.63 m 1.85 m 

4 0.66 m 1.85 m 0.50 m 1.43 m 

5 0.66 m 1.96 m 0.45 m 1.41 m 

6 0.66 m 1.96 m 0.4 m 1.63 m 

7 0.66 m 1.96 m 0.4 m 1.63 m 

8 0.66 m 1.82 m 0.4 m 0.99* m 

9 0.42 m 1.67 m 0.45 m 1.87 m 

Average 0.579 m 1.882 m 0.479 m 1.643 m 

* Two closely spaced, nearly equally sized scatterers at same X position 

Table 6.15. Resolution Estimates Derived from 2D Reconstructions 

6.5.2 Three dimensional reconstruction. The approach used to validate that the two 

dimensional result was focusing properly (covering both the reconstruction algorithms as 

well as the data) was then applied to three dimensional image formation. We start with 

the three dimensional ideal collection aperture mentioned earlier; idealization of all 9 

orbit segments individually 2D focused. Again an isotropic point scatterer is placed at 

(10, 10, 0) and the bistatic phenomenology simulated. The idealized orbits are depicted in 

Figure 6.94. Note that in the lowest orbit, the trajectory was clipped by the minimum 

altitude limit applied. Reconstruction was performed over three dimensions, but only 

along the cardinal planes centered at the simulated target position (to reduce computation 

time) producing the sampled point spread function in Figure 6.95, with point spread 

function response plotted as logarithmic log-magnitude.  

The features observed in the two dimensional reconstruction are seen to carry over to the 

three dimensional case; most notably the elongation of the along-Y response due to the 
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Figure 6.94. Ideal Orbit Simulation - Spatial Aperture 

shorter aperture projection onto that axis. With the exactly repeated orbit height 

separation along Z is it unsurprising to see grating lobe-like responses at +/- 8.01 m and a 

weaker response at +/- 15.4 m. The orbits were defined symmetrically with respect to the  

 

Figure 6.95. Ideal Orbit Simulation PSF - Principal Plane Reconstruction 

scene Y axis over a 90 degree arc as defined in the X-Y plane. Sloping away from the 
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X=0, Z=0 axes of 2-3 degrees (by examination). This corresponds to the angle of the 

transmitter away from the Y axis. Full slices were calculated over a range of Z from -18 

to +18 meters in 0.1 m (4 inch) increments (126 total), with the same voxel spacing in the 

X and Y planes (126 by 126). The individual cardinal plane responses, plotted on a linear 

magnitude scale are shown in Figure 6.96. In Figure 6.96a the light rotation of the PSF, 

reflecting the transmitter offset, can be seen.  

The responses are generally higher along the Z axis. The resolution in the vertical 

direction is misleading because of the mismatched plot axes (only Figure 6.97a uses the 

same scaling on both). Principal cuts for this result, from which the three dimensional 

resolution values are calculated, appear in Figure 6.97. The X-Y plane sample spacing 

was 0.1 m, while samples were spaced 0.3048 m in Z. The resolution values scaled from 

these cuts, similar to the 2D cases are found in Table 6.16. 

Figure 6.96. Ideal Orbit Simulation PSF - Principal Plane Cuts 

Figure 6.97. Ideal Orbit Simulation - Principal Axis Cuts and Resolution 
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Next the actual trajectories were simulated and a full reconstruction over the volume 

measuring -18 to +18 meters in 0.305 m (1 ft) voxel sample increments in the X-Y plane 

(126 total each axis). In the Z direction voxel spacing was also 0.3048 m with 100 voxels 

between -10 m and 20.18 m. Results are presented in the same manner as the ideal orbits 

in Figure 6.98. The full volume reconstruction was performed in segments because of run 

times with the full volume response reconstructed from the run segments. Results are very 

similar to the ideal orbit case with the high response levels in the vertical dimension and  

Case 
Data Source X-Y Plane at Peak Z X-Z at Peak Y Y-Z at Peak X 

Ideal Orbit Simulated 
Xres=0.38m, 

Yres=1.35m 

Xres=0.38m, 

Zres=1.17m 

Yres=1.35m, 

Zres=1.17m 

As-Flown Simulated 
Xres=0.34m, 

Yres=1.36m 

Xres=0.34m, 

Zres=0.85m 

Yres=1.33m, 

Zres=0.85m 

As-flown Flight data (1) 
Xres=0.32m, 

Yres=1.24m 

Xres=0.32m, 

Zres=1.08m 

Yres=1.24m, 

Zres=1.08m 

As-flown Flight data (2) 
Xres=0.27m, 

Yres=1.83m 

Xres=0.27m, 

Zres=0.95m 

Yres=1.83m, 

Zres=0.95m 

As-flown Flight data (3) 
Xres=0.35m, 

Yres=1.01m 

Xres=0.35m, 

Zres=0.92m 

Yres=1.01m, 

Zres=0.92m 

Table 6.16. Three Dimensional Reconstruction Resolution Values 

the response slope negative in the positive Y direction. The actual flight trajectory does 

not exhibit the idealized shape so that the ambiguity/grating structure is less evident. This 

is more clearly seen in Figure 6.99, particularly Figure 6.99b. In this simulation the point 

 

Figure 6.98. As-Flown Simulated PSF - Principal Plane Reconstruction  

a) View azimuth = –37.5o (re -Y), elev. = 30o b) View azimuth = –135o (re -Y), elev. = 45o
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scatterer was positioned at (1, 1, 0) and also exhibits the slight peak response offset on 

upon reconstruction (Figure 6.99a). In Section 5 we demonstrated that the effects of 

Doppler during the sample duration pulse compression could result in image distortion, 

but for full azimuth-processed images, not partial orbits as performed here. Further move-

stop-move was implemented in the simulations. A geometric effect due to the partial 

aperture is still suspected. Interestingly, clear grating lobes observed at +/- 8 m in Figures 

6.97c and 6.99c, there is an additional coherent phase ambiguity, albeit weaker, at +/- 5 

m. Normalized principal cuts along the cardinal axes are plotted in Figure 6.100. Each 

axis from within the principal plane that passed through the peak response voxel is 

plotted. Resolution values for the as-flown simulated point scatterer are given in Table 

6.16, listed As-flown, simulated.  As this case represents the first full volume attempt to 

generate meaningful imagery, separately and in combination. The first was to 

 Figure 6.99. As-Flown Simulated PSF - Principal Plane Cuts 

 
Figure 6.100. As-Flown Simulation - Principal Axis Cuts and Resolution 
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reconstructed case (the only other being the flight data), the response is displayed in three 

dimensions using a point cloud representation. Each voxel is represented by a cube that 

with edge length that is 25% of the voxel spacing. Various techniques were used in an 

limit the total dynamic range of the scene. For example, with 20 dB dynamic range, all 

voxels with response less than 0.01 (after normalization) were set to 0. Our second 

approach was based on the transparency option supported by the MATLAB function 

‘patch’. Transparency (alpha) was set based on a functional dependence on the voxel 

response (magnitude-squared). In some cases, for improved visibility of internal voxels, 

as outer voxels occlude interior ones with some measure of control, the transparency was 

an exponential function of the response (T  |m|
4
. where m is the voxel magnitude). 

Figure 6.101 is the response in Figures 6.98 and 6.99 represented as a point cloud. The 

viewing geometry is (45, 45), which in MATLAB is 45 degrees from the negative Y axis, 

measured in the polar sense, and 45 degrees above the X-Y plane. The plot is slightly 

trimmed in X-Y to +10 m in size. The total dynamic range is 20 dB and the plot spans the 

full reconstructed volume.  The transparency is linearly related to the voxel magnitude-

squared and linear magnitude scaling is applied. 

 
Figure 6.101. Point Cloud PSF Representation – As-Flown Simulation  
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Two zoomed views of the main response are shown in Figure 6.102. In this depiction the 

transparency coefficient is still linear and proportional to the normalized magnitude-

squared (e.g., value of the voxel magnitude sets the transparency directly on the scale 0 to 

1). The Zoomed views span 10 meters in X and Y, centered on the simulated target 

position with the range of the vertical axis reduced to match. The dynamic range is hard 

limited to 30 dB in the zoomed images. 

 

Figure 6.102. Point Cloud PSF Representation - As Flown Simulation 

The flight data were focused over the same area as the 2D images shown earlier (Figures 

6.80 through 6.88), in a scene containing the two metal buildings and the silo (Figure 

6.52). Because of uncertainty of the height of the terrain (Google Earth indicating 13.4 m 
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measurements suggesting 4.87 m) the vertical range of reconstruction was -10 m relative 

to the scene reference to a height greater than the silo height. The average difference 

(over 1000 seconds) in altitude from the simultaneously recorded GPS sources during 

flight, one corrected for ionospheric delay, is 16.77 m, with the non-corrected GPS signal 

registering the higher altitude. The on-site measurements were on different days and with 

the expectation that the ionosphere is highly dynamic, no conclusions can be drawn 

except to observe a rather significant difference and that the uncertainty is encompassed 

by the voxel vertical range. 
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The first flight data volumetric reconstruction is presented in Figure 6.103. The data are 

presented in point cloud format. The viewing perspective is 41 deg relative to –Y and 41 

deg above the scene X-Y plane. The total magnitude-squared dynamic range is limited to 

20 dB. In this image, the transparency factor is proportional to the fourth power of the 

absolute value of the voxel voltage (magnitude-squared, squared). The dark mass of in the 

image is coincident with the silo location at the center of the X-Y plane and extending 

vertically (by design). Voxel spacing in Figure 6.103 is 0.3048 m (1 ft, 0.028 m
3
) along 

all axes.  

 
Figure 6.103. Flight Data Reconstruction – Volume 50540 m
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with the tilt relative to the local horizontal as seen in Figures 6.98, 6.99 and6.102. The 

darkest voxels in the point cloud represent the strongest responses. Dynamic range and 

scaling are the same as Figure 6.103. 

 
Figure 6.104. Flight Data Reconstruction – Perspective from Northeast of Scene 
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earlier. Further we reduce the dynamic range in the image to only 3 dB so that the 

brightest voxels are shown. The first image (Figure 6.105) is presented from a location 

southeast of the scene origin. 

We test the quality of the reconstruction again through the resolution achieved the scene 

was examined for voxels which appeared to correspond to a point scatterer, or which 

collapse to a point, and extract resolution along the three axes. The results are graphically 

depicted in Figure 6.106 for three scatterers selected from different portions of the image. 

The estimated FWHM values are listed in Table 6.16 as Flight Data (1) through (3). The 

scatterer positions which were selected were Point 1 (14.478, 17.831, 19.261), Point 2 

(14.478, -1.067, -1.161), and Point 3 (-1.067, -1.676, 0.058). Note that in the 9 cases in 

Figure 6.106 the axis scale varies from plot-to- plot. As in the two-dimensional case, the 

three dimensional resolution results compare very favorably with the simulated results, 

indicating that the three dimensional aperture is focusing. Clustering of response around 

the silo position and extending vertically is also strongly suggestive that the coordinate 

frames are aligned. 

 
Figure 6.105. 3D Point Cloud Scene Buildings Overlain - 3 dB dynamic range  
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However there is a large volume of returns that are “underground” when referenced to the 

scene origin height. The image in Figure 6.107 is an enlargement of the central portion of 

Figure 6.105, highlighting this region, viewed from the nearly diametrically opposite 

position (northwest of scene origin). Also an insert figure is a perspective from ground 

level illustrating the focus height question. 

 

Figure 6.106. Point Spread Function Resolution - Principal Plane Cuts 3 Points in Scene  
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with respect to the geoid was adjusted downwards by 5 meters based on error estimated 

from the GPS measurements from the road passing next to the property. 

 

Figure 6.107. Scene with Buildings - 3 dB dyn. Range and Ground Perspective (Insert)  

 
Figure 6.108. Scene from Zenith Perspective - 3 dB dynamic range 
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Figure 6.109. Scene North View near Zenith  
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Chapter 7.0 

Discussion, Conclusions and Future Work 

We have examined the potential for tomographic imaging to produce high resolution 

radio frequency images while consuming, or occupying, a reduced portion of the 

microwave spectrum. This was done from the perspective of a congested and/or 

constrained RF environment where traditional SAR may be challenged to find sufficiently 

unoccupied spectrum. The basic approach in Space-Frequency tomography trades off the 

occupied spectrum against the collection time/aperture (Section 4). But high resolution 

imagery is not sufficient: usable images must exhibit suitable contrast. To this end we 

evaluated methods to fill k-space using Space-Frequency apertures which would employ 

monostatic, bistatic, or both, apertures. The greater spatial frequency spectrum content, 

the more rapid the roll-off in point spread function sidelobes producing increased image 

contrast. 

This exploration was abetted through the use of the hypothetical isotropic scatterer. 

Electromagnetic scattering is dependent on the scatterer shape and material composition, 

imaging geometry (including scatterer orientation), frequency, bandwidth, and 

polarization. Extending to bistatic geometries further complicates the geometry. As 

imaging scheme evaluation relies on matched filtering to a phase history (a non-closed 

form process), adding multiple degrees of freedom to reflect scattering reality is 

conceptually prohibitive, excepting only in the most narrowly defined conditions. It is 

essential to recognize that the isotropic scatterer results in the most optimistic calculated 
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performance. The factors affecting scattering combine to limit the performance of 

imaging schemes by restricting visibility over wide aperture angles [165], the response to 

which was noncoherent combination of subapertures. This sensitivity is demonstrated 

through a brief assessment of scatterer and imaging geometry which made use of the 

conducting sphere. An isotropic scatterer the monostatic case, the enhanced resolution 

resulting from tomographic (wide aperture angle in the limiting sense) yielded a focused 

but distorted image of concentric circles in the wideband case and collapsed to a point in 

the narrowband example. Extending to the bistatic geometry resulted in failure to focus 

when bandwidth was other than ultra-narrowband; the failure attributed to spatially 

migrating scatterer location and possibly the dynamic range of the returns in the forward 

scatterer region. Testing with a non-migrating phase center, a three wavelength flat plate, 

produced IPR with resolution essentially matched by the mainlobe response as the 

receiver passed through the specular lobe. More discussion appears in Appendix E. 

However, it must be noted that actual imagery generated a substantial number of pixels 

which, though randomly selected, exhibited full aperture resolution in both axes in the 

magnitude response.  

Starting from a baseline of radar-specific waveforms we extended the analysis to limited 

combinations of CW tones which operated simultaneously throughout the aperture: 

exploiting mutual coherent cancellation of single frequency IPR sidelobes. The breadth of 

frequencies employed was an order of magnitude larger than previous two-dimensional 

efforts, and the addition of bistatic apertures had not been found in reporting of previous 

efforts. This also represented the first extension of the concept into three dimensional 

apertures. Improvement realized was modest. Greater success was obtained from 

sampling more frequencies representing swept or tuned CW signals over a deterministic 

pattern or discrete, unmodulated pulses with random carrier frequency over some fixed 
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frequency band. These latter approaches were adapted from the MRI research 

community. 

The effects of motion on large time-bandwidth waveforms is known. Here we examined 

the susceptibility of tomographic image formation when employing cross correlation to 

platform motion from the perspective of integration time for sample (single burst) 

sensitivity. Image degradation was demonstrated, varying speed and Time-Bandwidth. 

We then developed a closed form method to compensate for platform motion, based on 

narrowband radar principles, which permitted recovery of image quality (resolution and 

sidelobe structure). 

Further, while we demonstrated limited potential for sidelobe suppression using 

apodization against simple narrowband apertures/narrow ring-shaped spatial frequency 

spectra, we demonstrated Space-Frequency aperture concepts which fill k-space to the 

point of approaching the disk-shaped spatial spectrum of transmission tomography. This 

would enabling window functions regularly applied in that operating modality for image 

quality improvement. 

Against a rich research background of bistatic research into radar functionality  using 

nontraditional emitters and waveforms we have demonstrated the potential for high 

resolution image formation in both two and three dimensions (this latter we believe 

represents the world’s first such application) exploiting commercial digital television 

transmissions as part of a bistatic imaging radar. To do so we took advantage of the 

proliferation of low cost software-defined radios/radars to construct our two-channel, 

coherent, instrumentation radar.  

Substantial effort was put into analysis and system design to support direct path 

breakthrough mitigation in order to maximize the dynamic range and receiver sensitivity. 

The adaptive sidelobe canceller functioned well to reduce the zero delay magnitude due 
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to the direct path but did not contribute much to the reduction of time sidelobes post-pulse 

compression. That result was confirmed in examining published research into noise radar. 

The angular constraints of the adaptive canceller (main/aux ratio) limited the regions over 

the collection aperture against which reconstruction was performed to about 90 degrees 

on each of the nine flight test orbits.  

However, the adaptive canceller proved essential in achieving burst-to-burst phase 

coherency (zero delay phase) which was more difficult than expected. Exploitation of the 

pilot tone, along with deterministic corrections, was either incorrectly implemented or the 

signals were too perturbed by aircraft structure and/or occupants to meaningfully 

deconstruct. Using the residuals of the adaptive sidelobe cancelling process, the direct 

path signal component could be isolated from the combined signal in the main channel 

and used as a zero forcing equalizer applied to the reference channel to force both 

channels to a common phase center. In spite of this, increased phase noise was 

experienced in approximately the same position, aircraft relative to the transmitter, on 

each orbit.  

Two dimensional apertures, evaluated as an interim validation to three dimensional 

reconstruction, clearly focused, exhibiting mainlobe IPRs (shape and width/resolution) 

which matched theoretical predictions. These predictions were based on both ideal 

apertures and Fourier reconstruction, and error-free signal simulation using the as-flown 

orbits (from measured GPS). This demonstrated that the deterministic motion solution 

from the survey-grade, handheld GPS was at least minimally acceptable. Imagery clearly 

showed clusters of scatterers in the correct relative positions in the scenes processed but 

were somewhat disappointing in that many manmade (metallic) structures, with the 

exception of those selected to be the scene reference, were not readily observed. The silo 

is clearly evident (by position, Appendix E, Figure E.1) but immediately adjacent 

structures were not observable, yet a wooden structure (a house) nearby did appear at the 
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correct position in the imagery. Also the dark band representing the Snohomish River 

within the scene (also Figure E.1) is observed as well as regions corresponding to wooded 

areas are seen. A combination of factors could contribute to the lack of observing the 

metal structures. The first is that the vertical walls/shallow sloped roofs and very low 

incident transmitter grazing angle will only produce relatively far-out sidelobe scattering 

over the angular region the receiver sampled; all specular scattering is directed well away 

from the sampling aperture positions. Further that the sidelobe levels will roll off quickly 

below any surface diffuse scattering. Finally, integration over angles where specific 

object returns are below clutter will tend to raise the overall pixel power and mask the 

structure. Yet another consideration is that, as in the case of the sphere, the response of 

planar reflectors may collapse to a point representing the apparent phase center of the 

reflector. We do observe multiple returns in the immediate vicinity of the silo at image 

center which may be such. 

Returns from trees are visible throughout the reconstructed scene (highlighted in Figure 

E.1 from the accompanying overhead image). It can be inferred that the low frequency, 

horizontally polarized signal (the HDTV standard) scatters from the trunks over a wider 

angle, integrating up to be visible in the images. 

IPR sidelobes were such that images appeared most identifiable using a linear magnitude 

scale. Using reduced dynamic range logarithmic scales (for example total scene dynamic 

range of 20 dB) did not result in visually more satisfying images. Examples of this for 

each orbit processed can be found in Appendix E. In Chapter 5 we addressed apodization 

from the perspective of the circularly symmetric, tomographic aperture. This is a different 

consideration than the partial aperture. We address wide angle, partial aperture, two 

dimensional apodization in Appendix E where apodization was applied in both the spatial 

frequency domain (on forward transformed reconstructed images) and during 

reconstruction as a one dimensional taper applied along the collection aperture. It is noted 
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that the latter was a more efficient application, jointly in terms of pseudo-cross range 

sidelobe level and resolution and loss of resolution and degraded sidelobes along the 

pseudo range axis. 

Data were sampled at 20 Hz and with backprojection (which does not employ Doppler 

processing) we have no concerns with sample aliasing in cross range (the data are range 

unambiguous out to beyond the horizon from the airborne receiver). The receive antenna 

sidelobes were those of a linear array in conjunction with widely uniform transmitter 

illumination. In assessing the IPR of the individual orbits (only Orbit 1 was presented in 

Figure 6.91) we evaluated the sidelobe levels for all nine. In the pseudo-cross range the 

sidelobes are on the order of 30 dB below peak response at and beyond 15 resolution cells 

(~5 m) from the peak response. Likewise along pseudo-range (along scene Y axis) the 

sidelobes recede below -20 dB at 20 m from the peak response. However these axes do 

not align with the IPR “cardinal” axes as shown in Figure 6.91 and 6.92 which, it is 

suggested, contribute to the longer diagonal regions observed. Out-of-scene contributions 

will be modulated by the receive antenna gain and the scatterer distance from the scene. 

With the IPR sidelobes extending indefinitely it is possible for out-of-scene energy to 

degrade image contrast. This also applies to the backprojection phase ambiguity (sample 

angular spacing), evaluated in Section 4.7, and which all persistent scatterers will exhibit.  

We approached the 3D reconstruction with the same approach as the two dimensional 

case. As the orbit angular extents realized by maintaining the main/aux ratio were reduced 

from the complete orbits used in the aperture modeling and analysis from Section 5, we 

first wanted to develop the expected impulse response to have a standard for comparison 

to the flight data results. Both the ideal trajectory with inverse Fourier reconstruction and 

error-free, as-flown trajectory with backprojection agreed well: resolutions and qualitative 

evaluation of the PSF. Both exhibited phase ambiguous responses (grating lobes) along 

the image Z-direction from the sparse elevation sampling from the truncated orbits. The 
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flight data three dimensional reconstruction resolutions results from scatterers chipped out 

of the final image also agreed well with the simulated results, suggesting a wide angle 

scattering response. Presentation of the volumetric image in a meaningful manner proved 

to be challenging. The magnitude-clipped point cloud with line drawing of the scene 

structures (extracted from Google Earth photographic images, with layover) as an overlay 

showed very well the scene large responses physically coincident with the silo position. 

This supports the assertion that image reconstruction and registration are consistent, 

though less than fully satisfying. As discussed, a better value for the height above the 

geoid representing the scene origin would have been helpful. However, manually 

overlaying the point cloud results onto a photograph, and from the same perspective, 

shows the alignment of the brightest voxels with the target silo.  

The use of a 3 dB scene dynamic range facilitated image interpretability. A large number 

of voxels exceeded the threshold. It is possible that the segmentation of the silo resulted 

in a large number of nearly equally sized scatterers which were observed. Each scatterer 

would generate grating lobes in Z which were only -5 to -10 dB relative to peak response, 

noncoherent combinations from multiple scatterers may be contributing to the observed 

voxel count in the 3 dB image dynamic range.  

Future Work 

With the recorded flight data in hand several follow-on activities suggest themselves. 

Initially we propose to explore the image quality improvement obtainable through 

autofocus. The particle swarm approach suggested by Parker and Norgard
6
 would be the 

first considered, initially seeded by the carrier and code-phase corrected GPS 

measurements. Done for a single orbit initially then extending to all 9 would then provide 

the swarm optimized, motion solution for the three dimensional aperture.  

                                                           
6
 Parker, J. T. and Norgard, J., ‘Autofocusing for RF tomography using particle swarm optimization’,  IEEE 

Radar Conference 2008, Rome IT, pp1-6, May 2008.  
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A second effort would be focusing the aperture over a full 360 degree. This raises the 

challenge of burst-to-burst phase coherency when the adaptive canceller may not be 

usable to extract a good estimate of the direct path signal at the main channel receiver. In 

both this effort and the one suggested above an improved sidelobe suppression algorithm 

would be applied. Several citations, derived from noise radar research, suggest means to 

improve time sidelobe suppression, such as Rigling [37]. 

The truncated orbits introduced grating lobes into the point spread function as was 

demonstrated in determining point spread function. The regular periodicity was broken in 

the actual trajectory but still grating lobes were observed.  It would be very interesting to 

apply the CLEAN algorithm to 3D image focused three dimensional image 

Finally, the bistatic, tomographic collection aperture intrinsically samples the out-of-

plane response of ground clutter. Though the receiver was not radiometrically calibrated 

it may be possible to make an estimate of the radiometric sensitivity and translate the 

pulse compressed returns into reflectivity. Though the transmitter grazing angle is fixed 

throughout the collection, a wide range of out-of-plane clutter samples in a rural, 

farmland environment might be obtained. 
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Chapter 9.0  

Appendices 

Appendix A. HDTV Autocorrelation Approximation Ensemble 

Averaged Spectrum. 

Derivation of the autocorrelation function for the HDTV waveform based on using the 

square of the spectrum mask [5.0-15] as the ensemble averaged power spectrum.  We start 

with (5.2-11) the functional description of the spectrum (magnitude) mask.  
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(A-1) 

We write the autocorrelation in terms of the power spectrum as 

  



 dfefSR fj  22)(     (A-2) 

From (D-1) we see two regions where the response is identically zero and three nonzero. 

The three nonzero regions are identified by breakpoints in frequency allowing the integral 

to be broken into three regions 
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Working term-wise, starting with term 1 

  (A-5) 

where Fsym is the symbol frequency (=10.762238E+06), the pilot tone relative frequency 

Fp (= 309.441E+03), = 2BW/Fsym-1 and BW=6.0E+06 is the total channel bandwidth. 

All the terms in the argument of the sinusoid are constant, but one, so we make a 

simplifying variable change 
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With (A-6) equation (A-5) becomes  
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Using the cosine double angle identity to put the integrand into a more convenient form 
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separating into two sub-expressions gives 
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Solving the first is straight forward 

    

























xj
j

f

f

xj
j

f

f

xj

e

j

e
dxe

e
dxe

21
2

21
2

1
2

2

1

222

1 1

0

1

0







 (A-11) 

Reversing the substitution allows the use of the original limits 
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Bringing the first exponential inside the brackets gives the final form  
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Moving to the second part of the first term, this expression resembles a form found in the 

integral tables 
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Referring to (A-10) we have a=2 and b= j(2/) with substitution we have  
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Reversing the substitution for x and with some simplification we have, before evaluating 

the integral limits 
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The final form of the second part of the first autocorrelation term (subscript 2of1) is 
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(A-17) 

with substitutions defined by 
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The second integral term is associated with the flat top (unity magnitude) portion of the 

spectrum mask. It is given by  
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this is more directly evaluated to give 
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The third term of (A-3) resembles the first and has a similar approach 
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Substituting for constants and making a change of variable 
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With these substitutions (A-20) becomes 
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Making use of the double angle identity again, we have 
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The derivation for the third term continues as the same manner as the R1(). The first term 

reduces directly to 
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The second term of R3() differs from that of R1() by a sign and constants. The evaluated 

integral, before limits are evaluated is 
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With the final substitutions, as in (A-17) we have 
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with 

 

Evaluating (A-26) over the range of delays 

            323121211 ofofofof RRRRRR    (A-26) 

produces the spectrum seen in Figure 5.2-6. Though not shown, this spectrum exactly 

matched a numerical result obtained by squaring the voltage spectrum mask and taking 

the inverse Fourier Transform. Tomographic reconstruction results from using (A-23) are 

found in Figure 5.2-7. 

Appendix B. Triangle Waveform Approximation, Move-Stop-Move. 

This appendix includes the mathematical developments of several functions in the main 

body.  

Starting from (5.3-20) the forward transform of the individual spatial measurement is 
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where the main response of the cross correlation of the binary PN code  is given by   
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The terms  and tp represent, respectively, the delay relative to the direct path reference 

(11) and the pulse one-way duration (the pulse length is rp). R is the specific value of  

that corresponds to the scatterer position, range delay. Using B-2 in B-1 
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Because the range response extent is constrained by the physical length of the triangle 

pulse, the limits can be decreased to R–rp to R+rp. Simultaneously we make the change 

of variable x = |r-R|, dx=dr. From this (B-3) becomes, including reevaluating limits 

with the substitution; 
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In order to accommodate the absolute value, the integral is split into the sum of two terms; 

one covering ranges less than 0, the other ranges greater than 0. In the remainder of this 

section the leading constants in (B.4) are dropped for convenience.  
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Each term in (B-5) is further expanded into two terms 
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The four terms individually yield 
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Combining the four terms of (B-7) gives 
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     (B-9)  

The result in (B-9) was used as the input to the filtered backprojection algorithm that 

produced the IPR presented in Figures 5.2-9. 

Appendix C. Frequency Domain Derivation of Cross Correlation 

Product in the Presence of Main Channel and Reference Channel 

Doppler. 

Starting from the exact solution given in (5.3-26), we proceed to develop an approximate 

functional representation for the compressed waveform; first in the time domain invoking 

the mainlobe response (as in Appendix A) 
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With |’| < tp (as earlier) and with 
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Evaluating (C-1) produces a peak response at the matched range with time sidelobes 

extending into positive and negative delay to twice the sample (burst) duration. The peak 

response is deterministic and the time sidelobes are random and symmetrical about the 

peak. In the same manner as the move-stop-move case, we constrain the delay to the 

interval R-rp to R+rp: this is equivalent to the time interval such that |-ΔR/c| < tp. With 

a little manipulation the exponential term in (C-2) becomes 
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This allows removing the first two terms of (C-4) from the double summation and the 

triangle approximation means that m=n thus reducing to a single summation. This leaves 
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where 
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2 . The temporal dependence in the 

argument of the sine in (C-5) allows the use of the small angle approximation, 
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particularly over the possible range of platform speeds we might consider. With that the 

sinc becomes 
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the right hand side of which reduces to tp--R/c. The summation in (C-5) can also be 

simplified. Using the identity 
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then by substituting r=e
jx
 into (C-7) and understanding that the code elements multiplied 

with their complex conjugate results in unity (again we have constrained m=n in the main 

response lobe), the summation in (C-5) becomes  

 
 

 

  prefscat
c

c
prefscat

t
N

j

prefscat

prefscat
c

N

m

mtj
c e

t

t
N

eN

































 2

)1(

1

2

1
sin

2
sin

 (C-8) 

With the small angle approximation again applied to (C-8) it reduces to 
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Substituting all these into (C-5) 

  prefscat
c

scatref

b
ref

s
scat

b
ref

s
scat

t
N

j
c

R
j

c

R
j

c

R
j

Rjk
srpc

c

R
j

c

R
j

Rjk
srpc

ee

eeeCC
c

R
tN

eeeCC
c

R
tN




























 

























 

















 


2
)3(

2

1

0

0

)0(

)0(

     (C-10) 

Equation (C-10) includes the same amplitude response from the move-stop-mode 

approximation with the same peak response scaling (indeed (C-10) reduces to (C-1) if 



344 

 

platform motion is set to zero) with the addition of terms and cross terms from different 

platform motions experienced along the two signal paths and two signals mixing. 

However all of these terms are constant with respect to range except for the envelope 

term and, as in the case of 1(), one term with a dependency on delay (range).  

Computing the forward transform of (C-10) we start by rescaling (C-10) to a range 

variable  (from time) so that 
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The break at =0 in (C-10) occurs at =R/c, or r=R so that with the range constraint 

the forward transform is given by 
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Substituting (C-10) and (C-11) gives  
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made as in Appendix B; x=r-R, dx=dr. With this 
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The e
-jkR

 is factored from both integrals and factored again into a new constant Zkk=Zk e
-

jkR
 and =1/2(3ref-scat). The integrals in (C-14) result in 6 terms which combine to 

yield 
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And by using a cosine double angle trigonometric identity gives  



345 

 

 
 

 2

2

2)(
,

2

2
sin

)( 0

k
r

k
r

eeeeCCtNkS
p

p

t
N

j
c

R
j

c

R
j

Rkkj
srpc

prefscat
cb

ref
s

scat




























  (C-16) 

In (C-16), and previous, we have only considered the case of perfect isolation for the 

signal (main channel). In the section below we add a subscript 1 to represent the direct 

signal leak through contribution. The subscript ‘2’ will indicate the main channel cross 

correlated (e.g., 2) with the reference channel while subscript ‘1’ is the reference channel 

correlated with the leakage term. This distinguishing notation was not made in Appendix 

A, but is needed to address the full signal, which includes the direct signal breakthrough, 

as addressed in the remainder of this section.  

The follow section completes the derivation on the effects of platform motion but is 

related to the material in Section 5.4 where the finite sidelobes/isolation of the main 

channel relative to the reference channel is introduced and direct signal breakthrough 

effects, and mitigations, are evaluated.  

Forming () = 1()+(), there is a delay dependence in the reference signal due to 

Doppler in 1() due to platform motion relative to the fixed transmitter. Further, 

referring to Figure 5.4-1, the contribution of 1 resembles, or effectively is, a noise floor 

if the coupling is severe enough. In the frequency domain  
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where   represents the forward Fourier transform. Recalling from (section 5.4-5)  
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where K1 is defined as  
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For one-way propagation we would not expect to see any range dependency on the 

autocorrelation. For > tp there is an (n, m) pair which satisfies the inequality in (C-19) 

and contributes to the random time sidelobes. The forward transform of 1 is computed 

over the same range as 2 (R-rp to R+rp) corresponding to its mainlobe response region 

(but where R=0). This gives 1() as 
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over the interval –rp to rp. Taking the forward transform over the defined range starts with 
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(C-21) expands to four terms as we make the same substitution to accommodate the 

absolute value  

















 
































































dre
r

r
dredre

r

r
dreCCtNkS

p
ref

p
ref

p

ref

p

ref r rk
c

j

p

r rk
c

j

r

rk
c

j

pr

rk
c

j

rlrpc

00

00

, )(1



   

(C-22) 

The evaluation is straight forward term wise. Terms 1 and 3 have similar evaluations, the 

sum of which is  
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Likewise terms 2 and 4 their sum being given by 
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By inspection we see that (C-24) contains the terms of (C-23) but of opposite sign, 

reducing to 
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using the cosine - exponential sum identity, the expression in brackets becomes 
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Some rearranging 
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evaluating the inverse-root(j) changes the sign of the first term and the sine-squared 

identity replaces the 1-cosine(), resulting in the direct path spectrum with Doppler 
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In this development the main and reference antennas are assumed to have a common 

phase center so that installed path length differences could be ignored. This will not be 

the case for the antennas when installed in the test aircraft in Section 6. 

Appendix D. Triangle Waveform Approximation Exact Motion Solution 

with Doppler Compensated Reference Channel. 

The reference signal Doppler component represents a single source, in the absence of 

multipath and with antenna installation such that ground returns are masked by structure. 

Employing position and velocity information from the radar navigation system, necessary 

for reconstruction, and knowledge of the position of the illuminator, one can correct the 
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reference channel Doppler contribution. This leaves only a scatterer-based Doppler 

component. The relations describing the reference and main signal   
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We now form (2) using the elements in (D1)  
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Keeping with prior practice, equation (60) can be simplified by removing all constants, 

resulting in 
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Substituting the expressions for the PN code sequence 
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The same substitutions are defined as in prior derivations with t=t’+Rs/c+mtp and ’=-

R/c-(m-n)tp. Thus (D-4) becomes   
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Taking the complex conjugate and interchanging the order of summation and integration 
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The range of the integrand is restricted to the nonzero range of the correlation of the two 

rect functions, again as shown in Figure 5.2-9, over ’. The two cases of ’>0 and ’<0, 
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both under the constraint that |’-tp|<tp, results in the two definite integrals in (D-7), 

showing just the integral portions of (D-6) for notational convenience:  
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The solution to the first is given by (with limits evaluated)  
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Inserting into (D-6), with some simplification, gives 
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The solution for ’<0 is similar 
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Finally we write 
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where 
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and 
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Proceeding to the frequency domain, as earlier we make the approximation that the 

reconstruction is dominated by the peak response of the compressed waveform. This was 
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shown to be a reasonable approach in Section 5.2 where only very small changes to the 

sidelobe structure of the reconstructed point spread function were observed between the 

complete and approximated waveforms. Again we constrain the response such that |-

R/c|<tp. For this condition to be true m=n on the codes and summation. With this the 

compressed waveform is given by 
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Applying the small angle approximation to the sinc function, collapsing the double 

summation to a single one with the m=n constraint, and recognizing that the product of 

the complex code and its complex conjugate produces unity we have  
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Using the exponential sum identity  
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 then (D-16) gives 
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Again applying the small angle approximation results in the final time domain form 
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Repeating the process for t’>0 results in 

pscat
scat

t
N

j
c

R
j

pccc ee
c

R
tNZ




 22)0(







 

















 
   (D-19) 



351 

 

We note again that (D-18) and (D-19) represent the full response as there is only a single 

signal component present in each receive channel. The only motion dependence 

remaining is the scatterer Doppler contribution. 

To prepare for the forward transform with respect to range, the results in (D18) and (D-

19) are scaled to range (from time). The pulse length term (tp) is factored from the 

envelope term, resulting in the familiar triangular envelope form. At the same time the 

speed of light is factored in the exponential; resulting in an expression that is a function of 

the Doppler wavenumber (kscat=scat/c), though the frequency term is retained as it is a 

constant and appears in several terms 
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Forming the forward Fourier transform with respect to range with the limits of the Fourier 

integral are set by the mainlobe response constraint (as in the earlier appendices), gives 
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Making the change of variable x=r-R, dx=dr, then evaluating the limits under the 

change of variable yields 
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22) 

where =scat/(2c). This result is nearly identical in form to that of the Appendix C with 

the slight exception that the expression in parenthesis in the exponential is (+x) instead 
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of (-x).  The solution follows along the same lines. Equation D-22 can further be 

decomposed into 4 terms which are evaluated, individually, as 
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The four terms combine to yield 
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And with a little more manipulation  

  2

2

22,
)(

))((sin
2

)(

))cos((22
)(

kr

rk
eZ

kr

rk

kr
eZkS

p

pRjk
cc

p

p

p

Rjk
cc




























 










   (D-25) 

This result has the satisfying form of the sin
2
, as for the triangle waveform for mode-stop-

move, with the simple addition of the Doppler dependency as phase constants that are 

expressly derived from the measurement geometry, as well as a simple shift of the 

complex spectrum envelope. The full form of the solution is 
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Appendix E. Large Two Dimensional Images and Apodization. 

After Section 6.0 was completed additional two dimensional images were focused as part 

of the paper presented in [164]. These expanded area images were generated primarily to 

insure that the scene was properly registering against map and photographic data: that the 

location of scattering centers could be overlaid with map objects such as structures and 

foliage. These images are presented in this Appendix. 
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Figure E.1 contains the largest scene focused in two dimensions. The data were selected 

from Orbit 3 and represents a 40 degree synthetic aperture relative to the scene origin and 

as projected into the scene X-Y plane. Figure E.1a is a Google Earth overhead view 

which is the same scale as the reconstructed image in Figure E.1b. The white lines 

overlaid on the image correspond with features in the photograph. The image itself has 

been weighted with a two dimensional, -35 dB Taylor (single parameter), convolved with 

the image after focusing. The intensity scale is based on a linear mapping with the image 

hard clipped at 20 dB below the peak response. The shadow area representing the river is 

clearly visible, as are areas which contained trees. The direction of illumination is 

indicated by the white arrow in Figure E.1b.  

Of note is the general absence of features indicating structure returns. The metallic 

outbuildings are largely, though not exclusively, aligned with the map cardinal axes. The 

vertical walls would scatter into the ground given the grazing angle of the incident 

illumination (approximately 1.4 degrees relative to the local horizontal). Likewise the 

scattering off metallic roofs with shallow pitches did not illuminate the receiver over the 

synthetic aperture. Should the receiver pass through a region of increased scattering then 

we would see image reconstruction as dictated by the region angular width. Using a 

bistatic scattering model from [166] we can reconstruct a flat plate with response dictated 

by the specular mainlobe based on a three wavelength plate.. Artifacts are introduced onto 

the elongated IPR include dual peaks in range and cross range with an along range 

resolution of 10 meters, cross range of ~1 m (with no competing clutter or noise). 

Fundamentally the large continuous conductor produces a single response at the phase 

center. Similarly, one could then exercise the model at arbitrary orientation with respect 

to the collection aperture and produce exotic responses, there are myriad combinations 

without any sensitivity considerations. We do observe multiple returns in the immediate 

vicinity of the silo at image center which may be such in Figure 6.79 (a zoomed version 
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of E.1 with approximately the same length aperture). As a last point, integrating over 

aperture angles substantially wider than the specular flash of a multiple wavelength 

conducting panel may result in adding noise to the pixel/voxel which would suppress the 

observability of the pixel containing the specular flash. 

Figures E.2 through E-10 contain 240 m by 240 m reconstructions for orbits 1 through 9. 

The images are centered on the silo structure that was selected as the scene reference. 

Each figure contains four images: linear scale (top) and logarithmic scale (bottom), with 

tapering and dynamic range as noted. All images are reconstructed over the full orbit 

segment (approximately 90 degrees) and are Nyquist sampled as noted in the plot title. 

The images exhibit what might be termed “stringy” behavior. This is attributed, at least in 

part, to the sidelobe structure of the focused pixel. Referring to Figure 6.79 we see that 

the principle sidelobes extend along the “hourglass” pattern. Thus nearby pixels which 

are on this axis will tend to reinforce. However, consideration must also be given to the 

potential that the locus of scatterers behave in a non-distributed manner and cohere for a 

response which is of limited angular extent. With this the orientation and shape of the IPR 

is dependent on the position within the scene and within the collection aperture. 

There is a suggestion of periodicity in the images in E.2 through E.10, perhaps most 

clearly observed in Figure E.10. The several bright scatterers are observed at scene center. 

The along-range FWHM of the brightest scales to approximately 11m down range and 1-

2m cross range (full aperture resolution would be 0.183 m by 0.746 m), suggesting a 

specular (also the orientation of the response). The three or four scattering centers 

produce cross range adjacent responses, all of which exhibit a periodic-like structure in 

range with a period on the order of 35-38 m. Whether this is a modulation effect or 

multipath-related was not determined. The fact that this effect tends to align with the 

pseudo-range direction is suggestive of multipath but could also indicate slight mistuning. 
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The final figure is a compendium of images from the odd orbits with an overhead image 

of the same scale and with features illustrated. The 240 m by 240 m scene using sample 

spacing consistent for each spatial aperture, centered on the silo estimated position (the 

layover is evident in the photograph). After focusing, each image was apodized by 

convolving a two dimensional 35 dB Taylor with the complex back projected result  

 

Figure E.11. Enlarged Area around Silo with Features Highlighted – 90 deg. Aperture 

The bulk of the discussion of apodization in Chapter 5 was oriented at the tomographic 

aperture and isotropic scatterer, wherein a circularly symmetric, two-dimensional spatial 

spectrum was produced. We now address apodization for the partial aperture with the 

very narrowband illuminating signal. We examine two approaches, first an adaptation of 

the frequency domain approach described in Chapter 5, the second one more familiar to 

synthetic aperture radar (SAR) wherein we taper along the collection aperture. This 

second approach is addressed first. 

We modeled a 90 degree aperture in two dimensions using the 400 MHz frequency from 

Chapter 4 (only for convenience). The aperture was symmetric with respect to the 
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transmitter line of sight with the geometry configured so that the along-range dimension 

was parallel to this line of sight (which is coincident with the scene X axis). In this 

manner the IPR was aligned with range and cross range was defined by the Y axis. The 

FWHM resolution for the untapered backprojection reconstruction was 2.41 m along 

range and 0.39 m in cross range with a very sinc-like response. We then applied a taper 

along the aperture during reconstruction, a -35 dB single parameter Taylor. Results of 

these two cases are shown in Figure E.12. The taper had the effect of reducing the first 

sidelobe by about 12 dB (-24.7 dB re peak response) with degradation of resolution to 

0.53 m (E.12a). The along-range performance suffered though the effective shortening of 

the wide angle aperture, generally increasing the close-in sidelobes and reducing 

resolution to 3.36 m (E.12b). A third curve is overlaid on both plots for a -55 dB Taylor. 

In this case the resolutions were 0.64 m (along cross range) with a -32.6 dB first sidelobe 

and 4.82 m (along range). 

 

Figure E.12. Partial Aperture Tapering – Spatial Domain 

Figure E.13 is a two dimensional reconstruction, presented as a contour plot, which 

illustrates the “hourglass” response of the wide angle, partial aperture with tapering 

applied along the aperture during reconstruction.  

The same geometry was employed for assessing frequency domain apodization with 

partial apertures. The two dimensional reconstruction was performed then forward 

transformed using a two dimensional FFT, centering the DC term. This is depicted 
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Figure E.13. Partial Aperture Tapering - 2D Reconstruction no Taper and -35 dB Taylor 

 

Figure E.14. Partial Aperture Tapering - Frequency Domain 

in Figure E.14 with the peak spectral response region extracted as the insert. We begin by 

defining (calculating) the taper across the full spectral range and applying it likewise. 

This produces the results in Figure E.15 for a -35 dB Taylor in both dimensions. As 

would expected this resembles the untapered case in Figure E.12 as the taper exerts 

virtually no smoothing over the dominant portion of the point scatterer response. The first 

sidelobe level is at -11.4 dB in cross range. This is essentially the same result obtained in 

Chapter 5 with the exception of the sidelobe level due to the aperture shape. We followed 
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this up by first confining the taper to the region of predominant energy along ky while 

applying the taper across all kx, then confining the taper to the dominant energy regions in 

both ky and kx.  

 

Figure E.15 Apodization Results – 2D Full Frequency Domain Taper 

The results from constraining in one dimension are presented in Figure E.16, starting with 

the weighted spectrum in the frequency domain in E.16a. The Taylor weight is shown 

parallel to ky to emphasize the application. Figures E.16b and c contain the cardinal axis 

results, first for cross range (b) and then along range in c). The FWHM resolution for the 

-35 dB taper is 0.41 m in cross range while the first sidelobe level is -12.5 dB from the 

peak response. 
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The last perturbation evaluated before moving to actual imagery is the application of the 

constrained tapers in both dimensions. The method is the same as Figure E.16 with results 

appearing in Figure E.17. The peak cross range sidelobe is at -18.9 dB while resollutionin 

the same dimension is 0.49 m. 

  

Figure E.17 Apodization Results – Two Dimensional Constrained Taper 

The two dimensional frequency domain taper is applied to the image produced from the 

40 degree aperture of Orbit 3 (Figure E.1). The 2D FFT is taken on the complex image 

which is then re-centered (fftshift) placing DC at the center indices. The spatial frequency 

labeling of the axes is based on the FFT digital frequencies and the sample resolution in 

the spatial domain. The magnitude-squared spectrum appears in Figure E.18a. The 

location of the taper to be coincident with the significant energy in the frequency domain 

is shown in Figure E.18b, a two dimensional -35 dB Taylor separately applied along kx 

and ky. The effect resembles a radial taper and no attempt was made to rescale. The 

location of the taper was selected to span the significant energy portion of the 2D 

spectrum without other consideration. The tapered spectrum is shown in Figure E.18c. 
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Figure E.19a is the original untapered image. Performing the inverse 2D FFT and again 

re-centering yields the apodized spectrum, power-detected and, like E.19a, presented on a 

linear scale. Logarithmic scales are used on both Figures E.19c and d with the former 

clipped at -35 dB and the latter at 20 dB (total dynamic range of the image is 100). The 

image results show that the geometric mismatch of the taper and the image spectrum has 

suppressed longer ranges in the image (along Y) through the filtering action at the more 

negative portion of the y-component of the spectrum. 

The single tapered, or single axis constrained approach is illustrated in Figure E.20 with 

E.20a depicting the one dimensional Taylor weight applied only along kx in the portion of 

the spectrum dominated by the image. The weighted magnitude spectrum is shown in 

Figure E.20b. This is followed by the complex inverse Fourier transform as in Figure 

E.19 and presented in the same manner. Qualitative assessment shows that the longer 

range portion of the image is recovered. Also overall contrast is improved with more 

pixels visible and the dimmer portions seemingly unchanged. 

The final example is the case where the weight is applied along the synthetic aperture. 

Again a -35 dB Taylor is applied. The combination of tapering both along the aperture 

and during the inverse DFT when the backprojection is steered to the pixel range 

difference is not shown, again qualitatively, having shown slightly poorer contrast than 

the along aperture case. As expected a reduction in resolution in the pseudo-range (along 

Y) dimension is experienced relative to the 1D frequency domain case.  
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Figure E.20. 1D Frequency Domain Taper with A Single Axis Constrained
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