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a b s t r a c t

Various methods have been developed independently to study the multifractality of mea-
sures in many different contexts. Although they all convey the same intuitive idea of
giving a ‘‘dimension’’ to sets where a quantity scales similarly within a space, they are not
necessarily equivalent on a more rigorous level. This review article aims at unifying the
multifractal methodology by presenting the multifractal theoretical framework and prin-
cipal practical methods, namely the moment method, the histogram method, multifractal
detrended fluctuation analysis (MDFA) and wavelet transformmodulus maxima (WTMM),
with a comparative and interpretative eye.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction............................................................................................................................................................................................... 468
2. From monofractals to multifractals ......................................................................................................................................................... 468

2.1. Monofractals: Characterizing space ............................................................................................................................................ 468
2.2. Multifractals: A theory of measures............................................................................................................................................ 469

3. Multifractals in the field ........................................................................................................................................................................... 470
3.1. Abstract sets—Formal definitions................................................................................................................................................ 470
3.2. Spatial data—Moment and histogram methods ......................................................................................................................... 472
3.3. Time series - MDFA &WTMM ..................................................................................................................................................... 476

4. Interpretation and limits .......................................................................................................................................................................... 481
4.1. Link to usual measures and interpretation................................................................................................................................. 481
4.2. Limits............................................................................................................................................................................................. 483

5. Conclusions................................................................................................................................................................................................ 484
Acknowledgment ...................................................................................................................................................................................... 485
Appendix A. From diverse datasets to measures ............................................................................................................................... 485
Appendix B. Supplementary data: R codes ........................................................................................................................................ 485

* Corresponding author.
E-mail addresses: hadrien.salat.14@ucl.ac.uk (H. Salat), r.murcio@ucl.ac.uk (R. Murcio), e.arcaute@ucl.ac.uk (E. Arcaute).

http://dx.doi.org/10.1016/j.physa.2017.01.041
0378-4371/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

http://dx.doi.org/10.1016/j.physa.2017.01.041
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.01.041&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:hadrien.salat.14@ucl.ac.uk
mailto:r.murcio@ucl.ac.uk
mailto:e.arcaute@ucl.ac.uk
http://dx.doi.org/10.1016/j.physa.2017.01.041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


468 H. Salat et al. / Physica A 473 (2017) 467–487

References ................................................................................................................................................................................................. 485

1. Introduction

Since its introduction in the mid eighties to study turbulence signals [1–4], multifractal theory has found numerous
applications such as the study of the hierarchical resistor network model [5,6], diffusion limited aggregation (DLA)
models [7,8], DNA sequences [9,10], satellite and microscopic images [11–13], financial time series [14–19], urban growth
and hierarchies [20–22], quantum dynamical theory [23], land use and prices [24–26], street networks [27,28], and even
music [29].

From a mathematical point of view, the idea of applying fractal theory to measures was hinted by Mandelbrot as soon as
1982 [30], andwas theorizedmore in depth later, notably by Evertsz andMandelbrot [31], Brownet al. [32], Olsen [33], Riedi
[34], and Pesin [35], and by Falconer [36]. Based on this theoretical framework, four principal multifractal methodologies
have been established to solve practical problems.

The moment method was the first method to be introduced in the mid eighties [1,37,38]. It can still be considered the
reference method in the field because of the simplicity of its implementation, adaptability to many types of data, as well
as the existence of many variants to enhance its accuracy or computational efficiency. The histogram method [4,31,39] on
the other hand improves greatly the run time over the moment method and is less reliant on error generating techniques.
However, it only works for data offering a wide variety of scaling ranges. Multifractal detrended fluctuation analysis
(MDFA) [40,41] is a generalization of detrended fluctuation analysis (DFA), whichwas originally created to detect long-range
monofractal correlations in DNA nucleotide sequences [9,10]. It is used to remove artifacts created by nonstationarities
in one-dimensional time series and uses the core idea of the moment method as its mechanic. The simplicity of its
implementation allows to extend it to higher dimensions [13]. Wavelet transform modulus maxima (WTMM) is another
method originally invented for time series [42,43]. Better suited for a generalization to higher dimensions than MDFA and
able to extend, in a sense, the multifractal formalism to nonconservative and continuous phenomena, it is unfortunately
more challenging to implement as it relies on a continuous framework while the three other methods are discretized.

This diversity of practical methods as well as the variety of domains and data types they can be applied to enlighten
the depth of the multifractal formalism. It is also one of its drawbacks, since most methodologies have been developed
independently so that multifractality lacks the unity present in some older fields. This article aims at reducing this drawback
by presenting the main methodologies in a common intuitive and comparative framework. Its intent is to help making an
informed choice of a multifractal methodology for someone willing to study real datasets.

The paper is organized as follows. Section 2 proposes a unified intuitive approach of the core concepts behind monofrac-
tals and multifractals, embedded in the field of measure theory. The general multifractal framework can be grasped without
prior knowledge of the Hausdorff measure and the box-counting dimension, although to fully understand the details these
definitions are essential. In Section 3, the main mathematical methodologies as well as the four practical multifractal
methodologies mentioned above are detailed, compared and applied to binomial cascades. Each methodology is explained
from the ground up and can be understood on its own, keeping in mind that the concepts explained in Section 2 help to
understand how they relate to one another. The main elements of interpretation as well as the limits of multifractal analysis
are discussed in Section 4. Finally, an appendix explains some of the mathematical subtleties allowing the methodology to
be applied to objects that are not explicitlymeasures.

2. Frommonofractals to multifractals

The purpose of this section is to give a brief heuristic approach of monofractals, simply referred to as fractals, and of
multifractals. All subsequent practical definitions and methodologies, as unrelated as they may appear at first glance, are
only different interpretations of the core concepts explained here.

2.1. Monofractals: Characterizing space

The use of the word fractal in various overlapping yet different contexts makes it quite confusing for someone new to
fractality. The root of all its meanings was planted by Benoit Mandelbrot [30] who coined it from the Latin word ‘‘fractus’’
which means ‘‘broken’’, as in ‘‘too irregular to fit into classical geometry’’. Over the years, some have restricted its use to sets
which present self-similarity or to subsets whose dimension is intuitively a fraction of the integer dimension of the set they
are embedded in. The reason why most of the focus has turned towards the former type of sets is that self-similarity makes
most subtly different definitions equivalent and provides effective computational tricks for practical uses.

Informally speaking, given an irregular subset D of a space A whose properties are well known, the fractal analyst is
usually interested in either quantifying how much of the set A is filled by the subset, or measuring the complexity of D
through the scale invariance of its details. Both goals are achieved simultaneously by choosing a well adapted definition of
fractal dimension and a method to compute it. In most practical situations, Awill be in factRn and the chosen dimension will
be the box-counting dimension. Meanwhile, the mathematician may be more interested in the Hausdorff dimension, the
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Fig. 1. Fractal middle third Cantor set. From an initial segment of length 1, two sub-segments of length one third are created, and so on for each new
segment, generating a self-similar fractal of dimension log(2)/log(3).

canonical measure of local size. Other, more rarely seen, definitions include the correlation dimension for sets of random
points [44] and the packing dimension, a dual to the Hausdorff dimension [45].

For most rigorously self-similar subsets encountered, Hausdorff and box-counting dimensions are in fact the same thing.
Finding how much of the set A is filled by the fractal subset D is the same as finding by how much one needs to grow a
sub-element of the figure to find the whole figure again. This is done through the relation

dimH = −
log(number of copies)
log(scaling factor)

, (1)

where dimH is the Hausdorff dimension. Because of this, self-similarity is often treated as a synonym of fractality in the
literature. By extension, the word ‘‘fractal’’ is also used for phenomena described by self-similar functions, i.e. functions
f : D ⊂ Rn

→ R for which there exists an α such that

∀λ ∈ R, x ∈ D, f (λx) = λα f (x), (2)

and in particular power-laws [46], which are, in a sense, representations of scale invariance within the space D.
On the other hand, any dense subset made of a countable number of points is of dimension 0 for the Hausdorff dimension

and of dimension equal to its closure for the box-counting dimension. For example Q ∩ [0, 1] in R is of dimension 0 for the
Hausdorff dimension and of dimension 1 for the box-counting dimension. Those definitions are therefore far from equivalent
in all generality. A detailed discussion on what elements are desirable to define a suitable fractal dimension can be found in
chapter 3 from Falconer [36].

A simple example is given in Fig. 1. The middle third Cantor set is created from an initial segment of length 1, fromwhich
two sub-segments of length one third are extracted. This process is then repeated for each new segment, and so on. Since
the resulting set is self-similar with two new copies of itself each scaled at a ratio of 1/3, one would get from Eq. (1) a
Hausdorff dimension of log(2)/log(3). Calculating directly the Hausdorff dimension without using Eq. (1) is more involving
than one would expect even for such a simple set, hence the motivation to restrict the notion of fractals to self-similar sets.
The value log(2)/log(3) represents howmuch of the initial segment is still present in the Cantor set after an infinite number
of iterations of the generating process.

2.2. Multifractals: A theory of measures

While monofractals are mostly concerned with spaces, multifractals deal with measures.1 Even if the idea behind
multifractals is also to study the complexity and reveal the scaling properties of a mathematical object, those two concepts
are distinct. Indeed, a measure can be amultifractal despite its support not being amonofractal [47]. Let us consider a subset
D ⊂ Rn on which are defined:

• a ‘‘fractal’’ measurement method M;
• a finite measure µwhich we want to study.

Here, M can be any method providing a way to compute a monofractal dimension, such as those quoted in the previous
section, as deemed appropriate for the nature of the space D.

Amultifractal measureµ onD is characterized by a distribution such that around any x ∈ D, themeasure in a ball of radius
r around x scales with r , i.e. is proportional to rα for some α, provided r is small enough, and such that the sets formed by all
points aroundwhich the scaling exponent is the same aremonofractals forM. The fractal dimension of the set corresponding
to the local exponent α is usually denoted f (α).

Most methods M are based on defining a self-similar local measurement Mr , such as the number of boxes of radius
r necessary to cover the set for the box-counting dimension or the quantity Hs

r in the definition of the s-dimensional
Hausdorff measure (see Falconer [36] for a definition). In that case, the multifractality of µ is equivalently characterized
by a distribution such that the two following fundamental scaling relations hold for r small enough:

1 Here, measure is to be understood as the mathematical notion. In practice, data can be mathematical measures (a probability measure, for example)
or any value distribution that can be transformed into a measure (a weighted set, a fractal landscape, a time-series, for example, or even a function using
WTMM), see the appendix.
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1. µr (x) ∼ rαx for an αx around any x ∈ D, where µr (x) is the measure in a ball of radius r around x;
2. Mr (α) ∼ r−f (α) for an f (α), where Mr (α) is the Mr -measurement of the set {x, αx = α}.

Themultifractal spectrum is the curve f (α) against α. It gives, roughly speaking, the ‘‘fractal dimension’’ f (α) of sets where
the measure scales locally with the same exponent α.Multifractal analysis should be understood as a method to characterize
and compare measures defined on D when they present enough scaling properties to alleviate the intrinsic complexity of
(D, µ).

An example is given in Fig. 2. Themiddle third Cantor set is mademultifractal byweighting every right sub-interval twice
as much as every left sub-interval, the total weight being normalized to 1 at each step. The first three steps of this process
are illustrated in the top figure. Denote by rk the size of the new sub-intervals at step k, and fix r0 = 1. Then, at step k = 3,
height sub-intervals are obtained, each of size r3 = (1/3)3 and carrying a weight that can be expressed as rα3 for some α. At
this macroscopic state, a broad M can be defined such that Mrk (α) denotes the number of sub-intervals scaling with rk for
an exponent α. This number can be in turn expressed as r−f (α)

k . For the particular α chosen in Fig. 2, that is α = 1 −
log(2)
3 log(3) ,

there are 3 = (1/33)−1/3 sub-intervals carrying this measure, hence f (α) = 1/3. By repeating this calculation for each of
the four different weights carried by the sub-intervals at step k = 3, the spectrum corresponding to the bottom line of the
bottom figure is obtained.

Of course, at such a low level of iteration, M does not make much sense. But as k grows to infinity, the spectrum
resulting from this M converges to the actual spectrum one would obtain for the Hausdorff measure and the proper totally
disconnected weighted middle third Cantor set. The first 500 iterations are illustrated in Fig. 2. It can be noted that the
multifractality comes from the measure created by the weights, not from the physical support itself which is only the
monofractal Cantor set presented in the previous section. In particular, the dimension of the support, here log(2)/log(3),
can be found at the peek of the spectrum.

3. Multifractals in the field

In this section, different ways of defining the ‘‘multifractal spectrum’’ are given, along with methods to compute it
wherever possible. Those are all equivalent definitions in the sense that they convey the same intuitive idea of providing a
fractal dimension to iso-scaling sets in data. As such, it is expected that the spectra resulting from each of them will share
the same symmetries when applied to a particular dataset. They are not equivalent however on a more precise level, and
the resulting spectra may differ in width or lead to an overshooting of the f (α) value. The first formal definition should be
considered as canonical and subsequent definitions may be considered as approximations of it.

Methods are sorted in three groups depending on the type of data best suited to support the studied measure:
mathematical abstract sets, singular measures and two-dimensional data such as maps and images, and one-dimensional
(discrete or continuous) time series. Nonetheless, these methods can usually be extended easily to measures supported by
any subset of Rn. Methods from the two latter groups are tested against two samples obtained from binomial cascades. The
first sample corresponds to a theoretical binomial cascade of parameter p = 0.6, that is the measure one would obtain after
averaging over an infinite number of randomwalks through the cascade, while the second one corresponds to one particular
realization of a random walk through the cascade.

3.1. Abstract sets—Formal definitions

Falconer [36] distinguishes two variants of spectra of particular interest for mathematicians: The singularity spectrum,
which is the most canonical definition and encompasses the universality sought in mathematics, and the coarse spectrum,
which is more adequate for practical purposes.

Consider a topological space D and a finite measure µ on D. The local scaling exponent αx of µ at x ∈ D is given by the
Hölder dimension dimloc , defined by

dimlocµ(x) := lim
r→0

logµ (B(x, r))
log r

, (3)

where B(x, r) is the ball of center x and radius r for the topology of D. The singularity spectrum is then defined by the function

fH(α) := dimH {x ∈ D, dimlocµ(x) = α} , (4)

where dimH is the Hausdorff dimension.
Note that the Hausdorff dimension is chosen forM instead of box-counting since {x ∈ D, dimlocµ(x) = α} is often dense

in the support of µ, in which case box-counting would give a constant spectrum equal to the dimension of the support of µ.
Let us now consider an r-mesh grid covering D and count the number of cells for which µ is roughly rα . Define,

Nr (α) := # {r-mesh cubes C, µ(C) ≥ rα} , (5)

where # stands for ‘‘the number of’’. Provided the limits do exist, the coarse spectrum is defined by the function

fC (α) := lim
ε→0

lim
r→0

log+ (Nr (α + ε) − Nr (α − ε))
− log r

, (6)

where log+(·) stands for max(log(·), 0).
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Fig. 2. Multifractal middle third Cantor set. On the top, the first three iterations of the generation of the weighted multifractal Cantor set are represented,
while on the bottom the first 500 spectra corresponding to each successive iteration for M are plotted.

When fC does exist, then for all α,

fH(α) ≤ fC (α), (7)

and the equality holds true for self-similar measures (Proposition 17.9 from Falconer [36]). When fC does not exist, one can
define the lower and upper spectra by

f
C
(α) := lim

ε→0
lim inf
r→0

log+ (Nr (α + ε) − Nr (α − ε))
− log r

, (8)

and

f̄C (α) := lim
ε→0

lim sup
r→0

log+ (Nr (α + ε) − Nr (α − ε))
− log r

. (9)

In that case, according to lemma 17.3 of Falconer [36],

fH(α) ≤ f
C
(α) ≤ f̄C (α). (10)

An example is given in Fig. 3 for a binomial cascade of parameter p = 0.6. The binomial cascade is a simpler version
of the multifractal middle-third Cantor set introduced in Section 2.2. Here, an original interval of size 1 is divided into two
sub-intervals of length 1/2 carrying a probability 0.6 for the left one and 0.4 for the right one. This process is then iterated
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Fig. 3. Multifractal binomial cascade. On the top, an original interval of size 1 is divided into two sub-intervals of length 1/2 carrying a probability 0.6 for
the left one and 0.4 for the right one. On the bottom, the corresponding multifractal spectrum.

on each resulting sub-intervals, and so on. The resulting singularity spectrum fH in the bottom figure is computed using the
same trick as in Section 2.2 and is identical to the coarse spectrum fC = f

C
(α) = f̄C (α), since the measure is self-similar.

Here, the fractal dimension of the support is 1 since the iterative process does not create ‘‘holes’’ in the initial segment.

3.2. Spatial data—Moment and histogram methods

Moment and histogrammethods are the elementary components of practicalmultifractal spatial data and image analysis.
Both methods rely on counting the measure at different levels of aggregation and include a multitude of variants depending
on the aggregation method chosen. The most basic way to aggregate consists in applying square grids of increasing
resolutions to the data (box-counting). Instead of grids, one can use ball neighborhoods of increasing radius as they can
be easily calculated for two-dimensional geographic data by GIS software, or gliding boxes to increase the number of data
points. Grids can also be based on any regular unit shape, such as diamonds or equilateral triangles, instead of squares,
to enhance computational complexity or suitability with the data. Other variants exist to counter the reliance on error
generating techniques such as linear fits or Legendre transforms. The core mechanics of both methods will be detailed and
reference to the literature will be given for their variants.

Box-counting techniques are meant to give correct results for ‘‘static’’ singular measures but may not be adapted to
continuous data and to nonconservative phenomena like turbulent velocity profiles (see Kestener and Arneodo [51]). For
those, wavelet based techniques (see Section 3.3 below) are better suited.

Let us consider a mesh grid of unit r covering a domain D, and a phenomenon occurring N times in D. Denote

pi := Ni/N =

∫
ithbox

dµ(x) (11)

the probability that an instance of the phenomenon occurs in the ith box, whereµ is the corresponding probability measure.
To interpret the two scaling rules from Section 2.2, one simply needs

1. pi ∼ rαi ;
2. N(αi) ∼ ρ(αi)dαir−f (αi),

where N(αi) is the number of times α falls in each interval [αi, αi +dαi], and ρ is a density function used to take into account
the dimension of D.
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To effectively compute f , the trick generally used is the moment method [1,37,38]. By raising pi to its moment pqi for
different q, one can force only one value of alpha for each q to make a significant contribution to the total value of the
measure. Consider

Z(q) :=

∑
i

pqi ∼

∑
i

rαiq

∼

∫
α

N(α)rαq

∼

∫
ρ(α)rαq−f (α)dα, (12)

then, for r small enough, the value of Z(q) is almost entirely given by the α such that

τ (q) := αq − f (α) (13)

is minimal. Let us call α(q) this value of α. It is easy to show by a Legendre transform that the minimality condition yields

α(q) =
dτ (q)
dq

; (14)

and

f (α(q)) = α(q)q − τ (q), (15)

so that computing τ (q) from Z(q) for each q between −∞ and +∞ is enough to obtain the full spectrum.
It is not possible in practice to use an infinite range of values for q, nor is it desirable since the method becomes less and

less accurate for extreme values of q. To select an appropriate range of q, one should set a threshold for the error generated
by linear fitting and dismiss all the values of q for which the threshold is exceeded. It is also necessary to select q in order to
ensure that f (α) > 0 and that the generalized dimension Dq, defined byDq := τ (q)/(q−1), remains lower than the dimension
of the physical support of the phenomenon. The reason for that last constraint will become clear when the physical meaning
of Dq will be explained in Section 4.

In practice, τ (q) is found directly as the slope in a log–log plot of
∑

iµ
q
i (r) versus r obtained for different grid sizes r ,

where µi(r) is the total measure of cell i of size r . Since this slope is independent of the normalization of the measure µ, µ
does not need to be weighted as a probability measure. Explicitly, τ (q) is found as the limit

τ (q) = lim
r→0

log(
∑

i µ
q
i (r))

log(r)
. (16)

In accordance with the idea that practical methods tend to create overshooting, one finds that

fH(α) ≤ f
C
(α) ≤ f̄C (α) ≤ fM (α), (17)

where fM is the spectrum resulting from the moment method (corollary from Proposition 17.2 from Falconer [36]).
Both finding τ (q) through linear fitting and applying numerical Legendre transforms have a cost on the accuracy of the

results. The possibility of averaging over several samples can be extremely beneficial. There are two ways of doing this:
averaging over a range of {fj(αi)}j computed independently for different samples j, or averaging first over a range of {Nj(αi)}j
and then deducing the corresponding f (αi) from the relation N(α) ∼ ρ(α)dαr−f (α) on the averaged values. The first solution
guarantees to obtain a ‘‘classic’’ positive spectrum, but it can be unreliable if the fluctuations between the fj(αi) are too
important. The second solution is more reliable, but may create an artificial negative part in the spectrum if N(αi) falls below
1 for some αi as a result of the averaging process.

Chhabra and Sreenivasan [48] argue that this artificial negative part can still be of relevance when a strong underlying
probabilistic process is suspected either as a cause of the phenomenon or as a result of the experimental methodology
since it could describe the rarely occurring events. Unfortunately, since α ↦→ N(α) decreases exponentially compared to
α ↦→ f (α) in the negative part, onewould need an exponentially increasing number of samples as the resolution gets smaller
to maintain accuracy while supersampling. Paradoxically, for a constant number of samples, a better resolution wouldmean
a less accurate result.

To tackle this problem, Chhabra and Sreenivasan [48] propose a multiplier method. The self-similarity of the measure
implies the existence of an underlying scale-invariant multiplier distribution such that the αi at resolution rk are only the
result of k composition of said multipliers. If there is no correlation in the underlying probabilistic process from resolution
rk−1 to resolution rk for some k, then one can deduce the multipliers and hence α. In particular, if all levels of resolution
are uncorrelated, one can choose k = 1, otherwise, one should choose the smallest k for which a level of resolution is
uncorrelated to the previous one.

Denote r0 the minimal resolution and rk the resolution chosen as described above. Then, define

r := rk/r0, (18)
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Fig. 4. Comparison between grid and gliding box upscalings. In the top image, the third level of aggregation, which is only 32 times the smallest resolution,
only allows to fully place 8 boxes on the figure. In contrast, gliding boxes applied on the lowest image maintain 608 sample points at the cost of forcing to
remove a wide border from the analysis.

and for each sample j and box i,

Mij := µij(r0)/µij(rk). (19)

Then, according to Chhabra and Sreenivasan [48], τ (q) and α(q) are given by

1
N(r)

τ (q) + d ≈ −
log
(
1/N(r)

∑
i,j M

q
ij

)
log(r)

; (20)

1
N(r)

α(q) ≈ −

∑
i,j M

q
ij log(Mij)∑

i,j M
q
ij log(r)

. (21)

where N(r) is the number of non zero values ofMij and d is the dimension of the physical support D.
Chhabra and Sreenivasan have shown that for a binary cascade and the dissipation field of fully developed turbulence

in the atmospheric surface layer, using the multiplier method allowed to expand the negative part of the spectrum and
make it converge to the theoretical result more rapidly than the supersampling method, with also a gain in computational
complexity.

Another way to expand the set of sample points consists in using one grid and aggregate with a gliding box for different
radii of said gliding box instead of using different grid sizes [11,49]. In that case, τ (q) is given by taking the limit for r → 0 in

1
N(r)

τ (q) + d ≈

log
(
1/N(r)

∑N(r)
i=1 µ

q
i (r)

)
log(r)

, (22)

where N(r) is the number of gliding boxes of size r with non zero measure, µq
i (r) is the measure inside the ith gliding box,

and d is the dimension of the physical support D.
Since gliding boxes need not be mutually exclusive, contrary to squares from a mesh grid, the number of values

contributing to the analysis remains that of the smallest resolution at all scales. The trade-off is that only boxes which are
completely bounded in D should be included, so that only the ‘‘inner portion’’ of the data can be analyzed, or the object of
study needs to be surrounded by a large neighborhood of known values (see Fig. 4). Using gliding boxes allows a higher raw
number of sample points at the cost of restricting the range of study. It is of course possible to join gliding boxes and the
multiplier method by adapting the definition of µij and N(r) in Eqs. (19) and (20).



H. Salat et al. / Physica A 473 (2017) 467–487 475

Chhabra et al. [3] propose a recipe to avoid the Legendre transform of τ (q) when the measure arises from multiplicative
processes. Once the pi have been established, compute

µ
q
i (r) =

pqi∑
j p

q
j
. (23)

Then, the Legendre transform can be directly integrated in the calculation of f and α through the formulas

f (q) = lim
r→0

∑
µ

q
i (r) logµ

q
i (r)

log(r)
; (24)

α(q) = lim
r→0

∑
µ

q
i (r) log pi(r)
log(r)

. (25)

Note that here α(q) is the average value of α at resolution q. Unfortunately, this recipe does not remove the need for linear
fitting when calculating the limits, which is usually the main cause of error. It was applied to two-scaled cantor measures
by Chhabra and Jensen [50] with good results when the boxes size progression matched the sub-intervals size progression,
and ‘‘satisfactory’’ results otherwise despite the errors created by linear fitting. It was also found by Chhabra et al. [3] that
the result of this direct computation were in good agreement with those obtained from Legendre transforming τ (q) for fully
developed turbulence.

Kestener and Arneodo [51] argue that the moment method when applied to multifractal measures implicitly supposes
that the underlying cascading process is conservative across all scales (which translates into τ (q) = (q − 1)Dq, and, in
particular, τ (1) = 0). They indicate that one can still detect and quantify the multifractal properties of measures that have a
cancellation exponent τ (1) < 0 by using theWTMMmethod (defined in Section 3.3). Note, however, that a nonconservative
measure is not a properly definedmathematicalmeasure. The analysis of such ameasure could be seen instead as the analysis
of a sequence of measures approximating one ‘‘underlying’’ measure defined at scale r → 0.

To conclude with the moment method, note that the function Z from Eq. (12) is similar to the partition function, usually
denoted Z(β), in thermodynamics. Likewise, the quantities τ , α, and f (α) can be interpreted respectively as the free energy,
the energy, and the entropy. For more details on this analogy, see Stanley and Meakin [47], Tel [52] and Arneodo et al. [53].

A different direct approach is the histogram method, see for example Meneveau and Sreenivasan [4] and Arneodo et al.
[39]. The idea consists in finding the cellswith extremal values of totalmeasure for different grid resolutions, and dividing the
distance between those values into regular intervals to exploit the fact that exactly one value of α and f (α) will correspond
to an extremity of one of the new sub-intervals.

Let us call µk
i the total measure of cell i of a grid of unit rk, and N(X) the number of boxes presenting feature X . Step by

step, the method breaks down as follows.

1. Compute Xk
i := log(µk

i ) for each cell i of different grids of unit rk;
2. Divide [Xk

min, X
k
max] regularly in n smaller intervals for each k, where Xk

min := min{Xk
i } and Xk

max := max{Xk
i };

3. Deduce one value of α and f (α) from the slopes of Xk and N(Xk) versus log(rk) for each sub-interval;
4. Repeat for different grid positions to get a better estimate.

In step 3, for 1 ≤ j ≤ n, the value αj is given by the slope of Xj,k versus log(rk) where Xj,k is one of the extremities of the
jth sub-interval for grid resolution rk. According to Meneveau and Sreenivasan [4], the correct normalization of the total
measure leads to an expression of f (α) as the slope of log(N(Xj,k)∆X1/2) versus log(rk), where N(Xj,k) is the number of boxes
of size rk containing an X falling in the interval of size∆X around Xj,k.

It is indeed a problem to find the correct normalizations of α and f (α) because the relations pi ∼ rαi and N(αi) ∼

ρ(αi)dαir−f (αi) depend on prefactors that are unknown a priori. Such a problem is absent in previous methods since those
factors are canceled while taking the limit for r → 0, which is not done here.

Meneveau and Sreenivasan [4] have applied the histogrammethod in for a binomial measure, a period doubling attractor
for a specific logistic map and the dissipation field of turbulent kinetic energy in turbulence flows. They found good
agreement with the results obtained from the moment method for the first two cases but it was evidenced that errors are
generated by the histogram method for measures with small scaling ranges such as the third case. In fact it was evaluated
that the exponent found by this method is only accurate up to order log(L/r)−2, where L represents a characteristic value
intrinsic to the problem (a translation of the unknown prefactor). It was recommended to use this method only for measures
such that the largest obtainable scale is at least 103 times bigger than the smallest measurable scale.

The spectra resulting frommoment and histogrammethods applied to binomial cascades are given in Figs. 5–7. In Fig. 5,
the plots on the top are obtained for the theoretical binomial cascade of probability p = 0.6 introduced in Section 3.1, that is
the result of averaging an infinite number of random walks through the iterative process defining the cascade. The plots on
the bottom are obtained for one particular realization of a randomwalk through the cascade. The iterative process is stopped
after the 20th step for which over a million sub-intervals have already been created. This is done to ensure a reasonable run
time and use of memory, and because it is comparable to the size of many encountered data types such as pixels of an HD
image or data collected from a city-size human settlement. Unfortunately, it also means that the studied cascades are not
equivalent to the one used in Fig. 3, for which the iterative process is repeated an infinite number of times. As such the
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Fig. 5. Momentmethod and variants applied tomultifractal binomial cascades. The standardmomentmethod (plain line), the gliding boxmethod (circles),
and the multiplier method (crosses) are applied to the theoretical cascade on the top and to a particular random walk through the cascade on the bottom.

resulting spectra are expected to be similar, but not necessarily identical to the theoretical curve of Fig. 3 depending on the
sensitivity of the chosen multifractal method. The chosen range of q for the moment method goes from −20 to 20.

The results of the standard moment method and its variants, the gliding box and the multiplier methods, are illustrated
in Fig. 5. In the theoretical case on the top, the range of α is a lot narrower than what is expected based on the reference
curve (Fig. 3). The variants help improve the situation, but not by much. This problem is due to the fact that the iterative
process was stopped too soon. The top figure of Fig. 6 evidences that stopping the iterative process at step 25 results in a
wider spectrum (circles) than stopping it at step 10 (triangles). Aside from this problem, the resulting spectrum is similar to
the reference one and a simple rescaling of the range of α is enough to make both spectra harmonious.

For the particular realization of the cascade on the bottom of Fig. 5, the accuracy of the standard and gliding box moment
methods deteriorates rapidly for negative q. The multiplier method gives the best results overall. To keep the curve above
zero, the range of q had to be restricted to q ≥ −4 for the first two variants and to 17.5 ≥ q ≥ −10 for themultiplier variant.

Results of the histogram method applied to the binomial cascades can be found in Fig. 7. Unfortunately, for such a small
range of scaling, the histogrammethod is not well adapted and the resulting spectra are not smooth. The error generated by
the method makes results difficult to interpret in this case. It has however the advantage of being faster than the moment
method and gives a range of α closer to the reference in this particular case.

3.3. Time series - MDFA & WTMM

Some methods have been independently developed for the specific purpose of studying time series, an important object
in physics. They are therefore particularly well suited for one-dimensional data, but can be extended to any dimension at
the expense of computational complexity. For our purpose, time series will be defined as one dimensional arrays of discrete
values representing observations taken at regular intervals for the MDFA method and more generally as one-dimensional
continuous functions for the WTMMmethod.
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Fig. 6. Influence of the number of iterations on the spectrum. On the top, the spectrum made of triangles is obtained for 10 repetitions of the iterative
process generating the cascade, while the spectrummade of circles is obtained for 20 repetitions. Increasing the number of iterations makes the spectrum
larger and therefore closer to the theoretical curve. On the bottom, a rescaling of the range of alpha on the curve resulting from the moment method (plain
line) is enough to make it harmonious with the reference curve (circles).

Multifractal Detrended Fluctuation Analysis (MDFA) is thoroughly described by Kantelhardt et al. [40] and Kantelhardt [41].
In the basic approach, time series are first sub-divided into smaller segments on which is subtracted a least-squares best-fit
polynomial of a chosen order to remove the artifacts created by nonstationarities in the time series. A method similar to the
moment method is then applied to the resulting detrended series. In details, MDFA consists of the following steps.

1. Replace a time series f (·) with its cumulative sum F (·);
2. Divide F into Ns segments containing s elements each for an array of s;
3. Detrend by removing a least-squares fitted polynomial of order n to F on each segment;
4. Denoting F̄ the result of step 2, compute

Fq(s) :=

(
1
Ns

Ns∑
ν=1

F̄ (ν, s)q
)1/q

;

5. Find the scaling relation Fq(s) ∼ sh(q).

Here, h(q) is the hurst exponent, which relates to the classical τ (q) through the relation τ (q) = qh(q)−Df , where Df is the
fractal dimension of the physical support of f .

Step one ensures that the transformed series F is σ -additive, which is a necessary property to define a measure that the
original series f may not possess. It also allows the use of simple polynomials of the form anin+· · ·+a0 with i ∈ N to detrend
in step three. It should be noted that the expression of Fq given above is notwell defined for q = 0. It is indeed necessary to set

F0(s) = exp

(
1
Ns

Ns∑
ν=1

log
(
F̄ (ν, s)

))
. (26)



478 H. Salat et al. / Physica A 473 (2017) 467–487

Fig. 7. Histogram method applied to binomial cascades. On the top, a theoretical binomial cascade of parameter p = 0.6 and on the bottom a particular
realization of it.

According to Kantelhardt et al. [40], MDFA works only for positive h and becomes inaccurate for h close to 0. A solution
consists in integrating by considering the sum

∑
F (·, s) instead of F . Following the same steps, one would obtain h(q) + 1

instead of h(q).
The use of τ (q) as an intermediary step is given to link the method to previous techniques (see Eqs. (14) and (15)), but

one can compute directly α and f (α) using the expressions

α(q) = h(q) + q
dh(q)
dq

; (27)

f (α(q)) = q(α − h(q)) + Df . (28)

An original application of MDFA, presented by Kantelhardt et al. [40], is to distinguish the underlying cause of
multifractality between long-range correlations and a broad probability density function. Indeed, if one shuffles the time
series, all correlations are destroyed. Hence, when applyingMDFA to the shuffled time series, if the resulting spectrum shifts
towards monofractality, that is if the shuffled h is constant, then multifractality is probably due to long range correlations.
Obviously, multifractality can have several causes, but an important influence of correlations should be noticeable in the
alteration of h.

MDFA can be extended to 2 or more dimensions using multivariate polynomials, as proposed by Gu and Zhou [13]. The
3 dimensions extension is particularly useful to study the evolution of a two-dimensional spatial pattern simultaneously in
space and time. Unfortunately, the necessity to choose a common array of s for all directions at the same time, and therefore
constraining the precision and accuracy of the method to the direction along which the data is the most scarce or irregular,
as well as the rapidly growing computational complexity are significant limiting factors.

Wavelet TransformModulusMaxima (WTMM) replaces square intervals (and square grids for higher dimensions) by highly
customizablewavelets. If those are chosen orthogonal to loworder polynomials, a natural detrendinghappens. The ‘‘modulus
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maxima’’ part of the name refers to an observation that analyzing the data along maxima lines is enough to bring out the
underlying multifractal structure. With a judicious choice of wavelets, one can therefore integrate the advantages of MDFA
and extend it efficiently to higher dimensionswhilemaintaining adequate computational complexity. Thewavelet transform
idea is introduced by Muzy et al. [42] and a more extensive study of WTMM can be found from Arneodo et al. [43].

Consider a function f : R → R representing either a continuous signal or the interpolation of a discrete time series and
a wavelet ψ orthogonal to low-order polynomials. Note that the function f is not a mathematical measure, but represents
instead the density of a measure. It is implicitly transformed into a measure when integrated in the first step below. The
wavelet is a real valued function, preferably of zero mean to ensure the method is invertible. WTMM is divided in the
following steps.

1. Operate the wavelet transform by defining for any x0:

Tψ [f ](x0, r) :=
1
r

∫
+∞

−∞

f (x)ψ
(
x − x0

r

)
dx;

2. Sum along the local maxima lines L(r) at scale r:

Zq(r) =

∑
l∈L(r)

(
sup
(x,r̃)∈l

⏐⏐Tψ [f ](x, r̃)
⏐⏐)q

;

3. Find the scaling relation Zq(r) ∼ rτ (q).

The set of maxima lines L(r) is defined as follows. Consider the set of extrema L(r) defined by

L(r) :=

{
x,

∂

∂x

(
x ↦→

⏐⏐Tψ [f ] (x, r)
⏐⏐) = 0

}
. (29)

Then, the set {(x, r), x ∈ L(r)} is formed of connected curves called maxima lines. The set L(r) is then obtained as the set of
all maxima lines defined for all r ′

≤ r . Explicitly,

L(r) :=
{(

x(r ′), r ′
)
, ∀0 ≤ r ′

≤ r, x(r ′) ∈ L(r ′)
}
. (30)

Analyzing wavelets can be obtained from several ways. A classical one is to use the successive derivatives of the Gaussian
function exp(−x2/2). Indeed, the derivative of order n is orthogonal to polynomials of order up to n and of zero mean if n is
greater than 1. See Fig. 8 for a representation of these wavelets for order 0–5.

Another possible way is to process convolutions of the unit box over Dirac type distributions. On Fig. 9, three successive
convolutions of three variants of Dirac distributions are represented. The plot Dij is obtained from the Dirac distribution
denoted Dirac i by applying j number of convolution. Note that only the last two Dirac distributions produce zero mean
wavelets and that the unit box has been centered on 0 for aesthetic preferences.

WTMM can be easily extended to n dimensions by considering the wavelets formed by the partial derivatives ψ =

(ψ1, . . . , ψn) of a function φ such as the Gaussian function exp(−|X |
2/2), where X = (x1, . . . , xn). The wavelet transform is

then replaced by the higher dimensional version

Tψ [f ](X0, r) := ∇Tφ[f ](X0, r). (31)

More details on the two-dimensional case and examples are provided by Arneodo et al. [43].
Despite its apparent complexity, the WTMM method offers a unique interface allowing to directly use functions

representing continuous phenomena as data instead of fully defined mathematical measures. Heuristically, the wavelet
transform does transform functions into measures (see the appendix). However, the ability to work directly with functions
is more suitable for nonconservative phenomena, or if one wants to integrate the multifractal analysis in the equations the
studied functions are a solution of. The simplicity of box-counting techniques and the adaptability offered by their many
variants should nonetheless make those preferable for ‘‘static’’ measures.

In Fig. 10, MDFA is applied to the theoretical binomial cascade and to the random realization of it already used in
Section 3.2. When the values of s are chosen as powers of 2 in the theoretical case, the Ns intervals are only translated
copies of themselves, resulting in a completely flat spectrum (on the top). MDFA is particularly well suited for data such as
the random realization (on the bottom) and gives the closest results to what is expected from the mathematical study (see
Fig. 3), with only a slight offset to the left of the range of αwhich is explained by the fact that the iteration process generating
the cascade was stopped at a relatively low level of iterations.

Since WTMM is meant to act on a different framework compared to the three previous methods, no application to
binomial cascades are given. For illustration of the WTMM, the reader is referred to the work of Arneodo et al. [43] for
numerous examples, and the work of Kantelhardt [41] and Audit et al. [54] for comparison with the MDFA method.



480 H. Salat et al. / Physica A 473 (2017) 467–487

Fig. 8. Analyzing wavelets obtained from derivatives of the Gaussian function exp(−x2/2).

Fig. 9. Analyzing wavelets obtained from convolutions of the unit box over Dirac type distributions.
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Fig. 10. MDFA applied to binomial cascades. On the top, a theoretical binomial cascade of parameter p = 0.6 and on the bottom a particular realization of it.

4. Interpretation and limits

The main elements of interpretation are presented in 4.1 and links are established with some classical measures of
heterogeneity such as Shannon’s entropy. The type of information one can expect to gain from multifractal analysis is
illustrated with the binomial cascade and results from a study on the multifractality of London’s street network [28]. In
4.2, limits of multifractal analysis are discussed, in particular the lack of consistency between methods.

4.1. Link to usual measures and interpretation

Recall Eq. (12) and introduce the approximation that only the exponent τ (q) = α(q)q − f (α(q)) is making a significant
contribution to the value of Z(q).

Z(q) ≈ rτ (q)
∫
α

ρ(α)dα (32)

= rτ (q). (33)

Then, one defines the generalized dimension as the family {Dq}q, where

∀q ̸= 1, Dq := lim
r→0

[
1

q − 1
log Z(q)
log r

]
=

τ (q)
q − 1

, (34)

D1 := lim
r→0

−
∑

i pi log pi
− log(r)

. (35)

Three values of the generalized dimension are of particular interest. D0 is the usual box-counting dimension of D and
therefore gives information on how much the data fills its physical support. D1, referred to as the information dimension,
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Fig. 11. Comparison of two sets of Dq . On the top, the standard moment method is applied to the theoretical random cascade of parameter p = 0.6
(triangles) and to a particular realization of it (circles), showing weak multifractality in the theoretical case and stronger multifractality in the particular
case. On the bottom, the Dq curve of the theoretical case is zoomed in over a wider range of q and compared to a straight line to show its slight curvature.

relates to Shannon’s entropy and captures how even the data density is, with higher values of D1 meaning a more uniform
density. D2 is the probability of pairs of independent events occurring in the same box and measures how scattered the
data is, with increasing compactness for increasing values of D2. It is similar to the correlation dimension quoted in 2.1,
(see Grassberger and Procaccia [44]).

The full plot of Dq versus q is representative of the strength of the multifractality of µ. The more constant the plot is, the
weaker the multifractality is. See Fig. 11. It is also a good way to select the range of q to study. Indeed, Eq. (34) may lead to
obtaining Dq values greater than d the dimension of D, in particular for negative values of q. As such a Dq would loose its
physical meaning, one may want to restrict the range of q to ensure Dq ≤ d.

Another expression to obtain Dq for q ̸= 1 directly from f (α) and α is

Dq =
f (α) − qα

1 − q
. (36)

It is mainly useful for the histogram method since τ (q) is never calculated when applying it.
The limit of the generalized dimension is that it only gives global measurements of the whole data. In contrast, the

multifractal spectrum gives one dimension for each set where the data scales similarly. In a sense, the variable q selects
different resolutions, with higher values of q selecting a local scaling α(q) of lower order. The variable f (α(q)) then gives the
local fractal dimension at resolution q.

It is easy to see that the spectrum’s peak is achieved for q = 0, where f (α0) = D0 is the fractal dimension of the physical
support. Of particular relevance are therefore the asymmetries between the left and the right part of the spectrum. The spread
of α indicates the variety of scaling present in the sample while the value of f (α) indicates the strength of the contribution
of each α.
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Fig. 12. London’s street network multifractality. On the top, the curve α versus q shows the variety of zones with low probabilities of intersection not
evolving much over the years (left part of the curve), while disappearing in zones corresponding to higher probabilities (right part of the curve). On the
bottom, the spectrum indicates an evolution that favors more and more areas with an increasingly lower density of intersections while presenting less and
less variety.
Source:Murcio et al. [28].

For the binomial cascade, the range of α(q) is symmetric relatively to q = 0 and the spectrum is quite ‘‘round’’, denoting
a well balanced repartition of each scaling and its contribution. A more interesting example is given by the evolution of
London’s street network.

Fig. 12 presents a clear picture of the structural differences that the London’s street network has experimented in the
last 200 years. The strong differences in value and shape between the first and last years is an evidence of how this street
network evolved to lose its multifractal nature, and has become more homogeneous in terms of intersection density across
the whole city.

Firstly, the singularity exponent α(q) accounts for the balance between areas with more/less street intersections (Fig. 12,
top). In 1786, the α(q) values for positive q are relatively low compared with the α(q) values for negative q, a situation that
confirms that the number of areaswithmajor intersection densities are not that common. Aswemove forward in time, these
differences are less and less evident, until 2010, where basically the same density can be found across the whole network.

The multifractal spectrum curves (Fig. 12, bottom) represent the distribution of intersection densities between the
different regions. The left part of each curve (related with positive q, i.e., with the denser areas) became less and less wide as
we move forward in time, while the right section remains stable for all nine networks. This is a clear indicator of how most
of the network is evolving to become more similar through its different areas.

One last property of the curve f (α) versus α can be used to test the correctness of the result: from chapter 4 (pp. 46–53)
of Nakayama and Yakubo [55], it can be deduced that f (α(1)) = α(1), i.e. that τ (1) = 0. Moreover df (α)/dα = q = 1,
implying that the spectrum lies below the diagonal and touches it exactly in the point corresponding to q = 1. See Fig. 13
for the middle third Cantor set.

4.2. Limits

Using a multifractal study written by someone else can be a perilous initiative. The definition of what is called hereM is
often left implicit and some authors restrict the analysis to either the multifractal spectra or the generalized dimension, or
even to the three valuesD0,D1 andD2 only. Furthermore,mostmethods are equivalent for rigorously abstract self-similar sets
and measures, but practical estimations often create an overshooting that is hard to measure. It is unfortunately a necessity
to tailor the experimental protocol to the type and amount of data studied. One should therefore be extremely careful when
comparing analyses made under different circumstances.
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Fig. 13. Tangency with the diagonal. On the spectrum obtained for the middle third Cantor set, the diagonal f (α(q)) = α(q) is tangent to the spectrum on
the point where q = 1.

Results of isolatedmultifractal studies should be seen as giving ‘‘trends’’ or describing an evolution. In thework of Murcio
et al. [28] for example, the loss ofmultifractality in London’s street pattern through time is striking. The study provides rather
precise information on which part of the spectrum is collapsing and from what point in time it becomes noticeable, only
because it is consistently applied over sufficiently similar datasets of London’s street network.

Another main issue when computing the spectra is controlling the error. To the theoretical error inherent to the chosen
method one has to add the practical concessions for computational efficiency, and the measurement error that inevitably
arises from the large amount of data required. The most common sources of error are the edge effects and the linear fit that
is generally used to deduce τ (q) from the slopes of Z(q) against r in log–log plots. The value τ (q) is quite sensitive and its
computation often has to be automated and operated over only few values of r .

Choosing an adequate range of q is critical for moment basedmethods (includingMDFA). In theory, q should go from−∞

to +∞, which is not possible in practice. For negative values of q, one may find values of Dq greater than the dimension of
the support of the measure, indicating that those values of q should be discarded. Furthermore, values for which the linear
fitting of Z(q) versus r is not obtained with a sufficiently good level of confidence should also be discarded. For example, Lee
and Stanley [56] found that for diffusion-limited aggregation, a phase transition occurs. Below some critical value of q, the
function Z(q) does not scale as a power law and forcing a linear fit for these values would create important discrepancies.

As evidenced through the example of the binomial cascades, the smallest resolution allowed by the studied dataset may
play an important role in the results’ accuracy. Multifractality aims at studying measures at an infinitely small scale and a
scale as small as 10−6 might not be small enough to be considered ‘‘infinitely’’ small. In particular, when comparing two
similar objects for which the measure cannot be evaluated with the same level of precision, one should use the largest
minimal resolution of the two as the starting one for both.

It should be noted that predicting beforehand the shape of the spectrum is often difficult. There exist exactly self-similar
nonrandommeasures forwhich half of the spectrum is not defined [57], proving that unusual shapesmay be normal. Another
remark is that if µ1 and µ2 are finite measures on Rn with disjoint supports, then it can be proven that

f µ1+µ2
H (α) = max

{
f µ1
H (α), f µ2

H (α)
}
, (37)

where f µH is the fine spectrum of measure µ as defined in 3.1. In particular, fH(·) does not need to be concave.

5. Conclusions

Four methods were presented in the multifractal context. They are the moment method, the histogram method, MDFA
andWTMM. Each is particularly well suited for a particular type of data: spatial data for themomentmethod and also for the
histogrammethod provided the range of scaling is large enough, one-dimensional time series for MDFA andWTMM, with a
convenient possibility to extend to higher dimensions for the last one.

Through the study of binomial cascades, it was found that the MDFA method gave the best results in addition to the
possibility to detect the source of multifractality by applying the shuffling procedure. The moment method proved both
simple and reliable with many variants giving it great adaptability to different contexts.

It was finally evidenced thatmultifractality can provide useful information about both the local and the global complexity
and inhomogeneity of a phenomenon. In addition, it can be an effective comparative tool for measures and spaces that are
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too complex for classical geometry provided the methodology used is consistent. It was emphasized that one should focus
on trends and evolutive aspects in a phenomenon rather than expect to obtain a foolproof numerical result.
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Appendix A. From diverse datasets to measures

Let X be a set andΣ a σ -algebra over X . A measure is any function µ : Σ → R̄ such that

1. ∀A ∈ Σ , µ(A) ≥ 0;
2. µ(∅) = 0;
3. for all countable or finite collection {Ai} of pairwise disjoint sets inΣ , µ

(⋃
Ai
)

=
∑

iµ(Ai).

Consider the Borel set Bn over Rn and a nonnegative integrable function f : Rn
→ R. Define µ : Bn

→ R̄, such that
∀a1, . . . , an, b1, . . . , bn ∈ R,

µ(]a1, b1] × · · · × ]an, bn]) :=

∫ b1

a1

· · ·

∫ bn

an
f (x)dx.

Then µ is a measure.
More generally, any increasing right continuous function F (uniquely) defines a measure by considering µ(]a, b]) =

F (b) − F (a), it is not limited to the primitives of a nonnegative function.
Applying the wavelet transform to a function, explicitly, defining Tψ such that

Tψ [f ](x0, a) =
1
a

∫
+∞

−∞

f (x)ψ
(
x − x0

a

)
dx,

is heuristically equivalent to evaluating µ(W ) for the above measure, where W is an element of the (heuristic) Σ-algebra
created by the wavelets. In particular, if one considers the unit box as the wavelet and normalizes correctly, then Tψ is
formally equivalent to the above measure. Note that the integrability of f in the definition of µ is also required to apply the
wavelet transform, so no information is lost by this hypothesis.

MDFA accomplishes the same transformation into a measure by dividing the original segment into smaller segments and
summing on each of them, which is the discrete equivalent of µ defined above.

Finally, themethodology can be adapted tomany other datasets evenwhen those do not respect directly the σ -additivity
hypothesis (third one in the definition of measure above). For example, average values should not be taken directly, as those
are not additive, but can be considered when normalized by a fixed unit (unit of land, fixed number of particles or agents for
example). Fractal landscape in particular becomemeasures when the volume under the surface is considered. The only issue
is to interpret accurately what aspects of the phenomenon are measured after the transformation and what aspects are not.

Appendix B. Supplementary data: R codes

Basic codes implemented in R for the first three methods described in this paper can be found online at http://dx.doi.org/
10.1016/j.physa.2017.01.041.
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