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Abstract

In neuroimaging-based diagnostic problems, the combination of differ-
ent sources of information as MR images and clinical data is a challenging
task. Their simple combination usually does not provides an improve-
ment if compared with using the best source alone. In this paper, we deal
with the well known Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset tackling the AD versus Control task. We use a recently proposed
multiple kernel learning approach, called EasyMKL, to combine a huge
amount of basic kernels in synergy with a feature selection methodology,
pursuing an optimal and sparse solution to facilitate interpretability. Our
new approach, called EasyMKLFS, outperforms baselines (e.g. SVM) and
state-of-the-art methods as recursive feature elimination and SimpleMKL.

1 Introduction

We study the problem of combining information from different sources in a high
dimensional space using only a small set of examples for training our model. In
this context Multiple Kernel Learning (MKL) provides an effective approach to

∗Data used in preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in-
vestigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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identify which information is discriminative for a specific task considering each
source of information as a kernel [1, 2].

Our case study is the problem of classifying patients with possible Alzheimer’s
disease combining MRI images and other clinical/demographic information.
Alzheimer’s disease (AD) is a neurodegenerative disorder that accounts for most
cases of dementia. We use a subset of the AD Neuroimaging Initiative (ADNI∗)
dataset combining MR images with a list of clinically relevant information and
reaching 150k different features for 227 individuals. Specifically, we collected
168130 features from the voxels of the images and 50 clinical information.

A number of studies have tried to establish the conditions under which fea-
ture selection can improve classification accuracy for diagnosis from neuroimag-
ing data and most of them did not show improvement in performance, unless it
is guided by domain knowledge [3, 4]. In our case the ratio among the number
of features and the number of examples is high (around 660) highlighting the
difficulty of our task. In the present study we investigate the use of MKL to
combine different sources of information and select the most informative ones.
The proposed approach has the potential to improve the model performance
and facilitate the interpretability of the models.

We start from EasyMKL [5], a recent MKL algorithm, that is able to man-
age a large amount of kernels and we combine it in synergy with a new Feature
Selection (FS) approach. Our aim is to evaluate and select a set of specific
features for our task. We compare our approach with SVM [6]) as the baseline
approach, as well as a state-of-the-art MKL approach (SimpleMKL [7]) and re-
cursive feature elimination (RFE) [8]. Our idea is to combine a huge amount of
basic (i.e. not very informative) kernels in order to generate a better represen-
tation for our neuroimaging-based diagnostic problem pursuing the creation of
an optimal kernel.

Summarizing, the main contributions of this paper are two-fold. Firstly,
we introduce a new methodology to combine a MKL approach using a huge
number of basic kernels and a FS approach in order to improve the predic-
tion performance. This new procedure, called EasyMKLFS, automatically se-
lects the relevant information obtaining sparse models. Secondly, exploiting our
EasyMKLFS, we tackle a challenging real-world problem, outperforming the
previous state-of-the-art methods and providing a solution with a high level of
interpretability.

The paper is organized as follows. In Section 2 we briefly review the notation,
MKL methods and EasyMKL. The main part of the paper is Section 3 where
we present our main contribution, EasyMKLFS (Section 3.1). Experimental
results with the ADNI data are detailed in Section 4. Finally, In Section 4.2 we
discuss the results and draw our conclusions.

2 Background

In the next sections, we will introduce the classical MKL framework and a recent
MKL algorithm called EasyMKL. Firstly, we introduce the notation used in this
paper.
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Considering the classification task, we define the training examples as {(xi, yi)}`i=1

in a set X , yi with values +1 or −1. For our case, it is possible to consider the
generic set X equal to Rm, with a very large m. Then, X ∈ R`×m denotes the
matrix where examples are arranged in rows. The ith example is represented
by the ith row of X, namely X[i, :] and the rth features by the rth column of X,
namely X[:, r].

2.1 Multiple Kernel Learning (MKL)

MKL [9, 1] is one of the most popular paradigms used to learn kernels in real
world applications [10, 11]. The kernels generated by these techniques are com-
binations of a prescribed set of basic kernels K1, ...,KR with a constraint in

the form: Hq
R = {x 7→ w · φφφK(x) : K =

∑R
r=1 ηrKr,µµµ ∈ Ψq, ‖w‖2 6 1} with

Ψq = {µµµ : µµµ < 0, ‖µµµ‖q = 1} and considering the function φφφK as the feature
mapping from the input space to the feature space. The value q being the kind
of mean used, is typically fixed to 1 or 2.

Using this formulation, we are studying the family of sums of kernels in the
feature space. It is well know that the sum of two kernels can be seen as the
concatenation of the features contained in both the RKHS [12]. Extending the
same idea, the weighted sum of a list of basic kernels can be seen as a weighted
concatenation of all the features contained in all the RKHS (where the weights
are the square roots of the learned weights ηk).

The problem of searching for a combinations of basic kernels can be rephrased
as a regularization problem in which the prediction function is the sum of func-
tions fr in the RKHS of kernel Kr and the regularization term is the combination
of the norms of the fr in the associated RKHS [13]. For example if q = 1 this
is a parametric version of the group Lasso [14], see e.g. [15].

These algorithms are supported by several theoretical results that bound the
estimation error (i.e. the difference between the true error and the empirical
margin error). These bounds exploit the Rademacher complexity applied to the
combination of kernels [15, 16, 17, 18, 19].

Existing MKL approaches can be divided in two main categories. In the first
category, Fixed or Heuristic, some fixed rule is applied to obtain the combina-
tion. They usually get results scalable with respect to the number of kernels
combined but their effectiveness critically depends on the domain at hand. They
use a parameterized combination function and find the parameters of this func-
tion generally by looking at some measure obtained from each kernel separately,
often giving a suboptimal solution (since no information sharing among the ker-
nels is exploited).

On the other hand, the Optimization based approaches learn the combination
parameters by solving a single optimization problem directly integrated in the
learning machine (e.g. structural risk based target function) or formulated as a
different model (e.g. alignment, or other kernel similarity maximization) [7, 9,
20].

3



2.2 EasyMKL

EasyMKL [5] is a recent MKL algorithm able to combine sets of basic kernels by
solving a simple quadratic optimization problem. Besides its proved empirical
effectiveness, a clear advantage of EasyMKL compared to other MKL methods
is its high scalability with respect to the number of kernels to be combined.
Specifically, its computational complexity is constant in memory and linear in
time.

EasyMKL finds the coefficients η that maximize the margin on the training
set, where the margin is computed as the distance between the convex hulls of
positive and negative examples. In particular, the general problem EasyMKL
tries to optimize is the following:

max
η:||η||2=1

min
γ∈Γ

γ>Y(

R∑
r=0

ηrKr)Yγ + λ||γ||2. (1)

where Y is a diagonal matrix with training labels on the diagonal, and λ
is a regularization hyper-parameter. The domain Γ represents two probability
distributions over the set of positive and negative examples of the training set,
that is Γ = {γ ∈ R`+ |

∑
yi=+1 γi = 1,

∑
yi=−1 γi = 1}. Note that any element

γ ∈ Γ corresponds to a pair of points, the first in the convex hull of positive
training examples and the second in the convex hull of negative training ex-
amples. At the solution, the first term of the objective function represents the
obtained margin, that is the (squared) distance between a point in the convex
hull of positive examples and a point in the convex hull of negative examples,
in the compounded feature space.

The objective function in Eq. 1 can be interpreted as the dual problem of

a regularized empirical objective function using the kernel
∑R
r=1 ηrKr. This

equation is a minimax problem that can be reduced to a simple quadratic prob-
lem with a technical derivation described in [5]. The solution of the quadratic
problem is an optimal γγγ∗ for the original min-max formulation. Due to the
particular structure of EasyMKL, it is sufficient to provide the average kernel

of all the trace-normalized basic kernels (KA = 1
R

∑R
r=1

Kr

Tr(Kr) ). From γγγ∗, it is

easy to obtain the optimal weights for the single basic kernels Kr by using the
following formula

ηr = γ∗TY (Kr/Tr(Kr)) Yγ∗, ∀r = 1, . . . , R. (2)

In the following sections, we will refer to this algorithm as EasyMKL 1.

3 Feature learning using MKL

In the last years, the importance of combining a large amount of kernels to
learn an optimal representation became clear [5]. As presented in the previous
section, new methods can combine thousands of kernels with acceptable compu-
tational complexity contrasting the previous idea that kernel learning is shallow
in general. In fact, having MKL algorithms which are scalable opens a new

1EasyMKL implementation: github.com/jmikko/EasyMKL
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scenario for MKL. While standard MKL algorithms typically cope with a small
number of strong kernels and try to combine them (each kernel representing a
different view of the same task). In this case, the kernels are individually well
designed by experts and their optimal combination hardly leads to a significant
improvement of the performance with respect to, for example, a simple averag-
ing combination. In the new scenario, the MKL paradigm can be exploited to
combine a very large amount of basic kernels, aiming at boosting their combined
accuracy in a way similar to feature weighting [2].

Theoretical results prove that the combination of a large number of kernels
using the MKL paradigms is able to add only a small penalty in the general-
ization error, as presented in [15, 17, 18, 19]. In fact, if we consider the class
of linear function in the feature space of a kernel K as FK = {x→ w · φK(x) :
‖w‖2 = 1}, the bound on the generalization error of MKL gives only a loga-
rithmic additive dependence with respect to the number of kernels if we learn a

function in the family: F = {
∑R
r=1 arfr : fr ∈ FKi

, ar ∈ R ≥ 0,
∑R
r=1 ar ≤ B}.

In this way, tacking a set of linear basic kernels that are evaluated over a
single feature, the connection between MKL and feature learning is clear. The
single kernel weight is, in fact, the weight of the feature. Using this framework,
we can weight the information contained into bunch of features, evaluated in
different ways (i.e. using different kernels that can consider different subsets of
features).

A we noted earlier, MKL can be interpreted as a nonparametric version
of the group Lasso. Therefore, it admits a Bayesian interpretation, which is
similar to that for the Lasso, see [21]. Specifically the prior is of the form

c exp(−µ
∑R
r=1 ‖wr‖), where wr is the weight vector associated to the rth feature

map/kernel, c a positive constant and µ ≥ 0.

3.1 EasyMKL and Feature Selection

In this section we present our approach to combine MKL and feature selection
(FS). We start from EasyMKL with a large family of linear single-feature kernels
as basic kernels (i.e. Kr = X[:, r]X[:, r]T ∀r = 1, . . . , R = m). Due to the
particular definition of this algorithm, we are able to combine efficiently millions
of kernels. Given the kernel generated by the average of the trace normalized

basic kernels KA =
∑R
r=1

Kr

Tr(Kr) , EasyMKL produces a list of weights ηηη ∈ RR,

one for each kernel. Fixing a threshold ρ > 0, it is possible to remove all
the kernels with a weight less or equal to ρ, considering them not sufficiently
informative for our task. In this way we are able to inject sparsity in our final
model. All the single-feature kernels Kr with a weight ηr > ρ are weighted

and summed obtaining a new kernel K∗ =
∑R
r:ηr>ρ

ηr
Kr

Tr(Kr) . Algorithm 1

summarizes our approach, called EasyMKLFS. It is important to note that if
ρ = 0 we are performing the standard MKL approach over R basic kernels.

The same procedure can not be easily exploited with the standard MKL
algorithms because of the high amount of memory that they require to combine
a large family of kernels. In this sense, EasyMKL becomes fundamental in order
to efficiently achieve our goal. In line 7 of Algorithm 1, the amount of memory
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Algorithm 1 - EasyMKLFS: feature selection and weighting by using
EasyMKL. O`,` is the zero-matrix in R`,`.
Require: X ∈ R`,m,y ∈ {−1, 1}`, λ ≥ 0, ρ > 0
Ensure: A kernel matrix K∗ ∈ R`,`
1: KA = O`,` K∗ = O`,`
2: R = m
3: for r = 1 to R do
4: K = X[:,r]X[:,r]T

Tr(X[:,r]X[:,r]T )

5: KA = KA + 1
RK

6: end for
7: ηηη =EasyMKL(KA,X,y, λ)
8: for r = 1 to R do
9: if ηr > ρ then

10: K = X[:,r]X[:,r]T

Tr(X[:,r]X[:,r]T )

11: K∗ = K∗ + ηrK
12: end if
13: end for

required by the storage of the kernels is independent with respect to the number
of combined kernels R.

4 Experiments using Real Data

In this section we will present our results using EasyMKLFS on the ADNI
dataset for the task of classifying patients with possible Alzheimer’s disease
versus healthy controls, combining structural magnetic resonance (MR) images
and clinical and demographic information.

4.1 Experimental settings

The T1 weighted MRI scans were segmented into grey matter probability maps
using SPM12, normalised using Dartel, converted to MNI space with voxel size
of 2mm×2mm×2mm and smoothed with a Gaussian filter with 2 mm FWHM. A
mask was then generated, this selected voxels which had an average probability
of being grey matter equal or higher than 10% for the whole dataset. This
resulted in 168130 voxels per subject being used.

We combine features derived from the MR images (each voxel was consid-
ered as a single feature) with 50 selected clinical and demographic features. In
the following we will refer to (linear single-feature) basic kernels or directly to
features without distinction.

We performed a balanced accuracy comparison (i.e., the average between
sensitivity and specificity) among five different approaches. The first is the
vanilla SVM [6], using a single kernel that is the average of all the considered
features (i.e. linear SVM). It is used as baseline to understand the difficulty of
the task. The second approach is SVM RFE [8], that is the standard recursive
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feature elimination approach. RFE considers the importance of individual fea-
tures in the context of all the other features and it has the ability to eliminate
redundancy and improves the generalization accuracy [4]. The third compar-
ison is with SimpleMKL [7], a well known MKL iterative algorithm by Rako-
tomamonjy that implements a linear approach with kernel weights in a simplex.
Basically SimpleMKL works by repeating two main steps: a) SVM optimization
problem defined on current weights; b) Updating of the kernel weights using a
gradient function. The last comparison is with EasyMKL, a recent MKL algo-
rithm presented in Section 2.2. Finally, our EasyMKLFS is the combination of
MKL and FS approach, presented in section 3.1.

In our experiments, we consider different subsets and different fragmenta-
tions of the whole information contained in the ADNI dataset. The considered
linear kernels (or features) are divided in 6 different sets. I considers the aver-
age of all the voxel features and represents the whole image in one single linear
kernel. It represents the naive way to combine the information of a single MR
image. C is the linear kernel with the average of all the clinical features in
one single kernel and is the most simple way to exploit the clinical information.
I+C is the kernel with the average of all the voxels and all the clinical features
and represents the average of all the considered information. I & C is the family
of basic kernels that contains a single linear kernel for the whole image plus one
linear kernel for each clinical feature. In this case we are able to tune the impor-
tance of the single clinical information and made the correct trade-off between
clinical information and MR image. V is the family of basic kernels (or basic
features) that contains one linear kernel for each voxel (i.e. 168130 different
basic kernels). Each single voxels can be weighted or selected highlighting the
relevant voxels of the MR image. Finally, V & C is the family of basic kernels
(or basic features) that contains one kernel for each voxel plus one linear kernel
for each clinical information.

All the experiments are performed using an average of 5 repetition of a
nested 10-fold cross-validation. We fixed the same distribution of the age of
the patients among all the subsets. The validation of the hyper-parameters
has been performed in the family of C ∈ {0.1, 1, 5, 25} for the SVM parameter,
λ ∈ { v

1−v : v = 0.0, 0.1, . . . , 0.9, 1.0} for the EasyMKL parameter, ρ ∈ { im :

i = 0, 1, . . . , 20} (where m is the number of the features) for the EasyMKLFS
parameter. We fixed the percentage of dropped features at each step of the RFE
approach equal to the 5% (using higher percentages deteriorates the results).

We performed experiments in two different experimental settings. In the
first setting, we maintained all the ADNI clinical information as features. In
our second setting, we remove the clinical information that have a high direct
correlation with respect to the labels. We evaluate a controlled false discov-
ery rate (FDR) [22] using an individual p-value test for each feature, with a
confidence of 0.01. FDR is a powerful method for correcting for multiple com-
parisons.The remaining clinical information after this selection are 33. The idea
is to prove that the improvement of the results is not specifically related to the
clinical information that are directly used by experts to generate the labels.
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4.2 Experimental results and discussion

The results for the two settings are depicted in Table 1 (using all the 50 clinical
information) and Table 2 (using the subset of 33 clinical information).

In both the settings, SVM reaches is maximal balanced accuracy using all
the information (image and clinical). On the other hand, the increase of the
performance adding the clinical information is not significant. Using only the
clinical information, SVM obtains a balanced accuracy of 68% exploiting all the
50 clinical features. Conversely, it is not able to generate a valid model using
only the subset of 33 clinical features selected by using the FDR method.

The FS baseline, i.e. RFE, outperforms SVM and the standard MKL ap-
proach (EasyMKL and SimpleMKL with only 51 or 34 basic kernels). As the
SVM, RFE is not able to have a significative improvement adding the clinical
information to the data. This experiment highlights how the combination of
few kernels does not seem to be the correct way to exploit a MKL settings.

Considering one single kernel for each voxel, SimpleMKL is not able to handle
the optimization problem (due to the required memory). EasyMKL, using only
the voxels information, obtains a balanced accuracy of 86%, that is comparable
to the RFE baseline. This performance increases when we apply the FS phase
(using our algorithm EasyMKLFS), obtaining a balanced accuracy of 87%.

Finally, considering the V & C family of basic kernels, using EasyMKL we ob-
tain a significative improvement of the performance due to the correct weighting
of the clinical information. The balanced accuracy obtains another significative
increase applying EasyMKLFS to the V & C family. In fact, using all the fea-
tures, we start with an 89% of balanced accuracy for EasyMKL to a 96% for
EasyMKLFS. In the second settings, with only 33 clinical variables, EasyMKL
obtains 88% and EasyMKLFS 92%.

From these results it is clear that combining MR images and clinical infor-
mation improves the prediction performance of the model if we are able to select
the correct trade-off among different voxels and clinical features, as in the V &
C set of basic kernels.In Table 3, the required memory of the different MKL methods is presented.
As already noted, SimpleMKL requires a huge amount of memory to handle
large family of basic kernels. For example, generating one linear kernel for each
voxel, we have to provide more than 50 Gb of memory to store all the required
information. EasyMKL and our EasyMKLFS use a fixed amount of memory
independently with respect to the number of kernels, due to the particular
definition of the optimization problem (see Sections 2.2 and 3.1).

An important characteristic of neuroimaging-based diagnostic algorithms is
providing model interpretability, i.e. in a clinical context is important to iden-
tify which features are driving the predictions. Figure 1 shows the selection
frequency (for the RFE) or the average of the weights ηηη (for EasyMKL and
EasyMKLFS) of the tested approaches overlayed onto an anatomical brain tem-
plate, which can be used as surrogate of consistency. These maps show that all
approaches find brain areas previously identified as important for neuroimaging-
based diagnosis of dementia (e.g. bilateral hippocampus and amygdala), how-
ever the SVM RFE also selects features across the whole brain potentially re-
lated to noise, while the EasyMKLFS selects almost exclusively voxels within
the hippocampus and amygdala.
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Algorithm Kernels R Bal. Acc. %
SVM I 1 84.08± 6.94
SVM C 1 68.73± 9.68
SVM I + C 1 84.80± 6.87

SVM RFE V − 86.34± 6.93
SVM RFE V & C − 86.93± 4.76

SimpleMKL I & C 51 84.44± 6.68
EasyMKL I & C 51 84.78± 6.76

SimpleMKL V 168130 Out of memory
EasyMKL V 168130 86.12± 4.54
EasyMKL V & C 168180 88.80± 7.02

EasyMKLFS V 168130 86.91± 5.12
EasyMKLFS V & C 168180 96.14± 3.55

Table 1: Comparisons of 5 repetitions of a nested 10-fold cross-validation bal-
anced accuracy using all the clinical information contained in ADNI. R is the
number of generated kernels as input of the algorithm.

Algorithm Kernels R Bal. Acc. %
SVM C 1 50.00± 0.00
SVM I + C 1 84.10± 7.92

SVM RFE V & C − 86.53± 5.99
SimpleMKL I & C 34 84.29± 11.78
EasyMKL I & C 34 84.47± 7.28
EasyMKL V & C 168163 87.97± 6.59

EasyMKLFS V & C 168163 92.38± 7.27

Table 2: Comparisons of 5 repetitions of a nested 10-fold cross-validation bal-
anced accuracy using the clinical information selected by a FDR procedure.

Algorithm Kernels Memory Memory (real)
SimpleMKL I & C O(R`2) ∼ 15 Mb
EasyMKL I & C O(`2) 293 Kb

SimpleMKL V O(R`2) ∼ 50 Gb
EasyMKL V & C O(`2) 293 Kb

EasyMKLFS V & C O(`2) 293 Kb

Table 3: Required memory for different methods to handle different families of
basic kernels.

5 Conclusion

In this paper, we presented EasyMKLFS, an extension of a MKL approach
called EasyMKL. Exploiting this new algorithm, we shown how the selection
of the relevant feature, in synergy with the correct trade-off between MR im-
ages and clinical information is able to improve the prediction performance for
the challenging task Alzheimer’s disease versus healthy controls of the ADNI
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(a) SVM RFE with V & C. (b) EasyMKL with V & C. (c) EasyMKLFS with V & C.

Figure 1: Comparison of voxels selection frequency (RFE) and weights
(EasyMKL and EasyMKLFS), overlayed onto an anatomical template.

dataset.
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