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Abstract The spinal cord has the capacity to coordinate motor activities such as locomotion.

Following spinal transection, functional activity can be regained, to a degree, following motor

training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal

interneurons known to receive direct afferent inputs and project to intermediate and ventral

regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for

normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can

activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their

synaptic transmission left locomotion more or less unchanged, but abolished functional recovery,

indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity

following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits

with sensory afferent inputs to compute sensory prediction errors that then modify locomotor

circuits to effect motor recovery.

DOI: 10.7554/eLife.21715.001

Introduction
Like other regions of the central nervous system, the spinal cord is remarkably plastic (Wol-

paw, 2007; Grau, 2014). Such plasticity has been demonstrated, for example, following spinal cord

injury, when training can lead to a degree of recovery of spinal locomotor circuits such that stepping

movements are restored (Barbeau et al., 1987; Courtine et al., 2009; Harkema et al., 2012;

Hubli and Dietz, 2013; Martinez et al., 2013; Takeoka et al., 2014). After complete spinal transec-

tion in cats and rodents, a treadmill-training regimen that provides rhythmic sensory input to the spi-

nal cord leads to the re-acquisition of the complex sequence of muscle activation that produces

stepping (Barbeau and Rossignol, 1987; Sławińska et al., 2012). Multiple modalities of sensory

input are likely required to promote these sustained changes in spinal circuits, as removing cutane-

ous inputs degrades the quality of recovery in both cat (Bouyer and Rossignol, 2003) and rats

(Sławińska et al., 2012), and eliminating muscle proprioceptive afferents impairs recovery in mice

(Takeoka et al., 2014). But in addition to determining the afferent inputs involved, it is necessary to

identify the spinal circuits involved in this plasticity in order to understand how the nervous system

acquires new motor skills in health and injury.
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One approach towards understanding these circuits would be to study neurons that are inter-

posed between sensory inputs and spinal locomotor circuits. Furthermore, since there is a relation-

ship between short-term adaptation and longer-term plasticity (Bastian, 2008), it might be useful to

focus on interposed neurons that are known to be involved in adaptive responses. We previously

showed that dI3 interneurons (INs), a population defined by expression of the LIM-homeodomain

transcription factor Isl1 (Liem et al., 1997), receive multimodal monosynaptic sensory afferent inputs

and project to spinal motoneurons. Eliminating glutamatergic output by these neurons led to deficits

in motor responses to sensory perturbation: while the mice could place their paws on wire rungs,

they were unable to adjust their grasp in response to sensory stimulation provided by increasing the

inclination of the rungs. This indicates that a microcircuit involving dI3 INs mediates adaptive

changes in motor behaviour (Bui et al., 2013). We thus focussed on this population to determine if

they have a role in locomotor recovery.

Here, we have considered the position of dI3 INs in spinal microcircuits, and show that they are

indeed interposed between sensory inputs and locomotor circuits. We demonstrate that while dI3

INs are not required for normal locomotor function, they are necessary for stable recovery of loco-

motor activity following spinal cord transection. Specifically, we demonstrate that eliminating gluta-

matergic output from dI3 INs precludes locomotor recovery after spinal cord transection. Thus, dI3

INs are involved in spinal microcircuits that mediate motor system plasticity.

Results

dI3 interneurons are not necessary for locomotor function
We first determined whether dI3 INs are an essential component of spinal locomotor circuits and

thus necessary for locomotion. To do so, we genetically eliminated glutamatergic neurotransmis-

sion from dI3 INs using dI3OFF (Isl1Cre/+;Slc17a6fl/fl) mice (Bui et al., 2013). Within their cages,

dI3OFF mice did not reveal obvious locomotor deficits (Bui et al., 2013). There was no difference

between the weights of control (19.8 ± 2.3 g; n = 14) and dI3OFF mice (19.0 ± 2.7 g; n = 9,

eLife digest Circuits of nerve cells, or neurons, in the spinal cord control movement. After an

injury to the spinal cord, the connections between the brain and spinal neurons may be severed,

meaning that the spinal circuits can no longer work properly. This loss of communication between

the brain and the spinal cord often leads to paralysis below the level of the injury.

There are currently no effective treatments for individuals who have lost the ability to walk

following spinal cord injury. However, the spinal cord retains circuits that are sufficient to restore

walking and these circuits can be activated with training. That is, rehabilitative training can lead to

improvements in movement by promoting spinal cord plasticity – the ability of other neurons in the

spinal cord to take over the roles of the severed neurons. By understanding how rehabilitation leads

to these improvements following injury, new strategies could be developed to optimize the recovery

process.

Previous research showed that spinal neurons called dI3 interneurons are involved in short term

adjustments of movement. Could these interneurons also be involved in longer term adaptations?

Bui, Stifani et al. compared normal mice with genetically engineered mice that had dI3

interneurons “removed” from their circuits. This revealed that although dI3 interneurons in mice are

integrated with spinal circuits that are involved in walking, they are not necessary for normal

walking. Following the severing of the spinal cord, the experimental mice, unlike the normal mice,

did not recover the ability to step. Thus, circuits comprising dI3 interneurons are necessary for

recovering the ability to move after an injury.

Now that Bui, Stifani et al. have identified this essential circuit, the next step is to investigate how

dI3 interneurons promote spinal cord plasticity. Understanding these mechanisms could help to

develop therapies that enhance rehabilitation-assisted improvement of movement following spinal

cord injury.

DOI: 10.7554/eLife.21715.002
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p>0.44). Footprint and inter-limb coordination analysis revealed subtle alterations in locomotion

in adults (Figure 1A). The hind paws, but not the forepaws, of dI3OFF mice were more widely

spaced than those of control mice (Figure 1B), and dI3OFF mice had a greater propensity to

make coincident contact with the ground with three or four paws (Figure 1A,C, and Video 1),

however inter-limb coordination was similar in dI3OFF and control mice (Figure 1—figure supple-

ment 1). During treadmill locomotion (Video 1), dI3OFF mice had longer stance times on aver-

age, and a steeper relationship between stance duration and cycle period than seen in controls

(Figure 1D,E). Collectively, the shorter swing phases, increased time with more paws in contact

with the treadmill, and more widely spaced hind paws in dI3OFF mice could result from a
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Figure 1. dI3 INs are subtly involved in locomotion. (A) Footprint snapshots in control (cyan) and dI3OFF (magenta) littermates at 30 ms intervals starting

from the onset of the stance of right hindlimb (top) running at 30 cm/s. Coloured lines represent hindlimb feet spacing, circles indicate foot contact. (B)

Front and rear foot spacing for control (cyan, n = 6) and dI3OFF (magenta, n = 3) animals running between 10 and 50 cm/s. Mean +/� Standard

Deviation. (C) Proportion of time with indicated number of feet contacting the treadmill belt in same animals running between 10 and 18 cm/s. (D)

Percentage of swing (light shades) and stance (dark shades) in same animals running between 10 and 18 cm/s. (E) Correlation between swing or stance

duration and cycle period in same animals running between 9.5 cm/s and 72 cm/s. Each data point represents a single step cycle. Analysis of

Covariance (ANCOVA) on slopes. (B, C, D) Two-way ANOVA followed by Sidak post-hoc multiple comparison test. *p<0.05, **p<0.01, ***p<0.001, and

****p<0.0001, ns non-significant.

DOI: 10.7554/eLife.21715.003

The following source data and figure supplements are available for figure 1:

Source data 1. Related to Figure 1B.

DOI: 10.7554/eLife.21715.004

Source data 2. Related to Figure 1C.

DOI: 10.7554/eLife.21715.005

Source data 3. Related to Figure 1D.

DOI: 10.7554/eLife.21715.006

Source data 4. Related to Figure 1E.

DOI: 10.7554/eLife.21715.007

Source data 5. Related to Figure 1I.

DOI: 10.7554/eLife.21715.008

Figure supplement 1. Interlimb coordination in dI3OFF mice is similar to controls.

DOI: 10.7554/eLife.21715.009

Figure supplement 1—source data 1. Related to Figure 1—figure supplement 1A.

DOI: 10.7554/eLife.21715.010
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reduction in extensor activity and/or compensa-

tion for a reduction in stability. Taken together,

these results show that while dI3 INs sculpt

hind limb movement, they are not critical for

the fundamental rhythm and/or pattern of

locomotion.

dI3 interneurons activate
locomotor circuits
We next sought to determine whether dI3 INs,

in addition to their projections to motoneurons

(Bui et al., 2013), also have access to spinal cir-

cuits for locomotion. Considering that sensory

stimulation can trigger locomotor activity (Lund-

berg, 1979; Hultborn et al., 1998) and that dI3

INs can be monosynaptically activated by stimu-

lation of low-threshold sensory afferents

(Bui et al., 2013), we asked whether dI3 INs

could activate spinal locomotor circuits. To do

so, we studied sensory-evoked locomotion in control and dI3OFF mice, stimulating a sensory (sural)

rather than a mixed (tibial) nerve to avoid stimulating motor axons. Furthermore, as sensory afferents

may have multiple routes to spinal locomotor circuits, we stimulated the sural nerve, which we previ-

ously showed both anatomically and physiologically project directly to dI3 INs (Bui et al., 2013),

rather than a dorsal root. We thus studied sensory-evoked locomotor activity in neonatal (P1-P3)

mice by isolating their spinal cords with the sensory sural nerve in continuity (Figure 2A). Given that

the Vesicular glutamate transporter 2 (vGluT2) coded by the gene Slc17a6 is also expressed in high

threshold small to medium sized primary afferents responsible for pain, itch, and thermoception

(Brumovsky et al., 2007; Lagerström et al., 2010; Liu et al., 2010; Scherrer et al., 2010), we

focussed on low threshold stimulation, with threshold defined as the lowest amplitude that produced

a volley in the proximal dorsal root (A-wave in Figure 2B; control: 4.9 ± 6.4 mA, n = 13; dI3OFF:

2.9 ± 1.4 mA, n = 12; p>0.29).

In 13 of 14 control spinal cords, stimulation of the sural nerve generated locomotor activity

(Figure 2C,E), whereas this was only possible in 6 of 12 dI3OFF mice (Figure 2D,E, p<0.05). Fur-

thermore, the thresholds required for evoking locomotor activity in these 6 dI3OFF spinal cords

were significantly higher than control thresholds (Figure 2C–E), with activity evoked only when

stimulation was equal to or greater than the threshold for producing the higher threshold C-wave

(in contrast to 5/6 controls that responded to low threshold stimulation, Figure 2B,F). In the

dI3OFF spinal cords in which locomotor activity could be evoked, left-right alternation (control

phase: 0.46 ± 0.11; dI3OFF phase: 0.53 ± 0.14; p>0.15; Figure 2—figure supplement 1A) and

locomotor frequency (control: 1.2 ± 0.1 Hz; dI3OFF: 1.3 ± 0.2 Hz; p>0.63; Figure 2—figure supple-

ment 1B) were similar to control spinal cords. The lack of response to low threshold stimulation in

dI3OFF spinal cords was not due to sural nerve dysfunction, as low threshold sural nerve stimulation

produced a normal volley in the dorsal root (Figure 2B), nor was it due to a general inability of

afferent stimulation to produce locomotor activity, as dorsal root stimulation was able to evoke

locomotion in dI3OFF mice (Figure 2—figure supplement 1C,D). Thus dI3 IN output is necessary

for low threshold-evoked locomotor activity, demonstrating that dI3 INs can activate spinal loco-

motor circuits (Figure 2G).

dI3 interneurons receive rhythmic inputs from spinal locomotor circuits
To further understand the relationship between dI3 INs and locomotor circuits, we next asked

whether there was a reciprocal relationship between them, that is, whether dI3 INs receive inputs

from locomotor circuits. During drug-induced locomotor activity in hemisected (Figure 3A) or dorsal

horn removed (Figure 3C) spinal cords from neonatal (P1-P6) Isl1Cre/+;Thy1-fs-YFP mice (n = 7),

whole-cell recordings of upper and lower lumbar dI3 INs revealed cyclic membrane potential depo-

larisations (Figure 3B,D and Figure 3—figure supplement 1A), with 27 of 40 (68%) dI3 INs firing

Video 1. Foot print recordings in intact animals. Foot

print recordings of control and dI3OFF animals running

at 30 cm/s, recorded at 100 fps and displayed at 15 fps.

Animals were recorded separately.

DOI: 10.7554/eLife.21715.011
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Figure 2. dI3 INs activate spinal locomotor circuits. (A) Experimental preparation showing isolated spinal cord with sural nerve attached. Sural nerve

stimulation (arrow) is used to evoke locomotion, while recording ipsilateral (Left) L5 and bilateral L2 ventral root activity (grey electrodes). Stimulus

strength determined by volleys in dorsal root recordings (red electrode). (B) Dorsal root potentials in response to sural nerve stimulation (single pulse,

0.25 ms) recorded in ipsilateral L5 dorsal root of a dI3OFF spinal cord. Dotted line denotes stimulation artifact. Stimulation strength is in relation to the

threshold (Th) to evoke a short-latency A-wave. A-wave threshold was 1.5 mA for this dI3OFF spinal cord. (C) Rectified and time-integrated ventral root

recordings during sural-nerve stimulation (10 s train, 3 Hz, 0.25 ms long pulses, thick orange line) in control mice. Brief voltage deflections in the

recordings are stimulation artifacts (#). (D) Rectified and time-integrated ventral root recordings during sural-nerve stimulation in dI3OFF mice. Note the

lack of locomotor activity with stimulation strength �2 x Th. Brief voltage deflections in the recordings are stimulation artifacts (#). (E) Threshold of

stimulation to evoke locomotor activity by sural nerve stimulation (left) and percentage of preparations with sural-nerve evoked locomotor activity (right)

in control and dI3OFF mice. The threshold of stimulation was not determined for one of the six dI3OFF spinal cords in which sural-nerve evoked

locomotion was observed. Two-tailed Student’s t-test for threshold of stimulation, Fisher’s exact test for percentage of successful preparations. (F)

Relationship between the thresholds for evoking locomotion and the long latency C-wave. Dashed line represents line of unity. Spinal cords in which

locomotor but not C-wave thresholds were measured are not shown. There is no difference in C-wave thresholds (inset above), but there is a significant

increase in locomotor threshold (right inset) between control (cyan) and dI3OFF mice (magenta). dI3 INs corresponding to recordings in panels 2C and

2D are marked by full colored circles and their respective letters. Two-tailed Student’s t-test. (G) Diagram depicting access of dI3 INs to spinal

locomotor circuits. Stimulation of low-threshold afferents (LTA, blue) recruits dI3 INs, which provide drive to spinal locomotor circuits (black and grey

circle). *p<0.05, Scale bars, 5 ms (B), 2 s (C, D).

DOI: 10.7554/eLife.21715.012

The following source data and figure supplement are available for figure 2:

Source data 1. Related to Figure 2E.

DOI: 10.7554/eLife.21715.013

Source data 2. Related to Figure 2F.

DOI: 10.7554/eLife.21715.014

Figure 2 continued on next page
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rhythmic bursts of action potentials. Raster and polar plots of up to 50 randomly selected action

potentials from each of the 27 rhythmically active dI3 INs showed that the majority (22 of 27, 81%)

of neurons were active primarily during the extensor phase of the step cycle (cf. 5/27 in flexor phase,

Figure 3—figure supplement 1B). This extensor-dominant pattern of activity was seen irrespective

of whether the interneurons were located in the upper or lower lumbar segments, or medial or lat-

eral grey matter (Figure 3E and Figure 3—figure supplement 1A). Peak activity of those active dur-

ing extension was at the midpoint of that phase (Figure 3F,G). The dominant extensor phase activity

may explain the differences in locomotion between control and dI3OFF mice, as elimination of dI3 IN

output could result in reduced plantar flexion (physiological extension) (Bui et al., 2013) during paw

ground contact (Engberg, 1964), resulting in reduced weight support and rear track widening

(Donelan et al., 2004). Together, these data demonstrate that dI3 INs receive inputs – either

directly or indirectly – from locomotor circuits, and are predominantly active during the ipsilateral

extensor phase of the step cycle.

To determine the nature of this input, we performed voltage-clamp recordings of dI3 INs that

were rhythmically active during extensor (n = 8) or flexor (n = 2) phases. We found that, regardless

of their location in the lumbar spinal cord, the post-synaptic currents (PSCs) recorded in 7 out of 8

dI3 INs reversed between �90 and �40 mV, indicating they were inhibitory. In the neurons active in

extension, these inhibitory PSCs (IPSCs) were phasic, indicating that they predominantly received

rhythmic synaptic inhibition during the flexor phase (Figure 4A, and Figure 4—figure supplement

1A). Three of these neurons also received some excitatory post-synaptic currents (EPSCs) during the

extensor phase. Quantification of the distribution of the IPSCs across the step cycle revealed that

the onset and termination of inhibitory input mirrored those of the L2 flexor bursts (Figure 4B).

When additional brief L2 bursts were present, these bursts also coincided with inhibition of dI3 INs,

with the inhibitory input being of longer duration than the abbreviated L2 bursts (Figure 4C).

In contrast to the dominant extensor bursting dI3 INs, the two dI3 INs that were active during the

flexor phase of the step cycle had no evident rhythmic IPSCs, but were excited during flexion (Fig-

ure 4—figure supplement 1B), supporting that this subset likely belonged to a different functional

sub-population of dI3 INs.

Together, these data indicate dI3 INs are reciprocally connected to spinal locomotor circuits. dI3

INs excite spinal locomotor circuits, and in turn, the majority of dI3 INs are rhythmically inhibited dur-

ing the flexor phase by these circuits (Figure 4D). The timing of this inhibitory input suggests that

locomotor circuits are transmitting an inhibitory efference copy to these dI3 INs during the flexor

phase of the locomotor cycle.

dI3 interneurons are necessary for recovery of locomotor function
In light of their interposition between sensory afferents and spinal locomotor circuits, and their

involvement in movement adaptation (Bui et al., 2013), we next asked whether dI3 INs are involved

in microcircuits responsible for plastic changes following spinal cord transection. To do so, we iso-

lated spinal cords from the brain by performing lower thoracic spinal cord transections in control

(n = 22), and dI3OFF (n = 16) adult mice. Mice were subjected to regular treadmill training to pro-

mote spinal locomotor recovery (Figure 5A). We quantified forelimb/hindlimb step ratios as initial

estimates of recovered hindlimb locomotor performance over time, counting any (however minimal)

forward excursion of the toes as a ‘step’ (control: n = 6; dI3OFF: n = 3). Step ratios of animals from

both groups plateaued by 50 days following transection (Figure 5C). But the number of forward toe

excursions in dI3OFF mice was about half that in control mice (Figure 5C,D, and Video 2), indicating

poor capacity of motor recovery by dI3OFF mice following spinal transection.

To assess the quality of locomotor recovery, high-speed kinematic video recordings (Figure 5B)

were analyzed in the 3 control and 3 dI3OFF animals that had anatomically and functionally confirmed

complete transections (Figure 5—figure supplement 1). The spinal-transected control animals had

Figure 2 continued

Figure supplement 1. When evocable by sural nerve stimulation in dI3OFF mice, locomotion is similar to control mice, and when not evocable,

locomotion can be initiated by dorsal root stimulation.

DOI: 10.7554/eLife.21715.015
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dI3 IN rhythmically active during drug-evoked locomotion in dorsal horn removed preparation. dI3 IN: whole-cell patch clamp recording. L2, L5: raw

ventral root recordings.
Ð
L2, L5: rectified and integrated ventral root recordings. (E) Raster plot of dI3 IN spiking during drug-evoked locomotion. 50

randomly selected spikes (a fewer number of spikes from cells 2, 3, 5, and 14 from hemicord preparations and cell 4 from dorsal horn removed

preparation were recorded) are shown for each cell. Locomotor cycles were double-normalized such that a phase of 0 marks the beginning of extensor

phase, 0.5 marks the beginning of the flexor phase/end of the extensor phase. Only dI3 INs determined to be rhythmically active are shown (see F, G).

(F) Polar plot summarizing rhythmic activity of dI3 INs in hemicords (n = 13 L2/L3 dI3 INs light blue, and 16 L4/L5 dI3 INs dark blue). Mean phase and

angular concentration r calculated from 50 or fewer randomly selected spikes. Each point depicts the average phase at which spikes occurred during

the step cycle. The distance away from the centre represents r. The inner circle represents r = 0.24, which corresponds to significant rhythmicity (p<0.05)

for 50 randomly selected spikes. Asterisks mark cells where rhythmicity was statistically demonstrated though fewer than 50 spikes were recorded.

Arrows depict mean phase (F) of dI3 INs whose average phase was during the extensor phase. (G) Polar plot summarizing rhythmic activity of dI3 INs in

dorsal horn removed spinal cords (n = 4 L2/L3 dI3 INs light green, and 7 L4/L5 dI3 INs dark green). Arrows depict mean phase (F) of dI3 INs whose

average phase was during the extensor phase.

DOI: 10.7554/eLife.21715.016

The following source data and figure supplement are available for figure 3:

Source data 1. Related to Figure 3E.

DOI: 10.7554/eLife.21715.017

Source data 2. Related to Figure 3F.

DOI: 10.7554/eLife.21715.018

Figure supplement 1. Examples of rhythmic activity of dI3 INs during fictive locomotion.

DOI: 10.7554/eLife.21715.019
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some recovery of locomotion, although limb movements were reduced compared to their intact

counterparts (Figure 5E–I, Figure 5—figure supplement 2, and Video 3). On the other hand,

dI3OFF mice had minimal horizontal movements of distal hind limb segments (Figure 5E,G, and Fig-

ure 5—figure supplement 2C) and an almost complete absence of vertical excursions (Figure 5F,I,

Figure 5—figure supplement 2D, and Video 4). Furthermore, while the kinematic parameters of

spinal-transected control animals for the most part were a scaled version of those in intact animals,

the parameters in dI3OFF animals differed in trajectory (Figure 5—figure supplement 2E–I). For

example, the knee angle linearly decreased during flexion (when it is normally biphasic) and linearly

increased during extension (when it is normally primarily decreasing, Figure 5I). That is, while control

mice recovered a degree of the complex sequence of muscle activation that produces stepping, the

minimal movements of dI3OFF mice had linear kinematics with no resemblance to locomotion

(Figure 5H,I). Furthermore, during unrestrained overground locomotion (data not shown), there was

almost a complete absence of hindlimb movement in dI3OFF mice, in stark contrast to control mice,
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depict 10 postsynaptic currents of greatest magnitude within the flexor phase. Scale bars within insets, 5 ms, 25 pA. (B) Distribution of IPSCs through

the step cycle (n = 6622 IPSCs occurring in 116 step cycles in seven preparations) overlaid with averaged normalised L2 ventral root recordings (means

and standard deviations shown). Step cycle was divided into 50 bins. Dashed line at 2% indicates the proportion of IPSCs if they were evenly distributed

throughout the step cycle. (C) Voltage-clamp recording (VC) at holding potential of �40 mV of L5 dI3 IN during drug-evoked locomotion with brief

flexion bursts (cyan) during extension. Bursts of IPSCs were observed during regular (dark blue) and brief flexion bursts as evidenced in integrated

IPSCs trace (top trace). (D) Diagram showing added inhibition of dI3 INs arising from flexor module of spinal locomotor circuits.

DOI: 10.7554/eLife.21715.020

The following source data and figure supplement are available for figure 4:

Source data 1. Related to Figure 4B.

DOI: 10.7554/eLife.21715.021

Figure supplement 1. Examples of synaptic inputs to dI3 INs during fictive locomotion.

DOI: 10.7554/eLife.21715.022
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Figure 5. dI3 INs are involved in locomotor recovery following complete spinal transection. (A) Experimental paradigm. Orange indicates period of

treadmill training and locomotor performance assessments. Green indicates period of recovery following surgical procedures (red). Days (d) from birth

are indicated. (B) Kinematic recording snapshots in control and dI3OFF mice 50 days following complete (and confirmed) lower thoracic spinal

transection. Arrows depict proper paw dorsiflexion in control (cyan) and abnormal plantarflexion in dI3OFF (magenta) mice during stance. Cyan segment

at t = 384 ms indicates toe elevation in control, which is absent in dI3OFF during the swing phase. Pictures at 32 ms intervals. (C) Hindlimb/Forelimb

step ratio (S) as a function of time (T) following complete spinal transection in control (n = 6) and dI3OFF (n = 3) animals with non-linear sigmoidal fit, S =

Smax * T
h / (k1/2

h + Th) where Smax is the maximum step ratio, h is the Hill slope (recovery rate), and k1/2 is the number of days to reach half the maximal

step ratio. R2 = 0.53 and 0.23 respectively. (D) Hindlimb/Forelimb step ratio 30 days following complete spinal transection (Tx) in control (n = 10), and

dI3OFF (n = 6) animals. Mean +/� Standard Deviation. Two-tailed Student’s t-test (***p<0.0001). (E to I) Toe coordinates along X (horizontal forward-

backward axis E,G) and Y (vertical elevation F, H) axes, and knee angle (I) in control and dI3OFF spinal-transected animals 40 days post-surgery on a

treadmill at 7 cm/s. Dashed lines represent standard deviation. Minimum weight-support was provided when necessary to complete the task. In G, H,

and I, data from intact animals are shown in dark blue (control) and dark pink (dI3OFF) for comparison. Multiple t-tests corrected for multiple comparison

Holm-Sidak. *p<0.05.

DOI: 10.7554/eLife.21715.023

The following source data and figure supplements are available for figure 5:

Figure 5 continued on next page

Bui et al. eLife 2016;5:e21715. DOI: 10.7554/eLife.21715 9 of 20

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.21715.023
http://dx.doi.org/10.7554/eLife.21715


suggesting that the minimal movements seen during treadmill walking in dI3OFF mice were specific

to the treadmill environment.

Taken together, these results illustrate an absence of locomotor recovery in dI3OFF animals, and

demonstrate the critical role of dI3 INs in driving recovery of locomotor function after spinal

transection.

Discussion
We have shown here that dI3 INs are involved in spinal plasticity, and are integral to recovery of

locomotor function following spinal cord transection. They are positioned between multimodal sen-

sory inputs (Bui et al., 2013) and spinal locomotor circuits, and have a bi-directional relationship

with these locomotor circuits, receiving an efference copy of their activity (Figure 6A). We showed

previously that elimination of dI3 INs from spinal microcircuits via genetically eliminating their gluta-

matergic output results in the abolition of short term motor adaptation (Bui et al., 2013), and now

demonstrate that this mutation also results in the loss of plasticity required for locomotor recovery.

Together, we suggest that dI3 INs function to integrate sensory input with motor commands in order

to drive motor plasticity at level of the spinal cord (Figure 6).

dI3 IN microcircuits and locomotion
Sensory inputs to the spinal cord are required for the recovery of function following injury

(Dietz et al., 2002; Rossignol and Frigon,

2011; Takeoka et al., 2014). Experiments in ani-

mal models such as rodents and cats have dem-

onstrated that sensory inputs have access to

spinal locomotor circuits, are phasically gated

during the step cycle (Forssberg et al., 1977),

and their stimulation can lead to alterations in

the timing and coordination of ongoing locomo-

tor activity (Duysens and Pearson, 1976;

Loeb et al., 1987; Gossard et al., 1994;

Stecina et al., 2005). Furthermore, stimulation

of sensory afferents in in vitro isolated spinal

cords can be sufficient to activate spinal locomo-

tor circuits (Bonnot et al., 2002; Cherniak et al.,

2014). Therefore, spinal locomotor circuits

remain accessible through sensory afferents fol-

lowing the loss of descending inputs.

Activation of sensory afferents by treadmill

training is a guiding principle of locomotor

Figure 5 continued

Source data 1. Related to Figure 5C.

DOI: 10.7554/eLife.21715.024

Source data 2. Related to Figure 5D.

DOI: 10.7554/eLife.21715.025

Source data 3. Related to Figure 5G.

DOI: 10.7554/eLife.21715.026

Source data 4. Related to Figure 5H.

DOI: 10.7554/eLife.21715.027

Figure supplement 1. Confirmation of anatomical and functional spinal isolation.

DOI: 10.7554/eLife.21715.028

Figure supplement 1—source data 1. Related to Figure 5—figure supplement 1C.

DOI: 10.7554/eLife.21715.029

Figure supplement 2. Locomotor function following isolation of spinal circuits.

DOI: 10.7554/eLife.21715.030

Video 2. Foot print recordings following spinal cord

transection. Foot print recordings of control and dI3OFF

animals at 7 cm/s 50 days after spinal transection,

recorded at 100 fps and displayed at 15 fps. Animals

were recorded separately.

DOI: 10.7554/eLife.21715.031
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rehabilitation (Harkema, 2008). This strategy

has shown that activation of sensory afferents

during imposed walking movements retrains spi-

nal locomotor circuits to generate the rhythmic, patterned activation of hindlimb muscles required

for locomotion (Dietz et al., 1995; Edgerton and Roy, 2009; Rossignol and Frigon, 2011;

Harkema et al., 2012). In spinal-transected cats, at least one source of cutaneous afferents from the

hindlimb is required to ensure full recovery of treadmill locomotion with plantar foot placement

(Bouyer and Rossignol, 2003). And following spinal transection in rodents, recovery of hindlimb

movements became highly disorganized following pharmacological block of paw cutaneous

Video 3. Kinematic recordings in intact animals.

Kinematic recordings of control and dI3OFF animals

running at 20 cm/s, recorded at 250 fps and displayed

at 15 fps. Animals were recorded separately.

DOI: 10.7554/eLife.21715.032

Video 4. Kinematic recordings following spinal cord

transection. Kinematic recordings of control and dI3OFF

animals at 7 cm/s 50 days after spinal transection

recorded at 250 fps and displayed at 15 fps. Weight

support was provided. Animals were recorded

separately.

DOI: 10.7554/eLife.21715.033
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DOI: 10.7554/eLife.21715.034

Bui et al. eLife 2016;5:e21715. DOI: 10.7554/eLife.21715 11 of 20

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.21715.032
http://dx.doi.org/10.7554/eLife.21715.033
http://dx.doi.org/10.7554/eLife.21715.034
http://dx.doi.org/10.7554/eLife.21715


afferents, indicating the important role of these afferents in functional recovery (Sławińska et al.,

2012). Proprioceptive afferents also play an important role in recovery following incomplete spinal

cord injury (Takeoka et al., 2014).

Thus, target neurons responsible for spinal mechanisms involved in sensory-mediated plasticity of

locomotor circuits would be expected to receive sensory inputs from a variety of afferent types and

project to spinal locomotor circuits. We have shown previously that dI3 INs receive different modali-

ties of sensory inputs (Bui et al., 2013), and here we show that they can activate spinal locomotor

circuits. Furthermore, we now show that they are necessary for sensory-mediated recovery of func-

tion following spinal transection. That dI3 INs receive multimodal sensory inputs could explain why

different sensory modalities contribute to locomotor recovery following spinal cord injury and would

suggest, perhaps, that the combined inputs from different modalities, through temporal and spatial

summation, may be beneficial to training strategies.

The identity of the locomotor neurons excited by dI3 INs remains elusive: in addition to their out-

puts to motoneurons, dI3 INs also project to as yet unidentified neurons in the intermediate laminae

of the cervical and lumbar spinal cord (Bui et al., 2013). Unfortunately, although we increasingly

understand locomotor circuits (Kiehn, 2016), knowledge of the neuronal substrate for activation of

these circuits either by descending commands (Jordan et al., 2008; Bretzner and Brownstone,

2013; Bouvier et al., 2015), or by sensory inputs (Whelan et al., 2000; Marchetti et al., 2001;

Cherniak et al., 2014) is lacking. Understanding dI3 IN target neurons in the intermediate laminae

of the spinal cord may shed light on these questions, and would be a key next step in the determina-

tion of the cellular mechanisms of plasticity induced by dI3 INs.

Possible mechanisms underlying dI3 IN-mediated plasticity
We have shown that dI3 INs are necessary for training-induced recovery of locomotor activity follow-

ing spinal transection. It is unlikely that this recovery results simply from a loss of afferent input to

locomotor circuits, as sensory stimulation – either by increasing stimulation intensity or by number of

fibres (by dorsal root stimulation) – can still evoke locomotor activity in dI3OFF mouse spinal cords.

We thus suggest that dI3 INs are mediating plastic changes in these circuits. In other words, the re-

acquisition of locomotion can be considered to be a low level form of motor learning, in which

repeated activity leads to sustained changes in the central nervous system such that spinal circuits

below the site of a lesion can produce locomotor activity in the absence of descending motor com-

mands. In this light, it is therefore instructive to consider that circuits that mediate short-term adap-

tation are those that lead to long-term learning through various mechanisms (Hirano et al., 2016).

We have previously shown that dI3 INs mediate short-term adaptation in regulating paw grasp in

response to changing sensory stimulation (Bui et al., 2013). Long-term changes, however, must be

accompanied by homeostatic plastic mechanisms that prevent instability induced by positive feed-

back (Turrigiano, 1999; Desai, 2003; Quartarone and Hallett, 2013). These mechanisms could

include, for example, changes in connectivity, synaptic strength, and/or morphology of spinal neu-

rons (Brownstone et al., 2015). Such changes have been proposed to underlie spontaneous or

training-induced changes in motor output in spinal cord injury patients (Harkema, 2008; Kni-

kou, 2010; Dietz, 2012) and in animal models of spinal cord injury (Côté and Gossard, 2004;

Frigon et al., 2009; Tillakaratne et al., 2010; Martin, 2012; van den Brand et al., 2012;

Houle and Côté, 2013; Takeoka et al., 2014). Similar mechanisms of plasticity may also occur dur-

ing learning in intact developing and mature spinal cords (Tahayori and Koceja, 2012; Grau, 2014).

Studying such changes at synapses between dI3 INs and their target locomotor circuit neurons may

reveal specific mechanisms underlying this plasticity.

Functional implications
From a circuit perspective, we know from cerebellar studies that motor learning relies on comparator

neurons – neurons that compare actual sensory inputs (what did happen, or instructive inputs) with

the sensory input predicted by the motor command (what should have happened) (Bastian, 2006;

Shadmehr et al., 2010; Wolpert et al., 2011; Cullen and Brooks, 2015). Predictive inputs arise

from forward models derived from a copy of the motor command – an efference copy. By comparing

these two inputs, comparator neurons calculate the ‘sensory prediction error,’ which is then used to

modify circuit function, either for corrective responses or sustained learning (Shadmehr et al., 2010;
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Requarth and Sawtell, 2014; Brownstone et al., 2015). Most dI3 INs receive excitatory instructive

inputs from a variety of sensory afferents (Bui et al., 2013), as well as inhibitory rhythmic input from

locomotor circuits. We suggest that this inhibitory input, which mirrors the motor output, is the man-

ifestation of a forward model and is suggestive of a negative image of the expected excitatory sen-

sory input (Requarth and Sawtell, 2014). That is, in addition to instructive inputs, dI3 INs receive

inputs indicative of a predictive forward model. These two classes of inputs position dI3 INs as com-

parators between actual and predicted movement, and thus calculators of sensory prediction error.

We suggest that this error signal leads to plastic changes in locomotor circuits, mediating long-term

learning such as that necessary for locomotor recovery after spinal cord transection (Figure 6B).

Within this framework, sensory information provided by training would lead to activation of loco-

motor circuits, which would then produce a forward model to predict the sensory consequences of

the movement. Through training, the sensory prediction error is iteratively calculated by dI3 INs, and

would lead to synaptic and/or cellular changes in locomotor circuits, leading to sustained recovery

of motor function (Brownstone et al., 2015). Therefore, functional removal of dI3 INs from the cir-

cuits results in the loss of sensory prediction error signals, and thus prevents the benefit of locomo-

tor training following spinal transection (Figure 6C).

Motor learning is distributed across hierarchical control structures, with different levels of the hier-

archy functioning together to ensure adaptation and learning (Kawato et al., 1987; Gordon and

Ahissar, 2012). We show that dI3 INs form an intra-spinal closed loop circuit, in which the microcir-

cuits that route sensory information to locomotor circuits are themselves under the influence of the

locomotor circuits that they modulate (Figure 6A). These closed loops would be nested within other

control loops, such as peripheral sensorimotor loops (Dimitriou and Edin, 2010) and those situated

between spinal motor circuits and descending motor systems (Arshavsky et al., 1972;

Hantman and Jessell, 2010; Azim et al., 2014). Together, these nested loops create a hierarchical

control system that would optimise motor learning (Kawato et al., 1987). That one of these loops

may exist in the spinal cord would be important for rehabilitative techniques: targeting intraspinal

learning circuits such as those formed by dI3 INs could lead to new strategies to facilitate spinal cir-

cuit function in order to improve motor behaviour affected by a number of neurological diseases

and injuries.

Materials and methods

Animals
All animal procedures were approved by the University Committee on Laboratory Animals of Dal-

housie University (protocol 13–143) and conform to the guidelines put forth by the Canadian Council

for Animal Care.

Expression of yellow fluorescent protein (YFP) driven by the promoter for the homeodomain tran-

scription factor Isl1 was obtained by crossing Isl1Cre/+ (RRID:IMSR_JAX:024242) and Thy1-fs-YFP

mice to yield Isl1-YFP mice. Conditional knockout of Slc17a6 (vGluT2) in Isl1 expressing neurons was

accomplished by crossing Isl1Cre/+ mice with a strain of mice bearing a conditional allele of the

Slc17a6 (vGluT2) gene to yield dI3OFF mice as previously described (Hnasko et al., 2010; Bui et al.,

2013). Control animals consisted of Isl1Cre/+:Slc17a6flox/+ and Isl1+/+:Slc17a6flox/flox mice. No differ-

ences were observed between these two control genotypes and animals were thus pooled into a sin-

gle control group.

Treadmill locomotion
Limb movement during locomotor behaviour was described by using motion analysis techniques

combined with high-speed video recordings of the behaviour (Akay et al., 2014). Analysis of foot-

prints during treadmill locomotion (10 cm/s to 50 cm/s) was performed using an Exer Gait XL tread-

mill (Columbus Instruments) and analyzed with Treadscan Analysis System v4.0 (Clever Sys). Analysis

was performed on segments in which the mice maintained their position on the treadmill. For kine-

matic analysis, mice walked on a treadmill (either custom made by the workshop of Zoological Insti-

tute, University of Cologne or an Exer Gait XL from Columbus Instruments) at speeds ranging from 3

to 72 cm/s and recorded with a high-speed camera (Photron PCL R2, Photron; or IL3-100, Fastec

Imaging) at a capture rate of 250 frames per second (Fps). The animals were briefly anesthetized
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with isoflurane and custom-made three-dimensional reflective markers (~2 mm diameters) were

glued onto the shaved skin at the level of the anterior iliac crest, hip, knee (in some cases), ankle,

metatarsophalangeal (MTP) joint, and the tip of the fourth digit (toe) of one or both hindlimbs. Joint

coordinates were automatically tracked by Vicon Motus software or by custom scripts for ImageJ

(Schneider et al., 2012) (RRID:SCR_003070) and R (R Core Team, 2013) (RRID:SCR_000432). These

coordinates were used to compute hip, knee, ankle, and paw angles. For the knee joint, in consider-

ation of movement of the skin over the knee, the actual knee coordinates and angles were calculated

geometrically using the length of the femur and tibia. Stance onset was determined by using local

maxima of the position of the toe marker in the horizontal plane. Several step cycles were averaged

from portion of recordings when animals were producing a steady locomotor output.

Electrophysiology
Extracellular ventral and dorsal root recordings via suction electrodes were amplified 10,000 X in dif-

ferential mode, bandpass-filtered (10 Hz to 3 KHz) using a custom-built extracellular amplifier, and

acquired at 10 kHz (Digidata 1322A, pClamp nine software, Molecular Devices RRID:SCR_011323).

Whole-cell patch-clamp signals were obtained using a MultiClamp 700B amplifier (Molecular Devi-

ces) as previously described (Bui et al., 2013).

To study sensory-evoked locomotor activity, in-vitro preparations with the sural nerve in continu-

ity with the spinal cord were prepared from Isl1-YFP or dI3OFF postnatal (P1-P3) mice. Surgical pro-

cedures to isolate the spinal cord were similar to Bui et al. (2013) except that the skin of the right

hindlimb was dissected and muscles removed to expose and dissect the sciatic and sural nerves. The

sural, common peroneal, and tibial nerves were then transected distally. The spinal cords were left

to recover for 1–2 hr before recording. Locomotion was induced by dorsal root or sural nerve stimu-

lation using a 10 s long train of 250 ms pulses at 3 Hz using a Grass Technologies S88 square pulse

stimulator (Natus Neurology Inc.). The presence of more than four successive rhythmic bursts within

the stimulation train in at least one ventral root was used to indicate the presence of locomotor-like

activity.

To record rhythmic inputs to dI3 INs during fictive locomotion, hemisected spinal cords were pre-

pared from Isl1-YFP postnatal (P1-P6) mice as previously described (Bui et al., 2013). Following

anaesthesia with xylazine and ketamine, mice were decapitated. Their spinal cords were isolated by

vertebrectomy in room temperature recording ACSF (in mM: NaCl, 127; KCl, 3; NaH2PO4, 1.2;

MgCl2, 1; CaCl2, 2; NaHCO3, 26; D-glucose, 10). Ventral and dorsal roots were dissected as distally

as possible, and spinal cords were pinned with the ventral side up. A surgical blade was used to

make a longitudinal incision down the midline (in a rostro-caudal direction). The hemicords were

then allowed to equilibrate in room temperature recording ACSF for at least one hour, then pinned,

medial-side up to a base of clear Sylgard (Dow Corning) in a recording chamber and perfused with

circulating room temperature recording ACSF. Ventral roots were placed in suction electrodes (A-M

Systems Inc.). In a subset of experiments examining the activity of dI3 INs during drug-evoked loco-

motion, bilateral dorsal cords were removed from segments L1 to L3 or from segments L4 to L6. Spi-

nal cords were pinned on their sides and insect pins were used to trace a line followed by a surgical

blade to section the spinal cord.

Fictive locomotion was elicited by application of NMDA (5 mM), serotonin (10 mM) and dopamine

(50 mM) (Jiang et al., 1999). Data from spinal cords in which synchronous activity was produced in

flexor- and extensor-dominant ventral roots were excluded. Circular statistics (Zar, 1996) using 50

randomly selected spikes for each dI3 IN were used to determine the phasic relationships between

dI3 IN spiking and ventral root bursting during drug-induced locomotion.

Whole-cell patch-clamp electrodes were filled with an internal solution containing (in mM:

K-methane-sulphonate, 140; NaCl, 10; CaCl2, 1; HEPES, 10; EGTA, 1; ATP-Mg, 3; GTP0.4; pH 7.2–

7.3 adjusted with KOH; osmolarity adjusted to ~295 mOsm with sucrose). In the hemisected cords,

care was taken to record from cells that were in the middle of the ventral-dorsal axis of the hemicord

to avoid motoneurons. In order to avoid recording from neurons close to the central canal (possibly

sympathetic preganglionic neurons), neurons that were near the surface were also avoided.

Most dI3 INs exhibited rhythmic, alternating phases of membrane depolarization, which in some

cases were accompanied by firing of action potentials, and quiescent hyperpolarization. In the cells

where cyclical change of membrane potential was not accompanied by firing of action potentials,
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application of a bias depolarizing current led to phasic firing of action potentials during periods of

membrane depolarization.

The locomotor cycle was double-normalized (Kwan et al., 2009) such that each cycle was divided

into extensor and flexor phases, with 0 to 0.5 spanning the onset to the termination of the extensor

phase and 0.5 to 1 spanning the flexor phase of each cycle. Polar plots of rhythmic activity were

used for analysis of the rhythmic activity of each cell. The angle represents the mean phase (F)

whereas the distance from origin is a measure of concentration around the mean phase, which we

refer to here as r. After calculating the cosine and sine of the phase of each spike, F was calculated

as the average cosine and sine of the spikes and the angular concentration, r, was calculated as the

square root of the sum of squares of the average cosine and average sine (Zar, 1996). Thus if the

neuron fires once per cycle at precisely the same phase, then r = 1. Conversely, if there were a ran-

dom distribution of firing across the step cycle, then the average sine and cosine would both be 0,

and r = 0 (i.e. all spikes are uniformly dispersed across the step cycle). The inner circle represents an

r value of 0.24, as for 50 randomly-selected spikes, values above this threshold indicate that cells

were rhythmically active (p<0.05).

To determine the rhythmicity of inputs to dI3 INs, unitary PSCs were extracted from voltage-

clamp recordings at �40 mV. Outward IPSCs and inward EPSCs were detected in Clampfit using a

template. The phase of each IPSC and EPSC was calculated and circular statistics were applied as

above to determine whether dI3 INs received rhythmic inputs. The proportion of IPSCs that occurred

within a certain phase of the step cycle was determined by calculating the proportion of IPSCs within

each of 50 equal bins across the step cycle.

Spinal cord transection
Complete transections were performed at T9-T10 under isoflurane anaesthesia. Animals were indi-

vidually housed, given analgesics for 3 days, and allowed to recover for at least one week prior to

further testing. Animals were monitored twice daily and bladders expressed manually. Humane end-

points were defined as self-mutilation, improper feeding, decreased grooming, ataxia, or a loss of

body weight >20%. Completeness of spinal transections was confirmed by a second surgery as

described below.

Locomotor training was provided at least once per week (average twice per week). Animals were

allowed to habituate to the treadmill environment before recordings ranging from 20 to 40 s at

speeds between 3 and 7 cm/s. When required to ensure the completion of the task, animal support

was provided by holding the animal in a horizontal position while maintaining permanent contact

with the treadmill belt. 5 to 10 recordings were performed per sessions.

Animals showing regular locomotor performance were selected for spinal transection. In sterile

conditions, animals were anesthetized with isoflurane to the point of loss of hindlimb reflexes, then

shaved and disinfected using Chlorexidine, 70% isopropyl alcohol and 10% betadine from the neck

to the lumbar region, and placed on a heating pad. A Tegaderm film (Ref 70200749300, 3M) was

placed for stability and to ensure sterile conditions throughout the procedure. An incision was

made, paraspinal muscles were incised and spread to expose the T9-T10 laminae, and laminectomy

was performed to expose the spinal cord. Double incisions were performed on the rostral and cau-

dal portions of the exposed cord. A Pasteur pipet melted into a custom hook was used to insert

underneath the cord and remove the sectioned segment. A piece of sterile Absorbable Hemostat

Surgifoam (Ref 63713-0019-75, Ethicon) was placed into the created spinal space. Deep and superfi-

cial muscles were sutured with Chromic Gut 6–0 sutures (Ref 796G; Ethicon), and skin with 6–0 Ethi-

lon nylon monofilament suture (Ref 1856G; Ethicon). Tissue was kept moist at all times using sterile

saline solution.

Animals, individually housed until suture removal about 10 days later, were allowed to recover for

at least one week prior to further testing. They were monitored twice per day and bladders were

expressed manually as necessary. Animal weight was monitored daily. Analgesics were administered

sub-cutaneously for 3 days after the surgery (buprenorphine: 0.05 mg/kg working solution, 3 mg/ml

twice daily; and ketoprofen: 5 mg/kg working solution, 1 mg/ml once a day). Antibiotic (enrofloxacin:

5 mg/kg, working solution 0.25 mg/ml) was administered sub-cutaneously at the time of surgery

then provided in drinking water (400 mg/l) until complete healing. Animals were provided with

accessible food, water, and soft bedding.
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We confirmed complete transection (Figure 5—figure supplement 1A,B) by proceeding with a

second transection at least 40 days after the first in 11 control and 6 dI3OFF mice (7 and 5 survived,

respectively). Animals were excluded (4 control and 2 dI3OFF mice) from the analysis if the second

surgery induced a locomotor deficit (Figure 5—figure supplement 1C), indicating incomplete initial

transection.

Step ratio analysis
In order to assess locomotor function recovery, we quantified the ratio of hindlimb to forelimb steps.

A hindlimb step was counted when there was any forward movement of the toes. Ventral treadmill

video recordings were analyzed using the ImageJ Cell counter plugin. An average of 40 forelimb

steps were counted per recording. The number of rear steps was averaged between both hindlimbs.

The ratio was calculated as the average number of hindlimb steps divided by the number of forelimb

steps.

Kinematic recording analysis
For kinematic analysis, were analyzed using a custom script in R (https://github.com/nstifani). The fol-

lowing packages were used: tcltk, zoo, and rgl, all available from the Comprehensive R Archive Net-

work (CRAN repository http://cran.r-project.org). Data recorded from intact control (n = 12) and

dI3OFF (n = 6) animals running at 10 to 60 cm/s. Left and right hind limbs were recorded separately

and processed in parallel. A total of 382 control and 172 dI3OFF step cycles were analyzed. Subse-

quently, step cycles (swing and stance) were normalized to durations of 100 data points (equivalent

to a normalised step cycle duration of 400 ms). Measured variables were averaged per animal and

across recordings. Following transection and recovery, data recorded from spinalized controls

(n = 3) and dI3OFF (n = 3) animals at speeds between 3 and 7 cm/s were added to the recorded data

from intact animals. Steps cycles (control: n = 46; dI3OFF: n = 16) were normalized as described

above.
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