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Abstract 
Background: It is not fully understood how seizures terminate and why some seizures 

are followed by a period of complete brain activity suppression, postictal generalised 

EEG suppression. This is clinically relevant as there is a potential association between 

postictal generalised EEG suppression, cardiorespiratory arrest and sudden death 

following a seizure. We combined human EEG seizure data with data of a 

computational model of seizures to elucidate the neuronal network dynamics 

underlying seizure termination and the postictal generalised EEG suppression state.  

Methods: A multi-unit computational neural mass model of epileptic seizure 

termination and postictal recovery was developed. The model provided three 

predictions that were validated in EEG recordings of 48 convulsive seizures from 48 

people with refractory focal epilepsy (20 females, age range 15-61 years).  

Results: The duration of ictal and postictal generalised EEG suppression periods in 

human EEG followed a gamma probability distribution indicative of a deterministic 

process (shape parameter 2.6 and 1.5 respectively) as predicted in the model. In the 

model and in humans, the time between two clonic bursts increased exponentially from 

the start of the clonic phase of the seizure. The terminal interclonic interval, calculated 

using the projected terminal value of the log-linear fit of the clonic frequency decrease 

was correlated with the presence and duration of postictal suppression. The projected 

terminal interclonic interval explained 41% of the variation in postictal generalised 

EEG suppression duration (p<0.02). Conversely, PGES duration explained 34% of the 

variation in the last interclonic interval duration. 

Conclusion: Our findings suggest that postictal generalised EEG suppression is a 

separate brain state and that seizure termination is a plastic and autonomous process, 

reflected in increased duration of interclonic intervals that determine the duration of 

postictal generalised EEG suppression.  

 

Keywords: Epilepsy, critical slowing down, clonic slowing, SUDEP 

 

Abbreviations:   
PGES – Postictal Generalised EEG Suppression 

SUDEP – Sudden unexpected death in epilepsy 
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Introduction 
Epilepsy is a paroxysmal neurological condition, characterised by sudden transitions 

from normal brain functioning to ictal states with synchronised neuronal oscillatory 

activity. Knowledge about seizure initiation or the transition from normal to ictal states 

is increasing, but less is known about seizure termination. Most convulsive seizures 

lead to a postictal state that is clinically and electrographically distinct from the ictal 

and interictal states. In the EEG this manifests as slowing, or as total suppression of the 

background activity – termed PGES (Lhatoo et al., 2010; So and Blume, 2010; Surges 

et al., 2011). During a PGES event, people are mostly immobile and in an unconscious 

state (Semmelroch et al., 2012; Seyal et al., 2013; Tao et al., 2013). This event is 

thought to be an extreme expression of the postictal state. As these events consistently 

preceded cardiorespiratory arrest in most reported ictal recordings of SUDEP they are 

likely to be of clinical relevance (Ryvlin et al., 2013). PGES frequently follows non-

fatal convulsive seizures. Whether PGES is also a risk factor for SUDEP is a matter of 

debate (Lamberts, Gaitatzis, et al., 2013; Lhatoo et al., 2010; Surges et al., 2011). 

Seizure termination may occur either due to a random process involving external 

perturbations or fluctuating state parameters, or to a deterministic, autonomous 

neuronal mechanism driven by the ictal condition itself (Kalitzin et al., 2010; Kramer 

et al., 2012; Lopes da Silva et al., 2003a, 2003b; Stamoulis et al., 2013). Our objective 

is to clarify the type of dynamics underlying termination of convulsive seizure and the 

subsequent postictal state. We developed a computational neural mass model that 

autonomously transitioned between seizures normal states. With the findings from this 

model we attempt to understand features of state transition in EEG recordings of human 

convulsive seizures. 

Computational models seizures, based on neuronal lumps, have previously been used 

to describe global dynamics of state transitions. Seizure transitions are thought to occur 

in bi-stable systems where a stable “attractor state” corresponds to normal activity and 

a second, transient quasi-stable “limit-cycle state”, represents seizures. Probability 

distribution statistics, particularly the gamma distribution, can be used to distinguish 

between stochastic, random walk type of processes and deterministic processes (Doob, 

1953; Suffczynski et al., 2006). Seizure onset of some types of seizure was shown to 

have properties of a random walk-type stochastic process, while seizure termination 
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may be influenced or even governed by deterministic processes (Koppert et al., 2011). 

This was consistent with experimental and clinical data (Colic et al., 2013; Suffczynski 

et al., 2006). In these studies, postictal states were not considered. We extend these 

findings to account for seizure termination and the postictal period. The computational 

model presented here is an extension of a model of multiple bi-stable units (Koppert et 

al., 2014), with added activity-driven connectivity dynamics. This model displays 

transitions from ictal to postictal and from postictal back to normal states. Critically, 

we tested and validated the hypotheses derived from this computational model against 

EEG recordings of convulsive seizures from 48 people with refractory epilepsy. A 

better understanding of the dynamics of seizure termination may help the development 

of new approaches to prevent the severe complications associated with PGES.  

 

Methods   

The computational model 
Computer simulations were carried out using a simplified lumped neuronal mass model 

created in Matlab® (release 2014b, The MathWorks Inc., Natick, MA, USA). The 

purpose of this abstract model is to explain the general dynamics of state changes in 

neuronal populations including pyramidal cells and interneurons while preserving 

essential properties of realistic neuronal networks (Kalitzin et al., 2014; Koppert et al., 

2014).  

The model consists of 128 fully interconnected units, with equal connectivity between 

any two units. Each single unit is a simple system that can have two dynamic states, 

depending on the chosen parameters. The first is a harmonic oscillator representing the 

normal, non-excited state of a neuronal mass. The second is a limit cycle attractor with 

permanent stable oscillations representing a micro-seizure (Izhikevich, 2001; Kalitzin 

et al., 2010). For certain parameter ranges both states co-exist (bi-stability), for other 

parameters values the unit is in one of the states. In the bi-stable regime the transitions 

between the two states can be induced by external inputs or by random fluctuations. In 

this study we use an analytical model that provides bi-stability in a relatively simple 

way. The model represents the collective dynamics of multiple pairs of excitatory and 

inhibitory populations, each represented by a complex variable ܼ௠ , ݉ = 1. .  These .ܯ

degrees of freedom incorporate the excitatory population dynamics and the inhibitory 
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one as real and imaginary components correspondingly ( ܼ௠(ݐ) = (ݐ)௠ܿݔܧ +

 :The original definition of the model (Koppert et al 2014) is .((ݐ)ℎ௠݊ܫ݅

݀
ݐ݀ ܼ௠ = −|ܼ௠|ସܼ௠ + ܾ|ܼ௠|ଶܼ௠ + ܼܿ௠   + ܼ݅߱௠ + ݃(1 + ݅) ෍ ௠௞ܼ௞ܥ

ே

௞ୀଵ

+  (ݐ)ߟ௭ߪ

 (1) 

In the above equation, b, c and ߱ are parameters of the single unit dynamics, the matrix 

௠௞ܥ  represents the interactions between the units k and m, N is the total number of units 

in the network; g is a connectivity scaling coefficient, and (ݐ)ߟ is a random complex 

variable with normal distribution of unit variance; (ݐ)ߟ and the scaling coefficient ߪ௭ 

introduce noise in the system. The factor (1+i) reflects complex interactions between 

inhibitory and excitatory subunits in the system. The overall layout of the network and 

schematic flow of interactions is shown in figure 1. Parameters c and b represent the 

global balance between excitation and inhibition within a single oscillatory unit 

(Koppert et al., 2014). Depending on these parameters, the unit can be in a steady state, 

a limit cycle or both (bi-stability).  

We selected the parameters (ܿ = −2.26, ܾ = 3, ߱ = 0 ) such that each individual unit 

is in one state – that of a fixed point harmonic oscillator (normal, non-seizure state). 

The behavior of the connected system is therefore a collective emergent property, 

influenced by the connectivity strength determined in parameter g.   

We carried out two series of model simulations. First, a series of simulations for an 

array of units with different levels of connectivity (range [0,1/128], 101 values) was 

done under stationary parameters without external input or noisy perturbations. The 

purpose of these “stationary state” simulations was to explore the diversity of 

asymptotic states of the model, depending on the connectivity parameter g and the 

initial conditions. For each connectivity value, 129 simulations were performed with 

increasing numbers of units (from 0 to 128) in an activated state of limit cycle as initial 

condition. The connectivity matrix for all simulations in this study was chosen 

arbitrarily ܥ௠௞ = 1, ݉ ≠ ݇, ௠௠ܥ = 4 to represent the relative difference in local versus 

global connectivity.  

The second series of simulations was performed to obtain dynamical seizure transitions 

and postictal states. Noise was added to the system, and a parameter evolution rule was 

introduced, consisting of negative feedback plasticity that drives the connectivity 

parameter g to lower values whenever the global synchronised activity of the system 
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exceeds a threshold (see equation (2)). In addition, homeostatic point stochastic 

dynamics were introduced for the parameters b and c to account for random-walk type 

of fluctuations of the operational point of the model.  

݀݃
ݐ݀ = ௚(݃଴ߙ − ݃) − (|௞〈௞ܼ〉 |)ߪߚ +  (ݐ)ߦ௚ߪ

 ௗ௖
ௗ௧

= ௖(ܿ଴ߙ − ܿ) +  ;  (ݐ)ߤ௖ߪ

 ௗ௕
ௗ௧

= ௕(ܾ଴ߙ − ܾ) +  ;  (ݐ)ߥ௕ߪ

(ݔ)ߪ ≡ ݁
௫ି௫బ

௦

(1 + ݁
௫ି௫బ

௦ )
൘  

(2) 

 

In equation (2) ߙ௚ and ߚ  are rate constants that determine the relaxation of the g-

parameter and its corresponding reaction to increased coherency between the units. 

௖ߙ  and ߙ௕ are rate constants for the fluctuating {c,b}-parameters to a fixed homeostatic 

point {ܿ଴,ܾ଴} = {−2.26, 3}. The second term in equation (2) is a shortened version of 

an external unit, that according to previous results, can be activated by the network 

when the phase coherency of the system exceeds a certain level (Koppert et al., 2014). 

The last terms (ݐ)ߦ, ,(ݐ)ߤ  in eq. (2) represent noise and are independent random  (ݐ)ߥ

variables with normal distributions of unit variance. To reduce the complexity of the 

model we emulated the activation process by an effective sigmoid function, as defined 

by the last line of eq. (2). We performed 100 stimulations initialising the system with 

all units having positive real values of > 1. This started the simulation with the system 

in a limit cycle with all units recruited, i.e. a “seizure”. We recorded the time (number 

of simulation steps) it took for the limit cycle (“seizure”) to be destroyed by the change 

in connectivity g and the time it took to return to a level of excitability in the “normal” 

range, which we defined as an excitability threshold 50% higher than that of the 

homeostatic point. This was used as an estimate of the duration of the model postictal 

period reflecting PGES. (figure 2). 

For this second set of stimulations we chose ൛ߙ௚, ௖ߙ , ௕ൟߙ = 0.002, ߚ = 0.007  

݃଴ = 0.0045, ଴ݔ = 0.1 and s=0.05, which provided a single homeostatic point. The 

simulations were done with noise levels of ߪ௭ = 3, ௖ߪ = 2, ௕ߪ = 2, ௚ߪ = 0.02.  
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Statistics of state durations 
It was previously shown that differences in the distributions of durations between stable 

and transient states can be revealed using a gamma-type probability density function as 

a fitting template (see eq. (3)) (Colic et al., 2013; Suffczynski et al., 2006). 

N(ܶ) = ଴ܰܶ஑ିଵ݁ି்
ஒൗ  

(3)  

Where ଴ܰ is the normalisation constant, β is the time-decay constant and α is the shape 

parameter, which separates random from deterministic processes. In short, α ≤1 is 

expected for the distribution of stochastic processes (α =1 corresponds to a Poisson 

process), while α >1 may be a consequence of a process with deterministic state-

termination mechanism (Doob, 1953; Suffczynski et al., 2006).  

In order to study the dynamics underlying the transitions in our model, we simulated 

110 “seizures” followed by 110 model “postictal” periods. The segmentation of these 

epochs was performed using the thresholds of the envelope of the averaged signal from 

the unit output. 

 

Human EEG recordings 

We screened the video-EEG reports of people aged >15 years who underwent pre-

surgical evaluation at a tertiary referral centre and selected those that mentioned the 

recording of a convulsive seizure. Only the first convulsive seizure recorded from each 

individual was selected to avoid effects of seizure clusters. For most, anti-epileptic 

drugs were tapered during the recording to maximise the likelihood of an ictal 

recording. In view of the changes to anti-epileptic drug regimens, we chose not to 

include periods between two seizures.  

In total, 56 convulsive seizures were identified. One recording was excluded due to 

insufficient postictal recording time and two due to inadequate EEG quality. Data from 

this database were published previously (Lamberts, Gaitatzis, et al., 2013; Lamberts, 

Laranjo, et al., 2013). From the 53 remaining recordings, convulsive seizures with an 

asymmetric partial ending (unilateral clonic movements and/or partial epileptic 

activity, four seizures) or CSs ending with generalised activity without convulsive 

movements (one seizure) were excluded, leaving 48 seizures. Subject characteristics 

are shown in table 1.  
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The scalp EEG recordings used the international 10%-20% system at a sampling rate 

of 200Hz (Stellate Harmonie, Stellate Systems, Montreal, QC, Canada).  

Two experienced clinical neurophysiologists (RDT, DNV) independently marked the 

start of the seizure, the tonic phase, the clonic phase, the end of the seizure, and the start 

and end of PGES periods. These were defined as periods immediately postictal (within 

30s), with generalised absence of electroencephalographic activity >10uV in amplitude, 

allowing for muscle, movement, breathing and electrode artefacts (Lhatoo et al., 2010). 

All PGES periods longer than 1s were scored (Surges et al., 2011). 

The beginning and end of every epileptic discharge (on the EEG) and corresponding 

artefact of the clonic movement verified with video (“clonic discharge”) was marked 

in the EEG by an observer (PRB) who was not a neurophysiologist and as such 

effectively blinded for the presence of PGES, as the distinction of artefacts and real 

activity in EEG is difficult to the untrained eye. The EEG signal was visually inspected 

using a 0.3Hz low-pass and 35Hz high pass filter. Sensitivity was 5-7.5uV and a 

longitudinal bipolar montage was used (“double banana”).  

The time of the markers was imported in Matlab® (release 2014b, The MathWorks 

Inc., Natick, MA, USA). The difference between the onset of each two adjacent  “clonic 

discharges” was calculated in ms.  

 

EEG analysis 
The change in clonic frequency in the EEG was quantified by fitting a linear equation 

to the logarithm of the interclonic interval. If the times of successive clonic discharges 

for a given seizure are tk (marked by visual inspection of the EEG traces), then 

exponential slowing down can be formulated as (eq. 4a) 

௞ܫܥܫ ≡ ௞ାଵݐ − ௞ݐ = ;଴݁௔ ఛೖܥ ߬௞ ≡ ௞ାଵݐ)  + (௞ݐ
2ൗ  

(4a) 

The linear fit between the logarithm of the interclonic interval and the middle time of 

the interval between each two successive clinic discharges ߬௞ provides the quantity that 

characterises the decrease of the rate of “clonic discharges”. 

 

log(ܫܥܫ) ≈ ܽ߬௞ + log(ܥ଴) +    ߝ

(4b) 
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In equation (4b) the fitting parameters and log(ܥ଴) are obtained using the standard 

MatLab fitting routine polyfit applied to linear order (n=1). The last term in (4b) is a 

random variable representing the deviation from the fit. Its variation ݎ =  is the (ߝ)ݎܽݒ

residual variance after the fit. The residual variance was used to estimate the “goodness 

of fit” (GOF) of the exponential fit. From (4b) it follows that 

((ܫܥܫ)log)ݎܽݒ ≈ ௩௔௥(ூ஼ூ)
ூ஼ூ

= (ߝ)ݎܽݒ = ;ݎ ܨܱܩ  ≡ 100(1 −        ;(ݎ

 (5) 

The total effect of ictal slowing for each seizure is quantified as 

௧௘௥௠ܫܥܫ ≡ ଴݁௔ ்ೞ೐೔೥ೠೝ೐ܥ    

(6) 

In the above definition the ܥ଴ and a parameters are derived for each case from the linear 

fit procedure in equation (4b), and ௦ܶ௘௜௭௨௥௘  is the total duration of the seizure. The 

actual values of the first and last interclonic interval measured experimentally are 

influenced by noisy perturbations. We therefore use the projected terminal interclonic 

interval values assuming that the noisy component, ε, in equation (4b) has been largely 

filtered out by the fitting procedure. We call the quantity defined in (6) projected 

terminal interclonic interval (ICIterminal).   

To test whether the PGES durations (set to zero if no PGES is detected) { ௉ܶீாௌ}and the 

corresponding {ܫܥܫ௧௘௥௠} of the convulsive seizure are functionally related, we used the 

unidirectional ℎଶ nonlinear association measure (Kalitzin et al., 2007). The association 

index estimates the variance of one time series, x, that can be explained by the variance 

of a second time series, y, and in this way quantifies the exactness of the best functional 

map between the two time series.  

ℎଶ(ݔ, (ݕ = 1 − ௩௔௥(௫|௬)
௩௔௥(௬)

  

 (7) 

The unidirectional nature of the index (6), (or the non-symmetric relation  ℎଶ(ݔ, (ݕ ≠

ℎଶ(ݕ,  reflects the fact that not all functions are invertible. A surrogate-based test ,((ݔ

that establishes the statistical significance of the ℎଶ index was derived (i.e. estimates 

the probability of obtaining the given association index by chance). In the present study 

we chose the number of bins, the only instrumental parameter needed, as 10. For the 

statistical significance validation of the associative index, we applied 100,000 surrogate 

tests. The distributions of the ICIterminal quantities ߩ from (6) and the GOF values from 
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(5) as functions of the PGES duration were estimated. The set { ௉ܶீாௌ}  was divided into 

bins with unequally spaced borders at [0 10 50 100 200 500] seconds. Significant 

differences in the corresponding distributions were detected using the non-parametric 

Kruskall-Wallis test. 

 

Results 

Characteristics of the neuronal mass model under stationary parameters 
To elucidate the type of dynamics underlying seizure termination and PGES, we created 

a computational model, which we first analysed under stationary parameters. The entire 

system has three different dynamic regimes depending on the connectivity g, shown in 

figure 2 (Koppert et al., 2014). For lower values of g the system is not excitable. This 

state represents PGES, as an extreme of the postictal state (blue region on the left in 

figure 2). For higher values of g, the system is in a stable state depending on the initial 

conditions or external perturbations. This represents normal brain functioning. Finally, 

when g is large, the system has only one asymptotically stable state (attractor), which 

is a limit cycle of all units oscillating synchronously, representing an epileptic seizure. 

We reproduced the above model in the interaction term as previously with only the real 

components of the units (Koppert et al., 2014). Each individual unit has one state 

(embedded properties), while the system of connected units can have different states. 

We identify these states and the transitions between them as emergent properties of the 

model.  

 

Characteristics of the neuronal mass model with activity-dependent plastic 

feedback parameter dynamics  
To make the model transition autonomously between seizures, postictal periods and 

normal periods, we introduced random noise and a negative feedback plasticity rule 

that drives the connectivity g to smaller values whenever the global synchronised 

activity of the system exceeds a certain threshold (equation (2)). When random 

fluctuations bring the system above the “recruitment threshold”, the system enters full 

synchrony or a “seizure” state. Figure 2 shows a simulated trajectory (red line with 

arrows) as an example of a succession of these dynamic states: from the seizure state 

and to the non-excitable postictal state and back to the normal state. The transition to 

the postictal state is determined by the influence of the connectivity change (equation 
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2) causing a transition to a temporary state of low inter-unit connectivity, with low 

values of the connectivity parameter g, where the system is silent and non-excitable. 

The connectivity then gradually increases again until the system is in its normal state. 

The system stays in its homeostatic domain (“normal operation”) most of the time, but 

it can make a transition to a fully synchronised state (“seizure”) because of external 

input or random noise fluctuations exceeding the recruitment threshold.  

 

Predictions about seizure termination according to the neuronal mass model  
Our computational model has three essential features that were used to analyse the 

human EEG data of convulsive seizures. First, the shapes of the distributions and the 

parameter values suggest that the duration of the “ictal” (α=237.6, 95%CI [180.1 - 

313.5]) and “PGES” (α=21.2, 95%CI [16.1 – 27.9]) epochs have deterministic 

properties. In figure 3, the distributions of the epoch lengths and their corresponding 

gamma-distribution fits are shown. This leads to the first hypothesis (H1): the durations 

of the convulsive seizure and PGES events in humans display distributions 

corresponding to deterministic termination processes. The second feature of the model 

is that seizure termination is influenced by the connectivity parameter g. This suggests 

the existence of a measurable quantity, reflecting changes in connectivity, that changes 

during a seizure until its termination. In our model, we coupled the evolution of 

connectivity parameter g to the global level of synchronisation of the system as 

expressed in the first line of equations (2), enabling the measurement of the interval 

between modelled clonic bursts or interclonic interval. Figure 4A shows that the 

interclonic interval increases as a function of the time elapsed from the start of the 

seizure. The connectivity changes exponentially as the seizure progresses 

(log(interclonic interval)~time), and the terminal value of the interclonic interval 

correlates strongly with the duration of the “PGES” state in the model (Fig. 4B, 

h2=0.82). Figure 4C shows the relation between connectivity parameter g and PGES 

duration, and between the terminal interclonic interval and the terminal value of g (Fig. 

4D). It was previously observed that interclonic intervals increase in a logarithmic 

fashion (i.e. interclonic interval~log(time)) towards the end of a convulsive seizure 

(Jirsa et al., 2014). Our second hypothesis (H2), derived from our model and from 

clinical observations is that the interclonic intervals increase exponentially towards the 

end of the seizure (Beniczky et al., 2014; Conradsen et al., 2013). This may be an 
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epiphenomenon of the decrease of the connectivity g facilitating the termination of the 

seizure in the model. Lastly, our third and most important hypothesis (H3) is that the 

interclonic interval at the end of a convulsive seizure is associated with the duration of 

the following PGES period. This is motivated by the observation in our model that the 

dynamics of the connectivity parameter g during a seizure are involved in seizure 

termination and lead to a “PGES” state of suppressed activity (figure 2). The duration 

of this period is determined by the time needed for the connectivity parameter g to re-

enter the normal operational state. In the absence of noisy input, this time depends on 

the value of the connectivity parameter g when the seizure terminates. Accordingly, the 

model shows that the duration of the postictal period is related to the connectivity 

parameter at the end of the seizure reflected by the oscillatory frequency of the model, 

which, we hypothesise in H2, corresponds to the interclonic interval. 

In the next section, these three features deduced from our neuronal model are tested in 

human EEG recordings of convulsive seizures.  

 

Gamma distribution of human seizure and PGES durations 
Of the 48 convulsive seizures, 37 ended with PGES (see table 1). Analogous to the 

model data, the duration of the seizures and PGES periods was assessed. The 

distribution of the durations and corresponding gamma-distribution fits are shown in 

figure 5. The seizure duration varied from 45 to 828s and PGES periods lasted 2 to 

252s. The distribution of the durations of PGES (α=1.537 [95% CI 1.014-2.32]) in 

human EEG suggests a deterministic process. We confirm previous observations of a 

deterministic process probably underlying convulsive seizure duration (α=2.660 [95% 

CI 1.823-3.880]. Both findings are in line with H1 from the model.  

 

Clonic slowing at the end of a convulsive seizure follows an exponential 

pattern 
The convulsive seizures in our sample ended with a clonic frequency between 0.5 and 

1.5Hz, estimated by visual inspection of EEG traces of epileptic discharges and video 

recordings of corresponding clonic movements (“clonic discharge”). The clonic 

frequency decreased exponentially in most seizures. Examples of the linear fit of the 

logarithm of the interclonic interval from single seizures, as a function of time from 

clonic phase start, are shown in figure 6. The averaged goodness of fit for all 48 



Dynamics of seizure termination 
 

13

convulsive seizures was 73%, with standard deviation 14%. This validates hypothesis 

H2 from the model. We compared the exponential fit of the interclonic intervals in our 

sample of 48 seizures to the logarithmic fit previously reported (Jirsa et al., 2014) and 

to a power law fit. The results are shown in supplementary figures S1, S2, S3. The 

systematic errors of these three fits were similar. The Wilcoxon signed rank test showed 

that in our sample, the exponential fit was equal to the power law fit, but explained the 

clonic slowing down better than the logarithmic fit, even if by a moderate margin (see 

figure S4).  

 

Clonic slowing is associated with PGES duration 

The exponential fit of clonic slowing was used to estimate the terminal value of the 

connectivity parameter at the end of real seizures, in analogy with the model. This value 

(projected terminal interclonic interval, ICIterminal) was then correlated with the 

occurrence and length of PGES. A scatter plot depicting the ICIterminal and PGES lengths 

is shown in figure 7. If there was no PGES the value of PGES was set to zero. ICIterminal 

explained 41% of the variance in PGES duration: h2=0.41, p<0.02.  PGES duration 

explained 34% of the variance in ICIterminal: h2=0.34, p<0.01 (figure 7). This is in 

keeping with H3, that the ICIterminal, possibly reflecting the decrease in connectivity, is 

correlated with PGES occurrence and duration. The larger the total deceleration effect, 

the longer PGES lasts. Several seizures in our sample with a marked interclonic interval 

increase, however, did not end with PGES, but there were no seizures without 

interclonic interval increase that ended with PGES. This makes clonic slowing a highly 

sensitive predictor of PGES in our data sample. The strongest association is seen 

between clonic slowing leading to a long ICIterminal and long PGES. The goodness of fit 

increased when seizure termination is followed by a longer PGES period. This 

corroborates with H3, i.e. that deterministic dynamics, typical of long ICIterminal, also 

determine the presence and duration of PGES. In line with previous studies (Lhatoo et 

al., 2010; Semmelroch et al., 2012; Seyal et al., 2012; Surges et al., 2011), there was 

no correlation between the duration of the seizure and the ICIterminal  in our sample 

(h2=0.15, p<0.46). 

 

Discussion 
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We combined computational modelling and human EEG recordings of convulsive 

seizures, to show that 1) probability distributions of the durations of ictal and postictal 

periods are indicative of deterministic processes; 2) the interclonic interval increases in 

an exponential manner during human seizures, which is in accordance with the model 

and may reflect a decrease in neuronal network connectivity that in our model leads to 

seizure termination and PGES and 3) the projected terminal interclonic interval 

(ICIterminal) is associated with the occurrence and duration of PGES. The results are in 

agreement with the hypothesis that a neuronal mechanism that underlies transitions 

from ictal to postictal and from postictal to normal states may be activated in response 

to total synchronisation during a convulsive seizure.  

Gradual slowing of epileptic bursts and clonic frequency towards the end of seizures is 

frequently observed, but not fully understood (Conradsen et al., 2013; Panayiotopoulos 

et al., 2010; Truccolo et al., 2011). Our findings suggest that this phenomenon may be 

related to plastic changes in functional connectivity. Several studies report on 

dynamical changes during the ictal state. Animal models of focal epilepsy have shown 

that the excitatory-inhibitory balance changes during a seizure, in line with the 

dynamics in our study (Boido et al., 2014; Žiburkus et al., 2013). Towards the end of a 

seizure, both excitatory and inhibitory neuron populations become increasingly active; 

this may lead to increased burst activity and longer inter-burst intervals (Boido et al., 

2014). Interneurons also receive strong excitatory input, leading to continuous 

activation of the inhibitory inputs to pyramidal cells, and seizure termination (Žiburkus 

et al., 2013). Recent studies showed changes in high-frequency oscillatory dynamics 

and increased spatial and temporal correlation in human EEGs during the ictal state, 

providing additional evidence for plastic changes towards the end of a seizure leading 

up to seizure termination (Kramer et al., 2012; Stamoulis et al., 2013).  

Transitions from ictal to postictal states are clinically important in view of SUDEP 

following PGES and status epilepticus. Cardiorespiratory mechanisms, possibly 

mediated by brain stem dysfunction were suggested to play a role in SUDEP (Aiba and 

Noebels, 2015; Mueller et al., 2014; Ryvlin et al., 2013). The successful modelling of 

the transition from ictal to postictal state in our neural mass model suggests that a PGES 

state can be caused by neuronal mechanisms, although other factors may contribute. 

Neuronal exhaustion was previously suggested as a possible mechanism of PGES, but 

seizure duration as such, was not associated with PGES in our sample and others, 

making neuronal exhaustion an unlikely cause of seizure termination and PGES (Freitas 
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et al., 2013; Lamberts, Gaitatzis, et al., 2013; Lamberts, Laranjo, et al., 2013; Lhatoo 

et al., 2010; Semmelroch et al., 2012; Seyal et al., 2012; Surges et al., 2011).  It is 

possible that several pathways lead to PGES: in addition to EEG suppression induced 

by diffuse cortical inhibition, EEG suppression can also be induced by hypoxia, 

hypotension and asystole, which may all occur in the postictal state (Bozorgi et al., 

2013; van Dijk et al., 2014; Massey et al., 2014; Moseley et al., 2013; Ryvlin et al., 

2013; Surges and Sander, 2012).  

Our results show characteristics of global seizure dynamics, but cannot exactly predict 

what neurophysiological substrate causes both seizure termination and PGES. A variety 

of different mechanisms and mediators may be involved, such as adenosine and 

potassium. An in vitro study showed that synchronous high-frequency firing of 

neurons, analogous to the ictal state, causes release of adenosine (Lovatt et al., 2012). 

In vivo, adenosine concentration rises sharply during the last phase of a seizure in swine 

and humans, reaching a maximal level after seizure termination (Van Gompel et al., 

2014). A model in which the transition from high frequency to low frequency 

discharges in the course of a seizure is mediated by an increase in the Ca-dependent 

K+ current, leading to an increase of extracellular K+ has been proposed (Somjen et al., 

2008). The authors show that an overload of [K+]o, can initiate spreading depression, 

and thus termination of seizure discharges (Somjen et al., 2008). Another 

computational study linked seizure termination and postictal depression to the complex 

interaction between sodium, potassium and chloride concentrations (Krishnan and 

Bazhenov, 2011). These two studies demonstrate processes at a microscopic level, 

which are analogous to the transition from seizure to PGES at a macroscopic level that 

we describe. These processes may account for the reported decrease of functional 

connectivity and excitability. The translation from the microscopic level of modelling 

to the macroscopic level is a matter of further study. Further investigations are needed 

to determine the exact role of these processes in causing seizure termination and PGES 

in vivo. We hypothesise that a neuronal seizure termination mechanism serves to restore 

normal function and to protect the brain from damage arising from neuronal exhaustion 

and metabolic depletion. Such a mechanism may also prevent status epilepticus or 

seizure clusters. If this “neuronal emergency brake” is activated too strongly or 

persistently, PGES occurs.  

Excessive clonic slowing in relation to PGES may be considered a feature of a critical 

transition, in line with observations of slowing as a generic feature and possible early 
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warning signal in systems approaching a critical transition or ‘tipping point’ (Scheffer 

et al., 2009). Our finding that PGES was always preceded by a marked exponential 

decrease of clonic frequency is important as it may lead to the development of an 

algorithm for real-time anticipation of potentially fatal seizures using motion-detection 

sensors, including remote video detection (Kalitzin et al., 2012, 2016). 

Any computational model of complex systems as the human brain can only account for 

a limited number of properties. Our model is an abstract representation of neuronal 

dynamics. It is, however, capable to predict relevant phenomena, such as the gradual 

change of the ictal state towards its termination. When using computational models it 

is essential to distinguish between embedded (created and pre-tuned) and emergent 

(predictive) properties of the model. In our model, the oscillatory state of the individual 

units is embedded, while the collective dynamics and the transitions between states are 

emergent properties, with potential predictive value. We consider the existence of 

oscillatory states, interpreted as model seizures and their deterministic termination 

mechanism as a built-in property. The existence of “PGES” states and their transient 

dynamics, however, are emergent properties of the collective system dynamics. The 

same holds true for the association between the duration of the PGES state and the value 

of the connectivity parameter g at seizure termination. These emergent properties can 

be qualitatively explained by the phase-space structure shown in figure 2, which can be 

interpreted as an emergent property in its entirety as it cannot be reduced to the 

dynamics of the individual units. The predictive power of our model is also due to its 

autonomous nature. Many computational models of the epileptic condition require the 

adjustment of their parameters in order to change behaviour from “seizure” to 

“normal”. Such models can describe the individual states but will not provide 

predictions, or emergent features, from the dynamics of the transition between those 

states. Our model describes the transitions from ictal to postictal and back to a normal 

state as an autonomous process without any pre-defined parameter alterations. The only 

precipitating factor affecting the deterministic transitions is the stochastic noise present 

in the system. Parameter and dynamic variables fluctuations alone would result in 

random-walk type transitions that are described by gamma distributions with α <=1. 

The case α =1, or Poisson distribution, is characteristic for random transitions with no 

memory from the past states while α <1 represent the more realistic case where the 

system may still float away from the transition region. A deterministic component that 

introduces an additional time scale would result a shift of the α parameter to α >1 values. 
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We did not provide simulation results with various mixing levels of stochasticity versus 

determinism as this was not the primary objective of our study. The validation of the 

hypotheses generated by our model with the human data is not a claim of uniqueness 

of the model but a consistency check. Indeed, any distribution on the positive time axis 

can be represented as a superposition of an infinite number of exponential functions 

(Laplace representation) and a (normalised) superposition of exponential distributions, 

possibly due to a decay process of a multistate system, may also result in a gamma fit 

with α >1.    

Other types of plastic change may exist in addition to the plasticity of the connectivity 

parameter we used in the model. We tested several types of plasticity mechanisms, 

affecting either the unit excitability or the inter-unit connectivity or both. All lead to (1) 

deterministic seizure termination and (2) a transient postictal state with suppressed 

activity and excitability. In all cases, the duration of the postictal supressed state was 

associated with the terminal value of the plasticity parameter. It is, however, the 

particular choice of equations (2) and the interaction term in equation (1) that relates 

the interclonic interval increase during the seizure to the change in connectivity 

parameter g. Other parameter choices did not produce the same effect. Our model may 

be used as a starting point to reconstruct the exact properties of the mechanism of 

seizure termination, using a more detailed model. Our results may not apply to all 

seizure types. A different type of model, for example, predicts a logarithmic 

(ICI~log(t)) evolution of the interclonic intervals preceding a homoclinic bifurcation at 

seizure offset (Jirsa et al., 2014). It was validated in a clinical sample, which does not 

appear, however, to have been selected based on the same seizure criteria as ours (see 

methods). The underlying pathophysiological mechanisms of seizure termination may 

therefore differ. Interestingly, in our sample the systematic errors of the logarithmic 

and power law fits differed little from the exponential fit (see supplementary material). 

Fits based on exponential equations were previously rejected as they can underestimate 

the interspike interval near the end of seizures and, in certain models, predicted that 

spikes would continue after the end of the seizure (Jirsa et al., 2014). In our model the 

parameter evolution law of connectivity parameter g is only valid during the seizure 

periods; thus our model did not predict that spikes continue after seizures termination. 

The exponential fit also did not underestimate the terminal value of g linked to the 

interclonic interval, and correlated with the duration of subsequent PGES. The 

exponential law is covariant with the reference time, as ܫܥܫ௧ = ௨݁௧ି௨ܫܥܫ = ଴ܫܥܫ ,଴'etܫܥܫ =
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௨ܫܥܫ ݁ି௨. The log(t) evolution, however, depends on the exact determination of seizure 

termination time. If the interclonic intervals are increasing exponentially towards the 

end of the seizure, their inverse, the instantaneous clonic frequency F=1/ICI is 

decreasing exponentially. We confirmed this hypothesis in a recent study using optic 

flow video sequences (Kalitzin et al 2016).  

Previous work showed that the probability distribution of the duration of absence 

seizures in humans and rodent and computational models of epilepsy can, in some 

cases, also follow a stochastic pattern (Suffczynski et al., 2006). This suggests that the 

termination mechanism may be defective in certain circumstances, causing seizures to 

terminate due to random fluctuations.  

A computational model is a homogeneous system. We validated its predictions using 

seizures recordings from different individuals, in whom different mechanisms may 

contribute to seizure termination. This probably explains the difference in strength of 

the association between the last interclonic interval and PGES in the model and in 

humans. Ideally, a large number of seizure EEG recordings from the same individuals 

would be needed to confirm this hypothesis. 

The sample size of our human EEG data is limited and surface EEG for postictal 

assessment presents some drawbacks. Artefacts (e.g. nursing interventions, EMG and 

breathing activity) may have contaminated the EEG, thereby preventing precise 

estimation of PGES duration. Despite being a well-defined neurophysiological state 

that is easier to quantify than postictal slowing in general, PGES duration is inevitably 

a semi-exact outcome measure. One way to circumvent this is to use intracranial EEG 

recordings, but because of sparse spatial sampling this will lack a global measure of 

cortical activity. In our subjects anti-epileptic drugs were tapered in the course of 

seizure monitoring. Such tapering may increase the occurrence of PGES (Lamberts, 

Gaitatzis, et al., 2013), and may theoretically alter mechanisms of seizure termination. 

 

Our study demonstrates the power of combining computer modelling and 

neurophysiological observations to formulate testable hypotheses leading to new 

approaches to elucidate epileptic seizure mechanisms in human EEG data.  
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Figure legends 

Figure 1. Schematic representation of the model neuronal network. The model 

consists of 128 fully interconnected units, representing neuronal lumps including 

pyramidal neurons and interneurons. Any two units are equally interconnected. The 

collective output of all units is filtered through a sigmoid function or coherency detector 

(input-output function in inset and equation (2)). The horizontal axis represents the 

collective output of the model, the vertical axis is the detector response. The output of 
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the coherency detector is used as input for the dynamics of the connectivity parameter 

g, which is common for all units.  

Figure 2. Output from the computational model. Results from simulations of the 

system (equation (1)). The system output is generated for 129 values of the connectivity 

parameter g, ranging from 0 to 128 on the horizontal axis, and for 0 to 128 initially 

excited units, indicated on the vertical axes. The background colour represents the 

number of excited units that remain self-sustained according to the dynamics of the 

coupled system of oscillators. All simulations were first done without noisy input and 

without changes of the connectivity parameter g. The blue region corresponds to a non-

excitable state (“postictal”); yellow to a limit cycle state (total synchronisation or 

“seizure”); and the gradually coloured state in the middle, to “normal functioning”, 

where the system sustains its initial state.  

Introduction of noise and plasticity of connectivity g through the coherence detector 

(equation (2)), makes the system transition between the different states (red line). The 

model simulation starts in a “seizure” state. The connectivity parameter g is activated 

above a certain level of synchrony (the input from the coherency detector from fig. 1). 

This “seizure”-induced plasticity of the connectivity parameter g causes termination of 

the “seizure” and drives the return through a “postictal” period to the “normal” state 

which we defined as an excitability threshold 50% higher than that of the homeostatic 

point, indicated in red.  

 

Figure 3. Gamma distributions of ictal, postictal and normal period durations in 

the model. Histograms and fitted gamma functions for the distributions of the  

“seizure” (top frame) and “postictal” (bottom frame) durations as simulated using the 

model. The estimation of the shape parameter α for the fitted gamma-distribution as 

well as the 95% confidence intervals are presented in the text boxes. The data were 

obtained using the standard MatLab® function gamfit.  

Figure 4. Relation between the interclonic interval, connectivity and PGES in the 

model. A: Scatter plot showing the relation between the interclonic interval (ICI, 

vertical axis, logarithmic scale) determined by the strength of the connectivity 

parameter g during simulated seizures and the time elapsed since the beginning of the 

simulated seizure (horizontal axis, in simulation steps). The different data points at each 
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time point represent different simulations. The figure shows that the interclonic interval 

is relatively constant at the start of the model seizure, but varies at the end of the seizure. 

B. The relation between the model terminal interclonic interval (ICITerminal, horizontal 

axis) value and the duration of the PGES state in the model (vertical axis). The non-

linear correlation coefficient h2 shows that the terminal interclonic interval value 

explains 82% of the variability of the PGES duration. C: Scatter plot showing the 

relation between the durations of the simulated PGES states (vertical axis, in simulation 

steps) and the value of the connectivity parameter g at the end of the preceding seizure 

(horizontal axis, dimensionless units). D: the relationship between the terminal value 

of the connectivity parameter g and the terminal interclonic interval in the model.  

Figure 5. Gamma distribution of ictal and PGES period durations in human EEG 

data. Histograms and fitted gamma functions (solid lines) for the distributions of the 

seizure (top frame) and PGES (bottom frame) durations as visually detected from the 

human EEG recordings. The three numbers in the legends give the parameter α (from 

equation (3)) for the fitted gamma-distribution and the corresponding 95% confidence 

interval as obtained from the standard MatLab® function gamfit.  

Figure 6. Linear fit of the interclonic interval in human seizures. Scatter plots of 

interclonic intervals (circles) and best linear fit (solid line) between the time from the 

beginning of the convulsive phase (in seconds, horizontal axis) and the logarithm of the 

interclonic intervals (log(ICI), vertical axis). The figure illustrates the six first seizures 

from the dataset, the fitting algorithm was applied to all 48 cases. 

Figure 7. Relation between interclonic interval and postictal period duration in 

EEG recordings. Scatter plot showing the relation between the terminal interclonic 

interval (ICIterminal) values (in msec, horizontal axis) and PGES duration (in seconds, 

vertical axis). Convulsive seizures that were not followed by a PGES event were 

accounted as 0s. The non-linear association index h2 was determined and shows a 

relatively small, but statistically significant functional relation (p<0.05) between PGES 

duration and ICIterminal in both directions.  

 

 


