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Manuscript 

 

Adeno-associated virus vectors (AAV) have become the leading technology for liver-directed 

gene therapy.1 After the pioneering trials using AAV22 and AAV83 to treat haemophilia B, 

D’Avola et al recently reported the first-in-human clinical trial of adeno-associated virus 

vector serotype 5 (AAV5) in acute intermittent porphyria (AIP).4 Treatment was reported as 

safe but the main surrogate biomarkers of AIP, porphobilinogen (PBG) and delta-

aminolevulinate (ALA), were unchanged. This lack of efficacy contrasts with results from the 

haemophilia B trial using AAV8 capsid by Nathwani et al., which showed a significant and 

long-lasting improvement of the clinical phenotype.3 Haemophilia B is an amenable target for 

successful gene therapy as raising expression of plasma factor IX (FIX) level above 1% can 

modify the phenotype from severe to moderate.3 Development of a variety of capsids for 

clinical application is useful to overcome pre-existing neutralising antibodies. The differences 

in cell-specific transduction by different AAV serotypes are primarily due to specificities in 

cellular uptake or post cell-entry processing. Indeed AAV5 presents several theoretical 

advantages as an alternative capsid to AAV8 for liver-directed gene therapy: suitable liver 

tropism, less off-target biodistribution,5 low seroprevalence in humans and minimal cross-

reactivity with other serotypes.6  

 

Reliability of animal models in capsid testing 

The reliability of the available animal models for comparison of transduction of the liver by 

different AAV serotypes has been questioned7. In the AIP trial4, the high-dose group received 

1.8x1013vg/kg, which is equivalent to the therapeutic threshold needed to achieve a correction 

of the murine phenotype (1.25x1013vg/kg)8 but lower than that required for supra-

physiological enzymatic activity in Rhesus macaques (5x1013vg/kg)5. AAV5 is currently used 



in a clinical trial for haemophilia B with the same transgene cassette used by Nathwani et al.9 

Nine months post-infusion, the low-dose group, who received 5x1012vg/kg, showed a plasma 

FIX of 5.4% (range 3.1%-6.7%; n=5)9 which is similar to the level observed in the high-dose 

group of the AAV8 trial receiving 2x1012vg/kg (plasma FIX of 5.1%, range 2.9%-7.1%; n=6) 

4 months post-infusion.3 These results suggest that, to obtain similar plasma FIX levels to 

those achieved in AAV8 trial, administration of 2.5-fold more AAV5 vector is necessary.  

Although this assumption is made on the basis of a small number of treated subjects, and 

confounded by different methods of production, titration and purification, it supports data 

obtained after intravenous injection in different animal models: 

i) In murine models of AIP, AAV5 resulted in ten-fold less liver transduction compared to 

AAV8.8 

ii) In Gunn rats, AAV5 vector was inefficient at restoring metabolic activity and achieved 3 

times lower copy number compared to AAV8.6  

iii) In Rhesus macaques, AAV5 vector produced slightly lower plasma FIX in adult animals 

with slower kinetics compared to AAV8,10 lower hepatocyte transduction after fetal 

intrahepatic venous injection and higher plasma FIX 2 months post-injection (<1μg/mL (n=3) 

versus 5μg/mL (n=1)).11 

iv) In Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice, AAV5 achieved transduction of ten-fold fewer of 

human hepatocytes than AAV8 (0.1% versus 1.1% respectively).12  

Further results from larger human trials will provide further information on the reliability of 

animal data, which will accelerate the development of liver-directed gene therapy. 

 

Episomal versus endogenous gene expression 

D’Avola et al are the first to report data from human liver biopsies after AAV treatment.4 

Interestingly, the liver vector copy number one year post-injection did not correlate with the 



escalating doses of vector received. This finding is in contrast with the studied tissues from 

animal models 5, 8 or plasma FIX levels in haemophilia B trial.3 In liver biopsies with high 

vector copy number of the transgene codon-optimised PBG deaminase (coPBGD) (Patients 2, 

5, 7), coPBGD mRNA expression compared to endogenous PBGD (normalised by DNA copy 

number) was lower by 45%, 76% and 36% respectively.4 In AAV-mediated gene therapy, 

most of the transgene DNA copies persist as non-integrated episomes. Different episomal 

expression compared to the endogenous gene of interest underpins results observed in an 

ornithine transcarbamylase 13 deficient Spfash mouse model. Untreated Spfash mice with a 5-7% 

wild type residual OTC activity become hyperammonaemic after a shRNA-mediated 

knockdown of the endogenous OTC activity to 0-2.5%. In shRNA-injected Spfash mice, the 

level of AAV-encoded OTC activity required to normalise ammonaemia was threefold higher 

than the residual OTC activity in untreated Spfash mice.14 An AAV pattern of transduction not 

reproducing the physiological metabolic zonation of the liver might have played an additional 

role. Although these findings rely on a small cohort and require caution in interpretation, 

various explanations might account for a different episomal expression such as inadequate 

chromatinisation, incomplete circularisation of the AAV genome altering the constitution of 

the open reading frame for transgene expression, or inverted terminal repeats (ITR) 

recombination. The exact mechanism for this phenomenon is yet to be identified.  

 

Functional metabolic assays as efficacy endpoints in clinical trials 

Finally, the use of metabolite levels as primary endpoint for trials in metabolic diseases can be 

questioned. These surrogate markers often reflect a static picture and remain indirect 

assessments of the metabolic flux and its environmental or epigenetic regulation. Indeed, 

heme biosynthesis is mainly regulated by heme-mediated inhibitory feedback of the 

transcription of ALA-synthetase but other parameters can exert an influence such as glucose 



intake, stress, drugs, circadian rhythm 15 and may potentially affect ALA and PBG results. 

Thus whenever feasible, stable isotope studies would be better indicators of the in vivo 

dynamics of the pathway. For example, oral administration of N15 labelled glycine can 

monitor the biosynthesis of heme and its intermediate compounds in physiology and patients 

with inherited porphyrias.16 This approach has been successfully used in other metabolic 

pathways like the urea cycle to assess ureagenesis utilising either N15 labelled urea in animal 

models after AAV-mediated gene therapy17, 18 or C13 labelled acetate in humans for accurately 

stratifying the disease severity in OTC deficiency.19 Furthermore, the use of clinically 

relevant endpoints would not only provide better assessment of the effect of therapy but may 

be viewed more favourably by regulatory bodies.  
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