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Abstract— This paper studies secrecy transmission with the
aid of a group of wireless energy harvesting-enabled amplify-
and-forward (AF) relays performing cooperative jamming (CJ)
and relaying. The source node in the network does simultaneous
wireless information and power transfer with each relay employing
a power splitting receiver in the first phase; each relay further
divides its harvested power for forwarding the received signal
and generating artificial noise for jamming the eavesdroppers
in the second transmission phase. In the centralized case with
global channel state information (CSI), we provide the closed-
form expressions for the optimal and/or suboptimal AF-relay
beamforming vectors to maximize the achievable secrecy rate
subject to individual power constraints of the relays, using the
technique of semidefinite relaxation (SDR), which is proved to
be tight. A fully distributed algorithm utilizing only local CSI
at each relay is also proposed as a performance benchmark.
Simulation results validate the effectiveness of the proposed
multi-AF relaying with CJ over other suboptimal designs.

Index Terms— Artificial noise, cooperative jamming,
amplify-and-forward relaying, secrecy communication,
semidefinite relaxation, wireless energy harvesting, power
splitting.

I. INTRODUCTION

W IRELESS powered communication network has arisen
as a new system with stable and self-sustainable

power supplies in shaping future-generation wireless
communications [1], [2]. The enabling technology, known
as simultaneous wireless information and power transfer
(SWIPT), has particularly drawn an upsurge of interests
owing to the far-field electromagnetic power carried by
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radio-frequency (RF) signals that affluently exist in wireless
communications. With the transmit power, waveforms, and
dimensions of resources, etc., being all fully controllable,
SWIPT promises to prolong the lifetime of wireless devices
while delivering essential communication functionality, as
will be important for low-power applications such as wireless
sensor networks (WSNs) (see [3], [4] and the references
therein).

On the other hand, privacy and authentication have increas-
ingly become major concerns for wireless communications
and physical (PHY)-layer security has emerged as a new
layer of defence to realize perfect secrecy transmission in
addition to the costly upper-layer techniques. In this regard,
relay-assisted secure transmission was proposed [5], [6]
and PHY-layer security enhancements by means of
cooperative communications have since attracted much
attention [7]–[14], [14]–[17].

In particular, cooperative schemes can be mainly classified
into three categories: decode-and-forward (DF), amplify-and-
forward (AF), and cooperative jamming (CJ) [7] with CJ
being the most relevant to PHY-layer security. Specifically,
coordinated CJ refers to the scheme of generating a common
jamming signal across all relay helpers against eavesdrop-
ping [7], [9]–[11], while uncoordinated CJ considers that
each relay helper emits independent artificial noise (AN) to
confound the eavesdroppers [13], [14]. In addition, when the
direct link is broken between the transmitter (Tx) and the
legitimate receiver (Rx), some of the relays have to be chosen
to forward the information while others will perform CJ [16].
A recent paradigm that generalizes all the aforementioned
cooperation strategies is cooperative beamforming (CB) mixed
with CJ [17], where the available power at each relay is split
into two parts: one for forwarding the confidential message
and the other for CJ.

However, mixed CB-CJ approaches may be prohibitive in
applications with low power devices because idle relays with
limited battery supplies would likely prefer saving power for
their own traffic to assisting others’ communication. In light
of this, SWIPT provides the incentive for potential helpers
to perform dedicated CB mixed with CJ at no expense of
its own power. Motivated by this, our work considers secrecy
transmission from a Tx to a legitimate Rx with the aid of a set
of single-antenna wireless energy harvesting (WEH)-enabled
AF-operated relays in the presence of multiple single-antenna
eavesdroppers. As a matter of fact, cooperative schemes that
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involve WEH-enabled relays operating with dynamic power
splitting (DPS) [18] were early investigated in [19] and [20]
without (w/o) security consideration. References [23], [24],
and [25] advocated the dual use of AN signal for concur-
rently confusing the eavesdropper(s) and satisfying the energy
harvesting (EH) requirements of Rx(s) in the SWIPT multiple-
input single-output (MISO) and fading wiretap channels,
respectively, while our work differs from them in the sense that
our WEH-enabled Rxs will continue performing CB mixed
with CJ for (secrecy) transmission in the second transmit-
slot after harvesting power as well as receiving information
in the first transmit-slot of AF relaying. Reference [26],
in spite of considering secure cooperative beamforming in
a SWIPT-enabled AF relay network, employed conventional
self-powered relay in the first transmit-slot and separate energy
and information Rxs in the second transmit-slot, which also
differs from ours.

In particular, motivated by the strong interest in SWIPT and
the vast degree-of-freedom (DoF) achievable by cooperative
relays, this paper aims to maximize the secrecy rate with
the aid of WEH-enabled AF-operated relays, subject to the
EH power constraints of individual relays. The scenario is
applicable to WSNs, e.g., a remote health system where a
moving patient reports its physical data to a health centre with
the aid of intermediary sensor nodes installed on other patients
in the vicinity. In this paper, we assume that there is no direct
link between the source and the destination, and perfect global
channel state information (CSI) is available for the case of
centralized optimization.

It is worth pointing out that our work also differs from [22]
where an efficient algorithm was proposed to maximize the
secrecy rate by optimizing the PS ratios and AF relay beam-
forming. The difference is two-fold. First, AN was not con-
sidered in the second transmission phase in [22]. Second, they
proposed an algorithm that is shown to converge to only a local
optimum, as opposed to our work that gives the global optimal
solutions for “CB mixed with CJ” with relays operating with
static power splitting (SPS), and “purely CB” with relays
operating with DPS, respectively.

The rest of the paper is organized as follows. Section II
describes two types of WEH-enabled Rx architecture for the
AF relays and defines the secrecy rate of the relay wiretap
channel. Section III then formulates the secrecy rate maxi-
mization problems that jointly optimize the AN (or CJ) and
the AF-relay CB for the WEH-enabled relays operating with
the two types of Rx. The problems are respectively solved by
centralized schemes in Section IV and distributed approaches
in Section V. Section VI provides simulation results to evaluate
the performance of the proposed schemes. Finally, Section VII
concludes the paper.

Notations: We use the uppercase boldface letters for matri-
ces and lowercase boldface letters for vectors. The superscripts
(·)T , (·)†, (·)H and (·)∗ represent, respectively, the transpose,
conjugate, conjugate transpose operations on vectors or matri-
ces, and the optimum. In addition, trace(·) stands for the trace
of a square matrix. Moreover, [·]i, j denotes the (i, j)th entry
of a matrix, while ‖ · ‖ and ‖ · ‖.2 represent the Euclidean
norm and the entry-wise absolute value square of a vector,

Fig. 1. The system model for an AF relay-assisted SWIPT WSN.

respectively. Also, diag(·) denotes a diagonal matrix with its
diagonal specified by the given vector and [·]N

i=1 represents
an N ×1 vector with each element indexed by i . Furthermore,
· and ◦ stand for product and Hadamard product, respectively.
C(R)x×y denotes the field of complex (real) matrices with
dimension x × y and E[·] indicates the expectation operation.
Finally, (x)+ is short for max(0, x).

II. SYSTEM MODEL

In this paper, we consider secrecy transmission in
a SWIPT-enabled WSN as shown in Fig. 1, where a Tx
(Alice) wants to establish confidential communication with the
legitimate Rx (Bob) with the aid of N WEH-enabled sensors
operating as AF relays,1 denoted by N = {1, 2, . . . , N},
in the presence of multiple eavesdroppers (Eves), denoted
by K = {1, 2, . . . , K }, all equipped with single antenna.
Note that we only consider the case of no direct Tx-Eves links
herein for the simplicity of exposition, since eavesdroppers are
assumed to be distributed outside from a “security zone” [34]
centered at the Tx, within which, eavesdroppers are otherwise
detectable by the Tx [35].2 We also assume that there is
no direct link from the source to the destination due to, for
instance, severe path loss.

We consider a two-hop relaying protocol based on two equal
time slots and the duration of one transmit-slot is normalized
to be one unit so that the terms “energy” and “power” are
interchangeable with respect to (w.r.t.) one transmit-slot.

At the receiver of each AF relay, we introduce two types
of WEH-enabled receiver architecture, namely, static power
splitting (SPS) (Fig. 2(a)) and DPS (Fig. 2(b)), both of which
allow the relay to harvest energy and receive information from
the same received signal. Specifically, the receiver first splits
a portion of αi , of the received power for EH and the rest
1 − αi for information receiving (IR), ∀i ∈ N . The αi portion
of harvested power is further divided into two streams with
a fraction ρi of the power used for generating the AN versus
the rest 1 − ρi used for amplifying the received signal, where
yri is the i th element of the received signal yr ∈ C

N×1,
and 0 ≤ η < 1 denotes the EH efficiency. Note that DPS
with adjustable αi ’s is presently the most general receiver
operation because practical circuits cannot directly process the
information from the stream used for EH [18]. Furthermore,
SPS is just a special case of DPS with αi = ᾱi fixed for the

1“N” only refers to the number of active sensors that are within direct
connection to the Tx.

2Note that even if there exist direct links, our problem formulation and solu-
tions are still applicable w/o much difficulties in modification by incorporating
destination-aided AN in the first transmit-slot (see [22]).
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Fig. 2. Architectures of the receiver for WEH-enabled relay.

whole transmission duration. However, SPS, advocated for its
ease of implementation, is introduced separately in the sequel
for its simplified relay beamforming design.

In the first transmit-slot, the received signal at each individ-
ual relay can be expressed as

yri = hsri

√
Pss + na,i , ∀i, (1)

where the transmit signal s is a circularly symmetric complex
Gaussian (CSCG) random variable with zero mean and unit
variance, denoted by s ∼ CN (0, 1), hsri denotes the complex
channel from the Tx to the i th relay, Ps is the transmit power at
the Tx, and na,i is the additive white Gaussian noise (AWGN)
introduced by the receiving antenna of the i th relay, denoted by
na,i ∼ CN (0, σ 2

na
). As such, the linearly amplified baseband

equivalent signal at the output of the i th relay is given by

xri 1 = βi (
√

1 − αi yri + nc,i ), ∀i, (2)

where βi denotes the complex AF coefficient, and nc,i denotes
the noise due to signal conversion from the RF band to
baseband, denoted by nc,i ∼ CN (0, σ 2

nc
). Since xri 1 is con-

strained by the portion of the harvested power for forwarding,
i.e., η(1 − ρi )αi |yri |2,3 βi is accordingly given by

βi =
√

η(1 − ρi )αi |hsri |2 Ps

(1 − αi )|hsri |2 Ps + (1 − αi )σ 2
na

+ σ 2
nc

e j�βi , (3)

where �βi denotes the phase of the AF coefficient for the i th
relay.

Next, we introduce the CJ scheme. Denote the CJ signal
generated from N relays by xr2 = [xr12, . . . , xrN 2]T and
define its covariance matrix as S = E[xr2 x H

r2]. Then the
coordinated CJ transmission can be uniquely determined by
the truncated eigenvalue decomposition (EVD) of S given by
S = Ṽ �̃Ṽ

H
, where �̃ = diag([σ1, . . . , σd ]) is a diagonal

matrix with σ j , j = 1, . . . , d , denoting all the positive
eigenvalues of S and Ṽ ∈ CN×d is the precoding matrix
satisfying Ṽ

H
Ṽ = I . Note that d ≤ N denotes the rank

3Note that the harvested power from the receiving antenna noise is con-
siderably little compared with that transferred by the information signal, and
therefore is safely removed in the sequel [4], [18].

of S which will be designed later. As a result, the CJ signal
can be expressed as

xr2 =
d∑

j=1

√
σ j v j s

′
j , (4)

where v j ’s are drawn from the columns of V , and s′
j ’s

are independent and identically distributed (i.i.d.) complex
Gaussian variables denoted by s′

j ∼ CN (0, 1). On the other
hand, |xri 2|2 ≤ ηρiαi |yri |2, ∀i , denotes the power constraint
for jamming at the i th relay, which implies that

trace(SEi ) ≤ ηρiαi Ps |hsri |2, ∀i, (5)

where Ei is a diagonal matrix with its diagonal ei (a unit
vector with the i th entry equal to 1 and the rest equal to 0).

Note that the CJ scheme proposed above is of the
most general form. For the special case when d = 1,
i.e., xr2 = √

σ1v1s′
1, each relay transmits a common jamming

signal s′
1 with their respective weight drawn from v1 [7],

[11]. This case is desirable in practice since it has the lowest
complexity for implementation. In summary, the transmitted
signal at the i th relay is given by

xri = xri 1 + xri 2, ∀i. (6)

According to (6) together with (1), (2), and (4), the transmit
signal from all relays can be expressed in a vector form as

xr = Dβαhsr

√
Pss + Dβαna + Dβnc +

d∑

j=1

√
σ j v j s

′
j , (7)

where Dβα and Dβ are, respectively, diagonal matrices with
their diagonals composed of (β1

√
1 − α1, . . . , βN

√
1 − αN )

T

and (β1, . . . , βN )
T . In addition, hsr = [hsri ]N

i=1, na =
[na,i ]N

i=1, and nc = [nc,i ]N
i=1.

In the second transmit-slot, the received signal at the desired
receiver, i.e., Bob, is given by

yd = hT
rd xr + nd , (8)

where hrd = [hri d ]N
i=1 comprises complex channels from the

i th relay to the Rx and nd ∼ CN (0, σ 2
nd
) is the corresponding

receiving AWGN. By substituting (7) into (8), yd can be
expressed as

yd = hT
rd Dβαhsr

√
Pss + hT

rd Dβαna

+hT
rd Dβnc + hT

rd

d∑

j=1

√
σ j v j s

′
j + nd . (9)

The received signal at the kth Eve, ∀k ∈ K , is given by

ye,k = hT
re,k Dβαhsr

√
Pss + hT

re,k Dβαna

+hT
re,k Dβnc + hT

re,k

d∑

j=1

√
σ jv j s

′
j + ne,k , (10)

where hre,k = [hri e,k]N
i=1 denotes the complex channels from

the relays to the kth Eve and ne,k ∼ CN (0, σ 2
ne,k
) is the AWGN

at the kth eavesdropper.
The mutual information for the Rx (Bob) is given by

rS,D = 1
2 log2(1 + SINRS,D), and that for the kth Eve is
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rS,E,k = 1
2 log2(1+SINRS,E,k), ∀k, where SINRS,D (c.f. (12))

and SINRS,E,k (c.f. (13)) denote their respective signal-to-
interference-plus-noise ratios (SINRs).

Next, we define the secrecy rate as follows [7], [27].

rsec =
(

rS,D − max
k∈K

rS,E,k

)+
. (11)

III. PROBLEM FORMULATION

A. AN-Aided Secrecy Relay Beamforming for SPS

In this section, we consider the secrecy rate maximization
problem by jointly optimizing the AN beams, relay beam and
their power allocations for WEH-enabled AF relays operating
with SPS, i.e., αi = ᾱi , ∀i , is fixed. For the purpose of
simplifying SINR expressions in (12) and (13), as shown at the
bottom of this page, and facilitating the analysis in the sequel,
we embark on a series of basic variable transformation to yield

rS,D = 1

2
log2

(
1 + Ps |h̃T

sdw1|2
trace(Sh†

rd hT
rd )+wH

1 D ˆsdw1+σ 2
nd

)
, (14)

where w1,i = √
1 − ρi e j�βi ,

[h̃sd ]i � hsri hri d

√
ηᾱi (1−ᾱi )|hsri |2 Ps

(1−ᾱi )(|hsri |2 Ps+σ 2
na )+σ 2

nc
, (15)

and

[D ˆsd ]i,i = ηᾱi Ps |hsri |2|hri d |2((1 − ᾱi )σ
2
na

+ σ 2
nc
)

(1 − ᾱi )(|hsri |2 Ps + σ 2
na
)+ σ 2

nc

, (16)

∀i ∈ N . Similarly by letting

[h̃se,k]i � hsri hri e,k

√
ηᾱi (1 − ᾱi )|hsri |2 Ps

(1 − ᾱi )(|hsri |2 Ps + σ 2
na
)+ σ 2

nc

(17)

and

[Dŝe,k]i,i �
ηᾱi Ps |hsri |2|hri e,k |2((1 − ᾱi )σ

2
na

+ σ 2
nc
)

(1 − ᾱi )(|hsri |2 Ps + σ 2
na
)+ σ 2

nc

, (18)

we have

rS,E,k = 1

2
log2

(
1+ Ps |h̃T

se,kw1|2
trace(Sh†

re,k hT
re,k )+wH

1 Dŝe,kw1+σ 2
ne ,k

)
. (19)

(5) can thus be reformulated as a per-relay jamming power
constraint given by

trace(SEi ) ≤ ηᾱi Ps |hsri |2(1 − |w1,i |2), ∀i. (20)

Now, the secrecy rate maximization problem w.r.t. ρi ’s,
�βi ’s and S for the SPS-based relays can be formulated as

(P1) : max
w1,S

(
rS,D − max

k∈K
rS,E,k

)+
s.t. (20), S � 0.

B. AN-Aided Secrecy Relay Beamforming for DPS

Here, we consider the secrecy rate maximization problem
for WEH-enabled AF relays with adjustable PS ratios {αi } by
jointly optimizing the AN beams, relay beam, WEH PS ratios
{αi }, and AN PS ratios {ρi }. In order to expose (12) and (13)
in tractable forms for the joint optimization, consider the
following variable transformation:

⎧
⎪⎪⎨

⎪⎪⎩

u1,i =
√

αi (1−αi )(1−ρi )
(1−αi )(|hsri |2 Ps+σ 2

na )+σ 2
nc

e j�βi

u2,i =
√

αi (1−ρi )
(1−αi )(|hsri |2 Ps+σ 2

na )+σ 2
nc

, ∀i. (23)

Using this, SINRS,D and SINRS,E,k, ∀k, can be alternatively
expressed as (21) and (22), as shown at the bottom
of the next page, where ssd= [hsri hri d

√
η|hsri |2 Ps]N

i=1,
sse,k= [hsri hri e,k

√
η|hsri |2 Ps ]N

i=1, ∀k, and c0,i =
ηPs |hsri |2, ∀i .

Then, we recast the constraints w.r.t. S, αi ’s, and ρi ’s
to those w.r.t. the transformed variables u1,i ’s and u2,i ’s as
follows.

⎧
⎪⎨

⎪⎩

αi = 1 − |u1,i |2
|u2,i |2

ρi = 1 − |u2,i |2(c1,i |u1,i |2+σ 2
nc |u2,i |2)

|u2,i |2−|u1,i |2
, ∀i, (24)

where c1,i = Ps |hsri |2 + σ 2
na

. Replacing αi ’s and ρi ’s
with (24), (5) is reformulated as

trace(SEi ) ≤ c0,i

(

1 − |u2,i |2(c1,i |u1,i |2 + σ 2
nc

|u2,i |2)
|u2,i |2 − |u1,i |2

)

×
(

1 − |u1,i |2
|u2,i |2

)
, ∀i. (25)

On the other hand, since αi ≥ 0 and ρi ≥ 0, ∀i , it follows
from (24) that

|u1,i |2 − |u2,i |2 ≤ 0, ∀i, (26)

|u2,i |2(c1,i |u1,i |2 + σ 2
nc

|u2,i |2) ≤ |u2,i |2 − |u1,i |2, ∀i.

(27)

As such, the secrecy rate maximization problem for the
DPS-based relays becomes

(P2) : max
u1,u2,S

(
1

2
log2(1+(21))− 1

2
log2(1+max

k∈K
(22))

)+

s.t. (25), (26), (27), and S � 0.

SINRS,D = Ps |hT
rd Dβαhsr |2

trace(Sh†
rd hT

rd )+ σ 2
na

‖hT
rd Dβα‖2 + σ 2

nc
‖hT

rd Dβ‖2 + σ 2
nd

(12)

SINRS,E,k = Ps |hT
re,k Dβαhsr |2

trace(Sh†
re,k hT

re,k)+ σ 2
na

‖hT
re,k Dβα‖2 + σ 2

nc
‖hT

re,k Dβ‖2 + σ 2
ne,k

(13)
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IV. CENTRALIZED SECURE AF RELAYING

In this section, we resort to centralized approaches to solve
problem (P1) and (P2), respectively, assuming that there is a
central optimizer that is able to collect global CSI, perform
the optimization and necessary secrecy code designs, and
broadcast to relays their individual optimized parameters.

A. Optimal Solutions for SPS

To start with, we recast (P1) into a two-stage problem
by introducing a slack variable τ . First of all, we solve the
epigraph reformulation of (P1) with a fixed τ ∈ (0, 1] as

(P1.1) : max
w1,S�0

Ps |h̃T
sdw1|2

trace(Sh†
rd hT

rd )+ wH
1 D ˆsdw1 + σ 2

nd

s.t. (20) and ∀k,

1+ Ps |h̃T
se,kw1|2

trace(Sh†
re,k hT

re,k)+wH
1 D ˆse,kw1+σ 2

ne,k

≤ 1/τ.

Defining f1(τ ) as the optimum value of (P1.1) and denoting
H1(τ ) = τ f1(τ ), the objective function of (P1) is given by

1

2
log2(1 + f1(τ ))− 1

2
log2(1/τ) = 1

2
log2(τ + H1(τ )),

(28)

where (·)+ in the objective function has been omitted and we
claim a zero secrecy rate if (28) admits a negative value. As a
result, (P1) can be equivalently given by

(P1.2) : max
τmin,1≤τ≤1

log2(τ + H1(τ )).

Note that this single-variable optimization problem allows for
simple one-dimension search over τ ∈ [τmin,1, 1], assuming
that H1(τ ) is attainable. As the physical meaning of 1/τ − 1
in (P1.1) can be interpreted as the maximum permitted SINR
for the best eavesdropper’s channel, feasibility for a non-zero
secrecy rate implies that

τ
(a)≥ 1

1 + Ps‖h̃sd‖2‖w1‖2/σ 2
nd

(b)≥ 1

1 + N Ps‖h̃sd‖2/σ 2
nd

= τmin,1, (29)

where Cauchy-Schwarz inequality has been applied in
(a), and (b) follows from |w1,i |2 ≤ 1, ∀i ∈ N .

The above epigraph reformulation of non-convex problems
like (P1) has been widely employed in the literature [17], [32],
and (P1.2) admits the same optimal value as (P1) while
(P1.1) with the optimal τ provides the corresponding optimal
solution to (P1). We summarize the steps for solving (P1)

here: given any τ ∈ [τmin,1, 1], solve (P1.1) to obtain H1(τ );
solve (P1.2) via a one-dimensional search over τ . Before
developing solutions to (P1.1), we have the lemma below.

Lemma 4.1: H1(τ ) is a concave function of τ .
Proof: We only outline the sketch of the proof herein

due to the space limitation. The interested reader can refer
to a longer version of this paper [28, Appendix]. First, we
formulate the dual problem of (P1.1-SDP), and then we
investigate the property of H1(τ ) by looking into the objective
function of the dual problem through strong duality.

Remark 4.1: Using Lemma 4.1, it is easy to verify that
1
2 log2(τ + H1(τ )) is also a concave function of τ according
to the composition rule [29, p. 84], which allows for a more
effective search for the optimum τ , e.g., bi-section method,
than the exhaustive search used in [23]. Moreover, although
H1(τ ) is not differentiable w.r.t. τ , the bi-section method can
still be implemented, and the involved algorithm will be given
later in Section IV-B.

In the sequel, we focus on solving (P1.1). By introducing
X1 = w1w

H
1 and ignoring the rank-one constraint on X1,

(P1.1) can be alternatively solved by

(P1.1-SDR) :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maxX1,S�0
τ Ps trace(X1 h̃

†
sd h̃

T
sd )

trace(Sh†
rd hT

rd )+trace(X1 D ˆsd )+σ 2
nd

s.t.
Ps trace(X1 h̃

†
se,k h̃

T
se,k )

trace(Sh†
re,k hT

re,k )+trace(X1 Dŝe,k )+σ 2
ne,k

≤ 1
τ − 1, ∀k,

trace((S + ηᾱi Ps |hsri |2 X1)Ei ) ≤ ηᾱi Ps |hsri |2, ∀i.

Note that the objective function has been multiplied by τ
compared with that of (P1.1) for ready computation of H1(τ ).

Although (P1.1-SDR) is made easier to solve than (P1.1)
by rank relaxation, it is still a quasi-convex problem con-
sidering the linear fractional form of the objective function
and constraints [36], to which Charnes-Cooper transforma-
tion [30] will be applied for equivalent convex reformulation.
Specifically, by substituting X1 = X̂1/ξ and S = Ŝ/ξ into
(P1.1-SDR), it follows that

(P1.1-SDP) :
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxX̂1,Ŝ�0,ξ≥0 Ps trace(X̂1h̃
†
sd h̃

T
sd)

s.t. trace(Ŝh†
rd hT

rd )+ trace(X̂1 D ˆsd)+ ξσ 2
nd

= τ,
( 1
τ − 1

) (
trace(Ŝh†

re,k hT
re,k)+ trace(X̂1 Dŝe,k)+ ξσ 2

ne,k

)

≥ Ps trace(X̂1 h̃
†
se,k h̃

T
se,k), ∀k,

trace((Ŝ + ηᾱi Ps |hsri |2 X̂1)Ei ) ≤ ξηᾱi Ps |hsri |2, ∀i.

Problem (P1.1-SDP) can now be optimally and efficiently
solved using interior-point based methods by some off-the-
shelf convex optimization toolboxes, e.g., CVX [31].

SINRS,D = Ps |sT
sd u1|2

trace(Sh†
rd hT

rd )+ σ 2
na

uH
1 diag(c0 ◦ ‖hrd‖.2)u1 + σ 2

nc
uH

2 diag(c0 ◦ ‖hrd‖.2)u2 + σ 2
nd

(21)

SINRS,E,k = Ps |sT
se,ku1|2

trace(Sh†
re,k hT

re,k)+ σ 2
na

uH
1 diag(c0 ◦ ‖hre,k‖.2)u1 + σ 2

nc
uH

2 diag(c0 ◦ ‖hre,k‖.2)u2 + σ 2
ne,k

(22)
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Proposition 4.1: We have the following results:

1) The optimal solution to (P1.1-SDP) satisfies
rank(X̂

∗
1) = 1;

2) X̂
∗
1 = ŵ

∗
1ŵ

∗H
1 , where ŵ

∗
1 is given by

ŵ
∗
1 =

√√
√
√τ − ξ∗σ 2

nd
− trace(Ŝ

∗
h†

rd hT
rd )

trace(ŵ1ŵ
H
1 D ˆsd)

ŵ1, (30)

in which ŵ1 is given in Appendix;
3) rank(Ŝ

∗
) ≤ min(K , N).

Proof: Please refer to Appendix.
Proposition 4.1 implies that the rank-one relaxation of

(P1.1-SDR) from (P1.1) is tight for any given τ . The ρ∗’s and
�β∗

i ’s can thus be retrieved from the magnitude and angle of
w∗

1, respectively, by applying EVD to X∗
1.

B. Proposed Solutions for DPS

Similar to Section IV-A, in this section, we aim at solving
the two-stage reformulation of (P2) by introducing a slack
variable τ ∈ [τmin,2, 1]. First, for a given τ , we solve

(P2.1) : max
u1,u2,S

(21) s.t. (22) ≤ 1

τ
, ∀k, (25) − (27).

Next, denoting τ f2(τ ) by H2(τ ) (c.f. (31)), where f2(τ ) is
the optimum value for problem (P2.1), we solve the following
problem that attains the same optimum value as (P2):

(P2.2) : max
τ

log2(τ + H2(τ )) s.t. τmin,2 ≤ τ ≤ 1,

where τmin,2 is similarly derived as τmin,1 so that we directly
arrive at

τ ≥ 1

1 + Ps‖ssd‖2
∑N

i=1
1

σ 2
nd
(|hsri |2 Ps+σ 2

na +σ 2
nc )

,

(33)

which is denoted by τmin,2. We claim that (P2.2) can be solved
by bi-section for τ over the interval [τmin,2, 1] assuming that
H2(τ ) is valid for any given τ (Otherwise a zero secrecy rate,
i.e., H2(τ ) = 0, is returned.), since H2(τ ) has the following
property.

Lemma 4.2: H2(τ ) is a concave function of τ .
Proof: The proof is similar to that for Lemma 4.1, and

thus is omitted.
It is also seen that how to attain H2(τ ) forms the

main thrust for solving (P2). However, the constraints
in (25), (26) and (27) are not convex w.r.t. u1,i and/or u2,i , ∀i ,
due to their high orders and multiplicative structure. (P2.1)
thus turns out to be very hard to solve in general. To cope

with these non-convex constraints, we introduce the following
lemma.

Lemma 4.3 ([21]): The restricted hyperbolic constraints
which have the form x H x ≤ yz, where x ∈ CN×1, y, z ≥ 0,
are equivalent to rotated second-order cone (SOC) constraints
as follows.

∥
∥
∥
∥

(
2x

y − z

)∥∥
∥
∥ ≤ y + z. (34)

For convenience, denoting |u1,i |2, |u2,i |2, trace(SEi )
by xi , yi , and zi , respectively , ∀i , (25) can be rewritten as

zi ≤ c0,i

(

1 − yi (c1,i xi + σ 2
nc

yi)

yi − xi

)(
1 − xi

yi

)

⇔ zi

c0,i
≤ 1 − xi

yi
− (c1,i xi + σ 2

nc
yi )

⇔ (
σnc yi

)2 +
(√(

1 − zi

c0,i

)
1

c1,i

)2

≤
(

1 − zi

c0,i
− c1,sr,i xi

)(
yi + 1

c1,i

)
. (35)

According to (5) and (23), it is easily verified that 1 − zi
c0,sr,i

−
c1,sr,i xi > 1−ρiαi −(1−ρi)αi ≥ 0. Hence, (35) is eligible for
Lemma 4.3, which is reformulated into the SOC constraint:

∥
∥
∥
∥
∥
∥
∥
∥
∥

2σnc yi

2

√(
1 − zi

c0,i

)
1

c1,i(
1 − zi

c0,i
− c1,i xi

)
−
(

yi + 1
c1,i

)

∥
∥
∥
∥
∥
∥
∥
∥
∥

≤
(

1 − zi
c0,i

− c1,i xi

)
+
(

yi + 1
c1,i

)
. (36)

Similarly, (27) can be simplified as yi (c1,i xi +σ 2
nc

yi ) ≤ yi −xi ,
and after some manipulation, it is recast into a constraint of
the restricted hyperbolic form as

(
σnc yi

)2 +
(√

1
c1,i

)2 ≤ (
1 − c1,i xi

) (
yi + 1

c1,i

)
. (37)

(37) is thus, in line with Lemma 4.3, equivalent to an SOC
constraint given by
∥
∥
∥
∥
∥
∥
∥
∥

2σnc yi

2
√

1
c1,i(

1 − c1,i xi
)−

(
yi + 1

c1,i

)

∥
∥
∥
∥
∥
∥
∥
∥

≤ (
1 − c1,i xi

)+
(

yi + 1
c1,i

)
.

(38)

At last, (26) is a linear constraint w.r.t. xi and yi given by

xi − yi ≤ 0, ∀i. (39)

τ Ps trace(U1s†
sd sT

sd)

trace(Sh†
rd hT

rd )+ trace((σ 2
na

U1 + σ 2
nc

U2)diag(c0 ◦ ‖hrd‖.2))+ σ 2
nd

(31)

1 + Ps trace(U1s†
se,k sT

se,k)

trace(Sh†
re,k hT

re,k)+ trace((σ 2
na

U1 + σ 2
nc

U2)diag(c0 ◦ ‖hre,k‖.2))+ σ 2
ne,k

≤ 1

τ
(32)
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Note that (25)–(27) have so far been equivalently trans-
formed into the SOC constraints (36), the linear con-
straints (39), as well as (38), the latter two of which are jointly
convex w.r.t. xi and yi , ∀i . However, (36) is still not convex
w.r.t. zi , ∀i , yet. To circumvent this, in the sequel we propose
to solve problem (P2) by alternating optimization. The upshot
of the algorithm is that first we fix S by S and thus zi by
z̄i = trace(SEi ), ∀i , and solve problem (P2′)4 to find the
optimal {α∗}, {ρ∗} and {�βi } via (P2′.1) and (P2′.2); then
with ᾱi = α∗

i , ∀i , we devise the optimal solution derived in
Section IV-A to obtain the optimal CJ covariance, viz, S∗, and
thus z∗

i = trace(S∗ Ei ), ∀i ; finally, by updating S = S∗ and
z̄i = z∗

i , ∀i , problems (P2′) and (P1) are iteratively solved
until they converge.

The remaining challenges lie in solving problem (P2′.1)
now that (36), (38) and (39) are all made convex w.r.t. their
variables xi , yi , ∀i . Similar to that for (P1.1), we introduce
U1 = u1uH

1 and U2 = u2uH
2 and exempt problem (P2′.1)

from rank(U1) = 1 and rank(U2) = 1 as follows:

(P2′.1-SDR) :⎧
⎪⎨

⎪⎩

maxU1,U2�0,{xi },{yi } H2(τ )

s.t. (32), ∀k, (36), (38), (39),

trace(U1 Ei ) = xi , trace(U2 Ei ) = yi , ∀i.

Recalling the procedure to deal with (P1.1-SDR), we now
apply Charnes-Cooper transformation to convert (P2′.1-SDR)
into a convex problem, denoted by (P2′.1-SDP), by replacing
U1 and U2 with Û1/ξ and Û2/ξ , respectively. The solution
for (P2′.1-SDP) is tight and characterized by the following
proposition.

Proposition 4.2: We have the following results:

1) The optimal solution to (P2′.1-SDP) satisfies
rank(Û

∗
1) = 1 such that Û

∗
1 = û∗

1 û∗H
1 ;

2) û∗
1 is given by

û∗
1 =

√
τ−ξ∗σ 2

nd
−σ 2

nc trace(Û
∗
2 Crd )−ξ∗trace(Sh†

rd hT
rd )

σ 2
na trace(û1 ûH

1 Crd )
û1,(40)

where û1= (�′ + ∑K
k=1 θ

∗
k Ps s†

se,k sT
se,k)

−1s†
sd ,

Crd =diag(c0 ◦ ‖hrd‖.2);
3) Û

∗
2, of which the diagonal entries compose a vector

denoted by û∗
2, can be reconstructed by û∗

2.
1
2 û∗H

2 .
1
2 ,

where (·). 1
2 denotes the element-wise square root.

Proof: We only outline the sketch of the proof herein due
to the space limitation. The interested reader can refer to a
longer version of this paper [28, Appendix C]. First, we show
that problem (P2′.1-SDR) is equivalent to another problem
w/o equality constraints; next, we devise the Charnes-Cooper
transformation to the equivalent problem and derive its partial
Lagrangian in terms of the optimization variables requiring
proof of rank one; then, in accordance with the resultant
KKT conditions, the rank property of Û

∗
1 is investigated by

discussing the positive definiteness of a constructive matrix as
similar to Appendix.

4Note that we denote problem (P2) ((P2.1), (P2.2)) with fixed S as (P2′)
((P2′.1),(P2′.2)) in the sequel.

TABLE I

ALGORITHM FOR SOLVING (P2)

Remark 4.2: The proof for both Propositions 4.1 and 4.2
relies on an important argument that the dual variables asso-
ciated with X̂1 and Û1 are both shown to take on a special
structure, that is, a full-rank matrix minus a rank-one matrix.
Note that this observation plays a key role in proving the rank-
one property of X̂

∗
1 and Û

∗
1, which is also identified in [17,

Appendix C].
The α∗

i ’s and ρi ’s are thus attained according to (24) via
EVD of U∗

1 and U∗
2. The proposed algorithm for solving (P2)

is presented in Table I.

V. DISTRIBUTED ALGORITHMS

In this section, we investigate heuristic algorithms to solve
problems (P1) and (P2) in a completely distributed fashion.
Note that different from the paradigm of distributed optimiza-
tion that allows for certain amount of information exchange
based on which iterative algorithms are developed to gradually
improve the system performance, we herein assume that each
individual relay can only make decision based on its local
CSIs, namely, hsri , hri d , hri e, ∀i , and there is no extra means
of information acquisition for ease of implementation. The
purpose for such an algorithm is twofold: on one hand, we
aim to answer the question that in the least favorable situation,
namely, no coordination over the relays, how to improve the
achievable secrecy rate of the system? On the other hand, it
provides a lower-bound for the centralized schemes proposed
in Section IV, which sheds light upon the trade-off achievable
between secrecy performance and complexity.

Furthermore, we emphasize the jamming scheme that is
different from the CJ in the centralized schemes. Unlike
the CJ signal coordinately transmitted by all relays, in the
distributed implementation, each relay is only able to generate
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its AN locally, i.e., x′
r2 = [√σ1s′

1, . . . ,
√
σN s′

N ]T , in which
s′

i ’s are i.i.d. AN beams, denoted by s′
i ∼ CN (0, 1). This type

of CJ is known to be uncoordinated with the covariance matrix
given by S = diag([σ1, . . . , σN ]). In this section, we assume
that each relay consumes all of its remaining power from AF
for AN, i.e., σi = ηρiαi Ps |hsri |2, ∀i ∈ N (c.f. (5)). Hence,
the AN design solely depends on αi ’s and/or ρi ’s.

A. Distributed Algorithm for SPS

First, we propose a heuristic scheme for the i th AF relay
to decide on ρi , ∀i , which is given by

ρi = δ

⎛

⎝1 − |hri d |2
max
k∈K

|hri e,k |2

⎞

⎠

+
, (41)

where δ ∈ (0, 1) is a constant controlling the relay’s level of
jamming. For example, a larger δ indicates that each relay
prefers to splitting a larger portion of power for jamming
and vice versa. The intuition behind (41) is that if the i th
relay observes that |hri d |2 ≥ max

kK
|hri e,k |2, which means that

a nonnegative secrecy rate is achievable even if there is only
itself in the system, it will shut down the AN; otherwise, it
will split up to δ portion of ρi for jamming. In an extreme
case of |hri d |2 � max

kK
|hri e,k |2, probably when an Eve is

located within the very proximity of this relay, it allocates
the maximum permissible portion of power, i.e., δ, for AN.

Next, since an individual relay cannot evaluate the secrecy
performance of the whole system, �βi ’s are simply chosen
to be the optimum for the multi-AF relaying w/o security
considerations, i.e., �βi = −�hri d − �hsri , ∀i .

B. Distributed Algorithm for DPS

Following the same designs for ρi ’s and �βi ’s in
Section V-A, the remaining task for WEH-enabled relays oper-
ating with DPS is to set proper values for αi ’s. We choose αi ’s
that maximize the “hypothetical SINR”. This “hypothetical”
SINR may not be the actual SINR for the destination, but
just a criterion calculated based on the “hypothetical” received
signal seen by the i th relay, given by

ỹdi = hri dβi

√
1 − αi

√
Pshsri s + hri dβi

√
1 − αi na,i

+hri dβi nc,i + hri d
√
σi s

′
i + nd , ∀i. (42)

The corresponding SINR is thus expressed as

SINR ỹdi
= η(1 − ρi )Ps |hsri |2
ησ 2

na
+ ησ 2

nc
1−αi

+ f (γi )+ ηρi Ps |hsri |2
, (43)

where

f (γi ) = γi (Ps |hsri |2 + σ 2
na
)

αi
+ γiσ

2
nc

αi (1 − αi )
(44)

with γi = σ 2
nd

Ps |hsri |2|hri d |2 . Consequently, the maximization of

(43) w.r.t. αi , ∀i , is formulated as

(P2-distr.) :
{

minαi

ησ 2
nc

1−αi
+ γi (Ps |hsri |2+σ 2

na )

αi
+ γiσ

2
nc

αi (1−αi )

s.t. 0 ≤ αi ≤ 1.

Proposition 5.1: The optimal αi , ∀i , to (P2-distr.) is

α∗
i = 1

1 +
√

(η+γi )σ 2
nc

γi (Ps |hsri |2+σ 2
na +σ 2

nc )

. (45)

Proof: It is easy to verify that problem (P2-distr.) is
convex and the minimum solution of its objective function
derived from the first-order derivative happens to fall within
the feasible region of αi , which is seen in (45).

With ρi ’s, �βi ’s and αi ’s set, each AF relay is then able to
decide its relay weight and AN transmission.

VI. NUMERICAL RESULTS

In this section we compare our proposed schemes operating
with SPS or DPS with some benchmarks. In the central-
ized case, the optimal solution for SPS in Section IV-A is
denoted by CJ-SPS, while Algorithm I in Section IV-B is
denoted by CJ-DPS. The distributed schemes in Section V-A
and Section V-B are referred to as Distributed-SPS and
Distributed-DPS, respectively. To demonstrate the effective-
ness of our AN-aided secure multi-AF relay beamform-
ing algorithms, we also provide three benchmark schemes:
NoCJ-SPS, NoCJ-DPS and Random PS.5 For NoCJ-SPS, we
solve problem (P1) by replacing S with 0. Similarly, for
NoCJ-DPS, we initialize S = 0 and quit the loop in
Algorithm I after the very first time of solving problem (P2′).
Random PS, on the other hand, picks up i.i.d. αi and ρi

uniformly generated over [0, 1], respectively, and co-phases
�βi = −�hsri − �hri d , ∀i .

Consider that N WEH-enabled AF relays and K eaves-
droppers (only existing outside from the “security zone”) are
uniformly located within a circular area of radius R. We also
assume that the channel models consist of both large-scale
path loss and small-scale multi-path fading. The unified path
loss model is given by

L = A0

(
d

d0

)−κ
, (46)

where A0 = 10−3, d denotes the relevant distance, d0 = 1m
is a reference distance, and κ is the path loss exponent set to
be 2.5. hsri , hri d , and hri e,k , ∀i ∈ N , ∀k ∈ K , are gener-
ated from independent Rayleigh fading with zero mean and
variance specified by (46).

The simulation parameters are set as follows unless oth-
erwise specified: the radius defining the range is R = 5m;
the transmit power at the source is Ps = 40dBm; the noise
variances are set as σ 2

na
= −80dBm, σ 2

nc
= −50dBm,

σ 2
nd

= σ 2
na

+ σ 2
nc

, and σ 2
ne,k

= σ 2
nd

, ∀k; the EH efficiency
is set to be η = 50%. Also, numerical results are averaged
over 500 independent channel realizations.

A. Secrecy Performance by Centralized Approach

Here, we evaluate the performance of the proposed central-
ized designs in Section IV. The efficiency of the alternating
optimization that iteratively attains numerical solution to (P2)

5
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Fig. 3. The secrecy rate by CJ-DPS versus the number of iterations for the
alternating optimization in Table I with Ps = 40dBm, N = 10, and K = 5.

is studied in Fig. 3, which shows the increment of the
achievable secrecy rate after each round of the iteration. The
most rapid increase is observed after the first iteration, which
illustrates that the optimization of the PS ratios, αi ’s, accounts
for the main factor for the secrecy rate performance gains over
a SPS scheme that sets {αi = 0.5}. It is seen that the alter-
nating algorithm converges within the relative tolerance set to
be 10−3, after an average of 5–6 iterations for several channel
realizations, which appears reasonable in terms of complexity.

Fig. 4 shows the achievable secrecy rate for the legitimate
Rx with the increase in the number of AF relays by different
schemes. As we can see, the secure multi-AF relaying schemes
assisted by the transmission of AN outperforms those w/o
AN for both SPS and DPS. In addition, with the increase
in N , the role of CJ gradually reduces for both schemes of
SPS and DPS. This is because as N gets larger, the optimal
designs tend to suppress the interception at the most capable
eavesdropper more effectively with N DoF, enforcing the
numerator of max

k∈K
SINRS,E,k to a relatively low level, which

can also be observed from max
k∈K

rS,E,k in Fig.4(a), and therefore

the optimal amount of power allocated to AN beams inclines
to be little; otherwise the jamming yielded will be detrimental
to the reception at the legitimate Rx.

Fig. 5 shows the achievable secrecy rate for the legitimate
Rx versus the number of eavesdroppers by different schemes.
First, similar to the results shown in Fig. 4, the proposed
AN-aided multi-AF relaying designs operating with
DPS-enabled relays perform best among all the schemes.
Secondly, as K goes up, the AN-aided schemes allow the
secrecy rate to drop slowly, in other words, more robust
against multiple eavesdroppers, while the secrecy rate of
their NoCJ counterparts almost goes down linearly with K .
Furthermore, with K increasing, for example, more than 10,
the increase in the number of relays, from N = 10 to 20,
cannot replace the role of CJ as shown in Fig. 4 and 5, since
in the presence of many eavesdroppers, more relays may also
result in improved eavesdroppers’ decoding ability w/o the
assistance of CJ. It is also noteworthy that with K = 1, there
is little use of CJ by the centralized schemes, which was also
observed in [32].

Fig. 4. Comparison of different schemes with Ps = 10dB for K = 5.

Fig. 5. The secrecy rate versus the number of eavesdroppers with Ps = 10dB
for N = 10 and N = 20, respectively.

Fig. 6 provides simulation results of different schemes by
varying the source transmit power. It is seen that with more
power available at the source, the advantage of CJ is more
pronounced, since given other variables fixed, larger Ps indi-
cates larger feasible regions for (P1) and (P2). Furthermore, as
similarly seen in Fig. 4, with a mild number of eavesdroppers
(K = 5), subject to the same Ps , a large number of cooperative
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Fig. 6. The secrecy rate versus the transmit power with K = 5 for N = 10
and N = 20, respectively.

relays enables more DoF in designing the optimal αi ’s and
�βi ’s, which alleviates the dependence on AN beams to
combat Eves.

It is worthy of noting that there are two other well-known
suboptimal centralized schemes in the literature, namely,
“nulling out the AN at the desired destination [10]”, and
“nulling out the confidential message at the Eves [8]”, denoted
by ZF-D-SPS/DPS and ZF-Eves-SPS/DPS, respectively, in the
sequel. These two schemes are in general acknowledged to
have reasonable performance with less computational com-
plexity. However, since in this paper we mainly focus on the
effectiveness of joint wireless powered CJ and AF relaying
on wiretap channels, we preclude them from the numerical
results to present, but include herein a brief summary of our
comparison studies between the optimal/proposed schemes
and the suboptimal ones abovementioned. We conclude
from simulation results that ZF-D-SPS/DPS schemes achieve
the optimal/proposed solutions with negligible gap, while
ZF-Eves-SPS/DPS schemes are overwhelmingly outperformed
by all the other schemes, especially when there are a mild
to large number of eavesdroppers in the presence. This is
expectable, as the more the eavesdroppers are, the harder the
equivalent channels between the Tx and the eavesdroppers lie
in the orthogonal space of the beamforming direction. More-
over, ZF-D-SPS/DPS schemes only reduce the dimension of
the optimization variables (S) by 1, while ZF-Eves-SPS/DPS
schemes drastically reduce the complexity, because both S = 0
and τ = 1 do not need to be optimized.

B. Secrecy Performance by Distributed Algorithms

Here, we study the performance of the distributed schemes,
namely, Distributed-SPS and Distributed-DPS in Section V.
As mentioned earlier, these heuristics are provided as bench-
marks to demonstrate what can be done under the extreme
“no-coordination” circumstance, in comparison with
Random PS. Note that any other distributed schemes
with certain level of cooperation among relays are supposed
to increase the secrecy performance up to the proposed
centralized algorithms, namely, CJ-DPS and CJ-SPS, at the
expense of extra computational complexity and system
overhead. δ is set to be 0.5.

Fig. 7. The secrecy rate versus the number of AF relays by distributed
algorithms with Ps = 10dB.

Fig. 8. The secrecy rate versus the number of eavesdroppers by distributed
algorithms with Ps = 10dB.

Fig. 7 provides the results for the achievable secrecy rate
of various schemes versus the number of relays. Distributed-
SPS and Distributed-DPS, are observed to be outperformed
by their centralized counterparts though, they are considerably
superior to Random PS. It is also seen that the performance
gap between the centralized and distributed approaches is
enlarged as N increases, which is expected, since larger N
yields more DoF for cooperation that is exclusively beneficial
for the centralized schemes. Furthermore, compared with the
centralized schemes, the distributed ones are more vulnerable
to the increase in the eavesdroppers’ number.

In Fig. 8, we investigate the relationship between the
secrecy rate performance and the number of eavesdroppers
by different methods. As can be observed, compared with the
centralized schemes, the secrecy rates achieved by Distributed-
SPS and Distributed-DPS both reduce more drastically with
the increase in K due to the lack of effective cooperation. Also,
the advantage of DPS over SPS for the distributed schemes
is compromised since αi ’s are not jointly designed with other
parameters. At last, a similar observation has been made as that
for Fig. 7, that is, larger N yields more visible performance
gap between the centralized and distributed approaches.

In Fig. 9, we examine the effect of increasing the transmit
power at the source on the secrecy performance of different
schemes under the same settings as those in Fig. 6. Among all
the presented designs, CJ-DPS still achieves the best secrecy



XING et al.: WIRELESS POWERED COOPERATIVE JAMMING FOR SECRECY MULTI-AF RELAYING NETWORKS 7981

Fig. 9. The secrecy rate versus transmit power by distributed algorithms
with K = 5.

rate as observed in other examples. Also, the fact that larger N
benefits more from cooperative designs is corroborated again
due to the same reason as that for Fig. 7 and 8. Furthermore,
the secrecy rate of Distributed-SPS or Distributed-DPS is
quickly saturated when Ps > 20dB while that for their
centralized counterparts still rises at fast speed.

VII. CONCLUSION

This paper studied secure communications using multiple
single-antenna WEH-enabled AF relays assisted by AN via
CJ for a SWIPT network with multiple single-antenna eaves-
droppers. Using PS at the relays, the achievable secrecy rates
for the relay wiretap channel were maximized by jointly
optimizing the CB and the CJ covariance matrix along with the
PS ratios for relays operating with, respectively, SPS and DPS.
For DPS, Reformulating the constraints into restricted hyper-
bolic forms enabled us to develop convex optimization-based
solutions. Further, we proposed an information-exchange-free
distributed algorithm that outperforms the random decision.

APPENDIX

PROOF OF PROPOSITION 3

The Lagrangian of problem (P1.1-SDP) is given by (47), as
shown at the bottom of the next page, where χ denotes a tuple
consisting of all the primal and dual variables. Specifically, Y 1,
Y 2 and λ are Lagrangian multipliers associated with X̂1, Ŝ and
the first constraint of (P1.1-SDP), respectively; {θk} are the
dual variables associated with the SINR constraint for the kth
Eve, respectively; U = diag([ui ]N

i=1) with each diagonal entry
ui denoting the dual variable associated with the per-relay
power constraint; ζ is the Lagrangian multiplier associated
with ξ ≥ 0. In addition, W 0 = diag([ηᾱi Ps |hsri |2]N

i=1). The
Karush-Kuhn-Tucker (KKT) conditions for (47) are listed as
follows:

Y 1 = −Ps h̃
†
sd h̃

T
sd + λD ˆsd −

K∑

k=1

θk

(
1

τ
− 1

)
Dŝe,k

+
K∑

k=1

θk Ps h̃
†
se,k h̃

T
se,k + W

1
2
0 U W

1
2
0 , (48a)

Y 2 = λh†
rd hT

rd −
K∑

k=1

θk

(
1

τ
− 1

)
h†

re,k hT
re,k + U, (48b)

ζ = λσ 2
nd

−
K∑

k=1

θk

(
1

τ
− 1

)
σ 2

ne,k − trace(W
1
2
0 UW

1
2
0 ),

(48c)

Y 1 X̂
∗
1 = 0, (48d)

Y 2 Ŝ
∗ = 0. (48e)

Pre- and post-multiplying W
1
2
0 with the left hand side (LHS)

and right hand side (RHS) of (48b), respectively, and substi-

tuting W
1
2
0 U∗W

1
2
0 into (48a), Y ∗

1 can be rewritten as

Y 1 = −Ps h̃
†
sd h̃

T
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(
1

τ
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(49)

Introducing the notation of [·]offd to represent a square matrix
with its diagonal entries removed, it follows from (48b) that
[

W
1
2
0 Y 2W

1
2
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1
2
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rd hT
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1
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offd

= 0. (50)

By subtracting (50) from (49), Y 1 can be rewritten as

Y 1 = −Ps h̃
†
sd h̃

T
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(51)

where [·]d denotes a square matrix with only the diagonal
remained. Observing that

(D ˆsd)
−1 Dŝe,k =

[
W

1
2
0 h†

rd hT
rd W

1
2
0

]−1

d

[
W

1
2
0 h†

re,k hT
re,k W

1
2
0

]

d

= diag
(
[|hri e,k |2 / |hri d |2]N

i=1

)
≡ Red,k .

(52)

As a result, Y ∗
1 can be finally recast as

Y∗
1 = −Ps h̃

†
sd h̃

T
sd + � +

K∑

k=1

θk Ps h̃
†
se,k h̃

T
se,k, (53)
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where

� =
[

W
1
2
0 Y 2W

1
2
0

]

d
−
([
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2
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1
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(
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In the following, we show that � + ∑K
k=1 θk Ps h̃

†
se,k h̃

T
se,k

is a positive definite matrix. Note that since � is a diagonal
matrix, its definiteness is only determined by the signs of its
diagonal entries, for which we commence with the discussion
in three difference cases below.

1) Case I: ∃i such that λ−∑K
k=1 θk

( 1
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) [Red,k]i,i < 0.

Since
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0, it follows from (54) that [�]i,i > 0 in this case.
2) Case II: ∃i such that λ−∑K

k=1 θk
( 1
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In accordance with (48b), we have
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3) Case III: ∃i such that λ − ∑K
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≥ 0. It is noteworthy that the number

of i ’s such that λ − ∑K
k=1 θk

( 1
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cannot exceed one. This can be proved by
contradiction as follows. If ∃i1, i2, i1 �= i2, such
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( 1
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to the fact that for any two independent continuously
distributed random variables, the chance that they are
equal is zero.

In summary, [�]i,i ≥ 0, ∀i . If [�]i,i > 0, then it is obvious

that � + ∑K
k=1 θk Ps h̃

†
se,k h̃

T
se,k � 0. Next, we show that it

still holds true in the case that ∃i ′, such that [�]i ′,i ′ = 0,
i ′ ∈ N , by definition. Define the null-space of � by

ψ = {η|η = αei ′ , α ∈ C} and multiply ηH and η, ∀η �= 0,

on the LHS and RHS of � + ∑K
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†
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[h̃se,k]i ′ �= 0 in probability. This completes the proof.
Finally, multiplying both sides of (53) by X̂

∗
1, as per (48d),

we obtain the following equation:
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which further implies that rank(X̂
∗
1) ≤ rank(h̃

†
sd h̃

T
sd) = 1.

In addition, since the optimality of (P1.1-SDP) suggests that
X̂

∗
1 �= 0, rank(X̂
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1) = 1 is thus proved.

As X̂
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1 can be decomposed as ŵ
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Therefore, (56) admits a unique solution ŵ1 up to a scaling
factor, which is given by

ŵ1 =
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Consequently, we have ŵ
∗
1 = βŵ1, where β ∈ R+. On the

other hand, by plugging ŵ
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1 = βŵ1 into the equality constraint

of (P1.1-SDP), we have β =
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ŵ1. (58)

At last, we show 3) of Proposition 4.1. For the case of
K ≥ N , it is obvious that rank(Ŝ)∗ ≤ N . For the case of
K < N , only a sketch of the proof is provided here due to the
length constraint. According to (48b), first it is provable that
λh†

rd hT
rd + U is a full-rank matrix when (P1.1-SDP) obtains

its optimum value; next, observing that rank(Y 2) ≥ N −
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re,k), it follows that rank(Y 2) ≥ N − K
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