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1  Abstract 

 

 

Haematopoietic stem cell transplantation is an increasingly common treatment for children 

with a range of haematological disorders. Conditioning with cytotoxic chemotherapy and total 

body irradiation leaves patients severely immunocompromised. T-cell reconstitution can take 

several years due to delayed restoration of thymic output. Understanding T-cell reconstitution 

in children is complicated by normal immune system maturation, heterogeneous diagnoses, 

and sparse uneven sampling due to the long time spans involved. We describe here a 

mechanistic mathematical model for CD4 T-cell immune reconstitution following pediatric 

transplantation. Including relevant biology and using mixed-effects modelling allowed the 

factors affecting reconstitution to be identified. Bayesian predictions for the long-term 

reconstitution trajectories of individual children were then obtained using early post-

transplant data. The model was developed using data from 288 children; its predictive ability 

validated on data from a further 75 children, with long-term reconstitution predicted 

accurately in 81% of patients.  
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2  Introduction 

Haematopoietic stem cell transplantation (HSCT) is used to treat a range of malignant and 

non-malignant disorders, including leukaemias, immunodeficiencies, metabolic disorders, 

haemoglobinopathies and marrow failure. Prior to HSCT patients usually receive conditioning 

to eradicate disease and reduce or ablate the host immune system to prevent rejection. This 

comes in the form of radiotherapy, cytotoxic chemotherapy,and anti-lymphocyte antibodies. 

Conditioning leaves patients severely immunocompromised and liable to both opportunistic 

infections and re-emergence of latent infections such as adenovirus, cytomegalovirus and 

Epstein-Barr virus. Infection constitutes a major cause of mortality from HSCT. 

Following HSCT, the reconstitution of some haematopoietic cells (e.g. neutrophils) is fast, 

taking a matter weeks. However, the reconstitution of others including CD4 T lymphocytes is 

slow, taking months to years, requiring extended patient follow-up post HSCT. CD4 T cells 

are crucial to immune function, and a recent study in children receiving antithymocyte 

globulin showed successful CD4 T cell reconstitution was associated with improved 

survival 1. 

Identifying patient characteristics associated with slow reconstitution, and predicting 

individual reconstitution trajectories will prove useful in both designing new studies of 

conditioning protocols and in clinical management post-HSCT. Predicting T cell 

reconstitution in children is complex however because the time scales of reconstitution are 

similar to that of immune system development 2. Furthermore, children receive HSCT for a 

variety of reasons and at different ages, so collating large datasets will result in heterogeneity 

in patient characteristics. 

Studies to date have tended to use small homogeneous groups of patients and assessed 

reconstitution by either taking the concentration of lymphocyte subsets at certain pre-
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determined time points after HSCT 3;4;5;6, or measuring the time taken to reach pre-

determined concentrations 1;7;8;9. These approaches do not study the entire population 

receiving HSCT, and through summarising available data, only evaluate the rate or extent of 

the reconstitution, not both.  

A mathematical model of all available data can give both the rate and extent of 

reconstitution by deriving a trajectory for CD4 concentration with time. Mixed-effects 

modelling makes it possible to fit mathematical models to the sparse, uneven and 

heterogeneous data available, while removing bias by accounting for correlations in subjects’ 

data through parameter-level inter-individual variability 10. Such models can be used for the 

design and analysis of clinical trials. Recently it has been shown that using a mechanistic 

model fitted to all data points rather than comparative statistical test at a single time point can 

increase the power to detect drug effects by up to 10-fold 11. Future clinical trials on new 

agents for conditioning using mechanistically modelled CD4 response as an outcome could 

therefore be conducted with substantially fewer patients than a traditional study design. 

In this paper we present a novel mechanistic mathematical model for CD4 T-cell 

reconstitution following pediatric HSCT. To delineate age-related effects from other 

important covariates, we used a priori scaling of production and loss terms in the model. This 

was based on previous models taking T cell receptor excision circle (TREC) and Ki67 

expression to infer changes in thymic output, proliferation and loss with age 12;13. We firstly 

use the model to identify the factors significantly associated with reconstitution, and secondly 

to make individualised predictions for long-term reconstitution using these covariates and 

CD4 T cell counts from the first six months post-HSCT. 

This article is protected by copyright. All rights reserved.



 

3  Results 

Mechanistic model building 

The raw data (CD4 T cell concentrations in blood) from children following HSCT are given 

in Fig 1. A one-compartment turnover model was used whereby new cells enter the 

compartment from the thymus, and cells may then proliferate or die (Fig. 2). Functions were 

included to account for the underlying biology of the system. The homeostatic mechanisms, 

and in particular competition for resources such as cytokines and self-peptide MHC, were 

represented by dependence of both proliferation and loss on cell concentrations 14;15;16;17. 

Age dependence of proliferation and loss were included in the model to account for the 

dynamics of the system known to slow with age 12;13;18. Thymic output was also modelled as 

age dependent as the thymus involutes with age and T cell production decreases. Finally the 

model accounts for the delay to production of T cells by the thymus following HSCT shown 

by analysis of previous data for TRECs and recent thymic emigrants 3;19;20. The 

mathematical functions used are described in the Methods section. 

Parameter estimates for the model-building dataset are given in Table 1. The typical CD4 

T cell concentration returned to 90% of the expected value for age, and then followed the 

expected trajectory of a healthy child. It took on average 22 months for a typical child of 

median age at the time of HSCT to reconstitute to this CD4 concentration for age, varying 

from 17 months for a 1 year old to 33 months for a 10 year old. The mean delay for thymic 

output to recover to 50% production was found to be 5 months. Thymic output recovery was 

fast, with the time taken to recover from 10% to 90% being 3.5 months. After the thymic 

output recovered, the thymic output for a typical child of median age was found to peak at 
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200 cells/day, in the region expected for a healthy child of that age 12;21. The covariates tested 

are listed in Table 2. 

The type of conditioning affects the reconstitution 

Parameter estimates for T cell concentration at the time of HSCT were lower with two of the 

conditioning drugs, alemtuzumab and antithymocyte globulin (ATG). For patients having 

neither of these drugs (n=151), the model parameter estimate for the mean initial CD4 

concentration was 178 cells/μL, while for those who had alemtuzumab (n=158) the estimated 

mean was decreased by 83% to 30.6 cells/μL (P<0.001), and for those who had ATG (n=10) 

by 95% to 8.4 cells/μL (P<0.001). This resulted in a delayed reconstitution (Fig. 3) 

Although the estimated initial mean number of cells in patients who received no 

conditioning (n=41) was unaffected, reconstitution was found to result in a lower long-term 

concentration, below that expected of a healthy child (Fig. 3). 

Leukaemia patients have higher CD4 concentrations 

Leukaemia patients (n=95) were estimated to have a higher long-term CD4 concentration 

following HSCT than those with other conditions (P<0.001) (Fig. 3). Both lymphoblastic 

leukaemia patients (n=45) and myeloid leukaemia patients (n=50) were found to have 

significantly higher long-term CD4 concentrations, although there was no significant 

difference between them (P=0.23).  

Having acute GvHD is associated with a higher initial CD4 concentration 

The estimated mean initial CD4 concentration for patients who had acute GvHD (n=102) was 

33% higher than those for whom there was no reported GvHD (P<0.001) (Fig. 3).  Model 

diagnostics from the full covariate model are given in Fig. 4. 
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Bayesian predictions of reconstitution trajectories 

A separate validation dataset that had not been used for model-building was used to assess the 

predictive ability of the model. To illustrate the model’s potential usefulness, individual 

parameter estimates were generated using CD4 concentrations measured in the 6 months post 

HSCT and the individual’s relevant covariates. These individual parameter estimates were 

used to produce a predicted reconstitution trajectory which was compared with actual post 6-

month measurements not used in the model for up to three years post-HSCT.  

In 81% (n=61) of the patients, the model gave a good prediction, with over 75% of the 

observed data within the model confidence intervals, and the correct trend of CD4 

reconstitution identified. Examples of good predictions in nine patients are highlighted in 

Figure 5), whilst predictions for all patients are in Supplementary Materials (Supplementary 

Fig. 3). The highlighted patients were chosen to have ages from across the spectrum of the 

data and a spread of the covariates used in the model. Patients 102 and 120 were chosen to 

demonstrate that two individuals with similar age and the same covariates can have 

substantially different reconstitution pathways predicted by the model, guided by early CD4 

concentrations. Also of note is patient 130 who from early measurements could be thought at 

risk of poor recovery, but the model showed normal expected long-term recovery, as 

confirmed by later observations. 
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4  Discussion 

A novel mechanistic model of CD4 T cell reconstitution following HSCT in children has been 

developed. HSCTs are performed in heterogeneous groups of patients each requiring a 

stratified approach to conditioning and follow-up treatment. Prolonged CD4 T cell count 

following HSCT leaves patients at risk of mortality and morbidity due to opportunistic 

infection, so understanding factors accociated with reconstitution is vital. Our model now has 

the potential to be used in a clinical trial setting 11 or in multivariable analysis of cohort 

studies 1 to tease out studied treatment effects from other important covariates. Furthermore, 

the model has the ability to predict reconstitution on an individual basis. A major part of the 

clinical management of patients post-transplant is in immunosuppressant dosing to limit 

GvHD whilst preventing graft failure, carried out alongside managing infective and other 

complications with other (potentially interacting) drug and cell therapies. Monitoring CD4 

counts forms an important guide to this process, and Bayesian predictions from our model 

reported alongside CD4 counts will aid clinicians in making treatment decisions in the post-

transplant period. 

Predictions were made from the model for individual patients in another dataset, using 

only their covariates and data up to 6 months post HSCT. Predictions were then validated for 

up to three years after the HSCT, with accurate predictions in 81% of patients tested. Using 

the individual patient’s variance-covariance matrix we were able to provide confidence 

intervals on the predicted trajectory, the size of which being a reflection of the amount of 

information available on that patient. Predictions were formed using data from the first 6 

months. Earlier predictions could be made, but the accuracy of the resulting predictions 

decreased as the confidence intervals of the predictions increased. Similarly, as new 

measurements of CD4 concentrations were taken, the predictions could be updated; with each 
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additional data point, the parameter estimates improve and the confidence intervals decrease. 

With the validating dataset in this study, using data from the first 3 months rather than 6 

increased the size of the confidence intervals by a mean of 10%, while using data from the 

first 12 months decreased confidence intervals by 12%. 

Previous studies have reported a median CD4 count in the range of 100–150 cells/μL at 

three months post HSCT 3;4;5;22 and 500–1000 cells/μL at one year post HSCT 3;5;9, which 

agrees well with the our model output for a typical child aged 37 months of 105 cells/μL at 

three months and 984 cells/μL at one year. Similarly, the time taken to reach 500 cells/μL was 

around 10.1 months (range 1.1–55.3 months) in a previous study 7; our model predicts 7.5 

months for a median-aged child varying from 5.3 months for a one year old to 14.3 months 

for a 10 year old child. Hence the model-based approach we present builds on previous work 

by simultaneously analysing the rate and extent of reconstitution. Furthermore, the model 

appears to give realistic estimates of mean CD4 T cell lifespan of 130, 300 and 550 days for a 

one, 10 and 18 year old respectively. These agree with recent analyses of labelling studies 

with estimates between 222 and 611 (range 167 to 1245) days. 21;23.  

In searching for significant covariates associated with recovery, we firstly sought to 

delineate the effect of age, which is a potential confounder since normal CD4 count changes 

radically with age, and children of different ages will receive HSCTs for different reasons. 

Rather than correct each data point for an age-expected value as has previously been done 24, 

we chose to scale the model parameters to age-expected values using biological prior 

information on thymic output and markers for competition and loss.  

Thymic output for age was predicted from a previous study 13. The absolute value of the 

prediction was uncertain due to a constant for Ki67 expression duration, and more recent 

work has indicated that thymic output could be as little as 10% of that predicted 21. As such, 

we used a scaling factor, , thereby retaining the shape of the expected thymic output with age 
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whlist allowing its magnitude to be informed by the data. Our estimate for  of 23% of that 

previously predicted 13 agrees with these later analyses 21. In addition parameters describing 

thymic recovery post-HSCT were added, the model predicting 90% production for age taking 

around 7 months, matching well the experimental evidence of recovery between 5 and 10 

months from both TREC analysis 19;20 and measures of recent thymic emigrants using CD31 

expression 3.  

The covariates listed in Table 2 were tested. Alemtuzumab and ATG are given as pre-

transplant conditioning to deplete circulating lymphocytes and have long terminal half-lives 

(15–21 days for alemtuzumab 25 and 29.8 days for ATG 26. The finding that these drugs were 

associated with reduced initial CD4 counts was therefore unsurprising. Alemtuzumab and 

ATG decreased the initial number of cells by 85% and 93% respectively, which is in line with 

other studies, where alemtuzumab and ATG were associated with later and slower 

reconstitution in both children and adults 22;27;28. A previous study also found that 

alemtuzumab caused a significantly longer delay to reconstitution than ATG 29, which was 

not observed in the analysis described here, perhaps because our data included very few 

patients who received ATG. 

Those patients who had no pre-transplant conditioning had a reduced mean long-term 

CD4 concentration, which differs from studies showing reduced conditioning was associated 

with increased CD4 concentrations 22;27;28;30. One possible explanation is that pre-transplant 

conditioning creates T-cell space allowing donor T-cells to expand more efficiently. 

Similarly, the finding of increased long-term CD4 concentration for leukaemia patients could 

be due to these patients receiving full myeloablative conditioning, leaving more space for 

donor T cell expansion. 

Our model also predicted that a raised initial CD4 concentration was associated with 

incidence of acute GvHD. This agrees with previous studies that found T-cell depleted grafts 
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to be associated with decreased incidence of acute GvHD 31;32;33;34. The association was 

significant on top of the changes in initial mean CD4 concentration caused by alemtuzumab, 

received by 53% of patients with acute GvHD.  

In the covariate analysis, cord blood transplantation (CBT) was not found to be a 

significant covariate, in agreement with Fernandes et al 35. In the observed data, patients who 

have had a cord blood transplant (n=48) as opposed to peripheral blood or bone marrow 

transplants had a faster reconstitution in the months after the transplant. In the covariate 

analysis, however, these differences were explained by a combination of the effects of age 

and pre-transplant conditioning. CBT patients were younger, with 60% of CBT patients under 

2 years old (n=29) at the time of HSCT in comparison to 37% of the rest of the model-

building dataset and with a median age at HSCT of 1.5 years in comparison to 3.6 years. They 

were also less likely to have had alemtuzumab or ATG, with 83% (n=40) having neither, in 

comparison to 41% of the rest of the transplants. This agrees with other studies which have 

found that age 7 and the omission of ATG 36 can explain the differences observed in the 

reconstitution of patients following CBT.  

In conclusion, a mechanistic model was developed that predicted on an individual basis 

the long-term immune reconstitution of CD4 T cells following HSCT. The model brought 

together for the first time many aspects of the immune system following an HSCT including, 

homeostatic mechanisms, changes to thymic output, loss and proliferation with age, and 

impaired thymic production of T cells in the months following HSCT. By using this 

biological prior knowledge in the model, parameter estimates were able to delineate expected 

age effects from disease and treatment-specific covariates, in addition to separating CD4 

production from loss. These predictions allowed for a more informed assessment of the 

potential long-term position of the patient, and could thus be used to inform clinicians as to 

the necessity of a change in regimen for that individual patient.  
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To our knowledge, this was the first time a mechanistic model has been used to predict 

long-term reconstitution following HSCT in children. As we enter an era of electronic 

hospital records, there is the potential to use these data directly to provide predicted 

reconstitution trajectories automatically for children following HSCT, creating a useful tool to 

inform on the clinical management of these patients. 
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5  Methods 

Data 

The dataset used for model building and covariate analysis was collected during routine 

clinical practice between 2005 and 2011 by the Blood and Marrow Transplant Unit at Great 

Ormond Street Hospital for Children NHS Trust. The validation dataset was collected in the 

same manner between 2010 and 2014. The study was approved by the Great Ormond Street 

Hospital Institutional Review Board and the parents of the patients have provided written 

informed consent for their data to be used in the database according to the Declaration of 

Helsinki. The data comprised CD4 T cell concentrations taken at regular intervals for up to 

seven years after HSCT.  

In the modelling dataset, there were 288 patients who had 319 transplants between them. 

There were 2928 CD4 concentrations in total with a median of 8 (range 1–43) samples taken 

post transplant. In this dataset, 24% died within the 1–6 year follow-up period; of which, 36% 

died from infection, 35% from disease relapse and 15% from acute GvHD. In the validation 

dataset there were 75 patients. A breakdown of the demographics of both datasets is given in 

Table 2. 

Model building 

The rate of change in X(t) (the CD4 T cell concentration with time t after the HSCT) is,  

ௗௗ௧ ܺ = ߣ − ݀ܺ +  (1)  ܺ݌

where λ zero-order thymic output of T cells; d first-order cell loss rate; and p first-order 

proliferation rate. Biological prior knowledge was then incorporated into the model: 

Homeostatic mechanisms and age affect proliferation and loss 
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T cell populations are maintained through proliferation and loss. To survive and proliferate, 

CD4 T cells require interactions with resources, such as cytokines 14;37 and self-peptide MHC 

class II complexes 38. Homeostasis is then maintained through competition for these 

resources 15;16 with proliferation and loss concentration-dependent. To model this, we 

simplify a previous model for the competition effects in T cell homeostasis 17. The resulting 

exponential dependence on concentration represents the simplest non-negative functions, 

whilst adding the fewest parameters to the model. Furthermore the rate of turnover of T cells 

decreases with age 13;18; we use the decrease in Ki67 with age as a marker for proliferation to 

inform the timescales for these changes 12, giving,  

݌ =   ሻ݁ି௖೛ቀଵି೉(೟ሻಿ(ഓሻቁ߬)ݕ଴݌

݀ = ݀଴ݕ(߬ሻ݁ି௖೏ቀ೉(೟ሻಿ(ഓሻିଵቁ,   (2) 

where ܰ(߬ሻ = 924 + 2354݁(ି଴.଴଴ଵ଴ଵଶఛሻ  is the expected total CD4 concentration in cells/μL 

for a healthy child of age τ days 2, and ݕ(߬ሻ = 0.02݁(ି଴.଴଴଴ଶ଻ఛሻ is the proportion of CD4 cells 

expressing Ki67 with age 13.  

Thymic output changes with age 

The thymus reaches full size at 1 year, after which thymic output decreases rapidly as thymic 

epithelial space involutes by 70% over the next 20 years 13;39. This change in production was 

characterised mathematically 12 using TREC dynamics and removing dilution from 

proliferation, leaving the following function describing the thymic output as a function of age 

τ,  

௔௚௘(߬ሻߣ = ௬(ఛሻே೙(ఛሻఊ଴.଴ଶఎ(௖ିఊሻ,  (3) 
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where ௡ܰ(߬ሻ = 496.5 + 2074݁(ି଴.଴଴଴଼଺ଽఛሻ is the expected naïve CD4 concentration in 

cells/μL for a healthy child of age τ days 2, η=0.52 days is the duration of Ki67 expression, 

and c=0.25 and γ=0.08 give the average TREC content of naïve T cells as they leave the 

thymus and of the naïve T cell pool respectively. 

Thymic output is altered by the HSCT 

Evidence suggests that after HSCT, thymic output of T cells takes between 6 and 10 months 

to recover 3;19;20;40. We used a sigmoidal function to model this,  

1 − ௧ఒ೓ߣ௥1 + ሻݐ)ுௌ஼்߂݌ݔ݁ = ଵି௘௫௣൤షమ೟ഊ೓ ൨ଵା௘௫௣ቂఒೝ(ଵି௧ ఒ೓ൗ ቃ
  (4) 

where ߣ௛ gives the time after HSCT that thymic output increases, and ߣ௥ gives the rate of this 

increase. A sigmoidal function of this form was used because it was found during model 

development that models where thymic output could be zero immediately post-transplant 

fitted the data much better. The rate parameter for a standard logistic function was therefore 

increased in order to make the curves much steeper so that thymic output immediately post 

HSCT would be zero or close to zero. This made model fitting unstable and gave unrealistic 

estimates for the recovery rate of thymic output post HSCT, based on evidence from TREC 

analysis. Similarly, this function fitted the data better than a Hill function. Supplementary 

Fig. 2 in the Supplementary Materials demonstrates the effects of the parameters ߣ௛ and ߣ௥. 

The complete model 

The complete model is then,  

ௗௗ௧ ,ݐ)ܺ ߬ሻ = ,ݐ)ߣ ߬ሻ − ݀(ܺ, ,ݐ ߬ሻܺ(ݐ, ߬ሻ + ,ܺ)݌ ,ݐ ߬ሻܺ(ݐ, ߬ሻ,  (5) 

where  
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,ݐ)ߣ ߬ሻ =  ሻ    (6)ݐ)ுௌ஼்߂௔௚௘ߣ଴ߣ

,ܺ)݌ ,ݐ ߬ሻ =  ଴݁௖೛ቀଵି೉(೟ሻಿ(ഓሻቁ    (7)݌ሻ߬)ݕ

݀(ܺ, ,ݐ ߬ሻ =  ሻ݀଴݁௖೏ቀ೉(೟ሻಿ(ഓሻିଵቁ    (8)߬)ݕ

with X(0,τ) the estimated parameter X0. 

Model fitting 

Identifiability analysis using the FME package 41 in R 2.15.1 42, demonstrated that the effects 

of the parameters for the strength of competition for resources, cp and cd, on the curve of the 

reconstitution could be absorbed into other parameters. As such they were fixed to 1. All 

other parameters were estimated with both fixed and random effects, with a full variance-

covariance matrix estimated for the random effects.  All model parameters were lognormally 

distributed and the additive residual error model was applied to log-transformed CD4 counts. 

Non-linear mixed effects (NLME) modelling with NONMEM 7.3 43 was used. The 

Importance Sampling expectation-maximisation algorithm 44 algorithm was used. Quality of 

fit was assessed using diagnostic plots (Fig. 4). Conditional weighted residuals were 

approximately normally distributed with mean 0 and variance 1 and independent of time and 

population prediction. Model misspecification was assessed with a visual predictive check 

(VPC), whereby for each datapoint in the observed data, 600 data points were simulated from 

the model using the parameter estimates and variance-covariance matrix. Having ascertained 

that the model fit the observed data, this ascertained that model-simulated data matched the 

observed data albeit with some deviations at later time points. The VPC was produced using 

PsN 3.5.3 45. 
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Covariate model-building 

A total of 34 covariates were chosen which could potentially influence CD4 reconstitution. 

These fell into the following categories: diagnosis, pre-transplant conditioning, stem cell 

source, post-transplant immunosuppresant regimen, and post-transplant outcomes (e.g. 

GvHD, graft failure, presence of viral infection). All covariates were dichotomous and entered 

the model as follows: ࢋ࢛࢒ࢇ࢜ ࢘ࢋ࢚ࢋ࢓ࢇ࢘ࢇ࢖ ࢒ࢇࢉ࢏࢖࢚࢟ × (૚ +  was the ࢜࢕ࢉࣂ ሻ, where࢜࢕ࢉࣂ 

proportional change in typical parameter value in the presence of the covariate.  Further 

details are given in Supplementary materials. These were included using stepwise covariate 

model-building (SCM)  46 whereby during the forward search covariates were tested on each 

parameter, with the one yielding best fit retained for the next step until no more covariates 

lead to significant improvement in fit. During backwards elimination covariates from the 

forward search are excluded in a step-wise manner with stricter significance criteria. Since 

models are nested, a likelihood ratio test at each step with the difference in −2ln(likelihood) 

asymptotically ࢔࣑૛  distributed (where n is the difference in the number of nested parameters). 

In the forward search we used an inclusion criteria of p<0.01 and in the backwards 

elimination p<0.005, and SCM was implemented using PsN 3.5.3 45.  

Predicting reconstitution from early data and individual covariates 

The population parameter means and variances found from the initial model fitting were used 

as the priors. The posterior individual-level parameter values using data from the first 6 

months post transplant were then found through expectation-only importance sampling steps 

using the covariate model and parameter estimates from the model-building dataset. In this 

process, the conditional (posterior) mean and variance of individual parameters were 

evaluated by Monte Carlo sampling, and the likelihood of these individual parameters was 

maximised given the fixed population means and variances and the individual’s observed 

data 44.  

This article is protected by copyright. All rights reserved.



 

Predicted trajectories were then formed from these individual parameters: 500 sample 

parameter sets were simulated from the parameter means and their variance-covariance 

matrix. From these sample curves, the median and confidence intervals were found for the 

trajectory of that individual’s CD4 T cell reconstitution. 

Code availability 

An R script is included in the Supplementary Materials that produces predictions for an 

individual child. It formats data, runs the NONMEM script with the model also in the 

Supplementary Materials and finally produces a graphical output of the prediction for that 

patient. 
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6  Study Highlights 

• What is the current knowledge on the topic? 

The rate and extent of CD4 T cell recovery post stem cell transplant has been studied 

separately in selected groups of patients through summarising counts at certain time 

points or the time to reach a certain count.  

• What question did this study address? 

Using a mechanistic nonlinear mixed effects model, can we simultaneously model rate 

and extent using data from all available patients with heterogenous diagnoses, stem cell 

sources and therapeutic conditioning protocols? What are the key patient factors 

associated with CD4 T cell recovery?  

• What this study adds to our knowledge? 

     A single mechanistic model can be used to fit heterogeneous data on CD4 T cell 

recovery in children.  The important factors associated with CD4 T cell reconstitution 

have been identified and quantified with time.   

• How this might change clinical pharmacology or translational science 

There are two major uses of the model: Firstly in predicting CD4 T cell recovery it can 

be used to inform future study and/or clinical protocol design of novel conditioning 

protocols; secondly, as a Bayesian tool to predict CD4 T cell recovery in individual 

patients to inform clinical practice.  
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 List of Figures 
   

Figure 1: Data for CD4 T-cell reconstitution following pediatric HSCT (n=319). This is the 
data that was used in the model development and covariate analysis. Each coloured line is the 
data for an individual transplant. The thick black line gives a local regression (LOESS) curve 
for the data. 
 
Figure 2: Schematic of the model. The compartment X(t) represents CD4 T cell concentration 
in the peripheral blood with time t after HSCT. New cells output by the thymus enter the 
compartment at zero-order rate λ and cells proliferate into two cells or die at first-order rates p 
and d respectively. Scaling for age was added to λ, p and d and a function causing a time 
delay in the recovery of λ after transplant was also used. 
 
Figure 3: The effects of the significant covariates (P<0.005, based on a likelihood ratio test) 
on the CD4 reconstitution of patients of 6 months, 12 months, 37 months (median age) and 5 
years old at the time of HSCT. A typical individual is one that is not in each of the covariate 
groups listed. The expected curve of a healthy child uses the function for N(τ) given in the 
Methods section 2. Each other trajectory gives the effects of the significant covariates, 
included through the SCM procedure. Conditioning drugs alemtuzumab (n=158) and ATG 
(n=10) and acute GvHD (n=102) affect initial number of cells, while leukaemia (n=95) and 
having no conditioning (n=41) affect long-term reconstitution. 
 
Figure 4: Diagnostic plots for the model. a and b give population and individual predictions 
versus observations; c and d give conditional weighted residuals (CWRES) against time and 
population prediction respectively; e gives a visual predictive check (VPC): dots give the 
observed data, the solid black line the observed median, and the dashed black lines the 
observed 95% prediction intervals. The grey shaded areas gives the 95% confidence intervals 
for the predicted median and for the predicted 95% prediction intervals. 
 
Figure 5: Examples of predicted reconstitution (9 patients out of the 75 that were modelled) 
where the model achieved a good prediction, listed in age order. The circles are the data 
points that were used to make the predictions, and the crosses are the data not used in forming 
predictions, for comparison to the predictions. The line is the median prediction, with the 
green shaded area giving the 90% confidence intervals. The blue line and shaded area are the 
median and 90% confidence intervals of the expected CD4 concentration of a healthy child of 
this age. 
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predictive ability of the model. 
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Table 1: Typical model parameter estimates with standard deviations, and random effect variances with standard 
deviations. 

 

 Structural Model 
 Parameter Estimate s.d. Ω s.d.
 λ\s\do4(0) Proportion of theoretical 

thymic output 13 (cells/day) 
0.216 0.0711 1.57 0.55

d0 Proportion of expected loss 
(/day) 

0.477 0.0959 1.62 0.386

p0 Proportion of expected 
proliferation (/day) 

0.207 0.0239 0.251 0.0960

X0 Initial concentration of T cells 
(cells/μL) 

168 21.5 1.31 0.206

λ\s\do4(h) Time to recovery in thymic 
output (days) 

133 20.3 1.27 0.247

λ\s\do4(r) Rate of recovery in thymic 
output 

9.66 1.36 1.22 0.431

σ Variance of the residual error 0.219 0.0167 — —
 Covariate Model 
 Parameter Covariate Effect size s.d. p-value
 X0 Alemtuzumab -0.842 0.029 ≪0.001
X0 Antithymocyte globulin -0.939 0.052 ≪0.001
X0 Acute GvHD 0.283 0.196 <0.001
λ\s\do4(0) Leukaemia 1.32 0.442 <0.001
p0 No conditioning -0.844 0.025 ≪0.001

 Parameter estimates and the random effect variances (Ωs) were estimated from the model-building dataset. The standard deviations 
(s.d.) for both the parameter means and for the variances of the random effects were found through 200 bootstrap samples using PsN 
3.5.3 45. The significant categorical covariates were included through multiplication of the parameter by (1+Effectsize), testing the null 
hypothesis that the effect size is zero.    
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Table 2: Percentage breakdown of the demographics and the drugs used for the patients in the 
datasets, all of which were tested as covariates. M: Model-building dataset (n=319), used for 
model building and covariate analysis; V: Validation dataset (n=75), used for assessing the 
predictive ability of the model. 

 

 M V  M V  M V
 % %  % %  % %
 Age at HSCT (years)  Diagnosis  HSCT
    0→1 1619     Immunodeficiencies 4340     1st 8588
    1→2 2116         SCID 2624     2nd 1311
    2→5 2321         Wiskott-Aldrich 4 7    3rd 1 1
    5→10 2431         CGD 4 8 GvHD 
    10→ 1613     Leukaemia 3023     Reported 3260
Sex          ALL 1411         I 1233
    Male 3732         AML 1111         II 1220
    Female 6368     HLH 11 7         III 6 5
Stem cells      Anaemia 7 0         IV 2 1
    Bone marrow 4736     Autoimmune 3 0 Conditioning
    Peripheral blood 3837     Lymphomas 2 0     Fludarabine 2173
    Cord blood 1527 Viruses      Cyclophosphamide 4416
    Combinations 1 0     Cytomegalovirus      Melphalan 3023
Donor type          Positive 3216     Busulphan 2441
    Matched 6352         Negative 6781     Treosulphan 2124
        Sibling 2719         Unknown 1 3     Alemtuzumab 5040
        Family 5 7     Epstein Barr virus      Antithymocyte globulin 316
        Unrelated 3127         Positive 2616     Anti-CD45 4 3
    Mis-matched 3237         Negative 3864     Total body irradiation 14 8
        Sibling 1 0         Unknown 37 3     None 13 5
        Family 2 1     Adenovirus  Prophylaxis
        Unrelated 2936         Positive 33 –     Ciclosporine 8888
        Haploidentical 4 3         Negative 67 –     Methotrexate 2116
        Autologous 1 8       Mycophenolate 5068

 Abbreviations: SCID: severe combined immunodeficiency sydrome; CGD: chronic granulomatous disease; ALL: acute 
lymphoblastic leukaemia; AML: acute myeloid leukaemia; HLH: hemophagocytic lymphohistiocytosis; GvHD: graft 
versus host disease. Positive for CMV, EBV or adenovirus was defined as detectable virus post-transplant.   
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