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Abstract

MRI has recently been applied as a tool to quantitatively evaluate the response to therapy in

patients with Crohn’s disease, and is the preferred choice for repeated imaging. Bowel wall

thickness on MRI is an important biomarker of underlying inflammatory activity, being abnor-

mally increased in the acute phase and reducing in response to successful therapy; how-

ever, a poor level of interobserver agreement of measured thickness is reported and

therefore a system for accurate, robust and reproducible measurements is desirable. We

propose a novel method for estimating bowel wall-thickness to improve the poor interob-

server agreement of the manual procedure. We show that the variability of wall thickness

measurement between the algorithm and observer measurements (0.25mm ± 0.81mm) has

differences which are similar to observer variability (0.16mm ± 0.64mm).

1 Introduction

1.1 Motivation

Crohn’s disease (CD) is an important healthcare problem which affects 700,000 people in the

USA and 500,000 in Europe [1, 2]. CD manifests as a relapsing inflammatory disease that

mainly affects the gastro-intestinal tract, producing disabling symptoms including abdominal

pain, diarrhoea and vomiting, weight loss, loss of appetite, arthralgias (joint paint), fever, and

fatigue [3]. Management of CD is multi-disciplinary and revolves around immunosuppressive

therapy and judicious use of surgical resection. The disease has a lifelong relapsing course with

periods of acute inflammatory activity interspaced with periods of relative quiescence [1, 3].

The key to successful management is correct identification of the active phase such that appro-

priate treatment with immunosuppressive medication can be instigated and remission sus-

tained. Such medications however attract a significant side effect profile and not all patients

respond. Another important facet of disease management is therefore monitoring of therapeu-

tic effect such that treatment regimens can be changed as appropriate. Identification of active

disease and morning of therapeutic effect in CD is problematic [1]. Arguably the gold standard

is endoscopy which can visualise the mucosa of the colon and terminal ileum. However the

PLOS ONE | DOI:10.1371/journal.pone.0168317 January 10, 2017 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hampshire T, Menys A, Jaffer A,

Bhatnagar G, Punwani S, Atkinson D, et al. (2017)

A Probabilistic Method for Estimation of Bowel

Wall Thickness in MR Colonography. PLoS ONE 12

(1): e0168317. doi:10.1371/journal.pone.0168317

Editor: Qinghui Zhang, North Shore Long Island

Jewish Health System, UNITED STATES

Received: February 25, 2016

Accepted: November 29, 2016

Published: January 10, 2017

Copyright: © 2017 Hampshire et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are restricted

form public sharing due to the ethical agreement

for receipt of data to the study authors. Please

contact the study authors for details on requesting

data access: stuart.taylor@ucl.ac.uk.

Funding: This thesis was funded by the MRC

Industrial Collaborative Student (DTA) program

(G0900207-1/1).

Competing Interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: Alex Menys is CEO

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168317&domain=pdf&date_stamp=2017-01-10
http://creativecommons.org/licenses/by/4.0/
mailto:stuart.taylor@ucl.ac.uk


test is highly invasive, expense, and cannot assess extra luminal complications or the proximal

small bowel. Blood and stool tests such as CRP and faecal calprotectin have a role but lack both

sensitivity and specificity. Cross sectional imaging, particularly MRI is increasing using to

diagnose relapse in CD and monitor therapeutic interventions [4]. In the case of MRI, the test

is non-invasive and does not impart ionising radiation. Furthermore it is able to assess both

luminal and extra luminal disease including abscess and fistulation [5]. Various parameters on

MRI have been validated as biomarkers of disease activity against both endoscopy and histopa-

thology. Notably bowel wall thickness, T2 weighted mural signal and contrast enhancement

on post gadolinium T1 weighted images are highly correlated with inflammatory activity [6,

7]. MRI activity scores have been derived which include these parameters. For example the

Magnetic Resonance Index of Activity (MaRIA) score is highly correlated with an endoscopic

activity score (Crohn’s Disease Endoscopic Index of Activity) and includes evaluation of all

these MRI features as well as ulceration by the reporting radiologist [8]. Similarly, Steward

et all developed an MRI activity score using surgical resection specimens and subsequently val-

idated it against endoscopic biopsy [9]. Again the main facets of the scoring system are bowel

wall thickness, T2 mural signal and contrast enhancement. Importantly, this score has recently

been show to accurately reflect therapeutic response [10]. Such scoring systems require good

inter and intra observer variation. Furthermore they are time consuming to apply in clinical

practice. Measurement of bowel wall thickness is a vital part of activity scoring but is subject to

inter-observer variation and is particularly time consuming, requiring manual placement of

electronic callipers by the reporting radiologist. Automation of bowel wall thickness measure-

ment to improve accuracy and efficiency is therefore highly desirable.

1.2 Related Work - Technical

The need for a computer-assisted model for automated detection of mural inflammation in

patients with Crohn’s disease was identified in [11]. The ability to grade disease severity is rec-

ognised as limited due to the weak to moderate interobserver variability of subjective MRI fea-

tures [12]. A pipeline for automated assessment of disease severity was introduced by [13],

including procedures for image analysis, classification and visualisation to predict colonoscopy

disease score. Included is a proposal of a bowel wall segmentation method to allow analysis of

bowel wall thickness as a function of time; a method for registration of Dynamic Contrast

Enhanced MRI (DCE-MRI) images, to allow for generation of accurate Time Injection Curves

(TIC); a method for identification of diseased regions by classification of texture features by

machine learning techniques; and finally a method for effective visualisation of disease by vol-

ume rendering.

In [14] low level features based on image intensity, texture and shape asymmetry are com-

bined with a supervised learning approach to classify patches of pixels in abdominal MRI

images as ‘diseased’ or ‘normal’. Texture maps are created based on Gabor filter banks, and

shape asymmetry features based on entropy of orientation distributions with each patch pro-

viding multidimensional features. A range of classifiers are used: random forests, support vec-

tor machines, and a naive Bayesian classifier giving a high level of classification accuracy. [15]

extend this method to perform efficient classification over a large volume, by first segmenting

the volume into super voxels by a k-means clustering of voxels using image boundary informa-

tion [16]. This allows random forest classification of supervoxels followed by graph cut seg-

mentation to identify contiguous regions of disease. Most recently in [17], feature vectors are

extracted from overlapping 8 × 8 voxel image patches. A query sample selection helps select

the most informative unlabelled patches by visual saliency, allowing a radiologist to classify the
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patches with the most contextual information. Again, graph-cuts are used to segment the vol-

ume based on the image patches to classify areas of disease.

[18] propose a method to perform non-rigid motion correction in free-breathing abdomi-

nal DCE-MRI data. A large number of volumes are dynamically acquired and retrospective

gating used to select those volumes which are in a similar point in the respiratory cycles, based

on the sum-of-squared-differences error between them. A Discrete Cosine Transformation

(DCT) [19] is then used to co-register all selected volumes to a reference volume. The effective-

ness of the algorithm is evaluated by assessment of the TICs in three regions of interest, show-

ing less fluctuation in the gated and registered images, in comparison to the entire dynamic

volume stack.

A method for measurement of wall thickness of the colon using ultrasound has been pub-

lished [20]. Multiple methods are evaluated for segmentation of a single image slice: Otsu’s

thresholding [21], followed by region growing; level set segmentation; adaptive thresholding;

Canny edge detection. The distance across these segmented region is measured and compared

against a human reader. Results for a very small sample size (n = 5) are shown.

1.3 Proposed method

The following contributions are described in further detail in section 2:

• A novel method to automatically track sections of colon, and subsequently make measure-

ments of thickness of circumferential loops of the bowel wall. A state distribution is used to

model the bowel, with each state corresponding to a position, orientation and shape of the

lumen. A Bayesian recursion equation is applied to estimate the posterior density of the state

space, by repeating prediction and measurement steps based on the MRI volume, using a

framework called particle filtering [22]. The resulting density is then used to calculate the

centreline position. Although not applied to the bowel before, this framework has been used

in the tracking of cerebral arterial segments [23].

• A novel method is proposed to estimate the positions of the inner and outer bowel wall by

analysis of cross sections corresponding to the plane perpendicular to the centreline. The

problem is modelled with a MRF, using gradient based metrics extracted from the MRI vol-

ume to assign costs to each possible bowel wall position. Performing inference on this model

allows estimation of the optimal position of the inner and outer bowel wall, and therefore

the thickness. This method is shown to give similar thickness measurements, and a similar

level of inter-observer variability to the human reader.

2 Methods

2.1 Overview

As a first step, the bowel is tracked using the particle filter method described in section 2.2.

The resulting particle information is used to extract a smooth centreline using the fast march-

ing technique described in section 2.5.2. Finally, the positions of the inner and subsequently

the outer bowel wall are computed using image gradient information and a MRF model using

the method described in section 2.6. This overview is shown in Fig 1.

2.2 Particle Filter

The theory and algorithms in [22] can be used to estimate the state of a dynamic system given

a sequence of noisy measurements. They are often used to measure the evolution of state over

time, although any dynamic factor can be substituted. In the following section we propose to
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track the colon by evolving the state of a system containing the central position of the bowel as

well as its orientation and cross sectional shape. Initially the shape will be modelled with an

ellipse with varying radius and orientation. The assumption of smooth variation along the axis

of the structure gives a good argument for the use of a tracking-based solution.

2.3 State Vector

The initial state of the system is modelled as a 15-D vector:

xt ¼ ½cxt cyt czt r11t
r12t

r13t
r21t

r22t
r23t

r31t
r32t

r33t
at bt �t�

T
ð1Þ

¼ ½cTt rTt eTt �
T
; ð2Þ

where ct represents the centre of the structure at time t, rt represents the elements of a refer-

ence frame Rt given by:

Rt ¼

r11t
r12t

r13t

r21t
r22t

r23t

r31t
r32t

r33t

2

6
6
6
4

3

7
7
7
5
; ð3Þ

giving a global orientation, and et represents the ellipse parameters comprising the length of

the ellipse major at and minor bt axes, as well as the orientation ϕt relative to reference

frame R.

2.4 Prediction Model

The state prediction is modelled as an addition of the normal vector to the position vector with

the addition of a zero mean Gaussian noise vector �c:

ct ¼ ct� 1 þ ½r13t
r23t

r33t
�
T
þ �c: ð4Þ

Fig 1. A flowchart providing an overview of the method to perform automated bowel wall thickness measurements.

doi:10.1371/journal.pone.0168317.g001
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Similarly, the ellipse parameters are corrupted by Gaussian noise vector �e:

et ¼ et� 1 þ �e: ð5Þ

The reference frame is however perturbed by a function whose behaviour is defined in the fol-

lowing section:

Rt ¼ fnðRt� 1; �rÞ ð6Þ

2.4.1 Normal Vector Perturbation. Without lack of generality, the mean orientation of

the normal noise vector can be considered to be in the direction (0, 0, 1). This can be repre-

sented in terms of spherical coordinates, with a polar angle �θ and azimuth �ψ as:

�r ¼ ½cos�ysin�c sin�ysin�c cos�c�
T
: ð7Þ

�θ can be sampled from the uniform distribution (displayed in Fig 2):

�y � Uð0; 2pÞ; ð8Þ

and �ψ is normally distributed around 0, such that the samples are more sparse the further the

angle from the pole:

�c � N ð0; s2
c
Þ: ð9Þ

With the assumption that the particle position c
0

t−1 = [0 0 1]T and c
0

t = [cos�θ sin�ψ sin�θ
sin�ψ cos�ψ]T and rotation frames:

R0t� 1
¼

1 0 0

0 1 0

0 0 1

2

6
6
6
4

3

7
7
7
5
; R0t ¼

�a �b cos�y sin�c

�c �d sin�y sin�c

�e �f cos�c

2

6
6
6
4

3

7
7
7
5
; ð10Þ

the variables ϕa, . . ., ϕf of reference frame R
0

t that minimise the twist between frame R
0

t−1 and

R
0

t can be found by sweeping a Rotation Minimizing Frame (RMF) through points c
0

t−1 and

c
0

t using the double reflection method in [24]. This ‘local’ reference frame R
0

t can be used to

update the global reference frame Rt in the state vector using:

Rt ¼ Rt� 1R0t: ð11Þ

2.5 Measurement Model

The proposed model uses cross-sectional radial intensity profiles to assign a probability of the

observed data zt given a state xt. We use the approximation that the colon is topologically

cylindrical, with an elliptical cross-section of varying parameters (see Fig 3). The assumption is

made that the intra-luminal space has a low local intensity, relative to the bowel wall, due to

the ingested contrast agent. At the position of the colon wall, a rapid increase in the image

intensity is observed. It is this increase in image intensity that is detected across the radial

intensity profile by defining an intensity threshold. The likelihood function p(zt|xt) is then

defined using the proximity of the detected boundary points to the predicted ellipse. The
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ellipse boundary positions u are defined as:

uht ¼ Rt

atcosðhÞcosð�tÞ � btsinðhÞsinð�Þ

atcosðhÞsinð�tÞ þ btsinðhÞcosð�Þ

0

2

6
6
6
4

3

7
7
7
5
þ ct; ð12Þ

where h* [0, 2π] and H is the number of sampled positions. Similarly, the unit vector from ct

to each point in u is used to interpolate a radial intensity profile and detect the bowel wall

given by an intensity value exceeding some threshold k. A term is included to penalise states in

which bowel wall is detected within an inner ellipse defined by:

uhinnert ¼ Rt Z

atcosðhÞcosð�tÞ � btsinðhÞsinð�Þ

atcosðhÞsinð�tÞ þ btsinðhÞcosð�Þ

0

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A
þ ct; ð13Þ

Fig 2. Perturbation of the state normal vector from a uniform azimuth and normally distributed polar angle. Here, a set of example samples are

displayed as black markers, about the previous normal vector displayed in blue.

doi:10.1371/journal.pone.0168317.g002
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designed to further discourage crossing of the bowel wall. Lastly, some boundary points may

not be detected, and so these are excluded from the measurement model calculation, but incur

an additional penalty based on the percentage of missing boundary points. A cost function is

then defined as the mean sum of squared distances between the detected boundary points v

and the ellipse u:

Fv;uðvh
i

t ;uhit Þ ¼
P2p

h¼0
jjvhit � uhit jj
Hdetected

: ð14Þ

whereHdetected is the number of detected boundary points. The full measurement model is

then:

dðztjxitÞ ¼
Fv;uðvh

i

t ;uhit Þ
ð1 � �ÞO

; ð15Þ

where U is the percentage of boundary points detected within inner ellipse uhinnert , and O is the

proportion of detected boundary points. The particle weights can be calculated:

qik / q
i
k� 1

expð� WdðztjxitÞÞPNs
m¼1

expð� Wdðztjxmt Þ
; ð16Þ

whereW is a normalising constant and controls the sharpness of the weighting distribution.

The particle filter can be set to run to a maximum number of iterations T, or another termi-

nation criterion set such that a high rate of particle degeneracy is detected [25]. Here, a small

effective sample size cNeff indicates a high variance in the particle weights qi and in turn indi-

cates an unlikely state to represent the tracked bowel. This usually occurs due to local colonic

Fig 3. Measurement of a single state visualised in both crosssection view (left) and radial coordinates (right). Ellipse parameters are visualised in

green, and detected colon wall points are marked in red.

doi:10.1371/journal.pone.0168317.g003
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collapse, large amounts of high intensity intra-luminal matter, or poor image quality due to

image artefact or poor bowel preparation. For this study, termination occurs when cNeff is less

than 1% of the original particle count.

2.5.1 Dynamic bowel wall intensity threshold. For robust tracking of the bowel wall, the

wall intensity threshold kmust be dynamically updated due to the local intensity inhomogene-

ity caused by the MRI bias field, and also the wall intensity inhomogeneity due to variations in

contrast uptake. After each iteration t of the particle filter, voxel intensity values are sampled

from the position of each detected inner wall position P, along the vector which intersects this

position and the position of the centreline Ct. The voxel intensity values are split into two

groups, the wall voxels Vw which start at wall position P and follow vector ~CtP; and the lumen

voxels Vl which follow vector ~PCt . The distance sampled along each vector is set at 3mm as an

approximate bowel wall thickness. Threshold k is found by linear search, such that it maxi-

mises the separation between these two groups:

k ¼ arg max
k

t
X

i2Vw

f>ðV
w
i ; kÞ þ ð1 � tÞ

X

i2Vl

f<ðV
l
i ; kÞ

" #

; ð17Þ

where

f>ðx; kÞ ¼

(
1 if x > k

0 otherwise
; ð18Þ

and

f<ðx; kÞ ¼

(
1 if x < k

0 otherwise
: ð19Þ

2.5.2 Extraction of centreline. After the termination of the particle filter, a centreline is

extracted to allow for subsequent measurement of the bowel wall thickness. A simple averaging

of the particle centreline position at each iteration Ct gives unsatisfactory results in circum-

stances where the particle filter explores multiple pathways, as a mean position may not neces-

sarily lie within the colon lumen. Instead, a speed function is derived from the particle

positions at every iteration, and fast marching used to find the fastest geodesic path from start

to end point. Speed function G can be created by computing the weighted sum of Gaussians:

GðyjÞ ¼
XN

i¼1

qie
jjyj� xijj

2=h2

ð20Þ

where {xi}i=1,. . .,N are the centres of the Gaussians, taken from the centreline positions of each

particle state over all iterations; qi are the weight coefficients taking from the respective particle

weights; and h is the bandwidth parameter of the Gaussians (set experimentally to 3mm). The

sum of Gaussians is evaluated at each of the target points {yj}j=1,. . .,M, in this case the voxel

coordinates of the input image domain in R3. This can be computed efficiently using a fast

Gauss transform function [26]. The centreline can then be extracted by evolving a wave front

across the image domain using the fast marching method [27], solving the Eikonal equation:

GðxÞjrTðxÞj ¼ 1; ð21Þ

where T is time. Centreline path is then found by computing the shortest geodesic distance
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across the resulting distance map from start to end point. A simplified simulation of this work-

flow is demonstrated in Fig 4 and an example result displayed in Fig 5.

2.6 Wall thickness calculation

This section will describe the algorithm used to calculate the bowel wall thickness given a cen-

treline path. To allow for a reference frame to be constructed at each position along the centre-

line C, a Rotation Minimising Frame (RMF) [28] is employed. The properties of such a set of

reference frames are such that the magnitude of angles between the reference vectors of

Fig 4. An overview of the particle filtering method. Top row shows: a segment of colon with particle filter start and end points in green and cyan

respectively (left); execution of a simplified version of the particle filtering method showing ‘live’ and ‘terminated’ particles in blue and red respectively (middle);

the speed function calculated from the weighted sum of Gaussians of particle positions (right). Bottom row shows: the geodesic distances from the start point,

calculated by fast marching (left); the centreline path found by computing the shortest geodesic distance from start to end point (middle); the centreline path

overlay on the original image (right).

doi:10.1371/journal.pone.0168317.g004
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Fig 5. Particle filtering method applied to a patient dataset. The particle filter is first manually initialised in the rectum and tracks the colon to the sigmoid

junction (green line) where it is unable to progress due to an area of local colonic collapse (indicated by the red arrow). The algorithm is manually reinitialised

at the other side of the collapse and is able to track the colon through to the caecum (blue line). The figure shows both of these three dimensional lines

projected onto a single coronal (top left), sagittal (top right) and axial (bottom) plane, and therefore travels in, and out of plane.

doi:10.1371/journal.pone.0168317.g005
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consecutive frames Ui Ui+1 are minimised, minimising the total global error:

Eg ¼
Xn� 1

i¼0

jffðUi;Uiþ1Þj: ð22Þ

Each frame can be defined by its components:

U ¼ ½r s t�; ð23Þ

where t defines the tangent vector, and r and s span the curve normal plane.

Now for any position along the centreline, it is assumed that there exists a full circumferen-

tial loop of bowel wall that lies in the image plane in which r and s lie. To more easily specify a

point in this plane, a radial coordinate system is used, parametrised by θ, the angle of rotation

from r; and f, the distance from C. As the bowel wall is a continuous structure, for each angle

of rotation θ there exists a position of the inner bowel wall and so the task can be formulated as

a labelling problem.

For every frame Ut there exists a set of sites St = {1t, . . ., nt} which correspond to the angle

of rotation around the frame tangent. A set of random variables Ft = {F1t
, . . ., Fnt} which take a

label corresponding to a distance from the frame centre ft = {f1t, . . ., fnt}. A neighbourhood sys-

tem defines edges and allow the definition of connections between sites Nt = {Nit|8it 2 St}.

Lastly a pairwise clique allows the modelling of the geometric and appearance based depen-

dences between label configurations C2 ¼ ffit; i0tgjit 2 St; i0t 2 Nit
g.

Two types of edges are included within the model. The first allows inclusion of dependen-

cies between neighbouring sites within the same frame and also between neighbouring frames

Nit = {(i − 1)t, (i + 1)t, it−1, it+1} (see Fig 6 for details).

2.6.1 Node Potentials - Inner Bowel Wall. The node potentials (see Fig 7) give a proba-

bility of assigning a label fi to a site i. At the position of the inner bowel wall pi at site i, a rapid

change of the intensity of the image is expected, and the direction of this gradient should coin-

cide with the unit vector Ĉpi ¼ ~Cpi=jCpij from the frame centre to the site position. The fol-

lowing potentials are defined:

H1
i ðiÞ ¼

(
jrIðpiÞj if ^rIðpiÞ � Ĉpi > 0

jrIðpiÞjð ^rIðpiÞ � Ĉpi þ 1Þ
2 otherwise

ð24Þ

This function penalises against selecting inner wall positions which have a gradient direction

greater than ±π/4 radians away from Ĉpi . Simply using the image gradient may produce some

undesirable results when high contrast artefacts lie outside of the bowel wall, such as blood ves-

sels or when two bowel walls are closely applied to each other. To prevent this from occurring,

the result is scaled by the cumulative sum of voxel values from image I which lie above thresh-

old k (the threshold which maximises the separation between the wall, and lumen voxels—see

section 2.5.1), originating from the frame centre C along vector Ĉpi :

H2
i ðiÞ ¼

b
Pfi

n¼0
f>ðIðCþ n ĈpiÞ; kÞ

; ð25Þ

where

f>ðx; kÞ ¼

(
1 if x > k

0 otherwise
: ð26Þ
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and so the full site potential equation is:

ViðiÞ ¼ H1
i ðiÞH

2
i ðiÞ: ð27Þ

2.6.2 Edge potentials - Inner Bowel Wall. The solution is constrained such that neigh-

bouring sites must be both a similar distance to the centre of the frame, and have a similar

voxel intensity value. This gives a result that is both continuous in terms of the bowel wall posi-

tion, and the intensity of the signal at those positions. To model this, the following edge poten-

tials are used:

Vi;jði; jÞ ¼ e� gjjfi� fjjj 1 �
min ðIðpiÞ; IðpjÞÞ
maxðIðpiÞ; IðpjÞÞ

 !2

; ð28Þ

where fi is the distance of site i from the frame centre.

Fig 6. A simplified example of the graph structure described in section 2.6. At regular intervals along the

centreline (green), a reference frame is extracted. In the image plane defined by this reference frame, a set of

possible site locations are calculated by a radial coordinate system (blue). The set of sites corresponding to

each reference frame may lie at any point along this ray. Here, for simplicity, the set of possible site locations

for single a frame are shown, although the algorithm optimises over multiple frames. The sites are displayed

as red spheres, connected by edges which describe their neighbourhood system. Neighbouring sets of rings

correspond to neighbouring reference frames.

doi:10.1371/journal.pone.0168317.g006
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2.6.3 Belief Propagation Inference. We wish to find the most probable solution of label

assignments.

PrðfÞ ¼
1

Z

Y

i2S

ViðfiÞ
Y

i2S

Y

j2Ni

Vijðfi; fjÞ; ð29Þ

Z is intractable, but we can use the Max-product Belief Propagation (BP) algorithm to find the

optimal global solution [29]:

f ðMAPÞ ¼ arg max
f

Y

i2S

ViðfiÞ
Y

i2S

Y

j2Ni

Vijðfi; fjÞ

" #

; ð30Þ

It is known that BP is exact on acyclic tree-like graphical models, but has been shown to give a

good MAP estimate in graphs with loops. The BP algorithm works by passing messages

between nodes of a graph defined by the set of sites θ, with edges defined by the site neighbour-

hoods N. Each messageM is an i dimensional vector, with i equal to the number of possible

labels. At each iteration at time t, every node sends messages to each of its neighbours in paral-

lel, whilst also receiving messages itself. Letmt
p!q be the message that node p passes to node q

at iteration t. All entries inm0
p ! q are initialised to zero. At each iteration, new messages are

Fig 7. Figures show the construction of node potentials for the detection of the inner bowel wall. All figures are displayed in radial coordinates, with

the distance from origin shown in the vertical axis, and the angle of rotation in the horizontal axis. The original image is shown top left. Top middle shows the

gradient node potentialsH1
i . Top right shows the cumulative node potentialsH2

i . Bottom left shows the combined node potentials Vi. Bottom right shows the

belief vectors bj. All measures are scale invariant.

doi:10.1371/journal.pone.0168317.g007
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computed as follows:

mt
i!jðfjÞ ¼ max

fi
ViðfiÞVijðfi; fjÞ

Y

s2Ninj

mt� 1

s!iðfiÞ

 !

; ð31Þ

where Ninj denotes all neighbours of i other than j. After T iterations, the belief vector for each

node may be computed:

bjðfjÞ ¼ VjðfjÞ
Y

s2Nj

mT
s!jðfjÞ

2

4

3

5: ð32Þ

The belief vector bj(fj) expresses the relative probability of assigning each label fj to site j. Once

the algorithm has terminated, each node is assigned the label having the maximum belief:

f �q ¼ arg max
fq2f

bqðfqÞ: ð33Þ

2.7 Calculation of the outer wall position

Following the completion of the BP algorithm, the MAP solution for the set of sites can be

used to create a contour marking the position of the inner bowel wall. It can be assumed that

there are a set of positions that lie along the normal vectors of this contour, that will also form

a closed contour that coincides with the position of the outer bowel wall. Therefore, a similar

protocol as described in the previous section can be followed, with the primary change being

that the outer bowel wall positions are to be located relative to the inner bowel wall positions.

However there are also changes made to the cost functions used.

2.7.1 Node potentials - Outer Bowel Wall. Here, a solution with a rapid decrease in gra-

dient in the direction of the normal of the inner bowel wall contour is desired (see Fig 8). A

similar strategy as in Eq (24) is followed. This node potential differs only by the sign in the

parentheses in comparison to the inner bowel wall node potential, which takes into account

the direction of the gradient:

H1
i ðiÞ ¼

(
jrIðpiÞj if ^rIðpiÞ � Ĉpi < 0

jrIðpiÞjð ^rIðpiÞ � Ĉpi � 1Þ
2 otherwise

: ð34Þ

Similarly to the node potentials for the inner bowel wall, we wish to prevent a high potential

value being assigned to high contrast artefacts which lie outside the bowel wall. For each site i,
the position gi of the first local minima in image gradient can be found along the vector from

the frame centre to site Ĉpi
.

H2
i ðiÞ ¼

k

FðpiÞ
; ð35Þ

where

FðpiÞ ¼

1 if pi ¼ gi

Fðpi� 1Þ þ 1 if Fðpi� 1Þ > 0

0 otherwise

ð36Þ

8
>>><

>>>:
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2.7.2 Edge potentials - Outer Bowel Wall. Similar pair-wise constraints are applied to

the outer as to the inner bowel wall for neighbouring sites. The solution is constrained so that

the sites are a similar distance from the contour that defines the inner bowel wall, and the

intensity of the signal at those positions must be similar. The same potentials as in Eq (28) are

used. The label assignments are found using belief propagation. An example result for the wall

thickness measurement is shown in Fig 9.

2.8 Algorithm Initialisation

The particle filter is initialised by setting all particles with the same parameters, therefore an

initial state must be defined (see Eq (2)). The centre point parameters [cx1
cy1
cz1

]T are selected

with the use of a DICOM viewer to give a position in Euclidean space. The reference frame R1

is set such that the tangent [r131
r231

r331
]T is oriented along the colon lumen, and the other two

frame vectors are set at arbitrary, orthogonal angles in the normal plane. The ellipse parame-

ters [a1 b1 ϕ1]T are set by a semiautomatic method. First the volume is sampled along the inter-

secting plane defined by the normal vectors of R1, to create the resliced image Ir spanning the

normal plane. A graphical user interface (GUI) (see Fig 10) allows selection of points z = [x y]
inR2 defined by R1. An ellipse may be fit by least-squares minimisation [30].

Fig 8. Figures show the construction of node potentials for the detection of the outer bowel wall. All figures are displayed in radial coordinates, with

the distance from origin shown in the vertical axis, and the angle of rotation in the horizontal axis. The original image is shown top left. Top middle shows the

gradient node potentialsH1
i . Top right shows the cumulative node potentialsH2

i . Bottom left shows the combined node potentials Vi. Bottom right shows the

belief vectors bj. All measures are scale invariant.

doi:10.1371/journal.pone.0168317.g008
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2.9 Imaging Protocol

Three hours prior to the scan, participants were requested to drink 3L of 2% mannitol (Baxter,

UK) solution to distend the bowel and add contrast. Each patient was cannulated (22G, Intro-

can Safety, Braun) into the antecubital vein prior to lying in the scanner (3T Philips Achieva,

Philips Healthcare, Best, The Netherlands). Each subject was scanned in the prone position

with routine anatomical MRI scans acquired following spasmolysis with butyscopolamine

(20mg Buscopan, Boehringer Ingelheim).

For this study a 15s breath-hold 3D post-gadolinium contrast (0.1 ml/kg Gadovist

1.0mmol/ml, Bayer Schering Pharma, Berlin, Germany)—T1 high resolution isotropic volume

Fig 9. Overview of the wall thickness measurement. A cross-section of the bowel is taken (left), the inner- and outer-walls are detected (centre) and the

final contour for both is generated (right).

doi:10.1371/journal.pone.0168317.g009

Fig 10. Using the GUI to specify the ellipse parameters for the initial particle filter state. The centre image shows the freehand drawn inner bowel wall

contour (solid blue line), and the right image shows the least-square fit ellipse (red dashed line).

doi:10.1371/journal.pone.0168317.g010
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excitation (THRIVE) sequence was used. Each participant had 90 coronal slices with the fol-

lowing parameters: spatial resolution = 2 × 2 × 2mm, TR = 2.18ms, TE = 1.02ms, Averages = 1,

acquisition matrix = 228 × 223, flip angle = 10 degrees using the manufacturer’s torso coil.

2.10 Ethics Statement

This research was conducted following approval from the North Hampstead Research Ethics

Committee (10/H0720/91, 22/12/2010) and sponsored by University College London Hospi-

tals. Approval, on behalf of the participants, was granted by the Research Ethics Committee to

use a limited amount of their anonymised data within UCL Centre for Medical Imaging and

selected partner organisation groups for research purposes only.

2.11 Patient Demographics

24 participants with an existing diagnosis of Crohn’s disease based on a combination of clini-

cal, biochemical, endoscopic, imaging and histopathological findings were identified (8 male)

with the mean age 31.3 years (range 19 to 64).

2.12 Experimental Design

For the purpose of establishing the accuracy of the bowel wall thickness measurement algo-

rithm, 24 patient cases were chosen at random and without exclusion. In each case, between 6

and 8 locations were selected, evenly distributed along the large bowel from rectum to caecum,

by arrows pointing in the direction of the inner bowel wall. Two radiologists (AA, GB) inde-

pendently created a second set of ROIs by measuring the thickness of the bowel wall from a

point on the inner bowel wall which has been identified by the study coordinator (AM), such

that it is closest to the preselected location (see Fig 11). 4 patient cases were duplicated to allow

an estimation of intra-observer error and kept blind to the radiologists. The data was assessed

non-consecutively and randomised by the study coordinator, using a pseudorandom number

generator. The algorithm described above was executed on each of the cases by selecting a start

and end point in the centre of the bowel lumen at�10cm distance along the length of the

bowel. To allow for a comparison against the observers’ measurements, for each ROI, the

thickness measurement where the inner wall position has the smallest Euclidean distance to

the observer measurement is selected. If there was no measurement, or the closest measured

point was>5mm to the observer ROI, the algorithm is said to have failed to make that

measurement.

3 Results

3.1 Overview of results

The results showing the comparison of wall thickness measurements between the algorithm

and the individual observer (Fig 12), as well as the level of inter- and intra-observer variability

are show in Table 1, and also in the Bland-Altman plots [31] (Fig 13). It can be seen that, in the

ROIs which were successfully measured by the algorithm, the mean difference in wall thick-

ness measurement, and the standard deviation of those differences, between the algorithm and

the individual observer (mean difference 0.23mm − 0.27mm, standard deviation ±0.83mm −
±0.79mm) were comparable to that of the intra-observer variability (mean difference 0.16mm,

standard deviation ±0.64mm). It can also be seen that the distribution of differences of wall

thickness measurement is similar, shown in the Bland-Altman plots in Fig 13. However, in

around 15% of the ROIs, the algorithm failed to make a measurement within 5mm of the same
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position as the observer. A section of bowel has been reconstructed from the algorithm mea-

surements and shown in Fig 14.

3.2 Reasons for algorithm failure

When taking the comparison of the magnitude of wall thickness measurements made by the

algorithm, and the measurements made by observers 1 and 2, 26 (15.6%) and 24 (14.4%) out

of 167 ROIs respectively were not within 5mm of each other. In these cases, the primary rea-

sons and the frequency of this occurrence along with examples of regions used in the experi-

ment are listed below:

• Poor wall contrast (4.8%): These areas showed very poor contrast between the lumen and

the bowel wall, resulting in the inner and/or outer wall locations being detected incorrectly.

This can also make the particle filter tracking fail (see Fig 15).

Fig 11. Placements of the ROIs were first selected by the study coordinator, and the approximate

position marked with an arrow, pointing towards the bowel wall. The observers independently created a

measurement of the bowel wall thickness from an inner bowel wall position that they thought best

corresponded with the arrow. This was to minimise the bias on wall thickness measurement induced by the

arrow marker.

doi:10.1371/journal.pone.0168317.g011
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Fig 12. Agreement between the algorithm wall thickness measurements and observer 1 (top left), observer 2 (top right) and a comparison of the

individual observer measurements (bottom).

doi:10.1371/journal.pone.0168317.g012
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Table 1. Variability and mean difference of wall thickness measurement between the algorithm and the individual observers, the two observers

and the observers and their repeat measurements.

Total ROIs ROIs included Mean diff. (mm) St.D (mm) 95% limits of agreement

Algorithm and observer 1 167 141 (84.4%) 0.23mm ± 0.83mm ± 1.37mm

Algorithm and observer 2 167 143 (85.6%) 0.27mm ± 0.79mm ± 1.30mm

Observer 1 and observer 2 167 167 (100.0%) 0.16mm ± 0.64mm ± 1.05mm

Observer 1 repeat measurements 31 31 (100%) -0.46mm ± 0.47mm ± 0.77mm

Observer 2 repeat measurements 31 31 (100%) 0.18mm ± 0.43mm ± 0.70mm

doi:10.1371/journal.pone.0168317.t001

Fig 13. Bland Altman figures showing the variability of wall thickness measurement between: the algorithm and the individual observers (top), the

two observers (middle), the observers and their repeat measurements (bottom). The broken line indicates the mean measurement difference. Solid

lines indicate the 95% limits of agreement.

doi:10.1371/journal.pone.0168317.g013
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• Poor preparation (4.2%): Residual faecal matter in the bowel results in areas of high signal

which are indistinguishable in terms of intensity value from the bowel wall. Due to the wall

detection being made on image gradient values, this residual matter can result in the incor-

rect detection of the inner bowel wall (see Fig 16).

• Bias field/reconstruction artefact (2.4%): The algorithm is dynamic, updating any threshold

values for bowel wall detection as iterations progress along the centreline; however the

assumption is made that for each circumferential bowel wall loop, the wall intensity values

are relatively constant. In the majority of cases, any inhomogeneities due to the bias field do

not hinder the performance of the algorithm, but in a small number of patient cases a steep

gradient is observed (see Fig 17).

• Heavily haustrated (2.4%): Problems due to large haustral folds mainly occurred in the cae-

cum. If the detected centreline did not lie exactly central, a given cross section may be inter-

sected by a large haustral fold. As the algorithm searches for the first bowel wall location

from the centreline, the haustral fold may be incorrectly identified (see Fig 18).

Fig 14. A short (80mm) section of stricture in the descending colon of case 22. The inner and outer

bowel walls are reconstructed from the points detected by the algorithm.

doi:10.1371/journal.pone.0168317.g014
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Fig 15. Examples of poor contrast between the lumen and the bowel wall. Each axis ‘tick’ is 1mm.

doi:10.1371/journal.pone.0168317.g015

Fig 16. Examples of poorly prepared cases. In both images there is remaining faecal matter which appears as a non homogeneous, high intensity pattern.

The image on the left shows an even distribution over the cross section, which makes detecting the bowel wall based on intensity value difficult. The image on

the right shows matter (red arrow) floating on the surface of the mannitol solution (image aligned with gravity acting downwards), which may be detected as

the location of the bowel wall. Each axis ‘tick’ is 1mm.

doi:10.1371/journal.pone.0168317.g016
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Fig 17. Examples where a strong bias field (left) or reconstruction artefact (right) occurs within a loop of the bowel. As a single intensity value is used

for each loop of the bowel wall during the tracking, this strong difference in intensity may result in the incorrect location being detected. Each axis ‘tick’ is 1mm.

doi:10.1371/journal.pone.0168317.g017

Fig 18. Examples of heavily haustrated regions, indicated by the red arrows, in the descending colon (left) and caecum (right). In these cases more

than a single loop of bowel appears in a single cross section, and therefore the incorrect location of the inner bowel wall may be detected. Each axis ‘tick’ is

1mm.

doi:10.1371/journal.pone.0168317.g018
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• Motion artefact (1.2%): In a small number of cases motion artefacts resulted in a blurred

image of the bowel wall and therefore the algorithm failed in detecting it correctly.

4 Discussion

The workflow is automated, given a seed point and initial ellipse configuration. Results are

promising, showing a similar level of variability between the algorithm and the observer in

comparison to the variability between the individual observers; however the algorithm has a

slightly lower agreement to the observers. As the method is automated given a manual seed

placement, it has the advantage over a human reader that a very large number of wall thickness

measurements can be made rather than the relatively small number of manually placed mea-

surements an observer might make. Such information could provide a more accurate mean

measurement or allow the reader to compare the variation and distribution of wall thickness.

This method also has the potential to make more consistent measurements, something that

has been shown to be an issue with the human reader.

However, an obvious disadvantage is the failure of the algorithm in around 15% of cases.

This is primarily due to the algorithm’s expectation to detect a full loop of bowel in each cross

sectional image. Due to the reasons listed above (poor wall contrast, poor preparation, bias

field/reconstruction artefact, heavily haustruated sections, motion artefact), this is not possible

using the assumptions made in the methods section of this paper, and therefore further

domain specific information would have to be incorporated into the algorithm in order to

cope with these use cases. Furthermore, the algorithm does not currently give any indication

of the accuracy of a given measurement. On many of the cross sectional images it is difficult to

give an accurate measurement, even for the human observer and so quantification of measure-

ment accuracy is important to draw any meaningful clinic value from the results. This would

be especially important if one wanted to create a mean thickness measurement along a section

of bowel, which could be useful in cases of severe inflammation or stricture. To overcome inac-

curacies due to poor preparation which occurs frequently in clinical practice, it may be possi-

ble to incorporate textural information to better identify lumen and bowel wall. This approach

has been used in automatically detecting areas of Crohn’s disease in MR volumes [32] by

machine learning techniques and could be better used to classify voxel type.

In conclusion, we have presented a method for automated bowel wall thickness measure-

ment which has shown similar levels of variability to two observers in 142 ROIs over 24 patient

cases. This is an extremely challenging task as the range of locations picked to assess bowel

wall thickness were not representative of clinical cases where optimal regions of good disten-

sion are expected. Results using clinically representative data may be better. Further work is

needed before clinical use. This should address the reasons for algorithm failure which have

been identified to be cases with poor wall contrast, poor preparation, bias field/reconstruction

artefact, heavily haustruated sections and motion artefact.
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