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Abstract

Charge transport in organic semiconductors is an important current topic of re-

search, but the exact nature of the charge transport remains an unresolved question.

Experimental evidence exists to support either of two common models (band-like

transport or small polaronic hopping) and various computational simulations sug-

gest that for the standard parameter ranges for organic semiconducting devices,

both of these models are likely invalid, with temperatures too high for a band-like

transport model and couplings too high relative to the reorganization energy for

charge localization to be assumed.

There is potential for a non-adiabatic molecular dynamics method that partially

separates classical and quantum degrees of freedom, such as surface hopping, to

be applied to the problem. This is what I have begun with my fragment-orbital

based surface hopping (FOB-SH) method. Based on Tully’s famous fewest-switches

surface hopping algorithm, FOB-SH simulates a condensed phase organic semicon-

ductor with a classical molecular dynamics approach while solving the Schrödinger

equation to directly model the behaviour of a single excess electronic charge. The

latter is made computationally efficient by using an analytic overlap method to

calculate the Hamiltonian off-diagonal elements.

In this thesis I discuss in detail the theory behind FOB-SH, along with my first

implementation and validation of the method. I present results on two systems, of

two and ten ‘ethylene-like’ molecules respectively. In the two-molecule system I

calculate charge transfer rates and find that my method qualitatively agrees with

standard charge transfer theory in regimes where agreement is expected, though

questions are posed in regimes where standard theory becomes invalid. For the ten-

molecule system I demonstrate that charge mobilities can be calculated from my

simulations. I observe a thermal activation peak for low couplings and a crossover

from activated hopping to band-like transport with increasing temperature, quali-

tatively agreeing with another similar surface hopping method. I show that FOB-

SH has great potential to tackle the charge transport in organics problem.
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Chapter 1

Introduction

1.1 Organic semiconductors: an overview

“Organic semiconductors” refers to a class of carbon-based materials which dis-

play semiconductor behaviour when charge carriers are injected or generated. This

behaviour has been known for around half a century [1,2] and today organic semi-

conductors are still the subject of a significant amount of research interest and in-

vestment. One characteristic attribute of all organic semiconducting materials is

a high degree of dynamic disorder, as unlike inorganic counterparts they are held

together in the condensed phase by the relatively weak van der Waals interactions

between molecules [3].

Charge transport in organic semiconducting materials attracts a great amount

of interest from the scientific community at present [4–14] for a wide range of ap-

plications such as organic light-emitting devices [15,16], organic field effect transis-

tors [17,18], thin film transistors [19,20] and organic photovoltaics [21–26]. The last

application is particularly appealing from an environmental perspective, as sun-

light is a readily-available and sustainable alternative energy source that avoids all

the well-known disadvantages of fossil fuels. Inorganic solar cells, which are usu-

ally silicon-based, have the disadvantage of an expensive active material [27] so it is

hoped, given the sheer variety of organic molecules [28], that a cheaper alternative

can be developed. The power conversion efficiency of current-generation organic

photovoltaic devices is improving but still limited [29, 30] which provides another
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motivation for further research. Even if the efficiency of organic photovoltaic de-

vices never reaches that of silicon-based technologies, it is hoped that further re-

search into organic materials will lead to much cheaper possible devices. The en-

vironmental advantages of organic electronic technology would be even greater if

such devices could be made biodegradable, as is being suggested [31].

Organic electronic devices have various advantages over inorganic electronics:

chief among these are that they can be made physically flexible [32, 33] and are

relatively inexpensive to produce [34]. On the other hand, organic semiconductors

typically have low charge mobilities compared to inorganic counterparts [35–38],

which limits the efficiency of any such devices [39]. Progress on designing new

organic materials to maximize the charge mobility could be greatly helped by a

better theoretical understanding of the exact nature of the charge transport in these

systems [4, 40].

From the computational point of view, the main characteristic that hampers the

development of such theory and which is common to most organic semiconduct-

ing systems (and related systems, such as large single biomolecules) is high sim-

ulation requirements. Put simply, organic systems are frequently extremely large

- even individual molecules containing tens of atoms, if not more - and therefore

any method such as density functional theory (DFT) which attempts to simulate a

sufficiently large system (at least a few thousand atoms, and possibly more to prop-

erly investigate charge transport in the condensed phase) will correspondingly be

extremely slow [41]. Furthermore, such systems display a great deal of dynamic

disorder arising from the aforementioned relative weakness of the van der Waals

intermolecular forces.

There are other specific challenges that organic semiconducting systems present

to computational investigation. In contrast to inorganic semiconductors, the electron-

phonon coupling in these systems is often sufficiently large to play a prominent

role in the dynamics [42, 43]. In limits where this coupling dominates over the in-

termolecular electronic coupling, a small polaronic deformation can form to trap a
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charge onto a single molecular site (as discussed in the next section). In the oppo-

site case, where the electronic coupling is large compared with the electron-phonon

coupling, these parameters take similar values to those in an inorganic semicon-

ductor, such as amorphous silicon. One might therefore imagine that the electronic

structure of the system is likely to resemble the band structure of an inorganic semi-

conductor, but the physical structure of the two types of systems is so different that

this seems like an overly bold assumption. It is fair to say that these two limiting

cases alone are insufficient to describe charge transport across the family of pos-

sible organic semiconducting materials, where the relative strengths of these two

interactions are capable of taking a large range of values.

The strong connection between the nuclear and the electron dynamics throws

up a difficult question regarding the relative timescales of different degrees of free-

dom. Both local (arising from intramolecular interactions) and non-local (arising

from intermolecular interactions) electron-phonon coupling must be taken into ac-

count. These correspond to dynamic disorder in the diagonal and off-diagonal

elements of the electronic Hamiltonian, respectively. The intramolecular nuclear

vibrations in organic semiconductors, which are made of either polymers or pi-

bonded molecules, can be associated with the stretch frequency of the carbon-

carbon bond (which is on the order of 1014 s−1). The nature of the intermolecular

behaviour is much more varied between different molecules, but is likely to include

elements of both translational and rotational movement. An example that can be

considered is the C60 molecule, which freely rotates within its crystal structure at

room temperature [44] with a rotational relaxation time on the order of 10 ps [45].

Thus, simulations of organic semiconductors may need to cover long timescales (on

the order of nanoseconds) but with a small timestep (on the order of femtoseconds),

to capture a range of different molecular behaviours.

It is thus clear that a method which attempts to simulate the entire system in a

quantum-mechanical framework will be impractical, and a further approximation

(such as classical molecular dynamics) will have to be made for the sake of com-

putational efficiency: nonetheless, as the crucial question is the behaviour of an
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excess electron or electronic hole, quantum mechanics must still play a part in the

simulation.

1.2 Nature of the charge transport

There are two traditional theoretical descriptions of the charge transport: one is

based on a band-like conduction mechanism similar to inorganic semiconductors

[46, 47], and the other on polaronic carriers hopping between molecules or frag-

ments [4, 6, 48, 49]. While intuitive and simple, neither of these two limiting cases

provides a generally satisfactory description, as has been noted in the literature

[50–54]. Some more recent investigations specifically into organic semiconductors

propose localization over a few molecules, induced by fluctuating electronic cou-

pling between molecules [55,56]. The search for materials that will be useful for the

next generation of electronic devices is at present hampered by the lack of an ade-

quate theory to fully explain the mechanism of charge transport in such systems.

One possible issue is that the sheer variety of possible organic molecular semi-

conductors makes it hard to apply any single theory to the problem of charge

transport. This speaks both to the number of possible organic semiconducting

molecules, and also to the different phases that they can take in physical devices

[57–61]. Coropceanu et al. [3, 4] argue for a clear distinction between pure single

molecular crystals and more disordered systems when looking at temperature de-

pendence, finding that the former tends to display a behaviour µ ∝ T−n, where

n is usually 0.5-3.0 [62] while the latter are more likely to demonstrate thermally-

activated hopping behaviour. This also fits with the argument of Troisi [47], who

suggests that the eventual electronic behaviour is extremely sensitive to e.g. de-

position conditions. Even within a single system, charge mobility and potentially

even the nature of charge transport may be subject to strong anisotropy [63].

Karl [64] reviews the experimental evidence on charge transport and suggests

that at low temperatures, the underlying process in organic semiconductors is band

transport: as increasing temperature increases the electron-phonon coupling, charge
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hopping becomes the dominant mechanism. This implies an intermediate tem-

perature region during which both mechanisms co-exist in some way, and nei-

ther description of charge transport is an accurate depiction. More recently, Sir-

ringhaus et al. [65] focus specifically on high-mobility organic semiconductors and

similarly highlight conflicting experimental evidence. Podzorov et al. [66] observe

a crossover with increasing temperature from trap-dominated charge hopping to

bandlike charge transport on the surface of a rubrene crystal: it is important to dis-

tinguish between observed surface and bulk electronic behaviour, as there are rea-

sons to believe that the charge behaviour can be very different between the two [67].

To give an example in a different system, Marumoto et al. [68] examine the

spatial extent of the electronic wavefunction in a pentacene crystal and find it to

be on the order of 10 molecules: this contradicts the small polaronic picture, which

assumes a localization length of around a single molecule. The unexpectedly large

extent of the wavefunction suggests that the charge is not at any point meaningfully

’trapped’ by the environment and thus a polaron does not form: in the absence of

this behaviour, band-like transport is assumed to take place.

In contrast, Tsao and Lin [69] conclude, from their observations of strong tem-

perature dependence of charge mobility in pentacene, that the charge transport in

pentacene must be dominated by hopping. At low temperatures they find that

charge transport through the material takes place via tunnelling between nuclear

sites, while increased temperature causes dynamic disorder between the molecules

which allows for occasional charge ’escape’ and thus charges hop between sites.

These two studies cannot be simply reconciled: the most likely explanation is that

differences in the experimental procedures have led to different charge transport

behaviour in the two systems.

Sakanoue and Sirringhaus [70] study a pentacene derivative, TIPS-pentacene,

and also suggest for this molecule that at room temperature the charge carrier is

localized over more than one molecule. They note, however, that this localization

length cannot be macroscopic. Additionally, the localization is not polaronic i.e. the
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charge carrier is not localized as a result of environmental response, but due to dy-

namic disorder of the surroundings [71]. This interpretation supports the dynamic

localization model of Troisi et al. [72, 73].

Less direct evidence on the nature of charge transport comes from experimen-

tal studies on organic semiconductors which estimate the relevant parameters for

charge transport, such as reorganization energy and electronic coupling. I present

as an example a publication from Imahori et al. [74] studying charge transfer be-

tween porphyrins and fullerenes, finding that the reorganization energy for the

process is small (on the order of 0.1 eV) and crucially of similar size to the elec-

tronic coupling. This close parity between these two parameters casts doubt on

the certainty of charge localization and therefore on hopping as the mechanism for

charge transport.

It seems likely from the experimental evidence that physical organic semicon-

ductors see a variety of charge transport behaviours, determined by factors such as

the degree of disorder, the nature of the molecules themselves, and the temperature

of the system. This would suggest that experiment is limited in how much insight

it can give us on the question, at least when compared to computational methods

which in principle could be employed to simulate the full range of possibile pa-

rameters that may effect different forms of charge transport. At present, however,

such techniques are still in their infancy, in part because the polaronic model of

charge transport is still sufficiently convenient (and gives results sufficiently close

to experiment) that it is tempting to use it and ignore the question of whether or

not it applies. The problems with this approach go beyond experiment, however,

and I shall now explain how in many organic semiconductors a so-called ‘hopping’

picture simply cannot be truly accurate.
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1.3 Computational evidence: are standard theories applica-

ble?

The standard way to calculate a charge transfer rate still goes back to the celebrated

Marcus equation [75, 76]:

kET =
2π

~
〈|Hab|2〉TS(4πλkBT )−1/2 exp

(
−∆A‡na

kBT

)
. (1.1)

where Hab is the electronic coupling between initial and final states, λ the reorga-

nization energy, T the temperature and ∆A‡na is the activation energy for charge

transfer, which depends on Hab and the reorganization energy λ. This equation

assumes a non-adiabatic charge transfer from initial to final state: in other words,

that the charge is localized at a given time in either the initial or final well. Other

equivalent expressions exist for the cases in which this assumption is invalid: there

is the adiabatic rate expression [77],

kad = νn exp

(
−∆A‡

kBT

)
, (1.2)

and a generalized semi-classical rate expression which interpolates between the

two [78, 79]

ksc = κelνn exp

(
−∆A‡

kBT

)
. (1.3)

where κel is the Landau-Zener electronic transmission coefficient and νn is the

nuclear attempt frequency. In the literature, Eqs. 1.2 and 1.3 generally contain a

nuclear tunnelling factor, which I have assumed to be unity.

Eq. 1.3 most straightforwardedly illustrates the three components of each of

these equations. The assumption is that there is some barrier to charge trans-

fer, given by ∆A‡: then the rate equation consists of the Boltzmann probability

of climbing that barrier, a nuclear attempt frequency νn, and an electronic trans-

mission coefficient κel. Obviously this picture - of charge transfer from initial to

final states, modulated by a barrier - breaks down in the absence of a barrier. As
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the barrier height ∆A‡ is a function of the parameters reorganization energy λ and

electronic coupling Hab, it is possible for this barrier to be zero, as illustrated in

Figure 1.1.

FIGURE 1.1: Adiabatic (red) and diabatic (blue) potential energy sur-
faces for electron transfer, withA the free energy and ∆E the vertical
energy gap. The reorganization energy λ is indicated. The adiabatic
surfaces are plotted for three different values of the electronic cou-

pling Hab.

Organic semiconductors are often characterized by reorganization energies sim-

ilar to or not much larger than the intermolecular coupling [80], and thus individual

intermolecular configurations within condensed phase organic systems may fre-

quently display a non-existent barrier to charge transport. Within my own research

group, simulations have been published demonstrating this problem on C60 [51]

and its derivative molecule PCBM [52]. Other researchers have suggested similar

issues with organic molecules, such as Cheung and Troisi [53] and Ide et al. [81],

both also with PCBM.

The problem with organic semiconductors is broadly stated thus: the nuclear

and the electronic dynamics are too strongly coupled to assume polaronic trans-

port, and the dynamic disorder is too high to assume band-like transport. There is a

clear need for methods which do not rely on either assumption. Various such meth-

ods have been developed in the scientific community, or more broadly to tackle the
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problem of charge transport in organic semiconductors through simulation. These

include, for example, the work of Troisi et al. on a 1D model of harmonic oscilla-

tors [55, 82, 83]; a similar 1D model by Wang and Beljonne [84, 85]; a method from

Ren et al. [8] that atomistically simulates a pentathiophene layer, although neglect-

ing the effects of the excess charge carrier on the nuclear system; the approach

of Kubar and Elstner, based in SCC-DFTB, which has been successfully applied

to biomolecules as well as to organic semiconductors [50, 86–88]; the generalized

nonadiabatic transition state theory of Zhao et al. [89]; and the PYXAID program

from Akimov and Prezhdo [90–92]. This last is an example of an implementation of

a non-adiabatic molecular dynamics approach, a family of methods which I shall

now explain in more detail.

1.4 Non-adiabatic molecular dynamics (NAMD)

The starting assumption in standard molecular dynamics (MD) for modelling most

chemical reactions is the Born-Oppenheimer approximation [93], in which the sys-

tem evolves on a single adiabatic potential energy surface and the electronic motion

is sufficiently fast that they can be assumed to instantaneously react to nuclear mo-

tion. In practice, this state is most usually the ground state of the system. There are

many physical and chemical problems of interest where the Born-Oppenheimer

approximation is invalid [94], and in such cases one needs to move beyond the sep-

aration of classical and quantum degrees of freedom by accounting for the effect of

each on the other.

It is perhaps intuitive that one possible way of overcoming the difficulties inher-

ent with treating a system at multiple different timescales would be to use a method

which combines some aspects of both quantum mechanical theory and classical

mechanics. The family of methods which use this approach are known as non-

adiabatic molecular dynamics (NAMD) [95, 96] or alternatively mixed quantum-

classical dynamics (MQCD) [97, 98] The typical picture [99] is to consider a ‘quan-

tum subsystem’ which is embedded within a larger, classically treated system: for

example, a single electron or fast-moving ion within a molecular framework.
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The simplest version of a NAMD method is known as the classical path approx-

imation, as used in e.g. the PYXAID program [90]. In this instance, the influence of

the quantum subsystem on the classical system is assumed to be negligible: mean-

while the quantum subsystem evolves in a time-dependent potential which arises

from the classical system. This approximation is valid in systems where the energy

of quantum transitions is very small compared to the thermal energy of the classical

particles, and breaks down if this is not the case [100]. In such cases, both quantum

and classical parts must see the other as a time-dependent potential.

The majority of NAMD methods therefore treat both directions of feedback (the

classical system on the quantum subsystem, and also vice versa) I shall broadly dis-

cuss them in terms of two categories: mean-field (MF) dynamics, and surface hop-

ping methods. There are, however, alternative methods which do not fit into either

of these two, such as the exact factorization approach published by e.g. Abedi et

al. [101–103] and a combination of the two from Prezhdo and Rossky [104].

The most common form of MF dynamics is known as the Ehrenfest method

[105–107], which has a related method known as time-dependent self-consistent

field (TDSCF) dynamics. As TDSCF is a method where the entire system is treated

in a quantum mechanical fashion, and I am only concerned in this thesis with sit-

uations where the majority of the system is treated classically, I shall restrict my

discussion to the Ehrenfest method, although my descriptions apply analogously.

The Ehrenfest method separates classical and quantum subsystems, and as in the

classical path approximation the electronic (quantum) degrees of freedom are de-

pendent on the positions and movements of the nuclei (classical). When it comes to

the feedback from the electronic subsystem to the nuclei, the forces on the nuclei are

not derived purely from any individual electronic state. Rather, the nuclei evolve

on an adiabatic potential energy surface which corresponds to a weighted average

of the energy surfaces associated with each electronic state. The weightings are by

the instantaneous quantum populations of the electronic states. Although a typi-

cal Ehrenfest dynamics trajectory will begin on an energy surface that is associated

with the system’s initial quantum state, as time passes the surface which the nuclei



1.4. Non-adiabatic molecular dynamics (NAMD) 33

are on will deviate more from this initial potential as additional electronic states are

‘mixed’ in.

MF methods often work well in situations where all such surfaces are broadly

similar [108]: conversely, it is well understood [84, 88, 109] that MF methods fail

to capture the qualitative physical behaviour associated with events where sepa-

rate trajectories on different potential energy surfaces would strongly diverge. An

example commonly given is to consider a scattering event of a particle approach-

ing a surface, which could (depending on criteria such as the initial energy of the

particle and the nature of energy transfer during the scattering event) potentially

become trapped near to the surface, or rebound and move away. A single aver-

age potential for the nuclei will be unable to describe either of these events satis-

factorily. Since my goal is partially to better understand the qualitative nature of

charge transport in organic semiconductors, a similar possibility arises. It is easy

to imagine that certain potential energy surfaces may present large energetic bar-

riers to charge transfer, thus localising charge onto a single site, whereas others

would present smaller or minimal barriers and thus charge delocalization would

be observed. A single MF trajectory on a single averaged potential energy surface

cannot adequately describe both possible behaviours. Other known flaws include

the failure of the Ehrenfest method to obey detailed balance [109]. These shortcom-

ings partly explain the lasting popularity of an alternative NAMD method, known

as surface hopping.

With surface hopping [110], rather than constructing an average potential en-

ergy surface, each possible potential energy surface arising from all the possible

quantum states is considered. As in the mean-field case, a surface hopping tra-

jectory starts on the energy surface corresponding to the initial quantum state.

Whereas in the mean-field case this surface gradually becomes a more mixed one,

in surface hopping the nuclei always evolve on a surface that corresponds to one of

the possible quantum states of the system. The surface hopping enters because at

fixed intervals (which can logically correspond to molecular dynamics time steps)

probabilities are calculated for the trajectory to hop to a different potential energy
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surface. These hops occur stochastically - in theory, a surface hop is never guaran-

teed, but is assigned a probability that is derived from the relative populations of

the electronic states - and so along a single surface hopping trajectory, the nuclei

will switch between potential energy surfaces multiple times. Crucially, though, at

any individual point along the trajectory the nuclei will feel the potential from a

single electronic state of the system.

This choice of stochastic hops between discrete surfaces comes with some im-

mediate drawbacks which must be addressed. The hop from one surface to another

changes the total energy of the system, requiring e.g. velocity rescaling to conserve

energy along the trajectory. On a more conceptual level, a single surface hopping

trajectory now has limited physical meaning: each surface hop is not necessarily

directly associated with a physical reaction. Nonetheless, a statistical ensemble of

trajectories can be used to calculate physical properties and make computational

predictions, as well as overcome one failing of the Ehrenfest method, which is that

multiple trajectories can demonstrate divergent behaviours within the same sys-

tem. Surface hopping is currently a popular NAMD method due in part to its

relative simplicity.

The potential for a surface hopping molecular dynamics method to be used to

model charge transport is clear: a group of organic molecules in the condensed

phase can evolve on a potential energy surface that arises from an excess electronic

charge, but crucially this evolution is treated entirely classically and therefore can

be calculated extremely quickly. Meanwhile, the excess charge is handled with a

fully quantum mechanical approach in the time-dependent potential arising from

the molecular motion.

1.5 Surface hopping in the literature

Surface hopping methods have received much attention in the literature over the

past few decades [95, 96, 98, 109, 111–117]. Much use has been made of the influen-

tial algorithm published by Tully, known as fewest-switches surface hopping [110],

which has been extensively reviewed [118–121]. Surface hopping has been used
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to study e.g. photoinduced processes [122–124] including photoinduced charge

transfer and catalysis [125], vibrational dissociation [126], exciton deactivation in

oligothiophenes [127] as well as charge transport in very simple model systems

[84, 85, 128].

There are known shortcomings of the surface hopping method. The nuclei are

treated entirely classically, which is of course an approximation that may not al-

ways be valid. FSSH in particular overestimates electronic coherence after a surface

crossing event [129, 130], a flaw that can cause many problems when modelling

long-term behaviour [131–136]. The ‘trivial crossing problem’ [137, 138] needs to

be accounted for. The stochastic nature of individual SH trajectories means they

are no longer time-reversible, though the algorithm as a whole may be considered

approximately equivalent in the forwards and backwards directions [139–141]. In

the hope of overcoming some or all of these and other issues, there are presently

many proposed altered versions of the method in the literature: examples include

global flux surface hopping [142,143] to fix the trivial crossings problem and model

superexchange reactions; and flexible surface hopping [85] which also solves the

trivial crossings problem while massively reducing computational costs.

An example of another group’s surface hopping implementation is the PYXAID

(PYthon eXtension for Ab Initio Dynamics) method developed by Oleg Prezhdo

and coworkers [90, 91, 144]. The aims of the PYXAID program are similar to mine,

seeking to develop a sufficiently efficient approach to simulate the hundreds or

thousands of atoms required to model charge transport in condensed phase sys-

tems. This program was optimized for the study of photoexcited dynamics, but

the principles are general enough that this method could be used to study more

general charge transport problems in organic semiconductors. However, in order

to achieve a desired level of computational efficiency while still using a DFT-based

framework, the PYXAID program makes the ‘classical path’ approximation. As

mentioned earlier, this neglects the feedback of the electronic subsystem onto the

nuclei, which is an approximation that is likely acceptable if the classical kinetic

energy of the nuclei is large compared to the energy splitting of the electronic
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states i.e. there is little difference between the trajectories of the nuclei on differ-

ent electronic surfaces. The PYXAID method is therefore likely not well suited to

modelling systems where, for example, the reorganization energy is large or the

electron-phonon coupling is particularly strong. In contrast, my FOB-SH method

abandons the classical path approximation and accounts for feedback from the elec-

tronic subsystem onto the nuclei through the nuclear forces: this should ensure its

applicability to all types of organic semiconductors.

For comparison, I also shall briefly examine another surface hopping method

implemented by the research group of Marcus Elstner to the related problem of

charge transport in DNA, as reported in e.g. Ref [88]. A relatively straightforward

surface hopping scheme was compared to a mean-field approach, and there is some

discussion about the relative merits of each to study this problem. In this partic-

ular work, the computational simplicity of the fewest-switches surface hopping

algorithm is considered to be one of its greatest strengths. Unfortunately, while

comparisons between these two approaches are important, I feel the presented sur-

face hopping method is flawed in crucial ways which may call the findings into

question. Although the rescaling of nuclear velocities in order to conserve the to-

tal energy of the system is mentioned as a vital step in Ref. [110], this is entirely

neglected in Ref [88], which does not allow for energy conservation along a simu-

lation and also means no treatment of possible ‘forbidden hops’. Similarly, there is

no correction applied to the problem of electronic overcoherence. Kubar & Elstner

both understand that these are issues that should ideally be addressed in future

versions of their surface hopping method, but as it stands the method is lacking.

The FOB-SH method both conserves energy at surface hops due to a velocity rescal-

ing step at each hop, and has implemented a preliminary decoherence correction,

though there is discussion in Chapter 6 about how each of these could be further

improved.

I believe that the FOB-SH method developed and discussed within this thesis

represents a step forward for the application of surface hopping to the problem

of charge transport. There is a large body of work in the field already [84, 119, 145]
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which generally deals with very simple ‘toy models’, such as a spin-boson Hamilto-

nian in the work of Wang et al. [84]. Other surface hopping methods simulate more

realistic molecules [88,122,126,146,147]: an example is a recent paper by Plasser et

al. [148] using 9H-adenine as a case study for their surface hopping method. Look-

ing at the current state of the surface hopping field, I believe that there is scope for

a method that applies surface hopping to study charge transport, but which simu-

lates a physical organic semiconductor system rather than a simple toy model. This

is the major original contribution that I hope to make with FOB-SH.

1.6 This thesis

The goal of this work has therefore been to develop a non-adiabatic molecular dy-

namics formulation which is capable of exploring the nature of charge transport in

the family of organic semiconducting materials. To this end I have devised and im-

plemented a method, based on Tully’s fewest switches surface hopping algorithm

and the analytic overlap method from Gajdos et al. [149], which is specifically de-

signed to model large organic semiconducting systems with a classical molecular

dynamics approach while treating a single excess charge with a fully quantum-

mechanical approach. This method is what I have called fragment-orbital based

surface hopping, or FOB-SH. A large part of this thesis is devoted to explaining in

detail the theoretical underpinnings of FOB-SH (Chapter 2), the particular imple-

mentation I have done during my project, and a series of tests which were carried

out with the aim being to validate the correct behaviour of said implementation

(both in Chapter 3). The derivation, implementation and validation were previ-

ously published in Ref. 150.

Once these validations have been presented and outlined, most of the remain-

der of the thesis (Chapters 4 and 5) will present the results which I have obtained

from using FOB-SH on two different model systems. In Chapter 4 are values for

an electron transfer rate between the two molecules of a donor-acceptor complex,

presented in terms of their dependencies on key parameters. These results are com-

pared with and discussed in the context of the equivalent curves from standard
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electronic transfer theory. These results have been published in Ref. 151. Then in

Chapter 5 there are results presented as a proof-of-concept on a larger system of

ten molecules in a one-dimensional chain, where charge mobilities have been cal-

culated for different temperatures and values of electronic coupling. These results

carry some discussion although their main purpose is to demonstrate that the FOB-

SH method is capable of calculating mobilities in large systems. These results were

also published as part of Ref. 150.

I finally conclude in Chapter 6 that this implementation of FOB-SH demon-

strates that it is ‘fit-for-purpose’ and shows promise for future investigations into

charge transport in organic semiconductors. I will discuss what the results in this

thesis suggest for these future investigations, and what we can perhaps already

understand from them. I will also outline how I envisage the method may be ex-

panded in further implementations in the near future.
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Chapter 2

Theory and Derivation of FOB-SH

In this chapter I will go through the derivation of the fewest-switches surface hop-

ping algorithm, showing how my method propagates the excess electronic charge

in a site-orbital basis and transforms to the adiabatic basis for the calculation of

adiabatic surface forces and probabilities of hops between surfaces, and arriving

at the working equations for my particular implementation. The solution to the

Schrödinger equation and the expression for the probability of surface hopping are

both well known, but in order to fully explain the work done in this thesis I con-

sider it important to review the derivations for both, particularly paying attention

to the assumptions I have used. What is original to this work is the generalized

force expression, which allows me to calculate the force arising on each atom from

the current adiabatic potential energy surface for an arbitrary system, provided that

I know the Hamiltonian and its gradient in some basis: this is the vital component

allowing the FOB-SH method to be used on sufficiently large model systems to in-

vestigate condensed phase behaviour. I additionally include a much simpler force

expression which can be easily derived ‘by hand’ and which is correct in the special

and simplest case of a two-site system.

2.1 Solving the electronic Schrödinger equation

In order to calculate the time evolution of the electronic wavefunction, the elec-

tronic Schrödinger equation is solved for the time-dependent electronic potential
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that arises from classical nuclear motion. The time-dependent electronic wave-

function Ψ(t) is usually expressed as a linear combination of adiabatic electronic

wavefunctions ψn(R(t)) that depend parametrically on the nuclear coordinates

R(t), Ψ(t) =
∑

n cn(t)ψn(R(t)), and cn are the time-dependent expansion coeffi-

cients. Insertion in the time-dependent electronic Schrödinger equation gives the

time evolution of cm,

i~ċm(t) =
∑
n

cn(t)
(
Hmn − i~dad

mn

)
, (2.1)

where Hmn are the matrix elements of the electronic Hamiltonian and dad
mn are the

non-adiabatic coupling matrix elements (NACEs) between the adiabatic states,

dmn =

〈
ψm

∣∣∣dψn
dt

〉
. (2.2)

The classical nuclei evolve on a single electronic potential energy surface at any

given time according to Newton’s equation of motion. For potential energy surface

n= i, Ei,

mIR̈I = −∇RI
Ei (2.3)

where mI is the mass and RI the position vector of nucleus I . The feedback from

the electronic to the nuclear subsystem is incorporated in the ability of the system

to undergo stochastic ‘surface hops’ i.e. switches from one potential energy surface

to another. In the FSSH algorithm devised by Tully the probability gji of switching

from the current electronic state i to another electronic state j is calculated from

gji =
bji∆t

aii
(2.4)

bji =
2

~
Im(a∗jiHji)− 2Re

(
a∗jidji

)
(2.5)

aji = cjc
∗
i , (2.6)

where ∆t is the MD time step and aji the elements of the density matrix. Crucially,
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in the adiabatic electronic basis the Hamiltonian off-diagonal elements Hji are zero

and thus Eq. 2.5 becomes

bji = −2Re
(
a∗jidji

)
(2.7)

Surface hopping is conventionally carried out in an adiabatic basis [152], al-

though the derivation of the probabilities is general and applies in principle to any

electronic basis.

2.2 Site basis representation

The purpose of this project was explicitly to simulate charge transport in an organic

molecular semiconductor. It is therefore natural and intuitive to consider the elec-

tronic wavefunction Ψ(t) in a basis of molecular site orbitals. For this derivation

I shall consider the case of an excess charge in a material made of M sites, where

‘site’ refers to a molecule or molecular fragment of the material. The formalism is

analogous whether the charge is an excess electron or an excess electronic hole.

In this work I have treated the electronic behaviour exclusively as a one-particle

problem. I consider only a single excess charge carrier, which moves in an effec-

tive time-dependent potential arising from the remainder of the system (the nuclei

and other electrons). This means that valence and core electrons are not explicitly

treated. The time-dependent wavefunction of the charge carrier, Ψ(t), is expanded

in a set of time-dependent orthogonal electronic site orbitals with the excess elec-

tron localized at site l, {φl},

Ψ(t) =
M∑
l=1

ul(t)φl(R(t)). (2.8)

In this derivation I assume the simplest case: each site contributes a single

site orbital to the total electronic wavefunction. Physical organic molecules may

well have degenerate molecular orbitals and thus a single molecule may contribute

more than one orbital, but the derivation proceeds identically withM = kN , where
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N is the number of molecules and k some constant representing the number of site

orbitals contributed by each molecule.

The site orbitals are obtained from the singly occupied molecular orbitals (SO-

MOs) of the isolated molecules, denoted {ϕm}, via Löwdin orthogonalization [153],

φl =

M∑
m=1

Tmlϕm, (2.9)

where Tml are the elements of the matrix T, Tml=[T]ml=[S−1/2]ml and S the over-

lap matrix with elements Sml = [S]ml = 〈ϕm|ϕl〉. Hence, while the {ϕm} are strictly

localized on site m and have zero amplitude anywhere else, the {φm} are strongly

localized on site m and have small tails on the neighbouring sites to enforce or-

thogonality. The SOMOs {ϕm} can be obtained from gas phase calculations on the

isolated molecules in vacuum for the same atomic configuration as in the material

and for the charge state 1- (1+ for holes).

Insertion of Eq. 2.8 in the time-dependent electronic Schrödinger equation and

multiplication from the left with φk and integration gives, analogously to Eq. 2.1,

i~u̇k(t) =
∑
l

ul(t) (Hkl − i~dkl) , (2.10)

where Hkl are the matrix elements of the electronic Hamiltonian H and dkl the

non-adiabatic coupling elements (NACEs) in the orthogonal site orbital basis, re-

spectively,

Hkl = [H]kl = 〈φk|H|φl〉 (2.11)

dkl = [D]kl = 〈φk|φ̇l〉. (2.12)

The orthogonal site basis {φl} is the most natural one for us to consider in the

context of charge transfer between sites, and thus Eq. 2.10 is the main equation to

determine the time evolution of the excess charge.
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The matrix elementsHkl and dkl can be expressed in terms of the non-orthogonal

site orbital basis {ϕl} by substitution of Eq. 2.9,

Hkl = [T†V′T]kl = [T−1H′T]kl (2.13)

dkl = [T†D′T]kl + [T†SṪ]kl, (2.14)

where

V ′kl = [V′]kl = 〈ϕk|H|ϕl〉 (2.15)

d′kl = [D′]kl = 〈ϕk|ϕ̇l〉, (2.16)

and

H′ = S−1V′. (2.17)

is the electronic Hamiltonian in the non-orthogonal site orbital basis.

To calculate the forces arising from the adiabatic potential energy surface and

the probability of hopping to a different surface, I require the adiabatic electronic

wavefunctions ψn and the NACEs between the adiabatic states. The adiabatic

wavefunctions can be easily obtained from the site orbital representation of the

electronic wavefunction via a similarity transformation,

ψn(t) =
∑
l

Ulnφl(t), (2.18)

where Uln=[U]ln and U diagonalizes H,

Had =U†HU. (2.19)

The Hamiltonian in the adiabatic electronic basis (superscript “ad”) has the adi-

abatic potential energies En = [Had]nn on its diagonal, n= 0 the electronic ground
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state, n = 1 the first excited state and so on. The off-diagonals are 0 by defini-

tion. For calculation of the NACEs, I insert the similarity transformation Eq. 2.18 in

Eq. 2.2. This gives for n=j, i

dad
ji = [U†DU]ji + [U†U̇]ji, (2.20)

where D is the matrix of NACEs in the site orbital basis, Eq. 2.12.

2.3 Nuclear gradients

The force on an atom I on the adiabatic potential energy surface Ei is given by

FI,i = −∇I〈ψi|H|ψi〉 = −〈ψi|∇IH|ψi〉, (2.21)

where I have used the Hellmann-Feynman theorem in the last equation. With

an explicit expression for the Hamiltonian in the adiabatic electronic basis H in

terms of the atomic coordinates R, I could therefore calculate these forces directly.

I however do not have such an expression, as this Hamiltonian has been calculated

from diagonalization of a Hamiltonian in a different basis set (the site orbital basis)

and thus in general even if this Hamiltonian is known analytically in terms of R,

the Hamiltonian in the adiabatic basis will not be. Instead I present here a general

method that will allow me to calculate the forces in the adiabatic electronic basis

from the forces in any other electronic basis (in this case, the site orbital basis).

Inserting Eq. 2.18 for n= i in Eq. 2.21, one obtains

FI,i = −[U†GIU]ii, (2.22)

with matrix elements [GI ]kl=〈φk|∇IH|φl〉. These elements can be written as
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〈φk|∇IH|φl〉 = ∇I〈φk|H|φl〉 − 〈∇Iφk|H|φl〉 − 〈φk|H|∇Iφl〉 (2.23)

= ∇IHkl − 〈∇Iφk|
∑
m

Hmlφm〉 − 〈∇Iφl|
∑
m

Hmkφm〉∗ (2.24)

= ∇IHkl +
∑
m

(dI,kmHml −HkmdI,ml), (2.25)

where

∇IHkl = [∇IH]kl = ∇I〈φk|H|φl〉 (2.26)

dI,kl = [DI ]kl = 〈φk|∇Iφl〉 (2.27)

are the gradients of the Hamiltonian matrix elements and the non-adiabatic cou-

pling vectors (NACVs) in the orthogonal site basis, respectively. In Eq. 2.25 I have

made use of the identity

dI,km = −d∗I,mk, (2.28)

which is valid for orthogonal wavefunctions. In matrix notation,

GI = ∇IH + DIH−HDI . (2.29)

I am only interested in the diagonal elements of the matrix U†GIU, as per Eq. 2.22.

It can be easily shown that the diagonal elements of the latter two terms in Eq. 2.29

disappear after transformation to the adiabatic basis:

[U†[DIH−HDI ]U]ii = [U†DIHU− U†HDIU]ii, (2.30)

= [U†DIUU†HU]ii − [U†HUU†DIU]ii, (2.31)

= [U†DIU]iiEi − Ei[U†DIU]ii, (2.32)

= 0 (2.33)
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Insertion of Eq. 2.29 in Eq. 2.22 and using Eq. 2.33 gives me the forces as in Eq.

2.21 and thus I now have a force expression that allows me to calculate the forces

on the adiabatic electronic states on every atom in my system, as long as I know the

electronic Hamiltonian in some basis set.

2.4 Special case: donor-acceptor complex

In the special case of charge transfer in a donor-acceptor complex (i.e. a system

which can be approximated to two molecular sites only), the transformation from

the site (or diabatic) basis to the adiabatic basis is analytic. For a 2×2 matrix Eq. 2.19

can therefore be calculated ‘by hand’, giving

E0/1(R) =
H11(R) +H22(R)

2
± 1

2

√
∆E2(R) + 4H2

12(R), (2.34)

where on the RHS of Eq. 2.34 the minus sign is for the adiabatic ground state

energy, E0, and the plus sign for the excited adiabatic state, E1, and ∆E is the

vertical site (diabatic) energy gap,

∆E(R) = H22(R)−H11(R) (2.35)

Hence, the forces on the ions for each adiabatic surface can be directly obtained

by differentiation of Eq. 2.34,

FI,0/1 = −∇IH11 +∇IH22

2
∓ ∆E(∇IH22 −∇IH11) + 4H12∇IH12

2
√

∆E2 + 4H2
12

(2.36)

The NACE required for the hopping probability between the two surfaces can-

not be further simplified and needs to be calculated according to Eq. 2.20.

2.5 Efficient calculation of matrix elements and derivatives

The formulation of surface hopping in the site basis in sections 2.2-2.3 requires the

calculation of a number of matrix elements and derivatives. For propagation of
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the electronic subsystem according to Eq. 2.10 one needs to calculate the following

matrix elements at each MD time step: Hkl and dkl (requiring d′kl, Skl, Tkl, Ṫkl). In

addition, for propagation of the nuclear subsystem according to Eq. 2.29, one needs

to calculate the nuclear gradients∇IHkl.

The diagonal elements of the Hamiltonian Hkk = 〈φk|H|φk〉 are approximated

here at the classical force field level. The corresponding site orbital basis functions

{φk} are strongly localized on site k and typically have only a very small contribu-

tion on neighboring sites l to enforce orthogonality. The element Hkk is calculated

as the energy difference between two situations: the ‘charged’ system (site k carries

the total excess electron whereas all other sites l 6= k are modelled in their neutral

charge state) and the ‘neutral’ system (all sites are modelled in the neutral charge

state).

The off-diagonal elements of the Hamiltonian Hkl, l 6= k, are an intrinsically

quantum mechanical property. For their calculation I turn to the analytic overlap

method (AOM) of Gajdos et al. [149].

We consider at first the non-orthogonal site orbitals {ϕk}, whereϕk is the singly-

occupied molecular orbital (SOMO) of molecule k, and the corresponding overlap

matrix elements Skl. The SOMO is obtained from standard electronic structure

calculation on the isolated molecule in the charged state. The SOMO is then rep-

resented in a minimum basis of Slater-type atomic orbitals (STO) with optimized

Slater decay coefficients. For π-conjugated systems it is usually sufficient to include

only one optimized Slater p-orbital per atom contributing to π-conjugation. In this

case

Skl = 〈ϕk|ϕl〉 =

atoms∑
i∈k

atoms∑
j∈l

c∗pπ,icpπ,j〈pπ,i|pπ,j〉, (2.37)

where i and j run over all π-conjugated atoms in molecules k and l respectively,

pπ,i is the STO p orbital on atom i pointing along the direction of pi-conjugation and

cpπ,i is the corresponding expansion coefficients. The latter is obtained from pro-

jection of pπ,i on the SOMO obtained from explicit electronic structure calculation

with a standard basis set. (In our previous work we have denoted the double sum
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on the right hand side of Eq. 2.37 by S̄kl.) The crucial advantage of the minimum

STO representation is that the calculation of the overlap according to Eq. 2.37 is

analytic and can thus can be done extremely fast.

The overlap matrix elements of Eq. 2.37 are used to obtain Hkl according to the

linear relationship

Hkl = CSkl, (2.38)

where C is a constant of proportion. Eq. 2.38 asserts that the off-diagonal Hamil-

tonian matrix element between the orthogonal site orbitals (φk, φl), Hkl, is pro-

portional to the orbital overlap of the corresponding non-orthogonal site orbitals

(ϕk, ϕl), Skl, where the two orbital pairs are related by the Löwdin transformation

Eq. 2.9.

In previous work my research group has investigated the linear relation in

Eq. 2.38 (this relationship is also referred to as the analytic overlap method or AOM)

for simple donor-acceptor pairs, for which Hkl is usually referred to as the elec-

tronic coupling matrix element or the transfer integral [149]. The linear relation

Eq. 2.38 was calibrated against electronic coupling matrix elements obtained from

wavefunction-theory validated fragment-orbital density functional theory (FODFT)

calculations on a diverse set of π-conjugated organic donor-acceptor pairs (Hkl, C

and Skl were denoted by Hab, C̄ and S̄ab in Ref. 149, respectively.). We found a very

good linear correlation (R2 =0.974) and transferability to π-conjugated compounds

not included in the calibration. The mean error was only a factor of 1.9, translating

into an error in the non-adiabatic ET rate by a factor of 3.6. This is considered to

be an acceptable error when agreement between rates is often only within an order

of magnitude. The difference between the donor-acceptor pairs investigated in this

previous work and the multi-site systems (molecular materials) investigated here

is that the φk have small tails on all neighbouring sites, not only on site l. The influ-

ence of these tails on Hkl can be expected to be small and is neglected. The crucial

advantage of the calibrated Eq. 2.38 is that it provides a way for ultrafast estimation

of Hkl owing to the efficient calculation of the overlap via Eq. 2.37.
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Eq. 2.37 is also used for rapid estimation of the NACEs. The time derivative of

the site basis functions is replaced by a finite difference approximation that can be

made arbitrarily accurate by reducing the MD time step ∆t,

d′kl(t) =

〈
ϕk(t)

∣∣∣ d
dt
ϕl(t)

〉
(2.39)

≈ 1

∆t
(〈ϕk(t)|ϕl(t+ ∆t)〉 − 〈ϕk(t)|ϕl(t)〉)

=
1

∆t
(Skl′(t)− Skl(t)), (2.40)

where Skl′ denotes the overlap between ϕk at time t and ϕl at time t+∆t. Both Skl′

and Skl are calculated according to Eq. 2.37. The transformation matrix Tkl can be

simply obtained from Skl via matrix inversion and the time derivative Ṫkl is simi-

larly approximated by a finite difference calculation. The NACEs in the orthogonal

site basis, dkl, can then be obtained according to Eq. 2.14.

Here a note on the time evolution of the SOMOs, ϕk(t), is in order. The time

dependence is due to the classical dynamics of the nuclear subsystem with coor-

dinates R = R(t). Therefore ϕk(t) = ϕk(R(t)). The projection coefficients cpπ,i in

Eq. 2.37 are calculated only once, for the minimum energy structure of molecule k

in vacuum. After every nuclear dynamics time step, the orientation of the atomic

orbital pπ,i is updated so that it remains parallel to the direction of π-conjugation.

This direction is orthogonal to the plane that minimizes the sum of the distances

between the plane and atom i and the atoms covalently connected to i. The expan-

sion coefficients of all atomic orbitals on molecule k are then scaled by the same

factor (typically a small number close to 1) to normalize the SOMO at the new ge-

ometry. The expansion coefficients are not changed otherwise. Hence, the atomic

orbitals comprising the SOMO follow the motion of the atoms but they are frozen

otherwise. This means that possible electronic relaxation effects of the SOMO in

response to nuclear motion are not included.

Turning to the calculation of the nuclear gradients, the diagonal contribution of

the Hamiltonian, ∇IHkk, is taken from the force field, consistently with my choice
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for the diagonal energies. The off-diagonal contributions, k 6= l, are obtained from

differentiation of Eq. 2.38,

∇IHkl = C∇ISkl. (2.41)

The nuclear gradients of the overlap, ∇ISkl, can be conveniently expressed in

terms of the NACVs,

∇ISkl = ∇I〈ϕk|ϕl〉 = 〈∇Iϕk|ϕl〉+ 〈ϕk|∇Iϕl〉 = d′∗I,lk + d′I,kl, (2.42)

which are calculated numerically using the finite difference approximation,

d′I,kl = 〈ϕk|∇Iϕl(R1, . . . ,RI , . . . ,RM )〉

≈



1
∆s(〈ϕk|ϕl(R1, . . . ,RI + ∆sex, . . . ,RM ))

−〈ϕk|ϕl(R1, . . . ,RI , . . . ,RM )〉)
1

∆s(〈ϕk|ϕl(R1, . . . ,RI + ∆sey, . . . ,RM ))

−〈ϕk|ϕl(R1, . . . ,RI , . . . ,RM )〉)
1

∆s(〈ϕk|ϕl(R1, . . . ,RI + ∆sez, . . . ,RM ))

−〈ϕk|ϕl(R1, . . . ,RI , . . . ,RM )〉)


(2.43)

=


1

∆s(SI,kl′ − Skl1) if I ∈ l

0 if I /∈ l
(2.44)

In Eqs. 2.43-2.44, ∆s is a small displacement and ex, ey, ez are the unit vectors

in x, y and z directions, SI,kl′ is the vector of overlaps between ϕk at nuclear coordi-

nates R= (R1, . . . ,RI , . . . ,RM ) and ϕl at nuclear coordinates of atom I displaced

by ∆sex, ∆sey and ∆sez , respectively (first vector in Eq. 2.43), and 0 and 1 are

the null and unity vectors, respectively. Eq. 2.44 assumes that a displacement of a

given atom I on a molecule l only leads to a change in the SOMO for that molecule,

i.e. ϕl. The SOMOs of all other sites including site k remain unchanged. This is a

consequence of the neglect of electronic relaxation effects due to nuclear motion.
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With the derivation of all the equations required to propagate both atoms and

charge within an SH scheme - crucially, the general force expression for the atoms,

something unique to this work - it is now possible to implement such a method to

begin carrying out simulations. In the next chapter I discuss the practical aspects

of my implementation of FOB-SH and some of the validations I have carried out.
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Chapter 3

Implementation and Validation of

FOB-SH

In this chapter, I will present and discuss the practical details of my implementation

of FOB-SH, with which I have calculated all the results in Chapters 4 and 5. I

will discuss the program flow in this implementation, talk about some standard

additions to the surface hopping algorithm, and show the outcome of some tests

designed to verify that the method is working correctly.

3.1 Implementation details

3.1.1 Molecular dynamics

In FOB-SH, the vast majority of the system consists of organic molecules which

must be propagated with some form of classical force field. For this implementa-

tion, I have chosen to use the NAMD molecular dynamics package [154, 155] with

the AMBER force field [156, 157]. The form of the AMBER force field is

Etotal = Ebonds + Eangles + Edihedrals + Enonbonded + Eelec (3.1)

with the following terms:

Ebonds =
∑
bonds

1

2
kr(r − r0)2 (3.2)
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Eangles =
∑
angles

1

2
kθ(θ − θ0)2 (3.3)

where in both cases the zero subscript denotes an equilibrium value;

Edihedrals =
∑

dihedrals,n

Vn
2

(1 + [nφ− γ]) (3.4)

where the sum over n represents the fact that individual bonds may have more

than one torsion term defined;

Enonbonded =
∑
i<j

4εij

[
σ12

r12
ij

− σ6

r6
ij

]
(3.5)

Eelec =
∑
i<j

qiqj
4πε0rij

(3.6)

where i, j sum over all atoms in the system in all cases. This is the full form of

the force expression for a ‘neutral’ system, and additional forces are applied that

arise from the excess charge: as detailed in Section 2.3, these additional forces on

the atoms arising from the excess charge can be calculated using either Equation

2.36 for a donor-acceptor complex, or more generally from Equation 2.22. Nearly

all required parameters in the above equations were taken from the Generalized

Amber Force Field (GAFF) parameterization. The only exceptions were when spe-

cific parameterization of the reorganization energy was required: this is detailed in

Chapter 4.

My choice of NAMD was motivated by its tclforces functionality, which allows

the user to write custom scripts to apply additional forces to the molecules. This

is crucial to correctly propagate the atoms on the active adiabatic potential energy

surface: the continual switching of surfaces makes it impossible to run simulations

with a single topology file, but the tclforces functionality allowed me to set up and

run simulations using an electronically-neutral topology file and then calculate and

add the forces arising from the excess charge ‘on the fly’.
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3.1.2 Charge dynamics and surface hopping

For the propagation of the excess charge, we first return to Eq. 2.10. If the coeffi-

cients uk(t), k = 1, .., N are expressed as a column vector u(t) of dimension N , then

Eq. 2.10 can be expressed as

d

dt
u(t) = X(t)u(t) (3.7)

where X(t) is a matrix with elements defined thus:

Xkl =
−i
~
Hkl − dkl (3.8)

For my implementation, Eq. 3.7 is numerically integrated using the fourth-

order Runge-Kutta method [158] with a timestep δt:

u(t+ δt) = u(t) +
δt

6
(K1 + 2K2 + 2K3 +K4) (3.9)

K1 = Xt (3.10)

K2 = Xt+ 1
2
δt(1 +

1

2
δtK1) (3.11)

K3 = Xt+ 1
2
δt(1 +

1

2
δtK2) (3.12)

K4 = Xt+δt(1 + δtK3) (3.13)

In the above, the symbol Xt denotes the matrix X evaluated at timestep t. As

detailed in Chapter 2, all elements of these matrices can be calculated from the

analytic overlap method, with the exception of the diagonal Hamiltonian elements

Hii which I take from my classical force field.

At the end of the electronic propagation, the Hamiltonian H is diagonalized as

detailed in Chapter 2 so as to calculate forces and surface hopping probabilities.

A uniform random number between 0 and 1 is generated and used to calculate

whether or not the system hops to a different surface. In an N -site system, the

interval 0 to 1 is divided into N segments where the first N − 1 segments have

size gji, with i the current adiabatic state, j a different adiabatic state and gji the
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probability of hopping (from Eq. 2.4): the N th segment is then considered to be the

probability for not hopping.

It can be shown that for infinitesimal time step ∆t the total sum of all surface

hopping probabilities should be less than or equal to unity: in practice, the use of

a finite time step in this implementation means that this is not guaranteed. To deal

with the possibility that the probabilities might sum to a number greater than 1, the

program is designed in this case to rescale all the probabilities by a factor 1∑
gji

so

that
∑
gji = 1. In this case a surface hop is guaranteed, as the effective probability

of remaining on the same surface is given by 1−
∑
gji = 0.

Velocity rescaling

As mentioned in Tully’s original surface hopping paper, it is necessarily to intro-

duce some way of conserving the total energy of the system after a surface hop,

as the energy splitting between adiabatic surfaces means that energy conservation

does not happen automatically. The most common method is a rescaling of the

atomic velocities of the system [110] though other suggestions exist [159]. This

FOB-SH implementation uses a very straightforward approach. When the system

undergoes a surface hop from i to j, all the atomic velocities of the system are

rescaled at the point of a surface hop by a factor κ where

κ =

√
Ti − (Ej − Ei)

Ti
, (3.14)

where Ti is the total kinetic energy of the system in state i and Ei, Ej are the po-

tential energies in states i and j, respectively. This procedure differs from the usual

approach, where only the velocity component in the direction of the non-adiabatic

coupling vector is rescaled. Unfortunately, the use of the NAMD package restricted

me to a very limited ability to alter the system’s velocities during a simulation, ne-

cessitating this approach. As the purpose of this work is to introduce and demon-

strate the feasibility of a new methodology rather than report quantitative results,

I have essentially disregarded any possible systematic errors due to this modified



3.1. Implementation details 57

velocity rescaling approach, although some discussion of their possible effects is

included in Chapter 6.

Decoherence correction

In response to the weight of literature discussing the electronic overcoherence prob-

lem that surface hopping methods suffer from [116,118,131–133,152,160,161] I have

implemented a simple decoherence correction, which ensures that the overcoher-

ence problem is accounted for in a similar fashion to Refs. [116] or [131]. There are

two versions of the procedure, one of which is entirely general and one which is

only applicable to a two-site system: I shall detail the latter first because it is more

intuitive.

In a two-site simulation, after a surface hop from the excited to the adiabatic

ground state I collapse the electronic wavefunction onto the adiabatic ground state

the first time that the system passes through one of the ground state minima while

moving away from the avoided crossing [116]. This is a simple and intuitive way to

ensure that the wavefunction collapse only happens when the non-adiabatic cou-

pling between the two states is negligible.

The exact same procedure is not available in a general system, where there is no

corresponding analytic picture of the adiabatic states in terms of the diabatic states

and thus no guarantee that a diabatic minimum will necessarily correspond to a re-

gion of low non-adiabatic coupling. In this case, the correction I have implemented

takes the non-adiabatic coupling into account more directly. After any surface hop,

the first time that the non-adiabatic coupling elements between the current state

and each of the other system states all fall below a certain threshold, I collapse the

electronic wavefunction onto the current adiabatic state. This procedure is judged

to be essentially equivalent to that for the two-site case.

3.1.3 Program flow

To aid with understanding the flow of the FOB-SH program used for this work, Fig-

ure 3.1 is a flowchart that lays out a simplified version of the required calculations
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prior to simulation start and during each timestep of a given simulation.

FIGURE 3.1: A simplified version of the FOB-SH program flow. Ab-
breviations are as follows: FO (fragment orbital), DFT (density func-
tional theory), SOMO (singly-occupied molecular orbital), AOM
(analytic overlap method), TF (transformation), SH (surface hop-

ping).

The coupled equations of motion for the excess charge carrier, Eq. 2.10, and clas-

sical nuclei, Eq. 2.3, are integrated numerically using an electronic time step δt = 0.1

fs and a nuclear time step ∆t = 0.5 fs for propagation of charge carrier and nuclei,

respectively. These time steps were optimized to be the maximum possible without
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introducing errors into the electronic propagation (in the case of δt) and to improve

the energy conservation of the method as much as possible while maintaining suffi-

cient computational efficiency to make large-scale simulations practical (in the case

of ∆t).

At the initial time t the electronic Hamiltonian Hkl(t) and the forces ∇IHkl are

calculated in the site basis as described above and transformed to the adiabatic

basis according to Eqs. 2.19 and 2.22. The nuclei are then propagated on a given

adiabatic surface i from time t to t + ∆t according to Eq. 2.3 using the velocity

Verlet algorithm. This is followed by calculation of the electronic Hamiltonian at

time t+∆t, Hkl(t+∆t). In the next step, the charge carrier is propagated in the site

basis according to Eq. 2.10 from time t to t+∆t in steps of δt using the fourth-order

Runge-Kutta algorithm following Eqs. 3.9-3.13 [158]. At each electronic integration

time step n, the electronic Hamiltonian is linearly interpolated between Hkl(t) and

Hkl(t+∆t),Hkl(t+nδt)=Hkl(t)+[Hkl(t+∆t)−Hkl(t)](nδt/∆t), n = 1, . . . , (∆t/δt).

The NACEs dkl required for the carrier propagation are obtained from d′kl, Eq. 2.40,

via the transformation Eq. 2.14. The NACVs, and by virtue of Eqs. 2.41-2.42 ∇IHkl

and∇ISkl respectively, are obtained by numeric differentiation using an increment

for nuclear displacements of ∆s = 10−4 Å. The surface hopping probabilities be-

tween the current adiabatic electronic state i and all other states j 6= i, according to

Eq. 2.4, are calculated at every nuclear time step.

3.2 Simulation details

3.2.1 Model systems

In principle, the FOB-SH method as explained in this thesis can be applied to any

organic semiconductor systems, as long as the molecular sites for the charge prop-

agation are π-conjugated (as the analytic overlap method relies upon this assump-

tion [149]). Early on in the project, tests of the method were carried out on fullerene

molecules, specifically buckminsterfullerene (C60), derivatives of which are widely

used in organic photovoltaic applications [162] due to their electronic acceptor
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properties [163]. This choice of molecule was particularly motivated by previous

work in my group on this molecule and derivatives, such as PCBM [51, 52, 164].

Although this molecule still presents interesting avenues for future research, I dis-

covered while implementing FOB-SH that the computational cost of my method of

estimating the NACVs - required for the calculation of the atomic forces - scales ap-

proximately as the square of the total number of atoms in the system. As fullerenes

are among the largest non-polymeric organic molecules, they will correspondingly

be some of the most expensive possible to simulate with the current set-up.

For reasons therefore of maximal computational efficiency, I have chosen to test

and validate my FOB-SH implementation by simulation of electron hole transfer

between ethylene-like molecules (ELMs). I call them “ethylene-like“ because only

their nuclear geometries correspond to real ethylene molecules: the reorganization

energy λ and the constantC determining the magnitude ofHkl (Eq. 2.38) have been

chosen freely to simulate charge transfer in different parameter regimes. This al-

lows me to check my implementation on a very small system that does not directly

correspond to a real, physical organic semiconductor but which nonetheless can

demonstrate its suitability for such a purpose.

In this thesis I have carried out simulations on two systems of ELMs: a donor-

acceptor complex of two molecules (the simplest system possible to study charge

transfer) and a larger system, consisting of a 1-dimensional chain of 10 ELMs. Fig-

ure 3.2 is a visualization of the two systems in question: exact parameterization

details for these systems are in Chapters 4 and 5 respectively.

3.2.2 Force field parameters

The site energies Hkk and corresponding forces∇IHkk are calculated with the AM-

BER classical force field. Specifically, I model intermolecular reorganization be-

tween neutral and charged geometries by a change in equilibrium distance R be-

tween the two carbon atoms, all other bonding parameters remaining unchanged.

This means that the site energies and forces can be described by Eq. 3.2.
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FIGURE 3.2: Visualizations of the two model systems used in this
thesis. Panel A is the ELM dimer, with the molecules initially spaced
4 Å apart. Panel B is the ten-molecule 1D chain, where the inter-

molecular spacing at initialization is again 4 Å.

The reorganization energy λ can be calculated from a standard fourpoint scheme

[51],

λ = [EC(RN) + EN(RC)]− [EC(RC) + EN(RN)] (3.15)

In Eq. 3.15, EC(RN) is the total force field energy of the charged ELM (subscript

C) at the minimum energy configuration of the neutral ELM, RN, EN(RC) is the

total force field energy of the neutral ELM (subscript N) at the minimum energy

configuration of the charged ELM, RC, andEC(RC),EN(RN) are the energies at the

minimum energy configurations of the respective states. In Table 3.1, I demonstrate

which values of R were used to give me different values of λ for the ELM.

The off-diagonal elements Hkl, k 6= l, are calculated using the analytic overlap

method, Eq. 2.38, with C treated as a parameter controlling the strength of elec-

tronic coupling. The calculation of the overlap integrals Skl was carried out as

described in Ref. 149 using a minimum Slater basis of p orbitals with Slater decay

coefficients µ̄2p=1.0000 a.u.−1.
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TABLE 3.1: Parameterization of reorganization energy λ via the
equilibrium charged length of the C=C bond

Bond length (Angstroms) λ (meV)
1.324 0 (neutral molecule)
1.369 100
1.387 200
1.401 300
1.413 400
1.423 500
1.433 600
1.441 700

3.3 Tests

3.3.1 Electronic behaviour and Rabi oscillations

One of the few analytically-known results that the electron propagation routine

can be used to reproduce is the behaviour of a simple two-site system. From

Nitzan [77], we know the following: given a 2×2 Hamiltonian in the diabatic repre-

sentation with diagonal elements Haa and Hbb and off-diagonal Hab, and assuming

the system is initially in diabatic state a, the time-dependent probability of diabatic

state b is

Pb =
4|Hab|2

(Haa −Hbb)
2 + 4|Hab|2

sin2

[
ΩRt

2

]
(3.16)

Pa = 1− Pb (3.17)

ΩR is known as the Rabi frequency, and is defined thus:

ΩR =
1

~

√
(Haa −Hbb)

2 + 4|Hab|2 (3.18)

This is directly applicable to the simplest conceivable application of the method.

Consider a system of two molecules and a single excess electron. If the molecules

are frozen in place, and do not react to the electron’s presence i.e the coupling Hab

and the site energies Haa, Hbb do not change in time, then the electronic population

should oscillate between the two sites exactly as described above.
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FIGURE 3.3: The population of each of two sites a (purple) and b

(yellow) as a function of time. At time t = 0, |ua|2 = 1 and |ub|2 =
0. There are three sets of curves on this graph: one uses the Runge-
Kutta method to propagate the electron, one uses the exponential
solution, and one plots the analytic values of Pa and Pb as in Eq.
3.16. For each site, the three curves lie exactly on top of each other,
showing that the Runge-Kutta method I have used agrees perfectly

with exact theory in this simple case

Figure 3.3 plots curves of u for both sites, both those calculated from the Runge-

Kutta routine and the analytic solutions. For further comparison, an alternative

method was also used which solves the first-order differential equation 3.7 with a

matrix exponential:

u(t) = exp (Xt) (3.19)

which is valid only for a time-independent X i.e. no molecular motion.

What we see in Figure 3.3 is that the Runge-Kutta method appears to have been

correctly implemented, given its perfect (i.e. within numerical double precision)

reproduction of the analytic equivalent. The diabatic populations of each site oscil-

late exactly according to Eq. 3.16. Obviously Eqs. 3.16 and 3.18 are strictly valid

for a two-site time-independent system, but given the exact agreement between
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my method and these equations in such a case I can extrapolate the qualitative be-

haviour of larger and time-dependent systems. It seems clear that the electronic

population of sites in my systems will display similar oscillations, with the ampli-

tude and frequency of these oscillations being controlled by the site energy differ-

ence ∆E and the electronic coupling Hab. This is indeed what I observe: see e.g.

Figure 4.3 or Figure 4.5 for example electronic trajectories.

3.3.2 Nuclear forces and energy conservation.

As explained in Chapter 2, for a dimer system the nuclear forces on the active po-

tential surface can be calculated using either Eq. 2.36 or the general N -site expres-

sion Eq. 2.22 forN=2. While both expressions are of course equivalent for a dimer,

the implementation of the general N -site expression is more involved than the one

for Eq. 2.36. A comparison between the numerical results obtained from the two ex-

pressions is therefore a good test for the validity of my implementation of Eq. 2.22.

To achieve this, I carried out four MD simulations of 100 ps in length each, without

surface hopping. Each simulation was carried out on a single adiabatic potential

energy surface (ground or excited) and the scaling constant in Eq. 2.38 was chosen

to be C=88.7 meV, 443.5 meV to produce two different values of the average inter-

molecular electronic coupling, 〈|H12|2〉1/2 = 8 meV and 41 meV respectively. Thus,

for two different values of the coupling, I produced both a ground-state and an

excited-state trajectory. For each trajectory, at 100 regularly-spaced configurations

1 ps apart, I calculated the forces on each atom according to both Eq. 2.36 and Eq.

2.22, as well as a version of Eq. 2.22 that sets the off-diagonal forces ∇IHkl, k 6= l,

to 0. This last expression was chosen to demonstrate how the importance of these

off-diagonal forces changes depending on the strength of the coupling.

The results are shown in Figure 3.4, which plots the forces from the full expres-

sion Eq. 2.22 (symbols in red) and from Eq. 2.22 with ∇IHkl=0 for k 6= l (symbols

in green) against the ones obtained from the full expression Eq. 2.36. I observe ex-

act agreement between Eq. 2.22 and Eq. 2.36 for all four cases, validating the force

calculation. In contrast, an error is made when neglecting the off-diagonal forces
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in Eq. 2.22, which becomes pronounced in the larger coupling case (panels A and

C) and also is greatest on the excited state trajectory, where the relative effect of the

off-diagonal force terms is maximum (panel C, up to 0.1 Hartree/Bohr).

FIGURE 3.4: Nuclear forces obtained from the generalN -site expres-
sion, Eq. 2.22, and from the 2-state expression, Eq. 2.36. The x, y and
z components of the nuclear forces in the ELM dimer are plotted as
obtained from MD simulation (A) on the adiabatic ground state E0

with 〈|Hab|2〉1/2 = 41 meV, (B) on the adiabatic ground state E0 with
〈|Hab|2〉1/2 = 8 meV, (C) on the excited state E1 with 〈|Hab|2〉1/2 =
41 meV and (D) on the excited state with 〈|Hab|2〉1/2 = 8 meV. Red
crosses refer to the full force calculation while green circles refer to

the diagonal forces approximation as described in Table 3.2.

Having validated my force calculations and begun to understand the impor-

tance of the off-diagonal terms, I wanted to further investigate if my SH simula-

tions would conserve total energy well, and to understand if the approximation

∇IHkl = 0 for k 6= l would cause a significant computational speedup. To see

this, I performed individual SH simulations for the higher coupling strength model

(C = 443.5 meV) of between 0.1 and 1 ns in length for five different simulation se-

tups in the NVE ensemble. Three of these were on model ELM dimers, respectively
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calculating the nuclear forces on the active potential energy surface using Eq. 2.36,

Eq. 2.22 and the version of Eq. 2.22 that sets the off-diagonal forces to 0. The

latter two force expressions were also applied to the 1D chain of 10 ELMs. Table

3.2 summarizes the energy conservation and computational cost of each of these

simulations.

TABLE 3.2: Total energy conservation of FOB-SH simulations for
different approximations and corresponding speed-up on a single
compute core. The simulations were 1 ns and 0.1 ns in length for the
2 and 10 site simulations respectively. The ionic timestep was 0.5 fs.

Force expression number of sites total energy drift CPU time
(Hartree/ps/atom) (seconds/ps)

Eq. 2.36, no hops 2 1.78× 10−9 0.6
Eq. 2.36 2 1.18× 10−6 31.4
Eq. 2.22 2 8.75× 10−7 44.5
Eq. 2.22,∇IHkl=0 2 7.40× 10−6 32.9
Eq. 2.22 10 5.45× 10−6 1027.9
Eq. 2.22,∇IHkl=0 10 1.04× 10−5 674.9

I find that the energy drift is comparable when using Eq. 2.36 and Eq. 2.22

on the dimer system, which is expected as these two expressions are equivalent

for N = 2. The energy drift when neglecting the off-diagonal forces, meanwhile, is

an order of magnitude larger. For the 10-site system the energy drift also increases

when neglecting the off-diagonal forces, but not by as much. This analysis suggests

that despite the rather large errors in the forces (Figure 3.4), the total energy is still

reasonably well conserved when the off-diagonal forces are neglected, at least for

the chain of ELMs studied. Meanwhile, the computational time can be significantly

decreased when using this approximation (by a factor of about 2 for the 10-site

system).

Overall, the total energy drift of SH MD is reasonably small (on the order of

10−6 Hartree/ps/atom), but about 3 orders of magnitude higher than for classical

MD simulations on a single ground state or excited state surface without SH (10−9

Hartree/ps/atom). The higher energy drift in the SH runs is related to the disconti-

nuity in the forces that comes from undergoing surface hops. Tully’s original publi-

cation [110] discussed this to some extent, choosing to keep the sudden switches for
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the sake of simplicity while noting suggestions for fictitious forces that would carry

the molecules smoothly from one trajectory to another. I have also chosen to allow

the system to hop suddenly between surfaces, both for reason of computational

simplicity and also to avoid any possible outcome of the molecules being stuck on

some interpolation between actual adiabatic surfaces while the system undergoes

several surface hops. Finally, I highlight the computational efficiency of my imple-

mentation, allowing us to sample several picoseconds of SH dynamics per hour on

a single CPU core for the 10 ELM model.

With the FOB-SH method now implemented and validated, I turn to a first at-

tempt to use it to get some actual results and to begin to make comparisons with

standard ET theory. In the following chapter, I present simulations on the simplest

possible system - an ELM dimer - and outline how I used the FOB-SH method to

calculate charge transfer rates and what results I found.
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Chapter 4

FOB-SH results from a

donor-acceptor complex

In this chapter I present the bulk of the results I have obtained using FOB-SH: calcu-

lating a charge transfer rate between the two molecules of an ethylene-like dimer;

investigating the dependence of the rate on reorganization energy, electronic cou-

pling, and driving force; and comparing these dependences with standard theory.

I will discuss how the FOB-SH results diverge quantitatively from the theoretical

values in regions with parameter values that suggest such theories should be valid,

but qualitatively behaviour can still be reproduced.

4.1 Simulation details

4.1.1 Model system

The system used to study charge transfer here is the ELM dimer. Figure 4.1 dis-

plays the system in question, along with a visualization of the non-orthogonal site

orbitals ϕ1,2.

As I am testing three different parameters in this chapter, I shall now briefly

summarise their default values and how they were varied.
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FIGURE 4.1: Visualization of the ELM donor-acceptor complex, used
here as a test system to study charge transfer rates with respect to
the parameters λ,Hab and ∆A. The non-orthogonal localized site
orbitals ϕ1 and ϕ2 are shown: ϕ1 corresponds to a hole fully local-
ized on the left-hand molecule, andϕ2 to a hole fully localized on the
right-hand molecule. The arrow indicates the direction of hole trans-
fer from ‘initial’ to ‘final’ charge localized states, though it should be
noted that this is only intended as a guide to the ‘forward’ direction

as the excess hole is never observed to fully re-localize.

Reorganization energy

The default value is λ=0.3 eV, unless noted otherwise. The values of λ and r0 used

for investigation of the ET rate dependence on λ are the same as already summa-

rized in Table 3.1.

Electronic coupling

Electronic coupling matrix elements, Hab, are calculated using the analytic overlap

method, Eq. 2.38, with C treated as a parameter controlling the strength of elec-

tronic coupling. The default value is C=89 meV giving 〈|Hab|2〉1/2 =8 meV, unless

noted otherwise. The values for C and the resulting values of electronic coupling

used for investigation of the ET rate dependence on the coupling strength are sum-

marized in Table 4.1.

Driving force

The driving force ∆A between the two ELMs is by default zero. Simulations at

finite driving forces are modelled by simply adding a constant shift of ∆A to Hbb.
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TABLE 4.1: Parameterization of electronic coupling Hab via the con-
stant C (Eq. 2.38).

C (meV)
〈
|Hab|2

〉1/2 (meV)
89 8
177 15
355 30
532 44
710 57
887 68
1330 89
1774 109
2217 127
2661 144
3104 161
3548 180
4435 218

4.1.2 FOB-SH simulations

Initial configurations for FOB-SH were generated from classical MD simulation of

the ELM dimer on the initial diabatic state potential energy surface Haa, i.e. with

the hole fully localized on ELM 1. The dimer was initially placed in a stacked con-

figuration at an intermolecular distance of 4 Å. A weak harmonic position restraint

with force constant of 1.0 kcal mol−1 Å−2 was applied to each carbon atom to main-

tain a stable intermolecular separation while still allowing for rotational motion of

the monomers.

FOB-SH simulations at zero driving force (∆A=0) are initiated from structures

taken from the classical MD trajectory and propagated on the adiabatic ground

stateE0, noting thatHaa ≈ E0 in the initial state diabatic well. For increasingly neg-

ative driving forces the initial state becomes unstable against thermal fluctuations

as the avoided crossing moves towards the initial state minimum. Here FOB-SH

simulations are initiated from E0 when the energy gap between initial and final di-

abatic states ∆E ≥ 0 and from the excited stateE1 otherwise. For strongly negative

driving forces deep in the Marcus inverted regime Haa ≈ E1, hence FOB-SH sim-

ulations are initiated from E1. Consistently to this, the initial conditions for hole

propagation according to Eq. 2.10 are u1(0)=1, u2(0)= u̇1(0)= u̇2(0)=0.
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The simulations are all carried out in the NVT ensemble, with a Langevin ther-

mostat applied at 300 K with a friction constant of γ = 10 ps−1.

4.1.3 Electron transfer rates

I have investigated two methods for the calculation of ET rates from SH based on

two different observables. The first observable is the population decay of the initial

charge-localized (diabatic) state and the other is the number of successful transi-

tions between initial and final diabatic state per unit time. For a fully localized

charge transferring between donor and acceptor, the ET rates from population de-

cay and transition count will give the same result. However, in SH the charge is

a quantum mechanical object and may delocalize over donor and acceptor. In this

case the two definitions are no longer expected to give the same results. The popu-

lation decay rate is the natural choice when comparing to experimental population

decay measurements, whereas the transition count rate is arguably better suited

for comparison to ET (Marcus) theory as the latter gives the rate for transfer from

initial to final charge-localized (diabatic) state.

Population decay

To measure the population decay I monitor the population of the initial charge

localized state, |ua|2(t), and average over a large number of SH trajectories to obtain

the electronic population

Pa(t)=〈|ua|2〉(t). (4.1)

As we will see, the population decays obtained are to a good approximation

exponential. I thus fit an exponential function of the form

Pa(t)=a exp(−kdt) + b, (4.2)

which gives the population decay constant kd (subscript “d”) while a, b are con-

stant fit parameters.
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If I instead consider a reversible reaction of the form

a
kf

GGGGGBFGGGGG

kb

b, (4.3)

I must take into account a forward rate kf and a backwards rate kb such that

Pa(t) =
kf

kf + kb

[
kb

kf
+ exp(−(kf + kb)t)

]
. (4.4)

Comparing Eq. 4.4 with Eq. 4.2 I find kd = kf + kb and a= kf/kd. Inserting the

definition of the equilibrium constant K = kf/kb = exp[−∆A/(kBT )], one obtains

the SH ET rate from the population decay (subscript “p”),

kSH
p ≡ kf = kd(1 + exp(β∆A))−1, (4.5)

as well as the driving force, ∆A = kBT ln(1/a − 1). Subotnik and co-workers

have suggested two more definitions of diabatic state population Pa, in addition

to the one given in Eq. 4.1 which was denoted “Method 2”in their paper [119]. In

the surface-based method (“Method 1” in Ref. 119) ET is measured by the time

evolution of the projection of the active adiabatic electronic state λ on the initial

charge localized electronic state. That is, the element of the matrix transform-

ing between adiabatic and charge-localized states, Pa = 〈|Uaλ|2〉(t). In “Method

3” the mixed quantum-classical density is used to describe the population, Pa =

〈
∑1

i=0 |Uai|2(t)δi,λ〉+ 〈
∑

i<j 2Re(Uai(t)σij(t)U
∗
aj(t))〉, where σij = cic

∗
j .

For comparison, I have calculated and plotted the results of all three methods

for one set of 500 SH trajectories, along with their respective exponential fits (λ=

0.1 eV, 〈|Hab|2〉1/2 = 8 meV and ∆A= 0). As one can see in Fig. 4.2, the results are

very similar for all three methods with ET rates falling in a narrow range of 0.75 -

1.14×1012 s−1 (black lines). Moreover, I find that the decoherence correction leads

to a slight decrease in the ET rate to 1.05×1012 s−1 (red solid line) from 1.14×1012

s−1 (black dashed line), improving the agreement with the rate from ET theory,

8.83×1011 s−1. Since I see little distinction between the three methods in my case,

I have calculated all charge transfer rates with Method 2, and with a decoherence
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FIGURE 4.2: A comparison of the population decay calculated with
the three methods in Ref. 119: method 1 (circles), method 2 (plusses)
and method 3 (diamonds). Each also has an exponential curve fit-
ted to it: method 1 (dotted), method 2 (dashed) and method 3 (dot-
dash). I have additionally plotted in red crosses a population decay
calculated via method 2 with the decoherence correction, with an

exponential fit as a solid red line.

correction applied as detailed in Chapter 3.

Transition count

Here I simply count the number of times, Nt, that a charge transfers from the donor

to the acceptor per second and average over a large number of SH trajectories of

length T ,

kSH
t =

1

T
〈Nt〉, (4.6)

where the subscript t denotes transition count. Being a quantum mechanical object,

the charge is never ‘fully’ located on either donor or acceptor (except at t = 0).

Hence I need to allow for some finite delocalization and consider a transfer from
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donor to acceptor as successful when the amplitude changes from |ua|2 ≥ 0.9 to

|ua|2 ≤ 0.1. These ranges were found to adequately describe the transitions in

the system. While reasonable changes to these ranges do not significantly affect

results, their definition is to some extent arbitrary, which needs to be taken into

consideration when making quantitative comparison to Marcus theory.

ET rates from SH are obtained according to Eqs. 4.5 and 4.6 by averaging over

500 FOB-SH runs of variable length in the range 2-500 ps depending on the decay

rate. The population decays at zero driving force were found to fit well to a single

exponential, Eq. 4.1, with R2 values of at least 0.92. For calculation of rates from

ET theory, Eqs. 1.1, 1.2 and 1.3, values for 〈|Hab|2〉TS, λ, ∆A and νn are obtained

as follows. Hab was averaged over the MD trajectories used to initialize the FOB-

SH simulations. The difference with the ensemble average at the transition state

is expected to be very small and was neglected. Reorganization energies λ were

also obtained from these MD runs by averaging over the energy gap, λ = 〈∆E〉a.

The numerical values were found to be virtually identical with the ones defined in

Eq. 3.15 for 0 K at infinite donor-acceptor separation.

For ∆A I used the same numerical values as applied in SH simulation. The fre-

quency along the reaction coordinate, νn, was obtained by calculating the spectral

density function of the energy gap as obtained from above MD simulations (see

e.g. Ref. 165 for details). The spectrum features a main peak at νn = 1700 cm−1,

representative of the C=C stretch vibration.

4.2 Results

Before I present my main findings I briefly illustrate a typical simulation in Fig. 4.3.

Some properties along a typical FOB-SH run for this system (λ=0.3 eV, 〈|Hab|2〉1/2 =

8 meV and ∆A=0) are shown in panels A-C: the amplitude of the initial state, |ua|,

the time series of the energy gap ∆E, and the active adiabatic electronic state. It

can be seen that the system begins with the hole localized on the donor/initial dia-

batic state, with the site energy difference ∆E oscillating around the corresponding

ground state minimum (∆E ≈ λ= 0.3 eV). As thermal oscillations bring ∆E close
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to 0, surface hops to the excited state and back occur and at the same time charge

begins to transfer across to the other acceptor, until eventually the system settles

down on the ground state with the excess charge now localized on the acceptor. In

this example, the same process later occurs in reverse, returning the system to its

initial state. In Panel A there are lines to denote the values of 0.9 and 0.1: these are

the values I use in the transition-count method when considering if a hole transfer

reaction has taken place.

FIGURE 4.3: An illustration of the behaviour of a typical trajectory.
Panels A, B and C are time series of different properties during a
typical FOB-SH simulation. Panel A shows the time evolution of the
initial state amplitude |ua|2, including a transfer from initial to final
state and back. Panel B shows the time evolution of the diabatic
energy gap ∆E and panel C shows the active adiabatic state of the

system.

This example trajectory in Fig. 4.3 gives us some idea of what to qualitatively

expect from the rate dependencies. It is clear that large-scale charge transfer re-

quires the system to be close to the crossing point at ∆E = 0. For larger values

of λ, the activation barrier will be higher and the initial state will be further from

the crossing point, so I expect the rate to decrease with increased λ. Conversely, as
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Hab increases the barrier height will decrease, so the system will reach the cross-

ing region more easily and I expect to see rate increasing with Hab. Both of these

behaviours are also predicted by ET theory, suggesting my SH simulations can (at

least) qualitatively reproduce standard results, and are also in agreement with the

form of the Rabi equations (Eqs. 3.16 and 3.18).

4.2.1 λ dependence

FIGURE 4.4: ET rates for different λ values, obtained from SH simu-
lations, via the population decay method (circle symbols) and tran-
sition count method (diamond symbols) against semi-classical ET
theory (solid line). I additionally plot the rate of molecular transi-
tions (plus symbols) against the adiabatic ET rate (dashed line) to
understand the contribution of nuclear and electronic effects to the

rate.

In Fig. 4.4 I plot ET rates from SH transition count (kSH
t , diamonds) and popu-

lation decay (kSH
p , circles) against reorganization energy λ. I compare these against

results from semi-classical ET theory, Eq. 1.3 (solid lines). I immediately observe a
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very good agreement between the transition count rates and ET theory, with abso-

lute values differing by less than a factor of 2. Even for the lowest value of λ, where

the activation barrier is on the order of kBT and the ET is very fast, this excellent

agreement consists. The population decay rates are also in good agreement with

ET theory for small λ values, but there are significant deviations of up to a factor

of 5 for larger λ values. Both the SH transition count and exponential decay rates

appear to predict similar slopes for rate vs. λ, and these slopes are also slightly

shallower than those predicted by ET theory. In the following I try to rationalize

these findings.

Seeking to analyse at first the good agreement between ET theory and SH tran-

sition count rates, I consider the ET rate k (kSC in Eq. 1.3 as a product of the rate

in the adiabatic limit, kad (Eq. 1.2), which is a purely nuclear rate factor, and the

electronic transmission coefficient χel, k= χelkad. Similarly, kSH
t is considered as a

product of a purely nuclear rate obtained by counting nuclear crossings during SH

simulation from initial to final state well, kSH
t,ad, and a corresponding electronic trans-

mission coefficient χSH
t,el = kSH

t /kSH
t,ad. I can see in Fig. 4.4 that kSH

t,ad (plus symbols) is

smaller than kad (dashed lines), by a factor of up to 5. This can be attributed to fric-

tional effects on the molecules, leading to unsuccessful crossings and recrossings

at the barrier top, not taken into account by ET theory. Conversely, the electronic

transmission coefficient in SH is by about the same amount larger than what is ex-

pected according to ET theory, more specifically Landau-Zener theory. Those two

opposing effects largely cancel one another and lead to similar overall ET rates.

The increasing difference between the transition count (kSH
t ) and population de-

cay ET rates (kSH
p ) with increasing λ can be understood by analysing the qualitative

behaviour of the donor amplitude |ua|2(t). In Fig. 4.5 I show |ua|2(t) for small λ (0.1

eV, panel A) and for large λ (0.7 eV, panel B). At 0.1 eV the barrier on the ground

state is about kBT . Barrier crossings, switches to the excited state and generation

of resonant donor-acceptor structures (defined by −Hab ≤ ∆E ≤ Hab) occur very

frequently, resulting in the oscillation of one full hole between donor and accep-

tor. With increasing λ the barrier increases and becomes more steep. Resonance
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occurs infrequently and for shorter durations. This can lead to “interruption” of

hole transfer by the system moving quickly away from the crossing point before

the hole becomes fully localized on a single site.

FIGURE 4.5: A comparison of the different electronic behaviour for
two different values of reorganization energy λ. In panel A, λ =
0.1 eV and within ten picoseconds I observe many large-amplitude
oscillations, including a number of ‘successful’ transitions. In con-
trast, panel B has λ = 0.7 eV and over the course of a nanosecond
trajectory there are only a couple of successful transitions, while for
long periods of time the population becomes stuck in a half-and-half
state, contributing to the rate by exponential decay but not the rate

by transition count.

The decoherence correction then causes |ua|2 to attain values close to 0 or 1,

depending on whether the system settles in the initial or final well. While each
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interrupted transfer event contributes to the population decay and hence to kSH
p ,

only the fraction of events that settle in the final well count towards kSH
t . This

explains the consistently higher kSH
p compared with kSH

t .

4.2.2 Hab dependence

I now want to expand my parameter range to configurations where I expect the

ET theory to be inadequate, due to high electronic coupling reducing the barrier

to zero. For this reason, I plot in Fig. 4.6 the dependence of ET rates on average

electronic coupling strength,
〈
|Hab|2

〉1/2. As before, I plot data from both SH tran-

sition count (kSH
t , diamonds) and population decay (kSH

p , circles) alongside results

from ET theory (lines) - in this instance I plot the general ET rate Eq. 1.3 as well

as both the non-adiabatic and adiabatic ET rates, Eqs. 1.1 and 1.2 respectively, to

demonstrate how the former interpolates between the latter two expressions.

I observe some similar qualitative behaviour to that found in Fig. 4.4. The

agreement between SH and ET theory (Eq. 1.3) is particularly good in the small

coupling regime (0 − 60 meV≤ 0.2λ) with deviations of less than a factor of about

2. I fit a curve log kSH
p = a log〈|Hab|2〉1/2 + b to the points in this range and obtain

a= 2.0, in good agreement with the prediction for the non-adiabatic limit Eq. 1.1,

for which a = 2 (though for the larger couplings in this regime the non-adiabatic

rate starts to deviate from Eq. 1.3). The SH rates begin to flatten in comparison

to ET theory in the adiabatic regime where electronic coupling values are large

(≥ 60 meV = 0.2λ).

At the point 〈|Hab|2〉1/2 =λ/2 (150 meV), the barrier for ET has completely dis-

appeared and the SH rate is below the ET theory rate, though by no more than a

factor of 5. The latter is maximal at this point and equal to the frequency of the ef-

fective nuclear mode coupling to ET, k=νn =5× 1013 s−1 (Eq. 1.3, κel = 1,∆A‡=0).

In this ultrafast regime, ET theory is no longer expected to be valid. It is therefore

interesting to note the relatively good agreement with SH results. The SH rate con-

tinues to increase with increasing electronic coupling even after the ET theory rate

has reached its maximum value.
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FIGURE 4.6: ET rates calculated for different values of 〈|Hab|2〉1/2
from the exponential fit method (circle symbols) and transition
count method (diamond symbols). They are compared with the
generalized semi-classical ET theory (solid line), adiabatic ET the-

ory (dashed line) and Marcus theory (dotted line).

Returning again to the difference between transition count and exponential de-

cay rates, I find that the former are again generally lower than the latter. I ascribe

this to the same reasons as in Fig. 4.4. As electronic coupling increases, the two

methods appear to converge: I suggest that this is because for sufficiently large

coupling, where the barrier is negligible, the charge is constantly oscillating be-

tween the two states and thus there is no real difference between the two methods

of calculating the rate.

Further insight into this high-coupling regime comes from work that was done

in my group as an extension of my investigation here, which was published in

Ref. 151: although this particular finding is not my work, I include it here as it is

relevant to the discussion. As 〈|Hab|2〉1/2 increases past λ/2, the barrier to charge

transfer entirely disappears and thus the charge becomes delocalized over both
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sites. Laura Scalfi and Antoine Carof, my co-workers in Ref. 151, observed that in

this region the exponential fit to the population decay appears to be less valid and

came up with an alternative description, based on the Rabi frequency as in Eqs.

3.16 and 3.18. This description is rooted in the idea that for very high couplings,

the first few electronic oscillations are well described by the initial Hamiltonian

H(0). With this in mind, a new description analogous to the electronic transfer

rate (as the absence of a barrier negates actual transfer between sites) in this region

was devised: a relaxation rate from localized to delocalized charge was defined

as 1/tmax where tmax is the time at which the damped oscillation of the electronic

population reaches its first maximum after t = 0.

This new description of the rate for very high electronic couplings led to an

updated figure for the dependence of rate with Hab. This is Figure 4.7, reproduced

with permission. The relaxation rate in the highest coupling regime is calculated as

described in the previous paragraph: we observe an approximately linear increase

in rate with Hab, which fits with the form of Eq. 3.18 at ∆E = 0.

4.2.3 ∆A dependence

Finally I investigate whether SH can reproduce the characteristic inverse power-

law dependence of ET rates on driving force and the Marcus inverted region in

particular. In Fig. 4.8 I plot the SH rate obtained from the population decay (kSH
p ,

circles) alongside the ET theory rate Eq. 1.3 (lines). The driving force is varied from

∆A = 0 to more negative values well beyond the onset of the inverted regime at

∆A=−λ. The reaction now becomes biased towards the final state and is in fact

irreversible on the time scale of present simulations. Once the hole is localized on

the acceptor I do not observe the reverse transfer. Therefore, the transition count

method is no longer used for calculating rates.

In Fig. 4.8 I see that SH is capable of reproducing the inverse power law of ET

theory in broad strokes. A fit log kSH
p = −(∆A + a)2/(4bkBT ) + c (R2 = 0.64) gives

a=282 meV, b=410 meV, which should be compared to the result of Marcus theory,

a= b= λ= 0.3 eV. Consistent with simulations discussed above, the calculated SH
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FIGURE 4.7: ET rates from FOB-SH MD simulation (kSH
p , Eq. 4.5)

against average diabatic electronic coupling 〈|Hab|2〉1/2 (circles). For
comparison, the ET rates from semi-classical ET theory, Eq. 1.3 (solid
lines), and the respective non-adiabatic limit Eq. 1.1 (dotted line) and
adiabatic limit Eq. 1.2 (dashed lines) are displayed. For large elec-
tronic coupling, charge relaxation rates from FOB-SH MD simula-
tion are shown (t−1

max, diamonds). All FOB-SH MD simulations were
carried out for λ=0.3 eV and ∆A=0.

rates are generally higher than those predicted by ET theory, on average by a factor

of 2-3. Again I think this is due to partial hole transfer and delocalization giving

a faster population decay rate than that which would be given by the counting of

transitions of a full hole between donor and acceptor.

I additionally observe that these rates qualitatively describe an increase and

subsequent decrease in the rate with decreasing ∆A, with my maximum value

coming close to ∆A = −λ. In Fig. 4.8 I again see, in agreement with the previ-

ous figures, that my calculated SH rates are generally higher than those predicted

by standard ET theory, by up to an order of magnitude. Although my method
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FIGURE 4.8: ET rates calculated for different values of driving force
∆A from SH simulations via the exponential fit method (circle sym-
bols), plotted against rates obtained from the semi-classical ET the-
ory (solid line). Additionally, a parabola has been fitted to the SH

rates, and is denoted by a dot-dash line.

is apparently capable of reproducing this behaviour in broad strokes, I notice one

odd feature which is a ‘dip’ in the calculated rates shortly after the theoretical peak

at ∆A = −λ. An exact explanation for this feature is not understood at present.

In general, despite the symmetric dependence on ∆A in the generalized ET ex-

pression, I can expect that the continuously increasing irreversibility of the elec-

tronic transfer would give rise to qualitatively different behaviour on either side of

∆A = −λ, but at present I do not have a fully satisfying explanation for this feature.

As my first step towards such an explanation, I have plotted in Figure 4.9 the

same data as in Figure 4.8 but have compared the data against a slightly different

fit. I still fit the expression log kSH
p = −(∆A + a)2/(4bkBT ), but now I exclude the

‘anomalous’ points from the fit (the rates at ∆A = −300,−350,−400 meV). In this

case the fit yields a = 294 meV, b = 291 meV, as well as an unsurprisingly much
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higher R2 value (R2 = 0.88). The fact that this fit agrees much better with Marcus

theory suggests that those three points are the result of some additional effect that

does not fit in with the overall picture of the rest of the results.

FIGURE 4.9: This is similar to Figure 4.8, but in this figure a parabola
has instead been fitted to a subset of the SH values. The ‘anomalous’
points at ∆A = -300, -350, -400 meV have been omitted from this
subset. In this case the fit much more closely fits the result of Marcus

theory.

I nonetheless can conclude that my SH method can qualitatively show the exis-

tence of the inverted Marcus region.

4.3 Discussion

Although the results I present here come from a first implementation of FOB-SH, I

think they still provide an interesting comparison to the standard ET theory rates.

My method is able to quickly produce a statistically significant number of trajec-

tories, meaning that for the first time I can investigate charge transfer rates on a
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system that closely resembles a physical one. As this takes us beyond the realm of

analytic solutions, my comparisons must consider both the validity or otherwise of

standard ET theory and the known shortcomings of the SH method.

As discussed in section 4.1.3, there is a question over exactly how ET rates

should be calculated from SH simulations. My two methods both have imper-

fections for comparison to standard ET theory. On the one hand, extracting a rate

from an exponential fit is analogous to experimental measurements of population

decay and, it can be argued, may not be directly comparable to e.g. Marcus theory.

Such theories directly calculate a rate for transfer from initial to final state, which

is also what my transition count method does. This method however depends on

an arbitrary choice for the transition ‘threshold’ (chosen in my simulations as |ua|2

dipping below 0.1): the calculated rate is dependent upon this choice; the most

stringent definition possible (|ua|2 reaching 0) is likely to give us spurious rates,

as the quantum oscillations of the electronic populations make it unlikely for this

point to actually be reached; and without a clear justification for any other partic-

ular choice, a quantitative comparison between standard ET theory and transition

count rates should also be treated with caution. On the other hand, the fact that I

can calculate these rates in two different methods, each corresponding to a differ-

ent experimental technique, suggests that my method could eventually be useful

for comparison to a wide range of experimental results.

The decoherence correction, specifically the choice of how to correct for elec-

tronic overcoherence, is a big feature of my (indeed of any) SH method, as the liter-

ature widely agrees that such a correction is vital to reproduce physical behaviour.

Fig. 4.2 does suggest that this correction, among other effects, could alter the rates

that I calculate from SH simulation, though at least in my case this does not seem

to be a very significant effect. Thus far, the correction applied is a very simple one,

simply collapsing the wavefunction at certain points during the trajectory, and it

is equally possible that there could be an effect on the rate from choosing differ-

ent corrections for the overcoherence. This is something that could be investigated

with future uses of the FOB-SH method, as I discuss in Chapter 6.
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My aim with the FOB-SH method was to begin to see if I could probe the regions

of ultrafast ET transfer, where the electronic coupling Hab becomes large and stan-

dard ET theory should become inapplicable. I see here that the semi-classical ET

theory and my SH results diverge in this region, although the disagreement is still

less than an order of magnitude. Perhaps a more striking feature is that the semi-

classical theory reaches a maximum value where the activation barrier becomes

zero, but beyond this point my SH rates apparently continue to increase. Although

these results are not conclusive, this suggests that my FOB-SH method agrees well

with standard ET theory in the regions where I expect it to be valid (large reorga-

nization energy and/or small electronic coupling), while diverging more for large

couplings. Nonetheless the agreement is still relatively good between SH and ET

theory rates, with a difference of less than an order of magnitude. The fact that

standard ET theory and my non-adiabatic molecular dynamics methods can pro-

duce rates that agree relatively closely suggests that, for some reason, ET theory is

capable of coming close to the ‘true’ rates even when the assumptions underpin-

ning it are invalid: this may also explain why hopping models of electron transport

are capable of producing electron mobilities which agree well with experimental

results, even when the hopping model itself may be an invalid assumption.

I lastly conclude that these results are promising for future applications of the

FOB-SH method. I have used it to compare to standard ET theory over a wide

parameter range in a system that closely models an idealized molecular donor-

acceptor complex. The method is able to describe charge transport and produce

comparisons to standard theory in the ultrafast ET regime, suggesting that it is well

suited to investigating problems of electronic behaviour in physical systems where

typical values of the reorganization energy and the electronic coupling are such that

these standard theories may not be valid. In the next chapter, I will progress beyond

the two-state system described in this chapter and will perform some preliminary

investigations into a larger system.
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Chapter 5

FOB-SH results from a

10-molecule chain

In this last chapter, I demonstrate that the FOB-SH method can be successfully

applied to a system of sufficient size that the two-site force expression cannot be

used. For the sake of relative simplicity in proving this, I have created a system of

ten ethylene-like molecules in a chain and have calculated the temperature depen-

dence of the charge mobility along this chain according to FOB-SH for three dif-

ferent values of the electronic coupling between molecules. I discuss what seems

to influence this temperature behaviour and attempt to understand the different

results in different regimes.

5.1 Simulation details

5.1.1 Model system

Figure 5.1 displays the simulation system. 10 ELMs were placed along the x-axis

with a distance of 4 Å separating each molecule. Similarly to the two-molecule sys-

tem, a weak harmonic restraint was applied to the carbon atoms of each molecule

with a force constant of 1.0 kcal/mol Å
−2

to keep them close to their starting posi-

tions and to keep the chain structure stable.
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FIGURE 5.1: A schematic of the simulation system for charge mobil-
ity calculations. 10 ELMs are placed in a chain with intermolecular
distances of 4 Å. The three chains in the picture demonstrate the

system with a charge localized on ELM 1, 2, and 3.

5.1.2 Procedure

My intention was to demonstrate that, similarly to a recent investigation by Wang

and Beljonne [85], my FOB-SH MD method is capable of reproducing the thermally-

activated CT at low electronic coupling strength and its absence for higher coupling

strength. I also sought to understand exactly what in my systems causes this dif-

ference in behaviours at low and high coupling.

To generate starting configurations from which to run mobility calculations, a

similar procedure to that outlined in Chapter 4 was followed. First, a classical MD

trajectory in the NVT ensemble at temperature T was run for 1 ns without surface

hops, where the first/leftmost ELM was modelled in the positively charged state

and the remaining 9 ELMs in the neutral state. N snapshots from that MD trajectory

were taken as initial configurations and velocities for SH MD runs. For each SH

MD trajectory the mean-squared displacement (MSD) of the centre of charge of the

carrier, was obtained from the time evolution of the expansion coefficients in the

site basis, Eq. 2.10, and averaged over all N SH MD trajectories thus:
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R2(t) =
1

N

N∑
n=1

〈Ψn(t)|x|Ψn(t)〉2 (5.1)

=
1

N

N∑
n=1

( M∑
l=1

|ul,n(t)|2xl,n(t)

)2
 (5.2)

where xl,n is the position of the centre of mass of molecule l in trajectory n, and∑M
l=1 |ul,n(t)|2 =1.

The SH trajectories were initiated with the charge carrier localized on the first

site, hence R2(0) = 0. When the MSD is linear, which was the case for the system

investigated here, the Einstein diffusion constant D can be obtained from the MSD,

D =
1

2

dR2(t)

dt
. (5.3)

The mobility µ is then given by

µ =
eD

kBT
, (5.4)

where e is the elementary charge and kB the Boltzmann constant.

I kept the reorganization energy λ at a consistent value of 0.2 eV for all these

simulations. I calculated mobilities along the chain for three values ofC=17.74, 177.4

and 1419 meV and for a wide range of temperatures, T =50, 75, 100, 150, 200, 250, 300,

500, 800, 1000K. The MSD was averaged over 500 SH MD trajectories to obtain

R2(t). In each case, there was a clear linear regime in the time-evolution of R2(t),

occurring before charge carrier amplitude was building up at the final site of the

system (which would introduce artificial reflection effects). D was obtained from

a linear fit to this region in each case. The statistical uncertainty of the mobility,

obtained by block averaging of R2(t), is typically 10% of the mean value.
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5.2 Results

The mobilities obtained from SH MD according to Eq. 5.4 are plotted against tem-

perature in Figure 5.2. Straight away it is clear to see that, similarly to the afore-

mentioned investigations by Wang et al. [85], the lowest coupling values display

a thermally activated behaviour, with the mobility increasing with temperature to

a point before decreasing again: and that this contrasts with the higher coupling

behaviours, both of which broadly show a decrease in mobility with increasing

temperature.

FIGURE 5.2: Temperature dependence of charge mobilities along the
10-molecule ethene-like chain, for three different values of average
coupling as displayed. Results from both surface hopping (SH) and
kinetic Monte Carlo (KMC) simulations are shown, as are the re-
sults of power law fits to the region 300K to 1000K for each coupling
regime. For the lowest value, a clear thermal activation peak is vis-
ible in the SH results with a maximum mobility at a temperature
of around 200K. For higher coupling values, I see a continual de-
crease in mobility with temperature, corresponding to a band-like
transport mechanism. The KMC results contrast with the FOB-SH
results, showing a much shallower decrease with temperature after

the crossover.

For further analysis I fitted a simple power law-type temperature dependence

to the higher temperature values (300 to 1000K) for each of the three coupling
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regimes. This gives a range of exponents as follows: T−1.2 for the highest cou-

pling, T−1.8 for the intermediate and T−3.5 for the lowest. These should probably

be compared with the range of exponents suggested by Heck et al. [62], i.e. from

-0.5 to -3.

For comparison, I have also plotted in Figure 5.2 mobilities calculated for the

hopping model using a KMC simulation. These KMC simulations were carried out

by Fruzsina Gajdos in our research group [150] to provide comparison and contrast

between my FOB-SH method and a more frequently used method for modelling

charge transport. In contrast to the SH results, the KMC simulations seem to un-

derestimate the decrease in mobility with T relative to FOB-SH: I note that Eq. 1.3,

which this method relies upon for rate calculations, is problematic for this regime

of |Hkl| due to the absence of an energy barrier for charge transfer. For the lowest

coupling regime, the KMC does appear to demonstrate a thermal activation, but

still does not display the marked cross-over from thermally activated hopping to

band-like transport.

5.3 Discussion

As I anticipated, we can see a thermally-activated charge transport for the small-

est electronic coupling strength (blue symbols) at low temperatures. Around room

temperature I observe a crossover from activated to band-like transport with the

mobility decreasing for increasing temperatures according to µ ∝ T−3.5. With

increasing electronic coupling strengths, thermal activation gradually disappears.

For the highest coupling strength investigated (red symbols), the mobility decreases

steadily with T according to µ ∝ T−1.2. A qualitatively very similar behaviour, i.e.

crossover from activated to band-like transport at low coupling and disappearance

of activated regime at high coupling regime, has been obtained from SH simula-

tions of a simple 1D model Hamiltonian by Wang and Beljonne [85], as mentioned

previously. Moreover, an inverse power law dependence of the mobility with tem-

perature similar to the one observed here for the large coupling regime, has been

reported by Troisi et al. [47, 55] and by Fratini et al [166].
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To explain the steady decrease in mobility with increasing temperature in the

high coupling regime, I return to the concept of resonance for charge transfer. In

Figure 5.3 (panel A) I plot the probability distribution of the vertical energy gap be-

tween the first site where the charge is initially located and the second site, ∆E12,

along an equilibrium MD simulation in that initial electronic state, for different tem-

peratures. I also indicate an averaged resonance region arising from the mean elec-

tronic coupling along these trajectories, 〈|H12|〉= 129.9 meV, which remains rather

insensitive on temperature. For low temperature, I find that the peak of the ther-

mal equilibrium distribution of ∆E12 is already well within the resonance region,

which I define with the boundaries ∆E12 = ±2〈|H12|〉, as at these boundaries the

prefactor in Eq. 3.16 is exactly 0.5 and potentially allows half the charge to trans-

fer to the second site. Therefore propagation of the charge carrier occurs instantly

for the vast majority of initial configurations. A temperature increase will broaden

the distribution for ∆E12 and thereby reduces the probability for the system to be

within the resonance region. Consequently, the time it takes for the charge to move

from site 1 to site 2 and further along the chain will increase and hence the mobility

will decrease.

The situation is strikingly different for the temperature-activated transport ob-

served in the low coupling regime, Figure 5.3 (panel B). Here the peak of the equi-

librium distribution of ∆E12 is outside the very narrow resonance region (〈|H12|〉=

1.6 meV). As the temperatures increases, the energy gap distribution becomes wider

and the probability for resonance increases. Therefore the charge mobility increases

with increasing temperature at low temperature. The reason for the crossover at

about room temperature is less clear, though I think that the effect of increasing

probability for resonance saturates at a sufficiently high temperature so that the

T−1 term of Eq. 5.4 takes over. The observed T−2.1 dependence points to an addi-

tional effect that leads to a decrease of the diffusion constant with temperature in

this regime, an observation that needs to be further analyzed in future work.

Our explanation of the T -dependence of mobility is further illustrated in Figure
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5.4, where I plot the fraction of time that the system has spent in the resonance re-

gion ∆E12(t)=±2|H12(t)| (i.e. the probability to be in the resonance region) during

the same equilibrium MD runs described above (first site in charged state, all other

sites in neutral state). I assert that this resonance probability be proportional to the

diffusion constant and in the spirit of Eq. 5.4 divide it by kBT to correlate it with

the mobility from SH. As one can see in Figure 5.4 the correlation is very good, in

particular for the low and high electronic coupling regimes.

With this set of results from a relative large system of organic molecules, I con-

sider that the aim of the project - being to develop a method, implement it, and

demonstrate its suitability and applicability to the problem of charge transport in

organic semiconductors - has been satisfactorily reached. Naturally, with these

somewhat preliminary results not every question has been answered and in fact

many more have been posed. In particular, the purpose of the FOB-SH method

is to investigate charge transport in the regime where standard ET theory is not

valid, but so far I have not provided any comprehensive answers as to the nature

of charge transport in these regimes. I have instead enjoyed more success with

showing agreement with known results in regimes where these results should be

valid. In the next and final chapter, I will discuss how the method might be ex-

panded and improved upon, and then applied in earnest to these questions in the

hope of making further substantial contributions towards solving the problem.



96 Chapter 5. FOB-SH results from a 10-molecule chain

FIGURE 5.3: Gaussian distributions of the site energy difference be-
tween neighbouring molecules in the ELM chain along an initial
equilibrium trajectory, for three different values of the temperature
within the range plotted in Figure 5.2, and for two different cou-
pling values in two different panels. As the temperature increases,
thermal fluctuations in the site energies broaden these distributions.
For sufficiently high values of 〈|Hkl|〉, as shown in panel A, this re-
duces the area under the curve that is within the resonance region
i.e. between the values ∆E = ±2 〈|Hkl|〉 and the mobility thus de-
creases accordingly with temperature. For smaller values of 〈|Hkl|〉,
as shown in panel B, this broadening instead allows the area under
the curve in the resonance region to increase from zero and thus in-
creasing temperature instead increases mobility - though as Figure
5.2 shows, at some point this behaviour is replaced by a decreasing

mobility with temperature.
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FIGURE 5.4: The probability of the first two molecules in the ELM
chain being in resonance for charge transfer with each other, divided
by kBT , is plotted against the corresponding mobility value. The
trends in the resonance probability for the lowest and highest cou-
pling regimes clearly match with the mobilities. The intermediate
coupling regime appears to contain a mixture of the two behaviours.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

The goal of the work in this thesis has been to develop and then use for the first time

a new surface hopping-based method which could study the problem of charge

transport in organic semiconductors. As previously discussed, the method needs to

be sufficiently computationally efficient to simulate large systems over long timescales,

in order to accurately model the behaviour of materials relevant to organic elec-

tronic devices. This efficiency must not come at the expense of correctly portraying

short-term ultrafast behaviour, which is relevant to charge transport in high cou-

pling regimes such as can be found in organic semiconductors.

The FOB-SH method which I have derived in Chapter 2 promises to fulfill both

of these requirements. There are a few crucial elements of the method which enable

this. The first is the decision to use a classical force field and classical MD, from

which I take the diagonal elements of the HamiltonianH and the force matrix∇IH .

The second is the analytic overlap method, which has been discussed both here

and in Ref. 149, and which allows the crucial off-diagonal elements of both H and

∇IH to be calculated accurately and quickly. The third is the derivation of a force

expression, Eqs. 2.22 together with 2.29, which allows calculations of the forces on

the adiabatic electronic surfaces for a system of any size.

The last of these is what makes the FOB-SH method specifically suited to broader

simulations of organic semiconducting materials, but even without this advance I

have been able to use the two-site donor-acceptor system to compare my method
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to the predictions of standard ET theory and to begin to investigate regions where

these theories are supposed to break down. Qualitatively I see strong agreement be-

tween the FOB-SH calculated rates and those predicted from Eq. 1.3 in all regimes

where Eq. 1.3 should hold - i.e. where there is a clearly defined barrier to charge

transfer. This is most clear in Figures 4.4 and 4.8, as well as to an extent in the

low-coupling region of both Figures 4.6 and 4.7. As discussed in Chapter 4, Fig-

ure 4.8 deviates from this agreement somewhat with the ‘anomalous’ points at

∆A = −300,−350,−400 meV: as shown in Figure 4.9, removing these points from

the inverted parabola fit allows this fit to correctly reproduce the reorganization

energy. The nature of this deviation is currently unknown, as it does not appear to

be a statistical error, and possibly hints at some additional effect on the rates here.

I speculate that this may somehow be related to the irreversibility of the charge

transfer for very negative values of ∆A. It is also worth noting that for large neg-

ative values of ∆A, the exponential fit fails to describe the long-term behaviour

of the population decay. This could be related to the choice of description for the

electronic state populations [119], although the short-term behaviour of all popula-

tions in Figure 4.8 fits the exponential decay very well so it is unclear if this would

change any of the data points.

The charge transfer rates calculated from FOB-SH simulations in the high-coupling

regime, demonstrated particularly in Figure 4.7, intriguingly suggest that even

when the crucial assumption underlying ET theory is invalid such theories agree

relatively well with methods that do not make this assumption. This may go some

way to explaining why standard theories are capable of making good predictions of

charge mobility in organic semiconductors, even if the validity of the theory cannot

be guaranteed. It seems obvious that in such systems, the underlying mechanism

of charge transport is not that which non-adiabatic ET theory describes, and so

there is clear value in methods which do not make this assumption to further drive

understanding of these systems and make future predictions of charge mobility.
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With regard to the calculations discussed in Chapter 5, I think it further bol-

sters the method to demonstrate that it can reproduce qualitatively the same be-

haviour of mobility with temperature that was reported in Ref. 85 along a similar

1D chain. Crucially, in Figure 5.2 I observe both the crossover from low-coupling to

high-coupling behaviour, where at high couplings there is no thermal activation for

charge transport, and the crossover in the low-coupling regime from low tempera-

ture to high temperature, where mobility first increases with temperature and then

fits into something akin to a band-like transport past the activated maximum. The

exponent for this latter case (where µ ∝ T−3.5) seems to fall outside the standard

range (-0.5 to -3.0). This exponent may be within error: choosing extreme values

of the points at the end of the fit range suggested possible values of the exponent

from -2.7 to -4.0. It may equally be suggestive of some additional effect for charge

transport at very high temperature and very low coupling. This should be consid-

ered in any future simulations calculating the temperature dependence of charge

mobility in a similar system.

6.2 Outlook

Work is progressing in our research group on the FOB-SH method, with the inten-

tion of re-implementing it in the CP2K molecular dynamics framework. It is hoped

that this new implementation will be able to address a few potential shortcomings

in the FOB-SH implementation reported herein, as I shall now enumerate.

Velocity rescaling

Chapter 3 explains the velocity rescaling method that I have used to conserve en-

ergy in my surface hopping simulations: it simply rescales all the atomic velocities

in the system by a constant factor when a surface hop occurs. This is cruder than the

suggested rescaling approach in Tully’s original publication on surface hopping for

electronic transitions [110] which has generally been followed by other surface hop-

ping implementations. An unfortunate drawback of the use of the NAMD molecu-

lar dynamics package is the lack of any finer control over the atomic velocities. It is



102 Chapter 6. Conclusions and Outlook

intended that the new implementation will rectify this, as well as making it easier

to calculate the necessary non-adiabatic coupling vectors between adiabatic states

(a task which would not be simple in the current implementation).

A possible consequence of my approach to velocity rescaling is that FOB-SH

may not at present correctly reproduce the Boltzmann populations of the various

adiabatic electronic states. It has been shown [120, 167, 168] that FSSH approxi-

mately reproduces these populations correctly, which is thought to rely on the ex-

istence of “forbidden hops” [139]. A hop is forbidden - i.e. does not take place -

if the change in total energy is greater than can be accounted for with the velocity

rescaling. Since my velocity rescaling approach rescales all the atomic velocities of

the system, in principle any hop which results in a total energy change less than

the total kinetic energy of the system is permitted. This allows the possibility that

hops which my implementation allows would be forbidden under a different ve-

locity rescaling approach: in the approach of Tully, only the component of atomic

velocity that lies along the non-adiabatic coupling vector between adiabatic states

can be rescaled, which would in general allow the system less energy for hops. It

is therefore possible that this implementation of FOB-SH is too ‘permissive’ about

hops to higher energy adiabatic states. I do not consider that this should qualita-

tively affect the results I have outlined in this thesis, though it may lead to FOB-SH

predicting rates that are higher than they should be. An early goal for the new

FOB-SH implementation will probably be a like-for-like comparison of rates for the

ELM dimer to evaluate if this has indeed had any significant effect.

Decoherence correction

Although there is no question that a decoherence correction of some sort must be

applied to FSSH, I note that the correction applied in this implementation of FOB-

SH is a very simple one, with a direct wavefunction collapse at decreed conditions.

Figure 4.2 implies that the effect of this correction on the calculated rates is small,

though finite. Changing the threshold below which the non-adiabatic coupling

elements between adiabatic states need to fall before a wavefunction collapse is also
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likely to have some small effect on charge transfer rates, simply through altering

the rate of wavefunction collapse. I consider it possible in addition that there may

be more detailed ways to correct for electronic overcoherence in a surface hopping

framework: it is likely that these questions can be further explored by FOB-SH in

the future.

Trivial crossings

The trivial crossing problem in surface hopping [137] can occur when a molecular

system has many densely-spaced adiabatic potential energy surfaces. The van-

ishing intermolecular interactions at larger distance can lead to two surfaces with

almost zero energy splitting: the probability of hopping between these two sur-

faces may therefore be essentially 1 at the exact crossing point, but very small even

close to it. Thus a finite time step may cause this crossing to be missed during a

simulation, even though a surface hop should have occurred, leading to spurious

long-term behaviour. Dealing with this problem becomes particularly crucial in

large and complex molecular systems [85, 115, 169].

As currently implemented, the FOB-SH method does not have a way to deal

with this issue. The two-state nature of the ELM dimer system means that in those

simulations the trivial crossing problem should be essentially irrelevant. Although

I assert that it is reasonable to ignore possible effects of trivial crossings on the

larger 10-ELM system in a first implementation, I acknowledge that this needs to be

dealt with in the method before it can be applied freely to larger and more realistic

systems. It should be easy to apply the simple solution of Wang et al. [137], or a

modified version, to the new implementation of FOB-SH.

Force field

As the FOB-SH method is intended for the simulation of large molecular systems, it

will be important for the classical MD force field to be able to accurately model vari-

ous sorts of large-scale behaviour and thereby convincingly simulate the reaction of
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the wider environment to the presence and motion of the excess charge. For exam-

ple, a crucial element of this environmental reorganization is the induced dipole

polarization as a result of excess charge [170]. The NAMD molecular dynamics

package in this implementation does not have the ability to simulate this well: this

is likely to be very important in future simulations (in particular ones modelled

after physical materials) as the polarization response of the wider environment is

the only mechanism available by which an excess charge may become relocalized

on one or a few molecular sites. I do not think that the neglect of environmental

polarization in this implementation has any effect on the results reported herein,

as I have restricted myself to relatively small test systems: it is however something

currently lacking from the method, which I hope the future CP2K-based implemen-

tation will add.

Parallelization

While I consider it important to emphasise the relative computational efficiency of

the current FOB-SH implementation, this does not preclude seeking ways to im-

prove this even further. One obvious avenue to explore is parallelization, as at

present the FOB-SH code is designed to run only on a single core. Computational

tasks such as the site energy and electronic coupling calculations could be paral-

lelized, for example in the case of the former simply assigning a single core to each

molecule to calculate all the site energies alongside each other. As most if not all of

the tasks in the FOB-SH routine are expected to scale with system size, parallelising

the code according to the system size could offset this and hopefully speed up the

method even further, making it possible to carry out the required simulations to

study charge transport in large organic systems.

6.3 Final conclusion statement

I conclude by saying that the work in this thesis has described the derivation, im-

plementation and validation of a novel fragment-orbital-based surface hopping
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method, which has demonstrated its applicability to the problem of charge trans-

port in organic semiconductors. I have used it in a simple organic two-site test

system to demonstrate that the method can reproduce established charge transfer

theory in regimes where said theory is valid, and have begun to probe regimes

where the theory should break down. I have additionally used it in a test system of

a 1D chain to show that it is capable of and suited to calculations of charge mobility

in large systems. I think that the results reported in this thesis are a valuable addi-

tion to the wider field, and that the method itself shows great promise to tackle the

problem of charge transport in organic semiconductors in further future work.
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