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New findings: 

What is the central question of this study? 

Does a previously hypothesised signalling mechanism believed to detect post-

prandial increases in intestinal phosphate, and that can stimulate the kidneys to 

excrete phosphate rapidly, operate under physiological conditions?   

 

What is the main finding and its importance? 

Contrary to earlier reports, rapid signalling between the small intestine and 

kidney mediated by a gut-derived phosphaturic factor in response to a 

physiological intestinal phosphate load is not supported by the current findings; 

moreover, hyperphosphataemia and increased PTH level are likely to be the 

underlying factors responsible for the phosphaturia following a supraphysiological 

intestinal phosphate load.   
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Abstract 

To date, the role of the small intestine in regulating post-prandial phosphate 

homeostasis has remained unclear and controversial. Previous studies have 

proposed the presence of a gut-derived phosphaturic factor that acts 

independently of changes in plasma phosphate concentration or parathyroid 

hormone (PTH) level; however, these early studies used duodenal luminal 

phosphate concentrations in the molar range and therefore the physiological 

relevance of this is uncertain.  In the present study, we used both in vivo and in 

vitro approaches to investigate the presence of this putative ‘intestinal 

phosphatonin’. Instillation of 1.3M phosphate into the duodenum rapidly induced 

phosphaturia, but in contrast to previous reports, this was associated with 

significant hyperphosphataemia and elevated PTH level; however, there was not 

the expected decrease in abundance of the renal sodium-phosphate 

cotransporter NaPi-IIa. Instillation of a physiological (10mM) phosphate load had 

no effect on plasma phosphate concentration, PTH level or phosphate excretion. 

Moreover, phosphate uptake by opossum kidney cells was unaffected after 

incubation with serosal fluid collected from intestinal segments perfused with 

different phosphate concentrations. Taken together, these findings do not 

support the concept of a gut-derived phosphaturic factor that can mediate rapid 

signalling between gut and kidney, leading to increased urinary phosphate 

excretion, as part of normal phosphate homeostasis.  
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Introduction  

Maintaining phosphate homeostasis is of critical biological importance because 

high plasma phosphate levels (hyperphosphataemia) have been associated with 

soft tissue calcification and subsequent cardiovascular disease and death 

(Gutierrez, 2013). The use of plasma phosphate concentration as a marker for 

future outcomes in chronic kidney disease (CKD) patients has been proposed, 

with several studies showing that a reduction of plasma phosphate directly 

improves mortality rates in CKD animal models, as well as in patients (Finch et 

al., 2013; Russo et al., 2015). The current treatments for hyperphosphataemia in 

CKD patients are oral dietary phosphate restriction and the use of intestinal 

phosphate binders; however, these options are less than ideal, because of poor 

patient compliance, the risk of malnutrition, gastrointestinal side effects, and the 

relatively poor efficacy of binders (Lee & Marks, 2015; Malberti, 2013).  This has 

led to the development of compounds that specifically inhibit the process of 

intestinal phosphate absorption, such as nicotinamide and phosphonoformic acid 

(PFA), which although effective in vitro, have varying effects on phosphate 

transport in in vivo models of CKD, as well as in CKD patients (Brooks et al., 

1997; Katai et al., 1999; Loghman-Adham & Motock, 1996). Recently, 

Tenapanor, an inhibitor of the sodium-hydrogen exchanger, NHE3, has been 

shown to act locally to reduce intestinal phosphate absorption. Uraemic 5/6th 

nephrectomised rats chronically treated with this drug have lower plasma 

phosphate levels, an improvement in the uraemic markers, creatinine, blood urea 

nitrogen (BUN), fibroblast growth factor 23 (FGF-23) and albumin, and reduced 
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ectopic vascular and soft tissue calcification (Labonte et al., 2015). In addition, 

this compound has been shown to reduce plasma phosphate levels in humans, 

to have minimal systemic exposure, and to be well tolerated, apart from a 

tendency to cause loose stool and diarrhoea (Johansson et al., 2016). However, 

the exact mechanism(s) of action and overall clinical benefits are not known and 

are still under investigation. 

 

While it is now widely accepted that the intestine is a suitable target for 

controlling hyperphosphataemia in CKD, our understanding of the cellular 

mechanisms responsible for dietary phosphate absorption are incomplete (Lee & 

Marks, 2015) and the role of the intestine in phosphate homeostasis is still 

debated. In 2007, Berndt and colleagues proposed a novel signalling mechanism 

in which a duodenal phosphate load triggered acute phosphaturia in rats (Berndt 

et al., 2007b).  This reflex response was apparently independent of several key 

regulators of phosphate excretion, including elevated levels of plasma 

phosphate, parathyroid hormone (PTH), FGF-23, and secreted frizzled related 

protein-4, and renal innervation. Furthermore, infusion of duodenal mucosal 

homogenates also produced a phosphaturic response, suggesting the presence 

of a factor(s) within the intestinal mucosa that directly affects renal phosphate 

excretion. However, almost a decade later, no subsequent publication has 

confirmed or extended this finding, and so far the proposed phosphaturic factor 

has not been identified. A confounding factor has been the concentration of 

phosphate used in original study, which was in the supraphysiological molar, 
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rather than millimolar, range, and which may also have provided an additional 

osmotic stimulus (Berndt et al., 2007a). Since the physiological phosphate 

concentration within the small intestinal lumen is reported to be from 5 to 10mM 

in the rat (Kirchner et al., 2008; Marks et al., 2015), the aim of our study was to 

establish whether instilling a physiological phosphate load into the duodenum 

can trigger the signalling mechanism proposed by Berndt et al.  In addition, in an 

effort to identify an intestinally derived and released phosphaturic factor we used 

an ex vivo intestinal perfusion method to collect serosal fluid following luminal 

exposure to different phosphate loads. Studies were then performed in cultured 

opossum kidney (OK) cells as a bioassay to detect an acute effect on phosphate 

uptake when exposed to these collected serosal fluid samples. 
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Methods 

Ethical approval 

All procedures were carried out in accordance with the UK Animals (Scientific 

Procedures) Act, 1986, Amendment Regulations 2012. The protocols were 

approved by the University College London (Royal Free Campus) Comparative 

Biology Unit Animal Welfare and Ethical Review Body (AWERB) committee.  

 

Renal clearance of phosphate in anesthetised rats 

Experiments were performed on 41 male Sprague Dawley (SD) rats purchased 

from Charles River aged 12–14 weeks (250-300g). After a week of 

acclimatization, 21 rats were fed ad libitum  a standard commercial rat chow (Diet 

RM1, 0.52% Pi, SDS Ltd, Witham, UK) and 20 rats were fed ad libitum a low 

phosphate diet, containing 0.1% Pi (SDS Ltd) for 7 days and allowed free access 

to water at all times. Rats were then anaesthetized by IP injection with 

thiobutabarbital (Inactin, 120 mg/kg; Sigma-Aldrich, Dorset, UK) and monitoring 

of the pedal and corneal reflex was undertaken to ensure that deep anaesthesia 

was achieved before the femoral artery, jugular, bladder and trachea were 

cannulated. A cannula-sheathed 19g needle was placed into the duodenum (2-3 

cm from the stomach pylorus) for instillation of phosphate or control solutions and 

secured with a ligature.  Once surgery was completed, a 1mL bolus of 0.05% 

FITC-inulin diluted in isotonic saline was given via the jugular cannula and the 

same concentration subsequently infused at a rate of 2.4ml/hr throughout the 

procedure to determine glomerular filtration rate (GFR).  A 40 min period was 
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allowed for surgical recovery and for FITC-inulin equilibration after which rats 

underwent the following protocol:  four consecutive collections of urine were 

made, each of 15 min.  A sample (500uL) of arterial blood was collected via the 

femoral artery cannula at the start and end of each urine collection period for 

phosphate and FITC-inulin measurements.  After the first control urine collection 

period, 1ml of 10mM or 1.3M KH2PO4 in buffer (containing in mM: 16 Na-Hepes, 

140 NaCl, 3.5 KCL, pH 5) or isosmolar control buffer without phosphate was 

administered into the duodenum, the needle removed, and the intestine tied off.  

Three subsequent collections following the duodenal bolus were made, after 

which the kidneys were removed and death ensured by incising the heart.  The 

cortex of both kidneys was dissected at 4oC and snap frozen for brush border 

membrane (BBM) vesicle preparation.  

 

BBM vesicle preparation and Western Blotting 

Preparation of BBM vesicles and subsequent Western blotting has been 

described previously (Chichger et al., 2016). Blotting was carried out using 40µg 

of BBM protein heated at 900C for 2 min.  Rabbit polyclonal antibodies to NaPi-

IIa and NaPi-IIc were generous gifts from Professor Jurg Biber, University of 

Zurich, Switzerland. Mouse monoclonal antibody for β-actin (Abcam, Cambridge, 

UK) was used as a loading control. Blots were visualized with enhanced 

chemiluminescence on a Fluor-S MultiImager system (BioRad, Hertfordshire, 

UK), and the abundance of each protein of interest calculated relative to actin 

and expressed in arbitrary units.   
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Ex-vivo intestinal perfusion for collection of serosal fluid 

Experiments were performed on 30 male C57BL/6 mice (approximately 25g), 

bred at the Royal Free Campus Comparative Biology Unit. Mice were allowed ad 

libitum access to a standard rodent chow containing 0.52% phosphate (RM1 diet; 

SDS Ltd) and water until the day of experimentation. Mice were terminally 

anesthetized with 50 mg/kg sodium pentobarbitone via an intraperitoneal (IP) 

injection. Monitoring of the pedal and corneal reflex was undertaken to ensure 

that deep anaesthesia was achieved before 10cm segments of the proximal 

(from the ligament of Treitz) or the last 10cm of distal small intestine was 

cannulated in vivo.  Segments were perfused with Krebs buffer containing (in 

mM):  4.6 KCl, 1 CaCl2*2H2O, 1.2 MgCl2*6H2O, 25 NaHCO3, 118 NaCl, 1.2 

KH2PO4 and 10 glucose, oxygenated with 95%O2 and 5%CO2 to create a 

segmental flow at a rate of 1ml/min.  The intestine was subsequently removed 

and suspended in an organ chamber containing liquid paraffin at 37°C.  

Immediately after removal of the intestinal segment mice were humanly killed by 

cervical dislocation and death confirmed by cessation of the heartbeat. The 

suspended intestinal segments were perfused for 30 minutes to allow them to 

equilibrate. Subsequently, serosal fluid was collected for 45 minutes during which 

1.2mM phosphate was perfused through the segment. The solution was then 

either maintained with 1.2mM phosphate or switched to one containing either 

10mM or 50mM phosphate and serosal fluid collected after a further 45 minutes. 

In total 10 mice were used for each of the different concentrations.  
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Phosphate uptake by OK cells  

Opossum kidney (OK) cells, purchased from Public Health England Culture 

Collections, were maintained in 80 cm3 flasks (Nunc, Thermo Fisher Scientific, 

UK) at 37°C with 5% CO2 and cultured in Dulbecco's Modified Eagle Medium 

(DMEM) (Gibco, Thermo Fisher Scientific) supplemented with 10% fetal bovine 

serum and 2% penicillin streptomycin.  The cells were sub-cultured every 7 days.  

For phosphate uptake experiments, 3 x 105 cells were seeded in 6-well culture 

dishes (Nunc, Thermo Fisher Scientific) and maintained at 37°C with 5% CO2. 

Phosphate uptake was measured 2 days after seeding into the 6-well dishes. 

The growth medium was aspirated and the cells quickly rinsed twice with pre-

warmed (37ºC) sodium-free uptake buffer: (in mM) 137 ChCl, 5.4 KCl, 2.8 CaCl2, 

1.2 MgSO4 and 14 HEPES (-Na+) (pH 7.4). The cells were then incubated for 30 

min at 37ºC with either 500µl incubation buffer (containing 137mM Na+ for total 

transport, or ChCl for Na+-independent transport),  or 250µl serosal fluid from 

proximal or distal small intestine and 250µl incubation buffer (± Na+). For 

experiments using the sodium dependent phosphate transporter inhibitor, 

phosphoformic acid (PFA), concentrations of 1, 3, 7 and 10mM PFA was 

included in the incubation buffer.  After 30 minutes the incubation buffer was 

aspirated and cells washed three times with pre-warmed sodium free buffer (-

Na+).  Phosphate transport was then initiated with the addition of 500µl buffer 

containing 0.1mM KH2PO4 and 1 µCi/ml 33P ± Na+.  After 5 mins of incubation at 
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37ºC, the buffer was aspirated and the cells rinsed three times with ice cold 

154mM ChCl.  Cells were subsequently lysed with 0.1M NaOH and 0.1% SDS. 

100µl of cell lysate and 10µl (at 1:100 dilution) of initial solution was used for 

scintillation counting with a Packard tri-carb 2900tr scintillation counter (Perkin 

Elmer, Buckinghamshire, UK)  Protein concentration was determined using the 

Bradford method (Bradford, 1976).  Results are expressed as nmoles of 

phosphate/µg of protein/5min (mean ± SD) representing total phosphate 

transport (uptake in the presence of sodium) or sodium-independent phosphate 

uptake (uptake in the absence of sodium).  

 

Measurements of plasma PTH and phosphate  

From the clearance studies, urinary and plasma phosphate was quantified using 

a QuantiChrom phosphate assay kit (Bioassay Sytems, San Francisco, USA), 

and PTH in plasma samples taken at the end of the procedure was measured 

using an ELISA kit targeting rat bioactive PTH (Immunotopics, California, USA).  

All kits were used according to the manufactures instructions.  

 

Statistical analysis 

Data are presented as means ± SD and statistical comparisons were performed 

using either Student’s paired or unpaired t tests with statistical significance taken 

as P< 0.05. 
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Results 

 

A 1.3M phosphate load in the duodenum induces phosphaturia in rats 

maintained on a normal diet 

In keeping with Berndt et al. (2007a,b), who also used 1.3M phosphate, we 

showed that instillation of this dose into the duodenum induces phosphaturia. 

However, in contrast to their findings, this response occurred later, after 45 

minutes, not at 20 minutes (Figure 1A), and was associated with a significant 

increase in plasma phosphate concentration (Figure 1B) and PTH level (Figure 

1C). Interestingly, the phosphaturia was not associated with a change in protein 

levels of either NaPi-IIa or NaPi-IIc (Figures 1D and 1E, respectively).  

Representative Western blots for NaPi-IIa and NaPi-IIc can be found in Appendix 

1. In addition, the change in urinary phosphate excretion was independent of any 

change in GFR or mean arterial pressure (Table 1). 

 

A physiological phosphate load in the duodenum does not induce 

phosphaturia in rats maintained on a normal phosphate diet 

In contrast to the effect seen with 1.3M phosphate, introduction of a more 

physiological phosphate load of 10mM into the duodenum did not elicit an acute 

change in urinary phosphate excretion (Figure 2A). In addition, there was no 

change in plasma phosphate concentration (Figure 2B) or PTH level (Figure 2C), 

and NaPi-IIa and NaPi-IIc protein expression was unaffected (Figures 2D and 

2E, respectively).  
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A 1.3M phosphate load in the duodenum does not induce phosphaturia in 

rats maintained on a chronic low phosphate diet    

Several reports have shown that rats chronically adapted to a low phosphate diet 

and then acutely switched to a high phosphate diet have significantly 

downregulated protein levels of renal NaPi-IIa, but not NaPi-IIc (Bourgeois et al., 

2013; Giral et al., 2009). In the current study rats were chronically adapted to a 

low phosphate diet for 7 days prior to the renal clearance experiments to 

establish whether this would exaggerate the renal response to a duodenal 

phosphate load. However, in contrast to animals on a normal phosphate diet, 

instillation of 1.3M phosphate did not induce phosphaturia in the low phosphate-

adapted animals (Figure 3A), and had no effect on the protein levels of NaPi-IIa 

or NaPi-IIc (Figure 3D and 3E respectively); but there was a significant increase 

in plasma phosphate concentration (Figure 3B) and in PTH level (Figure 3C). 

Animals given a physiological 10mM intestinal phosphate challenge after being 

maintained on a low phosphate diet showed no changes in phosphate excretion, 

plasma phosphate concentration or PTH level (Figure 4). 

 

Serosal fluid collected from perfused mouse intestine does not alter 

phosphate uptake by OK cells 

 
To investigate whether a factor is released from the intestinal mucosa that could 

affect renal phosphate reabsorption and thereby excretion, we perfused 

segments of mouse small intestine ex vivo with different phosphate 
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concentrations and collected the serosal fluid. This approach has been used 

previously to establish the influence of glucose on secretion levels of the gut 

peptides gluco-insulintropic peptide (GIP), glucagon-like peptide-1 (GLP-1), and 

peptide tyrosine tyrosine (PYY) (Mace et al., 2012). The presence of a gut 

peptide in the collected serosal fluid capable of affecting phosphate transport in 

renal cells was investigated by exposing OK cells to the serosal fluid and 

performing 33P uptake studies. Initially, cellular phosphate uptake by OK cells 

was validated using two methods. First, uptake was measured under sodium and 

sodium-free conditions to confirm the presence of sodium-dependent phosphate 

transport in this proximal tubule cell line, as described previously (Malmstrom & 

Murer, 1986; Thomas et al., 2016b).  Sodium-dependent transport accounted for 

90.4% of total transport when 0.1mM phosphate was included in the uptake 

buffer (Figure 5A).  Second, PFA, a known blocker of sodium-dependent 

phosphate transport activity (Villa-Bellosta & Sorribas, 2009), was added to the 

incubation media.  PFA induced a dose-dependent inhibition of total phosphate 

uptake (Figure 5A), with significant inhibition achieved at 7 and 10mM PFA. In 

contrast, incubation of OK cells with serosal fluid collected from proximal and 

distal segments of mouse small intestine perfused with 1.2, 10, and 50mM 

phosphate had no effect on total (Figure 5B) or sodium-independent (Figure 5C) 

phosphate uptake by OK cells. 
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Discussion 

Our knowledge of the processes regulating acute post-prandial phosphate 

homeostasis is limited.  In 2007, Berndt and colleagues proposed a mechanism 

by which the upper small intestine detects the presence of increased dietary 

phosphate and signals to the kidney to rapidly increase phosphate excretion to 

maintain phosphate balance. This response was rapid and occurred within 20 

minutes, and was independent of changes in PTH and FGF-23 (Berndt et al., 

2007b). However, whether a change in renal NaPi-IIa or NaPi-IIc protein 

abundance was responsible for the phosphaturia was not examined, although 

many studies have demonstrated that post-prandial downregulation of NaPi-IIa in 

response to  ingestion of a high phosphate diet occurs within 2-4 hours 

(Bourgeois et al., 2013; Capuano et al., 2005; Giral et al., 2009; Levi et al., 

1994), and that increased PTH, but not FGF-23, levels are responsible for the 

changes seen (Bourgeois et al., 2013).  

 

These differences raise the possibility that there may be two distinct mechanisms 

occurring in response to dietary phosphate: one that occurs rapidly and one more 

slowly. However, it is also important to note that the concentration of phosphate 

used by Berndt and colleagues was 1.3M, and that this phosphate concentration 

is 1000-fold higher than the documented concentration found in rodent (5-10mM) 

(Kirchner et al., 2008; Marks et al., 2015) and human upper small intestinal 

contents (0.5 and 17.5mM) (Davis et al., 1983). While it might be argued that 

consumption of a meal or soft drink high in phosphate or phosphate 
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preservatives could generate an intestinal phosphate concentration higher than 

the millimolar range reported above, it is worth noting that the highest value 

documented in humans (17.5mM) was measured after consumption of a high 

phosphate meal (Davis et al., 1983).   

 

In the present study we found, in keeping with the findings of Berndt et al, that 

urinary phosphate excretion increased in rats given a 1.3M duodenal phosphate 

bolus. However, in our study this response was associated with a significant 

increase in plasma phosphate concentration and in PTH level. Instillation of an 

osmotically balanced buffer had no effect on plasma phosphate or PTH level, or 

on urinary phosphate excretion, but it was noted, as expected with a hypertonic 

solution, that the intestinal contents were watery, with an increased presence of 

mucus, and that the segment became distended. In contrast to the effects seen 

with 1.3M phosphate, duodenal instillation of the more physiological phosphate 

load of 10mM did not affect any of the measurements made. Our findings show 

that although the kidney responds to changes in intestinal phosphate load, the 

response appears to be only following exposure to very high levels of ingested 

phosphate. They also confirm previous rodent studies showing that ingestion of a 

diet high in phosphate (1.2%) (Giral et al., 2009; Bourgeois et al., 2013; 

Hernandez et al., 1996) or duodenal infusion of phosphate (Martin et al., 2005) 

induces a rapid increase in plasma phosphate concentration and subsequent 

release of PTH, and that this response, rather than release of a novel intestinal 

factor secreted independently of changes in plasma phosphate concentration, is 
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likely to be responsible for the increase in renal phosphate excretion.  In keeping 

with this suggestion is the finding that in humans, phosphaturia caused by an 

acute intestinal phosphate load is also associated with changes in plasma 

phosphate concentration and PTH level (Bevilacqua et al., 2010; Nishida et al., 

2006; Scanni et al., 2014). Interestingly, a recent study by Thomas et al has 

shown that the phosphaturia caused by intravenous infusion of phosphate is 

associated with elevated plasma phosphate and PTH levels, but that while intra-

gastric administration of the same phosphate load increases urinary phosphate 

excretion to the same extent as when given intravenously, it is related to elevated 

plasma PTH and not plasma phosphate levels, highlighting the key role for PTH 

in the phosphaturic response (Thomas et al., 2016a). 

 

A number of studies have investigated the time-course for changes in the 

abundance of the renal phosphate transporters in response to dietary phosphate 

ingestion. Switching from a chronic low phosphate diet acutely to a high 

phosphate diet induces downregulation in NaPi-IIa protein abundance after 2-4 

hours (Bourgeois et al., 2013; Capuano et al., 2005; Katai et al., 1997; Levi et al., 

1994; Segawa et al., 2005). In contrast, the time course for NaPi-IIc 

downregulation has been reported to be longer, ranging from 4-6 hours (Segawa 

et al., 2005) to 48 hours (Villa-Bellosta et al., 2009). Given that altered NaPi-IIa 

abundance in response to dietary phosphate is likely to be PTH-mediated 

(Bourgeois et al., 2013), and that PTH can elicit NaPi-IIa internalization within 5 

minutes (Bacic et al., 2006), it can be assumed that reduced NaPi-IIa levels after 



 18

an acute phosphate load occurs within minutes, although this has not been 

definitely confirmed. Interestingly, our study demonstrates that even with a 

significantly increased plasma phosphate concentration and PTH level, we did 

not detect changes in either NaPi-IIa or NaPi-IIc protein abundance over the 45-

minute time-course of the study. This is in keeping with the recent report that 

acute phosphaturia in response to intravenous phosphate infusion occurs without 

any detectable change in type II transporter activity or abundance (Thomas et al., 

2016a). Thus the higher tubular load of phosphate, resulting from the elevated 

plasma phosphate concentration and maintained GFR may explain the 

phosphaturia, alternatively it has been proposed that changes in membrane lipid 

composition or NHERF1 phosphorylation may be responsible (Thomas et al., 

2016a). Interestingly, rats maintained on a low phosphate diet also had elevated 

plasma phosphate concentration and PTH level in response to a 1.3M phosphate 

load, but this did not elicit a change in urinary phosphate excretion, at least over 

the time-course studied. This finding could be a consequence of the well-

documented increase in abundance of NaPi-IIa protein in response to a chronic 

low phosphate diet, and the potentially slower than expected adaptation of NaPi-

IIa protein levels under these experimental conditions.  

 

The presence of the phosphaturic factor proposed by Berndt et al was also 

investigated in vitro by performing phosphate uptake studies in OK cells (a widely 

used bioassay cell culture system to study renal proximal tubular phosphate 

transport) exposed to serosal fluid. These experiments also aimed to determine 
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whether NaPi-IIb played a key role in intestinal phosphate sensing, and 

subsequent release of the putative intestinal phosphatonin(s). We chose to use 

mouse intestinal segments for the collection of serosal fluid, rather than rat, 

because the regional profile for NaPi-IIb in mice has been consistently reported, 

with NaPi-IIb protein almost exclusively located in the mouse ileum (Marks et al., 

2006; Radanovic et al., 2005), and transport studies using NaPi-IIb knockout 

mice have confirmed that phosphate absorption in this region is >90% NaPi-IIb-

mediated (Sabbagh et al., 2009). In contrast, in the rat phosphate absorption 

occurs maximally in the jejunum (Giral et al., 2009; Marks et al., 2006; Walling, 

1977), but only ~30% of total transport in vivo can be resolved as 

sodium‐dependent and, presumably, NaPi-IIb-mediated (Marks et al., 2015). 

Therefore, by using defined segments of mouse intestine we believed we could 

make a clearer interpretation of the potential role of NaPi-IIb as a phosphate 

sensor. However, although we were able to demonstrate significant sodium-

dependent and PFA-sensitive phosphate transport in these cells, no change in 

uptake was found following treatment with serosal fluid collected from either the 

proximal or distal mouse small intestine. This lack of response suggests that a 

modest and physiological intestinal phosphate load does not stimulate the 

secretion of a phosphaturic factor into serosal fluid. 

 

In summary our in vivo and in vitro data have been unable to demonstrate the 

presence of a gut-derived phosphaturic factor that mediates a rapid signalling 

mechanism between the small intestine and kidney that is independent of 
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changes in plasma phosphate concentration and/or PTH level. Instead, our data 

are in keeping with the observation that a dietary phosphate load can cause post-

prandial hyperphosphataemia and stimulation of PTH release from parathyroid 

glands in order to maintain phosphate homeostasis (Bourgeois et al., 2013; Giral 

et al., 2009; Hernandez et al., 1996; Martin et al., 2005). We also demonstrate 

that supraphysiological, but not physiological, intestinal phosphate loads elicit 

changes in plasma phosphate concentration and PTH level and that only when 

there is positive phosphate balance does this provoke a phosphaturic response. 

Further studies are needed to establish what intestinal phosphate loads correlate 

with the phosphate levels found in the human diet.  
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Figure legends 
 
Figure 1: Instillation of 1.3M phosphate into the duodenum induces 

phosphaturia in rats maintained on a normal phosphate diet. Urinary 

phosphate excretion (A), plasma phosphate levels (B), and plasma PTH level 

(C), in rats fed a normal phosphate diet and receiving a duodenal bolus of either 

1.3M phosphate or an isosmolar control buffer. Western blot analysis of NaPi-IIa 

(D) and NaPi-IIc (E) protein in brush border membrane vesicles prepared from 

kidneys obtained from the rats at the end of the procedure. Results are presented 

as mean ± SD, n = 5-7, *P<0.05, **P<0.01 compared to control period before 

instillation of the phosphate bolus (A and B) using a Student’s paired t test, or 

compared with the animals receiving the osmotically balanced control buffer (C) 

using a Student’s unpaired t test.  

 

Figure 2:  Instillation of 10mM phosphate into the duodenum does not 

induce phosphaturia in rats maintained on a normal phosphate diet. Urinary 

phosphate excretion (A), plasma phosphate levels (B), and plasma PTH level 

(C), in rats fed a normal phosphate diet and receiving a duodenal bolus of either 

10mM phosphate or an isosmolar control buffer. Western blot analysis of NaPi-IIa 

(D) and NaPi-IIc (E) protein in brush border membrane vesicles prepared from 

kidneys obtained from the rats at the end of the procedure. Results are presented 

as mean ± SD, n = 4-5. 
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Figure 3: Instillation of 1.3M phosphate into the duodenum does not induce 

phosphaturia in rats maintained on a low phosphate diet. Urinary phosphate 

excretion (A), plasma phosphate levels (B), and plasma PTH level (C), in rats fed 

a low phosphate diet for 7 days prior to experimentation and receiving a 

duodenal bolus of either 1.3M phosphate or an isosmolar control buffer. Western 

blot analysis of NaPi-IIa (D) and NaPi-IIc (E) protein in brush border membrane 

vesicles prepared from kidneys obtained from the rats at the end of the 

procedure. Results are presented as mean ± SD, n = 5, **P<0.01 compared with 

control period before instillation of the phosphate bolus (B) using a paired t test, 

and ***P<0.001 compared with the animals receiving the osmotically balanced 

control buffer (C) using a Student’s unpaired t test.  

 

Figure 4: Instillation of 10mM phosphate into the duodenum does not 

induce phosphaturia in rats maintained on a low phosphate diet. Urinary 

phosphate excretion (A), plasma phosphate levels (B), and plasma PTH level 

(C), in rats fed a low phosphate diet for 7 days prior to experimentation and 

receiving a duodenal bolus of either 10mM phosphate or an isosmolar control 

buffer. Western blot analysis of NaPi-IIa (D) and NaPi-IIc (E) protein in brush 

border membrane vesicles prepared from kidneys obtained from the rats at the 

end of the procedure. Results are presented as mean ± SD, n = 5.  

 

Figure 5: Phosphate uptake in OK cells. The ability of the phosphate uptake 

assay to detect sodium-dependent phosphate transport in OK cells was 
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confirmed using sodium-free buffers and the phosphate transport inhibitor, 

phosphoformic acid (PFA) (A). Total phosphate uptake (B) and sodium-

independent phosphate uptake (C) was measured in OK cells exposed to serosal 

fluid collected from proximal and distal intestinal segments perfused with 1.2, 10, 

or 50mM phosphate. Results are presented as mean ± SD, n = 4-5, **P<0.01, 

***P<0.005 compared with uptake in the presence of sodium using a Student’s 

unpaired t test.  

 

Table 1.  Glomerular filtration rate (GFR) and mean arterial pressure (MAP) were 

unchanged during the surgical procedure. Results are presented as mean ± SD, 

n=4-7.  
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   GFR (ml/min)    MAP (mmHg)  

Group (n) Ctrl 15 min 30 min 45 min Ctrl 15 min 30 min 45 min

 
 

Normal 
diet 

Control  (4) Ϯ.ϱϮ ± Ϭ.ϱϱ ϯ.ϯϴ ± Ϭ.ϵϲ ϯ.ϵϮ ± Ϭ.ϴϱ ϯ.ϱϳ ± ϭ.ϮϮ ϭϬϵ.Ϯϱ ± Ϯ.ϲϱ ϭϬϴ.Ϭϯ ± Ϯ.ϵϮ ϭϬϰ.ϰϵ ± ϯ.ϳϯ ϭϬϬ.ϳϴ ± ϯ.ϭϬ 
10mM 

phosphate (5) ϯ.ϱϭ ± ϭ.ϭϱ ϯ.ϰϰ ± Ϭ.ϲϯ ϯ.Ϭϴ ± ϭ.Ϯϵ ϯ.ϴϰ ± Ϭ.ϱϮ ϭϭϮ.ϮϮ ± ϱ.ϮϮ ϭϬϵ.ϲϯ ± Ϯ.ϲϬ ϭϬϳ.Ϭϳ ± Ϯ.ϰϲ ϭϬϭ.ϰϴ ± ϭ.Ϭϵ 

High control 
(5) ϯ.ϯϰ ± ϭ.ϯϴ ϯ.ϳϱ ± ϭ.ϴϭ ϯ.ϲϯ ± ϭ.ϯϰ ϰ.ϭϴ ± ϭ.ϯϬ ϭϭϰ.ϰϴ ± ϱ.ϵϬ ϭϬϴ.ϳϬ ± ϱ.ϰϴ ϭϬϰ.ϳϳ ± ϱ.Ϭϲ ϭϬϭ.Ϭϰ ± ϰ.ϴϭ 

1.3M 
phosphate (7) Ϯ.ϴϬ ± Ϭ.ϯϭ ϯ.Ϯϯ ± Ϭ.ϯϯ Ϯ.ϳϵ ± Ϭ.ϱϱ ϯ.Ϭϵ ± ϭ.Ϭϯ ϭϬϴ.ϮϬ ± ϰ.Ϭϰ ϭϬϰ.ϵϮ ± ϵ.ϮϮ ϭϬϭ.ϴϰ ± ϰ.ϴϳ ϭϬϬ.ϭϮ ± ϲ.ϱϰ 

 
 

Low 
phosphate 

diet 

Control 
(5) ϯ.ϱϱ ± ϭ.ϭϳ ϯ.ϱϳ ± ϭ.ϯϮ ϰ.ϭϬ ± Ϭ.ϯϲ ϯ.ϱϯ ± Ϭ.ϵϯ ϭϬϮ.ϯϴ ± ϴ.ϯϮ ϭϬϯ.ϲϲ ± ϴ.ϳϬ ϵϵ.ϱϱ ± ϳ.Ϭϲ ϵϴ.Ϯϴ ± ϱ.ϵϲ 

10mM 
phosphate (5) Ϯ.ϳϳ ± ϭ.ϭϵ ϰ.ϲϰ ± Ϯ.ϲϮ ϯ.ϰϭ ± Ϭ.ϴϰ ϰ.Ϭϲ ± ϭ.Ϯϭ ϭϬϰ.ϱϱ ± ϯ.ϭϭ ϭϬϮ.ϲϴ ± ϰ.ϲϰ ϵϵ.ϰϳ ± ϰ.ϯϬ ϵϳ.ϯϰ ± Ϯ.Ϯϵ 

High control 
(5) ϯ.ϱϯ ± ϭ.Ϯϱ ϰ.ϭϯ ± Ϯ.ϬϬ ϯ.ϲϭ ± ϭ.ϴϱ ϰ.ϱϲ ± ϭ.ϯϱ ϭϬϭ.ϴϲ ± ϱ.ϱϲ ϭϬϯ.ϭϵ ± ϯ.ϰϯ ϭϬϮ.ϲϳ ± Ϯ.ϯϭ ϭϬϬ.ϴϰ ± ϭ.ϯϵ 

1.3M 
phosphate (5) ϯ.ϬϬ ϭ.ϰϳ ϯ.ϲϰ ± ϭ.ϰϳ ϯ.Ϭϳ ± Ϭ.ϰϰ ϰ.ϳϭ ± ϭ.Ϯϴ ϭϬϲ.ϰϮ ± ϭϭ.ϰ ϭϬϮ.ϳϲ ± ϭϬ.ϰ ϵϳ.ϬϬ ± ϵ.ϳϵ ϵϲ.ϳϭ ± ϵ.ϯϴ 

 


