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Abstract

Future energy systems are expected to include distributed energy systems

(DES) and microgrids (MG) at the distribution level. These energy effi-

cient environments enable participating consumers to locally generate and

share both electrical and thermal energy. Apart from the potential for a

more cost-efficient energy system design, improved system availability is also

increasingly put forward as a major advantage of MGs. This paper pro-

poses a mixed-integer linear programming (MILP) approach for the design

of a neighbourhood-based energy system, considering the trade-off between

total annualised cost and electrical system unavailability. System design

is optimised to meet the yearly neighbourhood energy demands by select-

ing technologies and interactions from a pool of dispatchable and renewable

poly-generation and storage alternatives. The availability implementation
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employs a Markov chain approach combined with logic-gate integer program-

ming. The Pareto trade-off sets of on- and off-grid MG modes are obtained

using a weighted-sum approach. The developed model is subsequently ap-

plied to an Australian case-study. The sought after trade-off “knee” points

for each Pareto curve are hereby identified. Additionally, through comparing

on- and off-grid design trade-offs, the need for component redundancy for

systems with islanding capabilities is analysed.

Keywords: dependability, distributed generation, logic-gate integer

programming, markov state space analysis, microgrid, mixed-integer linear

programming

1. Introduction1

1.1. Background2

Residential distributed energy systems (DES) are gaining increasing in-3

terest as a solution for challenges affecting traditional top-down energy sys-4

tems [1–3]. Conventionally, electricity is generated in large centralised power5

plants to be transmitted and distributed to consumers in the grid [2, 3].6

This conventional system faces challenges with regard to growing global en-7

ergy needs, emissions and the need for alternative energy resources [4]. DES8

have the potential to increase system efficiency and reduce emissions through9

strategic energy-integrated design. Residential DES refer to a residential area10

that has the option to install distributed generation units (DG), storage units11

and local energy sharing of heating, cooling and electricity [5, 6]. DG units12
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refer to small-scale units located close to end-consumers at the distribution13

level in the grid [5, 6]. A small system where energy can be locally generated14

through DG units and shared among participants organised through a central15

control unit is defined as a microgrid (MG) − if predominantly electricity16

based −, or, a DES more generally. MGs introduce various potential benefits17

to end-consumers of which increased electrical system dependability is often18

highlighted [1, 7, 8].19

In order for MGs to emerge on a wide-spread scale, a cost effective, effi-20

cient and dependable energy system design is required. This paper presents21

a generic optimisation-based decision-making approach to assess the relative22

benefit in terms of cost and electrical system availability of a small residential23

energy system. This potentially conflicting trade-off is especially interesting24

in low voltage MG systems since local energy generation and integration can25

offer increased electrical availability within low voltage distribution systems26

that are responsible for over 90 % of end-consumer interruptions [9].27

1.2. Availability as an attribute of dependability28

Distributed energy resource planning problems are inherently multi-objective29

(MO) since they involve many stakeholder interests, often conflicting, that30

need to be considered and traded off [10]. Apart from system cost, system31

dependability is of major importance in DES. A dependable system allows32

trusting the services it is supposed to deliver [11]. An analysis of the de-33

pendability of a system entails the research of a wide range of aspects [11–34
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19]. The two most employed attributes to measure system dependability are35

availability and reliability, which serve different purposes highlighted by their36

definitions [11–19];37

Availability is the probability that a system is employable at a certain38

time t, i.e the readiness for correct service. Availability measures the39

dependability of repairable systems. Unavailability is its complement.40

Reliability is the probability that a system works correctly over a certain41

time interval ∆t, provided it worked correctly at the start of this in-42

terval. Reliability is mostly employed for irreparable or continuously43

operating systems. The complement of reliability is unreliability.44

Availability is chosen as measure since residential DES are: (i) non-critical45

in operation in contrast with, e.g. continuous critical processes [20], (ii)46

readily maintainable and repairable within reasonable time frames [21], and47

(iii) expected to work at a certain time t, i.e. consumers expect the light to48

go on when flicking a switch. Availability refers here to the probability of a49

unit to provide (full) power to the load at any time t [21].50

1.3. Determining availability51

Electrical system availability is typically expressed through so-called “nines” [22].52

Central grid availability, for example, can range from 3-nines (99.9 %) to 6-53

nines (99.9999 %). This indicates the hours throughout a year the component54

or system is available. Availability thus directly relates to the system up and55

4



down times, determined by failures and outages [19]. Failure rates are time56

dependent, typically presented through a “bathtub” curve with three failure57

periods over a component’s life: early, useful and end of life [14, 15, 19, 22].58

This paper assumes components to be in their useful life. The latter implies a59

constant probability of component failure or repair over a certain time period,60

i.e. constant component failure, φ, and repair, µ, rates or frequencies [19, 23].61

System availability used to be assessed through deterministic criteria [9,62

24]. Deterministic approaches, however, are not able to grasp stochastic fail-63

ure behaviour. Therefore, probabilistic techniques have gained increasing64

interest. Two major groups can be distinguished. Analytical approaches as-65

sess state probabilities and indices through mathematical relations based on66

statistical component failure data [2, 3, 9]. The most common techniques67

are the Series-Parallel Reduction/Block Diagram Method, Event Tree Anal-68

ysis, State Space Markov methods and Tie/Cut Set methods [14, 19, 25, 26].69

In terms of specific probabilistic system indices, System Average Interrup-70

tion Duration Index (SAIDI) is most commonly used for electrical system71

availability. SAIDI is a measure for the percentage duration of an out-72

age and is often employed as a measure for conventional network availabil-73

ity [2, 3, 9, 13, 24, 26, 27]. Simulation based techniques, in contrast, deter-74

mine expected values of indices and system state probabilities by averaging75

the results obtained through individual simulations. Simulation techniques76

are especially appropriate for large and complex systems.77

Since DES are small, their components are quantifiable through proba-78
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bilistic data and their energy sharing capabilities prevent reduction to series79

or parallel component connections, a Markov State Space analytical approach80

is taken to determine steady-state system availabilities (see Section 4.3).81

1.4. Multi-objective optimisation of distributed energy systems82

1.4.1. Key concepts83

Multi-objective (MO) methods try to obtain a solution for a problem84

with several aims. In contrast with single-objective optimisation, no single85

solution can be found but rather a set of optimal solutions. The concept of86

dominance determines the relative importance of this obtained set of solu-87

tions [10]. The aim of MO optimisation is to construct a trade-off curve of88

non-dominated solutions between objectives (Pareto curve) or a set of solu-89

tions on this curve (Pareto set) [28]. Finding a Pareto set to a problem can90

be through either “classical approaches”, such as the weighted-sum and the91

ε−constraint methods, or through approaches based on evolutionary algo-92

rithms [10]. The aim is to find the “best” trade-off between criteria, which is93

a subjective decision. The “best” point will often be at a “knee-point” where94

a bigger return on an objective is achieved before the “knee” than after [28].95

MO decision-making is increasingly adopted for DES design [10]. The96

considered objectives in DES planning problems can be classified under three97

themes, i.e. financial, environmental and technical [10]. DES planning prob-98

lems are inherently non-convex combinatorial problems with complexity in99

terms of decision variables and equations. Linearising DES behaviour and100
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simplifying assumptions enables the use of linear and mixed-integer linear101

programming (MILP), allowing for efficient optimisation of complex prob-102

lems with a high degree of variables [10, 29]. MILP models are thus fre-103

quently used for complex DES problems. Within DES MO optimisation,104

cost minimisation is the most common objective, increasingly combined with105

an environmental criteria [10, 30–36]. If at all considered, technical criteria106

mostly relate to energy loss minimisation [31, 32, 34, 35].107

1.4.2. Availability in DES optimisation108

Dependability evaluation of DES has not received as much attention in109

literature as other potential DES benefits [21, 24, 32]. Modelling and op-110

timisation of DES design dependability as a technical criterion can be di-111

vided in three major categories: a posteriori assessment, as indirect design112

objective/constraint, or, as direct design objective.113

Most research regards a posteriori determination of the availability or114

reliability of a known system without optimising the system. Several al-115

ternative system topologies are selected and then compared regarding cost,116

reliability and/or availability when a trade-off or “optimal design” has to be117

selected. A model for electrical and thermal reliabilities of a known dispatch-118

able combined heat and power (CHP) system, for example, was introduced119

by Haghifam et al. [27], employing a frequency-balance discrete State Space120

Markov process. A similar analysis was conducted for a building cooling,121

heating and power system by Wang et al. [37].122
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Within optimisation models, availability or reliability is often indirectly123

addressed as a design constraint. Ren et al. [38], for example, presented a lin-124

ear model for the optimal operation strategy of a DES minimising energy cost125

and CO2 emissions. Equipment availability was here integrated through an126

availability factor, placing an upper bound on energy generation. A planning127

strategy for DG units within electrical power systems was presented by Zan-128

geneh et al. [39], employing a normal boundary intersection algorithm with129

four cost-related objectives. The cost of energy not supplied and availability130

factors were here the dependability measures.131

Availability and reliability are technical objectives but have not been132

used explicitly, including system and component states, within superstruc-133

ture DES design optimisation. They have, in contrast, been used as objec-134

tives in the context of selecting the optimal number of redundant identical135

components in generic networks. Fiori de Castro et al. [23], for example,136

suggested a genetic algorithm to maximise availability of a series engineering137

system configuration. An evolutionary optimisation approach to maximise138

redundancy availability in a generic parallel/series system was, additionally,139

suggested by Ratle et al. [40]. Within the application of DES, research is140

limited. Frangopoulos and Dimopoulos [41] analysed the effect of reliability141

for the optimal synthesis, design and operation in the selection of a num-142

ber of generic cogeneration units through a genetic algorithm. Each system143

state probability, obtained through a Markov State Space approach, served144

to analyse expected cost and energy values. A MO planning tool with finan-145
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cial and technical objectives, such as reliability, was developed by Yassami146

et al. [42]. Reliability was, however, integrated as a cost through customer147

damage functions. Singh and Goswami [43], in their turn, proposed a MO148

genetic algorithm for optimal planning of DG units in terms of siting and149

sizing. The overall objective was formulated as a multi-objective perfor-150

mance index employing weighted indices for reliability of service, efficiency151

and power quality. Only overall system reliability performance indices were152

used, such as SAIDI. A strategic technology-policy framework for distributed153

energy resource allocation under a technical, financial and environmental ob-154

jective was presented by Mallikarjun and Lewis [33] using Data Envelope155

Analysis and Goal Programming. A reliability factor was employed as tech-156

nical objective. Lastly, a recent body of research looks at component sizing157

for the detailed electrical design of hybrid energy systems while minimising158

both cost and an energy supply reliability measure, such as the loss of power159

supply probability or expected energy not served, through genetic algorithms160

or particle swarm optimisation [44–48].161

1.5. Contributions of this work162

Within superstructure DES optimisation, residential energy integrated163

systems in terms of electricity (through MG operation) as well as heating164

and cooling (through optimised pipeline networks) are a relative new area of165

research. This paper builds on the previously developed superstructure model166

by the authors, which involved an MILP total annualised cost minimisation167
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of residential DES design [30, 49, 50]. This paper adds a second, technical ob-168

jective. The aim is to identify the “best” neighbourhood electrical design as169

a trade-off between (i) total annualised cost to meet the total energy demand170

in the neighbourhood, and (ii) the average house electrical system unavail-171

ability, for on- and off-grid modes of the system. The specific contributions172

of this work are:173

• developing a bi-objective economic-technical framework for fully energy174

integrated DES design whereby the technical objective is modelled as175

neighbourhood electrical system unavailability while explicitly taking176

into account different house- and neighbourhood-based electrical sys-177

tem configurations and the state of their components;178

• combining logic-gate operation and discrete absorbing Markov chains179

with integer programming within a superstructure MILP framework to180

model availability;181

• and a South Australian based case-study, a State with a high potential182

for residential DES due to favourable climatic conditions and remote183

load centres.184

The methodology is detailed in Section 2. Section 3 illustrates the model185

equations and constraints. The researched case-study and required input186

data are presented in Section 4. The results are discussed in Section 5 to187

conclude in Section 6.188
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2. Methodology189

2.1. Problem description190

The energy system design of a small neighbourhood is optimised in terms191

of selection of technologies and interactions, their locations and capacities.192

A superstructure approach is employed; each component is a black-box with193

power/energy in- and out-flows. Although thermal energy supply is consid-194

ered (see Appendix A.1), electrical supply is the focus here. The black-box195

diagram of the electrical supply alternatives and interactions of each neigh-196

bourhood house are given in Figure 1.197

ELEC HEAT Conventional 

PV CHP 

Electrical 
load [kW] 

EST 

Grid 

MG 

Natural 
gas 

Grid 

MG 

Heat 

dump 

Figure 1: Black-box diagram of the considered generation and supply alternatives of each
household in the neighbourhood to meet electricity demands, adapted from [30]. Note that
the CHP unit is the coupling between the electrical and thermal supply. CHP=combined
heat and power unit, PV=photovoltaic unit, EST=electrical storage unit, MG=microgrid,
dump=dump load.

The conceptual diagram, Figure 2, illustrates the steps in determining the198

unavailability related equations. First, the total unavailability values of the199
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electrical components are obtained. Second, potential component combina-200

tions, available to supply the electrical load of an individual house, are deter-201

mined, i.e. potential household electrical system configurations. A discrete202

homogeneous Markov chain is subsequently constructed for each system con-203

figuration to obtain its steady-state unavailability. These system unavailabil-204

ities are model inputs. System configurations are then implemented through205

the use of logic-gate operations and binary integer programming. The model206

optimises average house electrical system unavailability as a combination of207

implemented system configurations of the different neighbourhood houses.208

The optimised neighbourhood design will thus implement one of the consid-209

ered system configurations in each house. Additionally, for a technology to210

be considered available, it might require a minimum installed capacity, which211

introduces capacity constraints.

Input Implementation 

1. Obtain constant 

total unavailability 

values of electrical 

components 

2. Determine 

available 

household system 

configurations 

3. Determine 

unavailability of 

potential system 

configurations 

 

State Space 

Markov diagram 

4. Implement 

alternative system 

configurations 

 

Logic-gate 

operation 

Integer 

programming 

5. Constraints on 

DG capacity to be 

considered 

available 

Figure 2: Conceptual diagram of unavailability implementation.

212
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2.2. Model requirements and assumptions213

The model is developed as an MILP in GAMS and solved with CPLEX to214

global optimality [51]. A typical day (24 hours) in each season over a yearly215

planning horizon is adopted. The inputs are:216

• area specific climatological data (sunshine);217

• specifications of the considered technologies;218

• investment and operation and maintenance (OM) costs as well as utility219

energy tariffs;220

• regulation in terms of governmental support schemes and upper bounds221

on installed DG unit capacities; and,222

• spatial distributions of hourly average electricity, heating and cooling223

demands for each house in the neighbourhood.224

The outputs are (i) total annualised cost; (ii) average house electrical system225

unavailability; and (iii) optimal system design in terms of selection, siting226

and sizing of units and interactions.227

Technologies are assumed to have constant energy conversion efficiencies228

and no ramp-up and ramp-down times [30]. Furthermore, MG operation229

is assumed to be installed in a neighbourhood with an existing electrical230

infrastructure. The assumptions with respect to availability are [52]:231

• only electrical systems are under availability optimisation;232

• all components are in their useful life;233
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• steady-state availability assessment is made, no dynamic processes,234

such as relay switching, are considered. Instead, potential system con-235

figurations are determined;236

• no fault occurs within repair intervals;237

• no common-mode failures are considered;238

• neither cold standby nor switching are included; and,239

• components are independent in terms of failure and repair.240

3. Cost − unavailability model241

3.1. Optimisation problem242

Neighbourhood energy system design is optimised by minimising the243

scaled total annualised energy cost, CTOT,S [kAUD y−1], and the average244

house electrical system unavailability in the neighbourhood UATOT,S:245

min
x,y,z





CTOT,S

UATOT,S

(1)

where x represent the technology options, y their capacity ranges and z their246

location in the neighbourhood. The objective function is constructed as a247

weighted-sum with factor λc ∈ [0, 1] of the scaled objectives:248

min
x,y,z

[λc · CTOT,S + (1− λc) · UATOT,S] (2)
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The cost, CTOT,S, and unavailability, UATOT,S, objectives are detailed in249

Sections 3.1.1 and 3.1.2, respectively. The objective function is bound by:250

• technology design and operational constraints of the DG units (Ap-251

pendix A, Equations A.7 to A.13), the thermal energy technologies252

(Appendix A, Equations A.14 to A.17) and the electrical and thermal253

storage technologies (Appendix A, Equations A.18 to A.26). Technol-254

ogy decision variables are the selection of technology type tech in house255

i through binary variable Btech,i, installed technology capacity in house256

i (DGMAX
tech,i ∈ [Ltech, Utech]), and the hourly operational energy streams257

to and from each installed unit;258

• hot and cold pipeline design and operational constraints (Appendix259

A, Equations A.27 to A.35). The pipeline decision variables include260

pipeline existence from house i to house j determined by binary variable261

Y Pi,j, the order of houses in a network determined through integer262

variable OHi, and energy transfers from houses i to houses j in hour h263

of season s, QHi,j,s,h;264

• electricity interaction constraints between the neighbourhood houses265

and the central grid (Appendix A, Equations A.36 to A.37);266

• microgrid electricity sharing constraints between neighbourhood houses267

(Appendix A, Equations A.38 to A.44) where microgrid sharing is en-268

abled through binary variable Z and hourly electricity transfer by DG269

units in houses i in season s is determined (PECIRC
techDG,i,s,h);270

• hourly neighbourhood energy balance constraints to ensure that the271
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energy generated in the neighbourhood balances the neighbourhood272

demand of electricity (Appendix A, Equation A.45), heating (Appendix273

A, Equation A.46) and cooling (Appendix A, Equation A.47);274

• capacity constraints to determine the supply availability of each compo-275

nent as 100% available or 100% unavailable (Equations 6 to 9 and Ap-276

pendix A, Equations A.48 to A.53);277

• and house electrical system configuration constraints, Equations in Ta-278

ble 1.279

Below the objectives and availability constraints are summarised.280

3.1.1. Cost281

Total annualised cost, CTOT [AUD y−1], combines annualised investment,282

CINV
i,tech, fixed and variable OM, COM

i,tech, and annual fuel costs, CFUEL
i,tech , of283

technologies tech installed in houses i. Also, the annual cost of purchasing284

electricity from the central grid by house i, CGRID
BUY,i , the carbon tax imposed285

on each household, CCT
i , and potential household incomes through govern-286

mental subsidies, such as feed-in tariffs, through residential electricity export,287

CGRID
SELL,i, are included:288

CTOT =
∑

i,tech

(CINV
i,tech + COM

i,tech + CFUEL
i,tech ) +

∑

i

(CGRID
BUY,i + CCT

i − CGRID
SELL,i) (3)

The total cost is scaled (CTOT,S) to kAUD. The terms of the cost objective289

function are detailed in Appendix A, Equations A.1 to A.6.290
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3.1.2. Unavailability291

Average house electrical system unavailability UATOT,S in a neighbour-292

hood is determined by the sum of the system unavailability of each house i,293

UAi, divided by the total number of houses in the neighbourhood, nh:294

UATOT,S =

∑
i
UAi

nh

(4)

Individual household electrical system unavailability is determined through a295

parallel connection (sum) of unavailability values of potential system configu-296

rations [14, 15, 19]. Each potential household electrical system configuration,297

con, is represented by a binary decision variable, Bcon,i, and a constant system298

unavailability, uacon. The latter is obtained through a Markov chain (see Sec-299

tion 4.3). Note that potential household system configurations are mutually300

exclusive, since only one configuration can be adopted in each house. Mutual301

exclusivity is ensured through the AND-NOT configuration implementation,302

see Section 3.3 and Table 1. Neighbourhood average system unavailabil-303

ity hence optimises the combination of household system configurations. A304

logarithmic transformation of obtained unavailability inputs is employed to305

bring objectives within similar range and to indirectly measure unavailability306

as availability through a number of “nines”:307

UAi =
∑

con

Bcon,i · log10(uacon) ∀i (5)
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3.2. Capacity constraints308

Potential house electrical system configurations are each a combination309

of available electricity generating technologies to a house, i.e. a CHP unit,310

a PV unit, a battery, a MG connection fed by CHP units in other houses,311

and a potential grid connection. Each component is characterised by a total312

unavailability, which is a combined measure of the component supply un-313

availability (function of its nominal capacity), the unavailability level of its314

required resource input (e.g. renewable energy or natural gas unavailability)315

and the unavailability of its technical component, see Section 4.1 [27].316

The electrical supply probability of a component (part of its total avail-317

ability) is thus a function of its installed capacity. A first analysis is con-318

ducted in this work with one availability−capacity step rather than a gradual319

relation between both (see Section 5.2). Installed units consequently require320

a minimum nominal capacity to be considered available to supply the load of321

their accommodating house. A lower capacity is allowed but the correspond-322

ing unit is then considered unavailable. In the first instance, two discrete323

nominal capacity levels are thus allowed for each installed technology in a324

house, unavailable and 100 % available for its accommodating house. The325

latter is a capacity of a single unit, able to fully meet the peak load of its326

accommodating house in each hour. The former combines all unavailable and327

reduced available capacity values of this unit for its accommodating house328

into one unavailable level.329

For an installed PV unit or battery to supply their accommodating house,

18



their installed capacity (DGMAX
tech,i ) should be greater or equal than a threshold

capacity, T av
tech,i [m2 or kWh]. Their capacity can thus fall within one of two

categories, characterised by binary variables Btech,i (installed and unavail-

able) and Bav
tech,i (installed and 100% available), respectively. Total installed

technology capacity should additionally fall within bounds [Ltech;Utech]. With

tech, PV units or batteries:

Ltech ·Btech,i + T av
tech,i ·Bav

tech,i ≤ DGMAX
tech,i

DGMAX
tech,i ≤ T av

tech,i ·Btech,i + Utech ·Bav
tech,i ∀i (6)

330

Btech,i +Bav
tech,i ≤ 1 ∀i (7)

Note that PV units are only considered available to supply the load of their331

accommodating house, not to supply the whole neighbourhood through MG332

sharing. CHP units, in contrast, can perform the different tasks of (i)333

meeting the electricity load of their accommodating house, and (ii) meet-334

ing the electricity demand of the whole neighbourhood through MG shar-335

ing. Their installed electrical capacity, DGMAX
CHP,i [kW], should fall within336

bounds [LCHP , UCHP ]. Depending on the task of the CHP unit, its capacity337

should be at least equal to threshold capacities T av
CHP,i [kW] (available for338

its accommodating house) or T av
CHPmg,i [kW] (available for the MG), re-339

spectively. This characterises three CHP capacity categories, unavailable340

(BCHP,i), 100% available for house i (Bav
CHP,i) and 100% available for MG341

operation (Bav
MG,tech,i). These categories are represented by three binary342
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variables CHPA
i , CHPB

i and CHPC
i to impose alternative upper and lower343

bounds on installed CHP capacity:344

DGMAX
CHP,i ≤ T av

CHP,i ·CHPA
i + T av

CHPmg,i ·CHPB
i +UCHP ·CHPC

i ∀i (8)

345

LCHP ·CHPA
i + T av

CHP,i ·CHPB
i + T av

CHPmg,i ·CHPC
i ≤ DGMAX

CHP,i ∀i (9)

These three mutually exclusive binary variables each represent a combination346

of the three CHP capacity categories (AND (∧) – NOT (B) gate), see Ap-347

pendix A.348

3.3. Electrical system configurations: logic-gate operation349

Potential household system configurations are each characterised by a bi-350

nary variable of which its value is determined through an AND–NOT relation351

between all the binary variables (enabled, or, disabled (NOT)) of individually352

considered available components to each house. Different component combi-353

nations can in this way be represented by a series of ones and zeros, which354

enables (“switching on”) and disables (“switching off”) the implementation of355

components to represent different household system configurations. System356

configurations are thus feasible combinations of the five individually available357

components to each house i, i.e. a grid connection, a CHP unit, a PV unit,358

a battery and an operational MG with a number of MG-available CHP units359

in houses j (with i 6= j) ∈ [0, nh − 1]. Each house can thus have one of 25
360

possible component combinations, i.e. system configurations, including the361
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option of no installed components. Only certain combinations are, however,362

feasible, see Table 1. An appropriately sized battery, for example, is only363

considered available together with an appropriately sized (available) PV unit364

or CHP unit in the same house. Note that authorised islanding is assumed.365

Without authorised islanding, installed DG units have to be switched off in366

case of central system outages, limiting DES redundancy advantages.367

Binary variables of some of the considered components and logic-gate368

operation linearisation are clarified in Appendix A. Each household (i) sys-369

tem configuration can then be modelled as an AND–NOT gate of combina-370

tions of considered individual components, see Table 1. The house configu-371

ration with an available CHP (Bav
CHP,i) and available grid connection (GCi),372

for example, is then:373

XCi = GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑

k

MGAi,k ∀i (10)

AND–NOT expressions of the considered system configurations are given in374

Table 1. An AND-gate represents a product of binary variables and has been375

linearised using the procedure presented in [53, 54]. A NOT-gate inverts its376

binary input.377

4. Case-study: A South Australian neighbourhood378

Australia has potential for DES to reduce investment in long transmis-379

sion lines to cover the extended distances between load centres. Moreover,380
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Table 1: AND–NOT expressions of potential electrical system configurations for house i.
Each expression is equal to a binary variable Bcon,i. GR=grid, CHP=combined heat and
power unit, PV=photovoltaic unit, MG=microgrid, EST=battery.

Technology combination AND–NOT expression ∀i, k
GR GCi ∧Bav

CHP,i ∧Bav
PV,i ∧Bav

EST,i ∧
∑

k
MGAi,k

CHP GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

PV GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

GR and CHP GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR and PV GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP and PV GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

CHP and EST GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

CHP and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

PV and EST GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

PV and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

GR, CHP and PV GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR, CHP and EST GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR, CHP and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

GR, PV and EST GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR, PV and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP, PV and EST GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

CHP, PV and MG Xi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP, EST and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

PV, EST and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP, PV, EST and GR GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k
MGAi,k

GR, CHP, PV and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

GR, CHP, EST and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

GR, PV, EST and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP, PV, EST and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

CHP, PV, EST, GR and MG GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧MGAi,k

Nonfeasible technology combinations:
EST, (GR and EST), (MG and EST), (GR, MG and EST), and,
no installed technologies.
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South Australia has a high level of renewable energy resources, such as so-381

lar irradiance, worth exploiting on a residential scale. The researched small382

fictitious neighbourhood consists of five average houses. Its lay-out together383

with the total yearly energy demands of each house are given in Figure 3.384

Input data are detailed in [30]. The following Section details the availability385

related inputs.
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Figure 3: Distance [m] between each pair of households [55] as well as the yearly energy
demands of each house in terms of electricity (el), heating (thh) and cooling (thc) [kWh
y−1], adapted from [30].

386

4.1. Total component availability387

Each component — i.e. the CHP, PV and battery — has a total un-

availability (UAtot
tech), obtained as a series relation of its resource availability

(Ares
tech), its component availability (Acom

tech) and its supply availability (Asup
tech) [27]:

UAtot
tech = 1− (Ares

tech · Acom
tech · Asup

tech)

= 1− (1− UAres
tech) · (1− UAcom

tech) · (1− UAsup
tech) (11)
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Resource availability of CHP units relates to natural gas supply availabil-388

ity. PV unit resource availability relates to the average hourly probability of389

available solar irradiation in each hour to meet the load in that hour. Bat-390

tery resource availability is based on its state of charge [56]. The latter is391

determined by the availability of a PV and/or CHP unit in the same house392

that can charge an available battery in hour h to be able to sustain bat-393

tery discharge during autonomy time. Battery autonomy time refers to the394

hours or days it can fully meet the load if fully charged [56]. For a PV or395

CHP unit to be able to charge the battery for full autonomy discharge, an396

installed capacity is assumed that not only allows them to meet their house-397

hold peak load in hour h but also charge the battery in that hour h (worst398

case). Battery resource availability in house i is thus either the probability of399

an appropriately sized available CHP unit in house i, an appropriately sized400

available PV unit in house i, or, both appropriately sized available CHP and401

PV units in house i402

Component unavailability refers to the unavailability of the component403

to perform, based on the state of its internal mechanical and electrical parts.404

Component supply availability relates to the probability that the component405

can supply the load in each hour throughout the year, dependent on its in-406

stalled capacity or state of charge [56]. In this work, discrete supply availabil-407

ity steps are employed (see Section 5.2), i.e. 100 % available or unavailable,408

based on nominal capacity thresholds. Total component availability values409

are presented in Table 2.410
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Table 2: Component availabilities [%]. CHP=combined heat and power unit,
EST=battery, MGCC=MG central control unit, PV=photovoltaic unit. Solar availability
is determined by the average probability that the available sun in an hour can meet the
load in that hour with data from [30].

Components
Availability
[%]

CHP PV EST

Technical 96.0000
% [27]

99.9990
% [57]

99.9967 [57]

Supply 100 % 100 % 100 %
Resource 99.9975%

[21]
22.2489
%

95.9976 % (CHP) or
22.2487 % (PV) or
96.8881 % (PV and CHP)

Total
atech

95.9976
%

22.2487
%

95.9944 % (CHP) or
22.2479 % (PV) or
96.8849 % (PV and CHP)

Apart from technologies, each house can also have available electrical411

supply through a grid connection or a connection with the MG fed by a412

certain number of CHP units. Central grid unavailability in South Australia413

is 0.060%, i.e. availability of 3 nines (SAIDI) [58, 59]. (UAtot
CHP )k is the414

total unavailability of k CHPs available for MG operation to a house. A415

MG is however only available together with an available control unit with416

0.0200% component unavailability (UAtot
MGCC) [21]. Total MG unavailability417

(UAtot
MG,k) then becomes:418

UAtot
MG,k = 1− (1− UAtot

MGCC) · (1− (UAtot
CHP )k) ∀k (12)

4.2. Threshold capacities419

To be available to supply the household electrical load, component thresh-420

old capacities are set to the peak hourly accommodating household electricity421
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load for available PV and CHP units, and to the peak hourly neighbourhood422

electricity load for a MG-available CHP unit. The battery threshold capacity423

is based on being able to supply the average hourly electricity demand of424

its accommodating house for a certain autonomy time (on-grid: 2 hours,425

off-grid: 2 days [60, 61]). Note that electrical threshold demands include426

electricity demand for both appliances and cooling through air-conditioning427

units (maximum electricity demand of each house).428

4.3. House system configurations429

For each potential house electrical system configuration, a Markov State

Space diagram is constructed to determine its system (un)availability [27].

The State Space diagram and system (un)availability of a house configuration

with a CHP unit and a grid connection is illustrated in Figure 4 for illus-

tration. The mathematical Markov model describes a time related random

process in which a system moves between defined states through step-wise

transitions [11, 17, 25]. After a certain number of time steps, the steady-

state state probabilities are obtained. System states are based on the status

of the system components. State transitions therefore occur due to com-

ponent failure and repair rates. Since discrete system states and constant

steady-state state transitions − based on constant failure and repair rates −

are employed, a homogeneous discrete Markov chain is constructed. In Fig-

ure 4, for example, each of the states represents a combination of up or down

conditions of the system components. The probability of the system being
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in state s, Ps, can be obtained by multiplying the steady-state (asymptotic)

total (un)availabilities of the different components in the state as indicated in

Equation 13. The system availability, axc, and unavailability, uaxc, can then

be found as the OR-gate (sum) of the probability of being in available and

unavailable system states respectively. If both components are individually

able to meet the operational requirement of the system, states 1, 2 and 3 are

considered available.

State 1 (P1) 
CHP  √ 
Grid  √ 

φgrid 
State 3 (P3) 
CHP  X 
Grid  √ 

State 4 (P4) 
CHP  X 
Grid  X 

State 2 (P2) 
CHP  √ 
Grid  X 

φgrid 

φCHP 

φCHP 

µgrid µCHP 

µCHP µgrid 

Figure 4: State Space diagram of the system available state grid-CHP (XC). The state
transitions occur through constant failure, φ, and repair, µ, rates.

P1 = aCHP · agrid P2 = aCHP · uagrid (13)

P3 = uaCHP · agrid P4 = uaCHP · uagrid

axc = P1 + P2 + P3 = 1− P4 = 1− uaxc

4.4. Case-studies430

The model presented in Section 3 is solved to obtain Pareto sets for two431

modes: on-grid (no restrictions on presented model) and off-grid (through432
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pre-restricting the import and export capability of each house). This allows433

to assess the “knee-point” designs for both configurations and the need for434

component redundancy for systems with islanding capability.435

5. Results and discussion436

5.1. Cost-availability trade-off437

The presented model is solved to global optimality for λc decreasing from438

1 to 0 in discrete steps to obtain an appropriate Pareto set covering a range439

of optimal solutions. Figure 5 compares both trade-offs.
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Figure 5: Pareto set of the trade-off between the average household electrical unavailability
in the neighbourhood [log] (nines) with total annualised cost [kAUD y−1] for on- and off-
grid modes of the neighbourhood.

440

Average house system availability increases from about 3 to 10 nines (on-441

grid) and about 0 to 7 nines (off-grid) when traded off with cost. On-grid442
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designs dominate off-grid designs. Both trade-offs present a significant drop443

in unavailability with relative small cost increase from the first (λc = 1.000)444

to the the second point thereafter (on-grid: λc = 0.410, off-grid: λc = 0.500).445

The relative availability increase is here in both cases of the order of one nine446

combined with a relatively small cost increase of 7.2 % and 3.4 %, for the447

on- and off-grid modes, respectively. The latter designs are most favourable448

in the trade-off decision-making, i.e. the sought-after “knee-points” (largest449

gradient).450

For both modes, this represents a design change (see Figure 6). In the451

on-grid mode, the capacity of the installed CHP unit increases from available452

for the house in which it is installed to available for the MG (λc = 0.410). In453

the off-grid mode, two smaller household-available CHP units are replaced454

by a single MG-available unit (λc = 0.500).455

In between the illustrated designs (see Figure 6 and Table 3), the transi-456

tion is more gradual with an increasing number of MG-available CHP units457

or batteries. Available PV units are installed in all on-grid houses until458

λc = 0.230. From this point, batteries start to appear. The combination459

of PV and CHP charging sources for batteries, combined with an increas-460

ing number of batteries in the neighbourhood, leads from here on to a more461

gradual trade-off. In the discussed off-grid points, cost still dominates, which462

makes it cheaper to dump excess electricity rather than invest in batteries.463

Additionally, there is a larger focus on dispatchable generation through CHP464

units. This leads to a heat generation surplus, which is mostly used for house-465
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hold cooling generation with absorption chillers and limited heat transfer to466

other houses. Discrete jumps between Pareto points occur due to the discrete467

relationship between unavailability and unit capacity (see Section 5.2).
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(a) On-grid,
λc = 1.000
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(b) On-grid,
λc = 0.410
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(c) On-grid,
λc = 0.230
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(d) On-grid,
λc = 0.159
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(e) On-grid,
λc = 0.060
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(f) Off-grid,
λc = 1.000
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(g) Off-grid,
λc = 0.500
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(h) Off-grid,
λc = 0.350
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(i) Off-grid,
λc = 0.315
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(j) Off-grid,
λc = 0.026

Figure 6: Major electrical system design changes for on- and off-grid modes of the neigh-
bourhood for several values of λc: diamonds=houses, grey hatched house=available CHP
for house and airco, light grey diamond=available CHP for MG and airco, light grey
horizontally striped=available CHP for household and AC, dark grey diamond=available
CHP for MG and AC, lightning=grid connection, sun=PV, black circle=battery, black
arrow=heating pipeline, H=heat storage, C=cold storage, D=dump load, AC=absorption
chiller.

468

Since switching to islanding, i.e. disconnecting from the grid, is not taken469

into account, comparing both on- and off-grid design trade-offs provides an470

illustration of the need for component redundancy in the transition from on-471

grid to islanding. The dashed lines in Figure 5 highlight the availability levels472

of the first two on-grid designs points. To obtain a similar availability level473
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Table 3: Total neighbourhood unit capacity [kW or kW−1] for on- and off-grid designs at
various λc levels for cost-unavailability trade-off. PV=photovoltaic unit, CHP=combined-
heat and power unit, AC=absorption chiller, B=boiler, airco=air-conditioning unit,
EST=battery, HST=heat storage, CST=cold storage, D=dump load. MG operation is
always adopted.

PV CHP AC B airco EST HST CST D
On-grid
λc = 1.000 10.5 2.1 − 26.1 10.8 − 5.4 − −
λc = 0.410 10.5 8.0 − 25.0 10.8 − 4.9 − −
λc = 0.230 10.0 34.1 − 7.6 10.8 2.1 20.4 − −
λc = 0.159 13.5 45.4 − − 10.8 13.5 11.1 − −
λc = 0.060 25.0 52.2 − − 10.8 13.5 5.5 − −
Off-grid
λc = 1.000 6.6 5.2 3.6 20.5 7.4 − 31.3 8.4 4.1
λc = 0.500 7.8 8.0 2.3 24.3 8.1 − 32.0 4.9 4.3
λc = 0.350 6.4 16.1 3.5 20.5 7.4 − 31.6 7.8 3.9
λc = 0.315 5.4 24.1 5.6 14.6 5.1 − 30.2 16.9 5.2
λc = 0.043 15.6 42.1 − − 10.8 33.4 20.5 − 10.3
λc = 0.026 32.5 52.2 − − 10.8 208.8 − − 16.6

in the off-grid mode to the “best” on-grid configuration, i.e. an availability474

level around 4 nines (between dashed lines in Figure 5), three MG-availability475

CHP units would be required (off-grid: λc = 0.315), compared with one in the476

on-grid configuration. This requires a cost increase of about 30 % compared477

to on-grid to ensure component redundancy and system availability when478

allowing the system to island.479

5.2. Discussion on capacity intervals480

Different nominal capacity-availability implementations can be consid-481

ered, either a single discrete step as adopted here (single step in Figure 7),482

more refined steps, or, a continuous relation. The current leads to discrete483

jumps in solutions throughout the Pareto sets. In practice, the probability484

that an installed component with certain capacity cannot supply the load485
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in each hour throughout the year (supply unavailability) comprises a more486

gradual relation with decreasing installed capacity. The shape of this curve487

can be determined by a load model for each house (household level technolo-488

gies) and for the neighbourhood (microgrid-available technologies), such as a489

load duration curve (LDC) of the hourly demand profiles. A LDC represents490

each hour by its peak demand [kW] [25, 62, 63]. These hourly peak demands491

are then rearranged in descending order. Combining this load relation with492

a certain installed generation capacity enables to assess the number of hours493

throughout the year a certain demand level will exceed a generation capacity494

level, i.e. loss of load indices. Figure 8 illustrates both a more realistic and a495

simplified linearised load duration curve, adapted from [25, 62, 63]. For a cer-496

tain installed generation unit capacity level (CL), the hourly load can exceed497

installed capacity for a certain number of hours (t). Dividing this number of498

hours of load loss throughout the year with the total number of hours in a499

year results in the probability that the unit cannot supply the load (supply500

unavailability). From the point where the installed capacity is able to meet501

the load at each time t (plus a potential reserve margin RM), the supply502

availability becomes 100 %. Figure 7 translates the simplified linearised load503

duration curve into a relation between supply availability and unit capacity504

level. Note that implementing a relationship between supply availability505

and cost implies implementing supply availability as a variable, which might506

introduce non-linearities in the model through variable multiplications that507

can be linearised.508
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Figure 7: Illustration of capacity steps of the relation between installed capacity of tech-
nologies [kW] and electrical supply availability [%].
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Figure 8: Load duration curves to determine the probability that a generation unit of
capacity level (CL) cannot supply the load during a certain amount of hours throughout
the year (∆t), adapted from [25, 62, 63]. RM=reserve margin.
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The developed availability approach does not yet take into account fully509

optimised capacity values since each point (often through threshold capaci-510

ties) on the Pareto set in Figure 5 represents the dominant point of a range of511

designs where the capacity of the installed units increases (more expensive)512

but has not yet reached the next capacity/availability threshold. For exam-513

ple, the last point on each set in Figure 5 represents the situation where the514

maximum availability level is achieved. For λc = 0, however, cost is no longer515

an issue. The installed capacity of CHP units will therefore be maximised516

without an improvement in availability level. The last illustrated points on517

each set thus dominate any designs thereafter.518

The obtained results present a relative ordering of designs. When chang-519

ing capacity threshold values, the obtained trends in Figure 5 remain the520

same. It is only the relative spreading of the points that will either re-521

duce (less additional cost for the next availability step) or increase (more522

additional cost for the next availability step) with decreasing or increasing523

capacity thresholds, respectively. The current capacity thresholds are a first524

step towards a more gradual relation between capacity and availability, sim-525

ilarly to that which already exists between capacity and cost.526

6. Conclusion527

A deterministic MILP-based decision-making strategy has been presented528

for the total annualised cost-electrical availability trade-off for designing a529

small residential distributed energy system. A neighbourhood distributed530
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energy system design has been optimised, selecting from a pool of available531

energy generation and storage alternatives including a potential grid connec-532

tion as well as energy integration through MG operation. A framework based533

on Markov chains and logic-gate integer programming has been implemented534

to analyse the on- and off-grid modes of an Australian based neighbourhood.535

The presented methodology is able to obtain a set of non-dominated Pareto536

solutions to identify the “best” system designs (“knee-points”). Additionally,537

through comparing on- and off-grid design trade-offs, the need for compo-538

nent redundancy for systems with islanding capabilities could be analysed.539

Future work will look at both refining the presented methodology in terms540

of the capacity–availability relation as well as to analyse the robustness of541

the model with regard to uncertainty of the availability input data.542
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Nomenclature546

Abbreviations
A Availability
AC Absorption chiller
CLOAD

ELEC Electricity load [kW]
C Cold storage tank
CHP Combined heat and power unit
D/dump Dump load
DES Distributed energy system
DG Distributed generation unit
ELEC/E Electricity
EST Electrical storage unit

547
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GRID/GR Central electricity supply
h House
H Hot storage tank
HEAT/H Heating
LDC Load duration curve
MG Microgrid
MGCC Microgrid central control unit
MILP Mixed-integer linear programming
MO Multi-objective
OM Operation and maintenance
PV Photovoltaic unit
SAIDI System Average Interruption Duration Index
U/UA Unavailability
Parameters
Acom

tech Component availability of technology tech [%]
Ares

tech Resource availability of technology tech [%]
Asup

tech Supply availability of technology tech [%]
atech Availability of technology tech [%]
Ltech Lower bound on installed capacity of technology tech [kW or kWh]
nh Number of houses in the neighbourhood
Ps Probability of a system being in state s [%]
T av

tech,i Threshold capacity for 100 % availability of technology tech in
house i [m2 or kWh]

T av
CHPmg,i Threshold capacity for 100 % MG-availability of technology tech

to house i [m2 or kWh]
Utech Upper bound on installed capacity of technology tech [kW or

kWh]
uacon Unavailability of household electrical system unavailability
uatech Unavailability of technology tech [%]
UAcom

tech Component unavailability of technology tech [%]
UAres

tech Resource unavailability of technology tech [%]
UAsup

tech Supply unavailability of technology tech [%]
UAtot

tech Total unavailability of technology tech [%]
λc Unity weighting factor
µ Constant component repair rate
φ Constant component failure rate
Variables
Bcon,i Binary variable that decides on the installation of an electrical

system configuration con in house i
Btech,i Binary variable that decides on the installation of (unavailable)

technology tech in house i

548

36



Bav
MG,tech,i Binary variable that decides on the installation of MG-available

technology tech in house i
Bav

tech,i Binary variable that decides on the installation of available tech-
nology tech in house i

CCT
i Annualised carbon tax cost of houses i [AUD y−1]

CFUEL
i,tech Annualised fuel cost of technologies tech in houses i [AUD y−1]

CGRID
BUY,i Annualised grid electricity import cost of houses i [AUD y−1]

CGRID
SELL,i Annualised grid electricity export income of houses i [AUD y−1]

CINV
i,tech Annualised investment cost of technologies tech in houses i [AUD

y−1]
COM

i,tech Annualised OM cost of technologies tech in houses i [AUD y−1]
CTOT Total annualised cost [AUD y−1]
CTOT,S Scaled total annualised cost [kAUD y−1]
CHPA

i Binary variable that decides on the implementation of CHP
capacity level

CHPB
i Binary variable that decides on the implementation of CHP

capacity level
CHPC

i Binary variable that decides on the implementation of CHP
capacity level

DGMAX
tech,i Total installed capacity of technology tech in house i [kW or kWh]

GCi Binary variable that decides on the implementation of grid con-
nection to house i

MGAi,k Binary variable that decides on the implementation of an available
MG with k MG-available CHP units to house i

UAi Electrical system unavailability of household i [nines]
UATOT,S Scaled average household electrical system unavailability [nines]
XCi Binary variable that decides on the implementation of a

household-available CHP and grid connection to house i

549

Appendix A. Mathematical Model550

Appendix A.1. Problem description additional aspects551

The full cost-model with assumptions and referenced input data can be552

found in [30] and is summarised here for completeness. The cost-approach553

continued the work of [55, 64]. Although the focus of this work is the electrical554

system, thermal systems are also optimised. Figure A.9 illustrates the ther-555

mal supply options for each house.556

Appendix A.2. Terms of the objective function557

The investment cost, CINV , consists of technology (tech) unit costs, CC
tech,

and installed capacities, DGMAX
tech,i . Installed capacities are either a constant
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Figure A.9: Black-box diagram of the considered heating and cooling supply alter-
natives of each household in the neighbourhood, adapted from [30]. AC=absorption
chiller, airco=air-conditioning unit, B=condensing boiler, CHP=combined-heat and power
unit, G=gas heater, CST=cold thermal storage unit, HST=hot thermal storage unit,
pipelines=optimised pipeline networks between pairs of households.
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value combined with a binary selection variable Btech,i for each house i or a

positive variable DGMAX
tech,i . A capital recover factor, CRFtech, is employed for

annualisation. Thermal technologies (techTH), storage units (techsto), PV

and CHP DG units (DGtech), pipelines (PIPE) and a MG central control

unit (MGCC) are included:

CINV =
∑

techTH

∑

i

CRFtechTH · CC
techTH ·DGMAX

techTH,i

+
∑

techsto

∑

i

CRFtechsto · CC
techsto ·DGMAX

techsto,i

+
∑

i

CRFDGtech · CC
DGtech ·DGMAX

DGtech,i

+
∑

i 6=j

∑

j

CRFPIPE · CC
PIPE · Y Pi,j · li,j

+ CRFMGCC · CC
MGCC · Z (A.1)

Pipelines are installed between house pairs (i,j) with length (li,j) and binary

existence variable (Y Pi,j). The MGCC is characterised by binary variable Z.

The annual electricity import cost, CGRID
BUY , consists of electricity purchased

throughout the year (PEGRID
i,s,h ) in each hour h in each season s at electricity

tariff (TELEC):

CGRID
BUY =

∑

i

∑

s

∑

h

hr · ds · TELEC · PEGRID
i,s,h (A.2)

Annual OM costs, COM , include fixed (Comf
tech ) and variable costs (Comv

tech ) based558

on generation (PEGEN
tech,i,s,h) (with ds the number of days in each season s). The559

fixed PV, battery (EST ) and pipelines (PIPE) OM cost are included. Note560

that battery unit capacity is kWh compared to kW for other technologies.561

The PV surface variable is APV
i and rated capacity Cprat.562
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COM =
∑

tech

∑

i

∑

s

∑

h

hr · ds · Comv
tech · PEGEN

tech,i,s,h

+
∑

i

Comf
PV · Cprat · APV

i +
∑

i

Comf
EST ·DGMAX

EST,i

+
∑

i 6=j

∑

j

li,j · Comf
PIPE · Y Pi,j (A.3)

Gas fuelled boilers, gas heaters (techTH) and CHPs have a fuel cost (CFUEL)

through heat (PHGEN
techTH,i,s,h) or electricity (PEGEN

CHP,i,s,h) generation at a gas

tariff (TGAS), with nTH
techTH (nELEC

CHP ) component thermal (electrical) efficiency:

CFUEL =
∑

techTH

∑

i

∑

s

∑

h

hr · ds · PHGEN
techTH,i,s,h ·

TGAS

nTH
techTH

+
∑

i

∑

s

∑

h

hr · ds · PEGEN
CHP,i,s,h ·

TGAS

nELEC
CHP

(A.4)

The yearly carbon tax (CT ) imposed on the neighbourhood, CCT , de-

pends on imported electricity (PEGRID
i,s,h ) and technology gas consumption,

with CIELEC and CIGAS the carbon intensities of grid electricity and natu-

ral gas respectively:

CCT =
∑

i

∑

s

∑

h

CT · hr · ds · [CIELEC · PEGRID
i,s,h

+ CIGAS ·
∑

techTH

PHtechTH,i,s,h

nTH
techTH

+ CIGAS ·
PECHP,i,s,h

nELEC
CHP

] (A.5)

An annual income, CGRID
SELL , can be created through local electricity export

of on-site DG units techDG (PESAL
techDG,i,s,h) at market feed-in tariffs (T SAL

techDG):

CGRID
SELL =

∑

techDG

∑

i

∑

s

∑

h

hr · ds · T SAL
techDG · PESAL

techDG,i,s,h (A.6)
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Appendix A.3. Technology design and operational constraints563

Appendix A.3.1. Distributed energy generation technologies564

PV electricity (PEGEN
PV,i,s,h) depends on solar irradiation (Its,h) as well as

a rated capacity and efficiency (nELEC
PV ). Capacity (APV

UP ) and daily export

bounds are specified in the SA market as 10 kW and 45 kWh per day respec-

tively [65].

PEGEN
PV,i,s,h ≤ min(APV

i · Cprat;APV
i · Its,h · nELEC

PV ) ∀i, s, h (A.7)

Installed capacityDGMAX
CHP,i ∈ [LPE

CHP ;UPE
CHP ] bounds CHP electricity (PEGEN

CHP,i,s,h)565

with binary variable BCHP,i:566

LPE
CHP ·BCHP,i ≤ PEGEN

CHP,i,s,h ≤ DGMAX
CHP,i ∀i, s, h (A.8)

567

DGMAX
CHP,i ≤ UPE

CHP ·BCHP,i ∀i (A.9)

CHP waste heat is generated proportionally with electricity, i.e. Heat-to-568

Electricity ratio HER. This heat can be used either for heating (PHHEAT
CHP,i,s,h)569

or cooling purposes (PHCOOL
CHP,i,s,h):570

PEGEN
CHP,i,s,h ·HER = PHHEAT

CHP,i,s,h + PHCOOL
CHP,i,s,h ∀i, s, h (A.10)

Heating purposes are: meeting the load of the accommodating house (SELF ),571

storing heat (STO) or pipeline transfer (PIPE):572

PHHEAT
CHP,i,s,h = PHSELF

CHP,i,s,h + PHSTO
CHP,i,s,h + PHPIPE

CHP,i,s,h ∀i, s, h (A.11)

Heat for cooling purposes is delivered to an absorption chiller (PCGEN
AC,i,s,h),573

with a coefficient of performance COPAC :574

PCGEN
AC,i,s,h = PHCOOL

CHP,i,s,h · COPAC ∀i, s, h (A.12)
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Total DG electricity, PEGEN
techDG,i,s,h, can meet its house load (SELF ), can

be exported (SAL), can be MG circulated (CIRC) or can be stored in the

battery (STO):

PEGEN
techDG,i,s,h = PESELF

techDG,i,s,h + PESAL
techDG,i,s,h ∀i, s, h

+ PECIRC
techDG,i,s,h + PESTO

techDG,i,s,h (A.13)

Appendix A.3.2. Thermal energy technologies575

Thermal technologies generate either heat (H) or cooling (C), PH/CGEN
techT,i,s,h576

limited by their installed capacity DGMAX
techT,i ∈ [L

PH/C
techT ;U

PH/C
techT ] and charac-577

terised by a binary variable (BtechT,i):578

L
PH/C
techT ·BtechT,i ≤ PH/CGEN

techT,i,s,h ≤ DGMAX
techT,i ∀i, s, h (A.14)

579

DGMAX
techT,i ≤ U

PH/C
techT ·BtechT,i ∀i (A.15)

Thermal power generated by boilers, PHGEN
B,i,s,h, and absorption chillers (AC),580

PCGEN
AC,i,s,h, can meet its house load (SELF ) or can be stored (STO). ACs581

can also serve pipelines (PIPE).582

PHGEN
B,i,s,h = PHSELF

B,i,s,h + PHSTO
B,i,s,h ∀i, s, h (A.16)

583

PCGEN
AC,i,s,h = PCSELF

AC,i,s,h + PCSTO
AC,i,s,h + PCPIPE

AC,i,s,h ∀i, s, h (A.17)

A house can either have a gas heater or boiler. Heat storage can only be584

installed with a boiler or CHP. Furthermore, air-conditioning units can not585

be installed together with an AC.586

Appendix A.3.3. Storage technologies587

Storage is modelled based on a daily roll-over where the first hour is a588

function of the last hour of the day taking into account seasonal indepen-589

dence. Thermal stored power, PSSTO
i,s,h , is subject to a static loss percentage590

(ζ) plus an inflow (PSIN
i,s,h) minus an outflow (PSOUT

i,s,h ) and limited by an591
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installed capacity DGMAX
STO,i ∈ [LPH

STO;UPH
STO]:592

PSSTO
i,s,h = (1− ζ) · PSSTO

i,s,h−1 + PSIN
i,s,h − PSOUT

i,s,h ∀i, s, h (A.18)

593

(1− ζ) · PSSTO
i,s,h−1 + PSIN

i,s,h ≤ DGMAX
STO,i ∀i, s, h (A.19)

CHPs or boilers can store heat and ACs cooling:594

PSIN
i,s,h = (PHSTO

B,i,s,h + PHSTO
CHP,i,s,h) or PCSTO

AC,i,s,h ∀i, s, h (A.20)

Batteries are modelled similarly to thermal storage including additional charge

(χ) and discharge (δχ) rates, maximum charge (maxχ) and discharge rates

(maxδχ), a depth of charge (DOC) and a binary decision variable, BEST,i,

with an installed capacity DGMAX
EST,i ∈ [LES

EST ;UES
EST ]:

ESSTO
EST,i,s,h = (1− η) · ESSTO

EST,i,s,h−1 + hr ∗ (1− χ) · PSIN
EST,i,s,h

− hr ∗
PSOUT

EST,i,s,h

(1− δχ)
∀i, s, h (A.21)

The stored and retrieved energy is restricted by maximum charge and dis-595

charge rates related to the installed capacity:596

hr ∗ (1− χ) · PSIN
EST,i,s,h ≤ maxχ ·DGMAX

EST,i ∀i, s, h (A.22)

597

hr ∗
PSOUT

EST,i,s,h

(1− δχ)
≤ maxδχ ·DGMAX

EST,i ∀i, s, h (A.23)

598

LES
EST ·BEST,i ≤ DGMAX

EST,i ≤ UES
EST ·BEST,i ∀i (A.24)

599

(1−DOC) ·DGMAX
EST,i ≤ ESSTO

EST,i,s,h ∀i, s, h (A.25)

Batteries are charged through contributions of the DG units:600

PSIN
EST,i,s,h =

∑

techDG

PESTO
techDG,i,s,h ∀i, s, h (A.26)
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Appendix A.3.4. Pipelines601

No temperature differences are taken into account in the pipelines, con-602

sistent with electrical system detail excluding active and reactive power flows603

as well as voltage drops. Decision variable, Y Pi,j, decides on the installation604

of a uni-directional pipe between houses i and j, with heat transfer QHi,j,s,h605

≤ UPIPE. Heating and cooling pipelines are modelled similarly.606

QHi,j,s,h ≤ UPIPE · Y Pi,j ∀i, j, s, h and i 6= j (A.27)

607

Y Pi,j + Y Pj,i ≤ 1 ∀i, j and i ≥ j (A.28)

Positive integer variable, OHi, represents the house visiting order in a pipeline608

network. Multiple non-closed uni-directional pipeline networks can be in-609

stalled. Hence, houses i are connected to one network with strictly increasing610

order from the source house(s) to the sink house(s) (Equation A.29), with611

nh the total amount of houses in the neighbourhood. Pipeline optimisation612

is based on the travelling salesman problem [64, 66]:613

OHj ≥ OHi + 1− nh · (1− Y Pi,j) ∀i, j and i 6= j (A.29)

Pipeline heat (PHPIPE
CHP,i,s,h) can only be supplied by CHPs and can either614

be transferred between houses (QHi,j,s,h) or can meet part of the heat load615

of receiving houses, QHLOAD
i,s,h . Thermal balances are given for all i, j, s, h616

where i 6= j:617

PHPIPE
CHP,i,s,h +

∑

j

QHj,i,s,h −QHLOSS
i,s,h = QHLOAD

i,s,h +
∑

j

QHi,j,s,h (A.30)

618

PHPIPE
CHP,i,s,h −

∑

i

QHLOSS
i,s,h =

∑

i

QHLOAD
i,s,h (A.31)

Thermal losses, QHLOSS
i,s,h , depend on transferred heat, the distance and a619

fixed loss percentage. Each house can in each hour either receive or send hot620
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water to a pipeline, determined by binary variables Y rec
i,s,h and Y snd

i,s,h respec-621

tively:622

Y rec
i,s,h + Y snd

i,s,h ≤ 1 ∀i, s, h (A.32)

An installed gas heater (binary variable BG,i) excludes a pipeline connection.623

Furthermore, either CHP (binary variable BCHP,i) or a gas heater or boiler624

(binary variable BtechTH,i) can be installed in a house. An installed CHP will625

be dimensioned to meet the heat load of that house plus potential pipeline626

transfer. These houses are thus assumed to either send or pass through heat627

to or from the pipeline network, not receive.628

BCHP,i + Y rec
i,s,h ≤ 1 ∀i, s, h (A.33)

A maximum utilisation rate, U snd, and the total heat load of the house,629

CLOAD
HEAT,i,s,h, bound the heat sent and received from the pipe network respec-630

tively:631

PHPIPE
CHP,i,s,h ≤ U snd · Y snd

i,s,h ∀i, s, h (A.34)
632

QHLOAD
i,s,h ≤ CLOAD

HEAT,i,s,h · Y rec
i,s,h ∀i, s, h (A.35)

Appendix A.4. Operational constraints633

Appendix A.4.1. Grid interactions634

Each house can import, PEGRID
i,s,h , or export, PESAL

techDG,i,s,h, electricity635

from and to the central grid ≤ UELEC
rec/snd, characterised by binary decision636

variables Xrec
i,s,h and Xsnd

i,s,h respectively.637

∑

techDG

PESAL
techDG,i,s,h ≤ UELEC

snd ·Xsnd
i,s,h ∀i, s, h (A.36)

638

PEGRID
i,s,h ≤ UELEC

rec ·Xrec
i,s,h ∀i, s, h (A.37)

45



Appendix A.4.2. Microgrid operation639

The neighbourhood with installed MG (Z) will interact as a whole with640

the grid:641

Xsnd
i,s,h +Xrec

i,s,h ≤ 1 ∀i, s, h (A.38)
642

X
snd/rec
i,s,h −Xsnd/rec

i−1,s,h ≤ 1− Z ∀i, s, h and i > 1 (A.39)
643

X
snd/rec
i−1,s,h −X

snd/rec
i,s,h ≤ 1− Z ∀i, s, h and i > 1 (A.40)

MG transfer between a pair of houses in hour h in season s is characterised644

by binary selection variable MGCi,j,s,h.645

MGCi,j,s,h +MGCj,i,s,h ≤ Z ∀i, j, s, h and i 6= j (A.41)

The MG electricity balances should be respected. Here, MG electricity trans-646

fer loss depends on the transferred electricity and a constant distance related647

loss percentage.648

PEsnd
i,j,s,h − PELOSS

i,j,s,h = PErec
i,j,s,h ∀i, j, s, h and i 6= j (A.42)

∑

techDG

∑

i

PECIRC
techDG,i,s,h −

∑

i

∑

j

PELOSS
i,j,s,h =

∑

i

PEMG
rec,i,s,h

∀i, j, s, h and i 6= j (A.43)

Total DG electricity for MG circulation cannot exceed UMG:649

∑

techDG

∑

i

∑

s

∑

h

PECIRC
techDG,i,s,h ≤ UMG · Z ∀i, j, s, h and i 6= j (A.44)

Appendix A.4.3. Energy balances650

Electricity demands, CLOAD
ELEC,i,s,h, combined with potential dump loads

(Pdli,s,h), absorption chillers (electricity-to-cooling ratio: ACELEC) and air-

conditioning units (coefficient of performance COPairco) should be balanced
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by the consideration and combined use of the grid (PEGRID
i,s,h ), MG sharing

(PEMG
rec,i,s,h), DG generation (PESELF

techDG,i,s,h) and batteries (PSOUT
EST,i,s,h):

CLOAD
ELEC,i,s,h + Pdli,s,h + PCGEN

AC,i,s,h · ACELEC +
PCGEN

airco,i,s,h

COPairco

= PEGRID
i,s,h + PEMG

rec,i,s,h +
∑

techDG

PESELF
techDG,i,s,h

+ PSOUT
EST,i,s,h ∀i, s, h (A.45)

Heating demands, CLOAD
HEAT,i,s,h are met through either gas heaters (PHGEN

G,i,s,h),

boilers (PHSELF
B,i,s,h) or CHPs (PHSELF

CHP,i,s,h). Cooling loads, CLOAD
COOL,i,s,h, are sup-

plied by air-conditioning units (PCGEN
airco,i,s,h) or absorption chillers (PCSELF

AC,i,s,h).

Additionally, pipeline heating and cooling transfer (QH/CLOAD
i,s,h ) or storage

units (PSOUT
STO,i,s,h) can occur for all i, s, h:

CLOAD
HEAT,i,s,h = PHGEN

G,i,s,h + PHSELF
B,i,s,h + PHSELF

CHP,i,s,h

+QHLOAD
i,s,h + PSOUT

HST,i,s,h (A.46)

651

CLOAD
COOL,i,s,h = PCGEN

airco,i,s,h + PCSELF
AC,i,s,h +QCLOAD

i,s,h + PSOUT
CST,i,s,h (A.47)

Appendix A.5. Availability-based capacity constraints652

CHP units can perform three tasks represented by three mutually exclu-653

sive binary variables that are each The three mutually exclusive CHP binary654

variables (CHP
A/B/C
i ) each representing a combination of the three CHP655

availability-capacity categories (AND (∧) - NOT (B) gate): BCHP,i, B
av
CHP,i,656

Bav
MG,CHP,i:657

CHPA
i = BCHP,i ∧Bav

CHP,i ∧Bav
MG,CHP,i ∀i (A.48)

658

CHPB
i = BCHP,i ∧Bav

CHP,i ∧Bav
MG,CHP,i ∀i (A.49)

659

CHPC
i = BCHP,i ∧Bav

CHP,i ∧Bav
MG,CHP,i ∀i (A.50)
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An AND-gate represents a product of binary variables and has been linearised

using the procedure presented in [53, 54]. A NOT-gate inverts its binary

input. Equation A.48 has, for example, been linearised as:

CHPA
i ≥ BCHP,i + (1−Bav

CHP,i) + (1−BMG
CHP,i)− 2 ∀i

CHPA
i ≤ BCHP,i

CHPA
i ≤ (1−Bav

CHP,i)

CHPA
i ≤ (1−BMG

CHP,i) (A.51)

Also, the three variables are constrained by CHP existence:660

CHPA
i + CHPB

i + CHPC
i ≤ BCHP,i ∀i (A.52)

Furthermore, the hierarchical relation between the binary variables that char-661

acterise CHP existence, 100 % availability and 100 % microgrid availability662

is:663

Bav
MG,CHP,i ≤ Bav

CHP,i ≤ BCHP,i ∀i (A.53)

Appendix A.6. Potential electrical system configurations664

Binary variables of some of the considered components are clarified here.665

A house has an available grid connection, GCi, if it imports electricity from666

the grid, Xrec
i,s,h, in at least one hour, h, throughout the year:667

Xrec
i,s,h ≤ GCi ≤

∑

s,h

Xrec
i,s,h ∀i, s, h (A.54)

The number of MG-available CHP units to house i (k ∈ [0;nchp,i]) adopted668

in houses j in the neighbourhood (Bav
MG,CHP,j) can vary from zero to nchp,i669

(nchp,i = nh − 1). Y chp
i,k is a binary variable that decides whether a certain670

number of CHP units (k), installed in houses j in the neighbourhood, is671
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available to a house i through MG operation:672

∑

j 6=i

Bav
MG,CHP,j =

nchp,i∑

k=0

k · Y chp
i,k and

∑

k

Y chp
i,k ≤ 1 ∀i (A.55)

For a CHP unit to be available for microgrid operation, both a CHP unit673

of available capacity and a microgrid central control unit (binary variable674

Z) must be available (binary variable MGAi,k). This leads to the following675

AND-relation:676

MGAi,k = Z ∧ Y chp
i,k ∀i, k (A.56)

and resulting linearisation:

MGAi,k ≥ Z + Y chp
i,k − 1 , MGAi,k ≤ Z , MGAi,k ≤ Y chp

i,k
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