A Virtual Out-of-Body Experience Reduces Fear of Death

Pierre Bourdin, Itxaso Barberia, Ramon Oliva, Mel Slater

Supporting Information

A. Participants

	DBE	OBE
Age: Mean ± SE	20.1 ± 0.50	20.6 ± 0.56
Self Esteem ^a : Median (IQR)	35 (5)	35 (4)
Religion	Frequency	
Believer and practicing	1	0
Believer non-practicing	4	4
Agnostic	1	3
Atheist	9	9
Other	1	0

Table A – Characteristics of the Participants by Experimental Group

^a Self Esteem using the Rosenberg Self Esteem Scale (Rosenberg, 1965) with Spanish translation (Martín-Albo et al., 2007). There are 10 items each scored on a scale of 1, 2, 3 or 4. Taking the sum of these the maximum score is 40. The higher the overall score the greater the self-esteem.

B. Statistical Model

This section is very similar to the method used in a previous paper (Bergström et al., 2016). The (Bayesian) statistical model is one overall model, where all equations are treated simultaneously rather than as a series of separate models. In other words the Bayesian method returns the joint posterior distribution of all the model parameters. In the following X_i refers to the Condition for the *i*th individual where $X_i = 0$ (DBE) or 1 (OBE). The overall model has the following components:

The **questionnaires scores**, *mybody* and *otherbody* do not depend on Condition (since they are recorded before the two conditions DBE and OBE are introduced). We use the

logistic model in (Lunn et al., 2012) (p132-134). The probabilities p_1 , K, p_7 of a score 1,...,7 respectively have prior distributions with vary wide variance. The expected values of Fig. 4 are computed from the distribution of the posterior expected values $\sum_{i=1}^{7} ip_i$.

For the remaining questions in Tables 1-2 the parameters of the linear model that relate the mean of the logistic distribution to the linear model are specified as follows: $\mu_i = \beta_0 + \beta_1 X_i, i = 1, ..., n$ with prior distribution (β_0, β_1) : bivariate normal with mean $(0,\pm 120)$ and variance-covariance matrix with each variance 1600 and each covariance 160. The mean for β_1 is taken as -120 in the case where our hypothesis is that $\beta_1 > 0$ (e.g., otherbodyobe) and 120 when the hypothesis is that $\beta_1 < 0$ (e.g., connectionobe). Note that this gives the prior $P(\beta_{31} > 0) = 0.0013$ (the probability of a standard normal variate being > 3) in the case when the mean is -120, and similarly $P(\beta_{31} < 0) = 0.0013$ when the mean is 120.

For the *drop2* mean the model is as shown in Table 3, where (β_{30}, β_{31}) : bivariate normal with variance-covariance matrix as above and mean for β_{31} as -120 (since the hypothesis is that $\beta_{31} > 0$). The prior distribution of the variance of *drop2* was modeled as a Gamma distribution with parameters (0.001, 0.001) in the JAGS / BUGS specification.

For the total FOD (Fig. 9) the distribution of the sum of the expected values of each of the 7 components (shown in Table 3) was found. The individual expected value distributions were modeled as in 1 above.

Under this method readers are free to interpret the probabilities of the hypotheses in different ways of course. We have used the following: We start with a strong bias against each of the hypotheses - the prior probability assigned is about 1/1000. If the posterior probabilities are around the 50% range then we would say that from being biased against the hypothesis we move to a 50-50 probability and more evidence is needed. Probabilities above 70% we refer to as 'some' evidence in favor of the hypothesis. For 80% or more we use the term 'good evidence'. Above 90% 'strong evidence', and in one case with the probability almost 1 we use the terms 'very strong' or 'overwhelming evidence'.

Each Markov Chain Monte Carlo simulation was run 7 times (according to convention) with a sample size of 60,000 observations and a burn-in of 3000. All Rhat

values - measuring consistency between the results of the 7 chains - were equal to 1.0 (i.e., to 1 d.p.) meaning that reasonable convergence was obtained.

C. Further out-of-body questions

Figure A shows the out-of-body questions not included in Fig. 5.

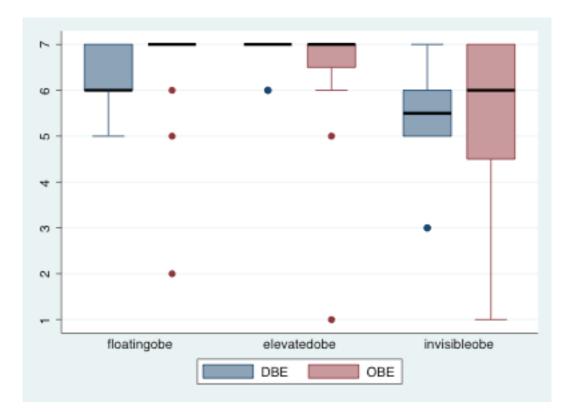


Fig. A - Box plots for the out-of-body questions additional to those of Fig. 5 (see Table 1)

D. Posterior distributions of the model parameters

The following Figures should be examined in relation to Table 3 and Section E below, they give the posterior distributions of the model parameters.

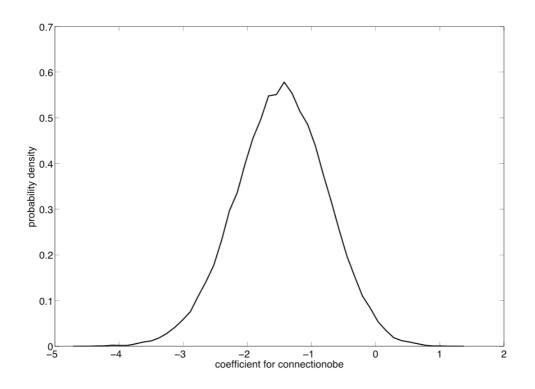


Figure B - Posterior distribution of the coefficient of Condition (β_{11}) in the model for *connectionobe*.

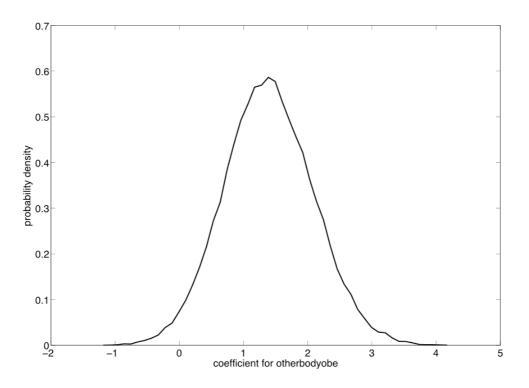


Figure C - Posterior distribution of the coefficient of Condition (β_{21}) in the model for *otherbodyobe*.

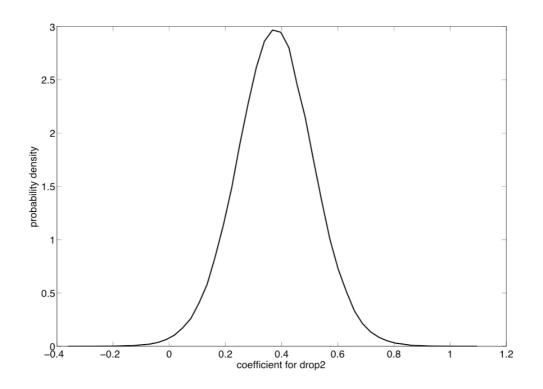


Figure D - Posterior distribution of the coefficient of Condition (β_{31}) in the model for *drop2*.

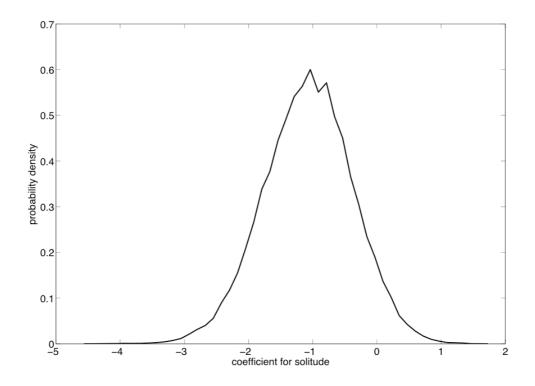


Figure E - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *solitude*.

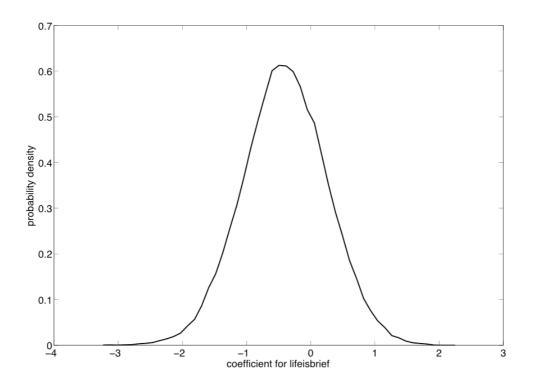


Figure F - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *lifeisbrief*.

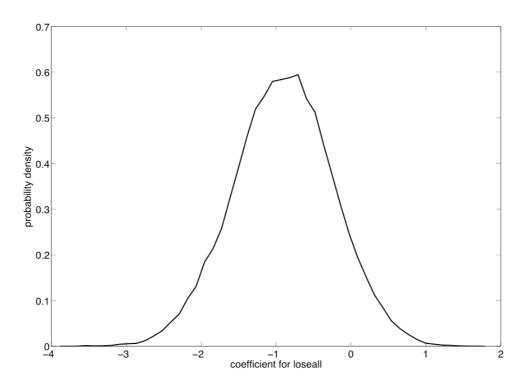


Figure G - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *loseall*.

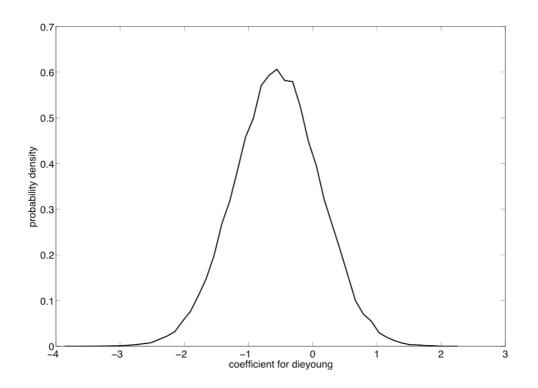


Figure H - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *dieyoung*.

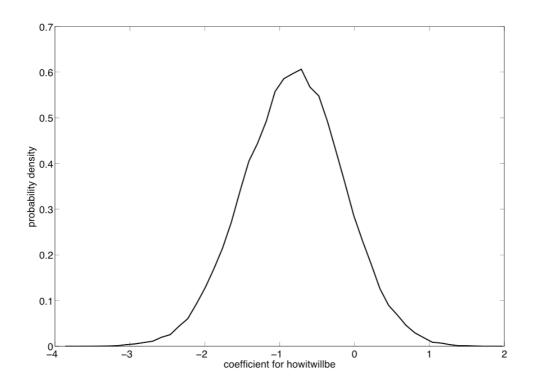


Figure I - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *howitwillbe*.

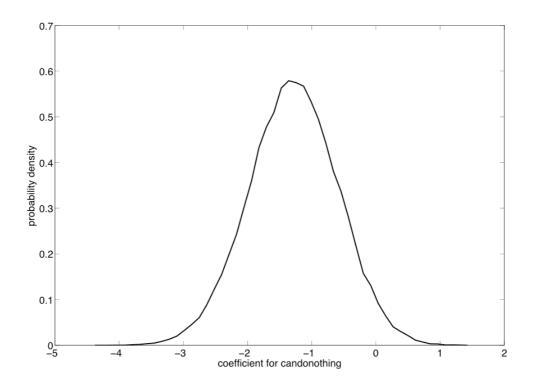


Figure J - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *candonothing*.

Figure K - Posterior distribution of the coefficient of Condition (β_{41}) in the model for *disintegration*.

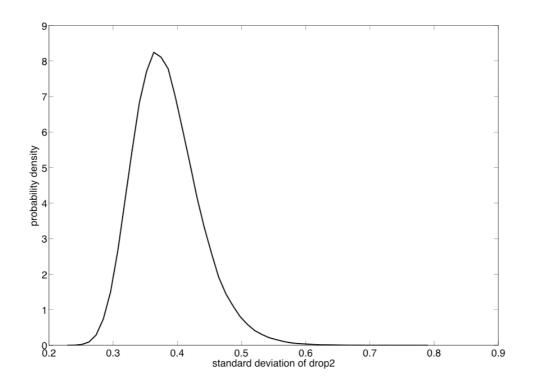


Figure L - Posterior distribution of the standard deviation of *drop2*.

E. Statistics of the Posterior Distributions of the Parameters

Table B shows the mean, SD and 95% credible intervals of the posterior distributions of the parameters in Section D.

Table B - Mean, SD and 95% Credible Intervals for the Posterior Distribution ofCoefficient of Condition in Table 3.

Coefficient of Condition	Mean	SD	95% Credible
			Interval
connectionobe	-1.5	0.71	-2.9 to -0.1
otherbodyobe	1.4	0.69	0.1 to 2.8
drop2	0.4	0.13	0.1 to 0.6
solitude	-1.1	0.69	-2.5 to 0.2
lifeisbrief	-0.4	0.66	-1.7 to 0.9
loseall	-0.9	0.67	-2.2 to 0.4
dieyoung	-0.6	0.66	-1.9 to 0.7
howitwillbe	-0.8	0.66	-2.1 to 0.5
candonothing	-1.3	0.69	-2.7 to 0.0
disintegration	-0.3	0.68	-1.7 to 1.0

Supporting References

- Bergström, I., Kilteni, K., and Slater, M. (2016). First-person Perspective Virtual Body Posture Influences Stress: A virtual reality body ownership study. *PLOS ONE* 11(2): e0148060.
- Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). *The BUGS* book: A practical introduction to Bayesian analysis. CRC press.
- Martín-Albo, J., Núñez, J.L., Navarro, J.G., and Grijalvo, F. (2007). The Rosenberg Self-Esteem Scale: translation and validation in university students. *The Spanish journal of psychology* 10, 458-467.
- Rosenberg, M. (1965). *Society and the adolescent self-image.* Princeton, N.J., USA: Princeton University Press.