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Clinical data is comprised by a large number of synchronously collected biomedical

signals that are measured at different locations. Deciphering the interrelationships of

these signals can yield important information about their dependence providing some

useful clinical diagnostic data. For instance, by computing the coupling between

Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the

hemodynamic regulation mechanisms can be assessed. In this paper we introduce an

algorithm for the decomposition of NIRS signals into additive components. The algorithm,

SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes

that the measured NIRS signal is a linear combination of the systemic measurements,

following the linear regression model y = Ax + ǫ. SIDE-ObSP decomposes the

output such that, each component in the decomposition represents the sole linear

influence of one corresponding regressor variable. This decomposition scheme aims at

providing a better understanding of the relation between NIRS and systemic variables,

and to provide a framework for the clinical interpretation of regression algorithms,

thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique

subspace projections (ObSP) with the structure of a mean average system in order to

define adequate signal subspaces. To guarantee smoothness in the estimated regression

parameters, as observed in normal physiological processes, we impose a Tikhonov

regularization using a matrix differential operator. We evaluate the performance of SIDE-

ObSP by using a synthetic dataset, and present two case studies in the field of cerebral

hemodynamics monitoring using NIRS. In addition, we compare the performance of

this method with other system identification techniques. In the first case study data

from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled

the influence of changes in arterial oxygen saturation from the NIRS measurements,

facilitating the use of NIRS as a surrogate measure for cerebral blood flow (CBF).

The second case study used data from a 3-years old infant under Extra Corporeal
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Membrane Oxygenation (ECMO), here SIDE-ObSP decomposed cerebral/peripheral

tissue oxygenation, as a sum of the partial contributions from different systemic variables,

facilitating the comparison between the effects of each systemic variable on the

cerebral/peripheral hemodynamics.

Keywords: oblique subspace projections, Tikhonov regularization, biomedical signal processing, NIRS, brain

hemodynamics

1. INTRODUCTION

Signal decomposition methods aim at representing a signal as
a combination of components that fulfill some specific criteria.
For instance, a wavelet transform decomposes a signal into a
set of time series that are localized both in frequency and time.
Generally, these decomposition schemes define a subspace using
an orthonormal basis onto which the signal to be decomposed is
projected. In this way the signal is represented in the transformed
subspace as a linear combination of the given basis vectors.
These decomposition schemes can be seen as a linear regression
problem of the form y = Ax + ǫ, where y represents the
signal of interest, A is a matrix containing the basis for the
subspace defined by the transformation, x is a vector containing
the decomposition coefficients that represent the signal in the
transformed domain, and ǫ represents the error term.

Signal decomposition methods can also be linked to the

field of system identification, where the output of a system is

computed as a linear combination of the partial contributions

of the input variables (Ljung, 1999). An identification problem

can be formulated as a regression problem of the same
form mentioned above, y = Ax + ǫ, which is a matrix
representation of a convolution operation, with x being the
impulse response of the system. However, in this case, the matrix
A is constructed differently, and does not contain an orthonormal
basis representing the transformed subspace. Instead, this matrix
is created from input-output observations of the system using
a specific model form to fit the output variable. Models
such as ARX (autoregressive with exogenous input), ARMAX
(autoregressive moving average with exogenous input), ARIMA
(autoregressive integrative moving average), among others have
been extensively studied in the literature (Ljung, 1999). These
models can be used for simulation, as well as prediction of the
system output y, e.g., in the prediction of the brain hemodynamic
response to an stimulus (Aqil et al., 2012). Others examples of
the use of this models in the field of near infrared spectroscopy
can be found in Hong and Naseer (2016), Kamran and Hong
(2013), Pillonetto (2016), Kamran and Hong (2014), Naseer and
Hong (2015). However, the main focus of these models is not to
compute the individual contribution of each input variable on the
output, but to produce a good estimation of the behavior of the
system as a whole, which leads to a lack of interpretability of the
models in terms of the underlying physiological processes.

Since real-life problems are likely to be characterized by
correlated inputs, the system subspace will consist of a set of non-
orthogonal subspaces, challenging the identification of individual
contributions, as well as obscuring its clinical interpretation. For
instance, when using least squares to identify the contribution

of a single subsystem on the output, the noise is assumed to be
orthogonal to the system subspace, which due to the presence
of correlated inputs is clearly not the case, hence producing
erroneous estimates. This problem can be mitigated by the use of
an appropriate projector that allows amore effective separation of
the different subsystems’ dynamics, such as an oblique subspace
projector.

Oblique subspace projectors (ObSP) are projection matrices
that use a reference subspace trajectory to project a signal onto a
desired subspace. When the reference subspace is orthogonal to
the desired subspace ObSP reduces to an orthogonal projector.
ObSP possesses properties that can be exploited to produce an
appropriate decomposition of biomedical signals, in terms of the
linear contributions of the different input variables. This allows to
provide physical interpretation to the system, in the framework of
identification models.

Specifically, this kind of decomposition framework can be
used to decipher the relation between different biomedical
signals, helping to understand their relations, as well as
facilitating their clinical interpretation. In particular in the
current clinical practice where patients measurements comprise
a large number of concomitant measurements of different
biomedical signals, ObSP can aid in facilitating a more accurate
interpretation of physiological or patho-physiological processes,
since the influence of each input variable on the output can
be analyzed separately without interference from confounding
factors, this is a critical factor for the clinical interpretability of
mathematical models (Slinker and Glantz, 1985). For instance,
for the assessment of cerebral autoregulation in premature
infants surrogate measurements of cerebral blood flow (CBF),
obtained using Near-infrared Spectroscopy (NIRS), can be used.
But only when there are not strong variations in SaO2 (Soul
et al., 2007; Wong et al., 2008). However, NIRS measurements
are highly coupled to changes in arterial oxygen saturation
(SaO2), which introduces information that is not directly linked
to changes in CBF. This hinders the use of NIRS as a technology
for the bed-side assessment of cerebral autoregulation. In order
to correctly assess the status of the cerebral autoregulation
mechanism, using NIRS, changes in SaO2 should be decoupled
from the NIRS measurements, prior to further processing. In
such an example the use of a decomposition framework, as the
one presented in this paper, becomes relevant since it can be used
as a preprocessing step to decouple the influences of changes in
SaO2 from the NIRS signals.

Applications of ObSP are scarce in signal processing. Among
the applications we can find in the literature we list the work
from Behrens and Scharf (1994), who presents the use of
ObSP for interpolation, decoding, and elimination of symbol
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interferences in a communication channel. Tu et al. (1999), used
ObSP for hyperspectral image classification. They applied ObSP
to quantify the mixture of spectral signatures, from different
materials, contained in a specific pixel of an hyperspectral
image. Van Overschee and De Moor (1994) proposed the
used of subspace system identification, which intrinsically uses
ObSP in order to estimate the state space of the system.
In the biomedical signal processing field, in some previous
work, we have proposed the use of ObSP in combination with
wavelet decomposition for cerebral hemodynamics monitoring
(Caicedo et al., 2012). There, we aimed at decomposing cerebral
hemodynamic signals, measured by means of NIRS, as a
sum of the partial linear contributions of different systemic
variables such as, mean arterial blood pressure (MABP),
SaO2, heart rate (HR), end tidal CO2, among others. We
also proposed the use of ObSP as a preprocessing method
for NIRS measurements (Caicedo et al., 2013a), and for the
extraction of features in a sleep apnea detection algorithm
(Varon et al., 2015). In this paper we introduce the theoretical
framework for a decomposition algorithm based on ObSP
which can be applied in the field of cerebral hemodynamic
monitoring. In addition we impose smoothness in the regression
parameters by the use of Tikhonov regularization using a
matrix differential operator, in contrast with the wavelet
decomposition framework of our previous work, resulting in
a more formal and flexible problem definition, a more robust
solution, as well as a more clear decomposition framework.
We test the performance of ObSP with a synthetic example
as well as with 2 application examples in the biomedical field,
specifically related to the monitoring of brain hemodynamics
regulation. In the first application example we decouple the
changes in SaO2 from the NIRS recordings, the SaO2 is
measured using a pulse oxymeter. In the second application
example, we find the partial linear contributions of each
input variable on the changes of cerebral and peripheral
tissue oxygenation. In this example we use as input variables
concomitant measurements of MABP, EtCO2, HR, SaO2, and
ECMO flow.

The rest of the paper is organized as follows. In Section
2 we briefly introduce ObSP. In Section 2.1 we present the
geometrical interpretation for ObSP, and we propose to solve
the ObSP problem by solving an alternative least squares
problem. The new problem definition allows to smoothly
introduce Tikhonov regularization. In Section 3 we present
the proposed general algorithm for signal decomposition
using ObSP. In Section 4 we show the results from the
synthetic and applications examples. Finally, in Sections 5,
6 we discuss our main findings and present the concluding
remarks.

Along the manuscript we will represent scalars by lowercase
variables such as x. Vectors will be represented by bold
lowercase variables such as x. Matrices will be represented
by bold uppercase variables such as A. Generic vector
subspaces will be represented by blackboard bold letters
such as R, and vector subspaces generated by a given
matrix will be represented using calligraphy type letter
such as V .

2. OBLIQUE SUBSPACE PROJECTIONS

An oblique subspace projection matrix (ObSP) is a linear
operator that projects a given vector onto a target subspace
following the direction of a reference subspace. Conversely, an
orthogonal subspace projection (OrSP) can be seen as a special
case of an ObSP where the target and reference subspaces are
orthogonal (Yanai et al., 2011), this permits the construction
of OrSP using only a basis for the target subspace. In contrast
with ObSP, OrSP is the most popular projection operator since it
arises naturally in the least squares solution of a linear regression
problem.

In general, in order to construct an oblique projector the basis
for the target and the reference subspaces should be known. Let
V ⊂ R

N represent the subspace spanned by a matrix A ∈ R
N×p,

whereN and p represents the number of rows and columns of the
matrix A respectively, Vk ⊂ V the signal subspace spanned by a
partition ofA,Ak, withA = [Ak A(k)]. If V = V1⊕V2⊕ ...⊕Vd,
with⊕ being the direct sum operator, then the oblique projector
onto Vk along V(k) = V1 ⊕ ...⊕Vk− 1 ⊕Vk+ 1...⊕Vd, denoted by
Pk.(k), with d ≤ p, is given by:

Pk.(k) = Ak(A
T
kQ(k)Ak)

†AT
kQ(k), (1)

where † represents the generalized inverse, d represents the
number of signal subspaces embedded in A and satisfies d ≤ p,
and Q(k) is the orthogonal projector onto Null(AT

(k)
) ⊂ V

⊥
(k)
,

which is computed as:

Q(k) = IN − P(k), (2)

where P(k) = A(k)(A
T
(k)
A(k))

†AT
(k)

is the orthogonal projector

onto V(k) ≡ Span(A(k)) (Yanai et al., 2011).
ObSP arises naturally from the solution of a generalized least

squares (GLS) estimation problem. The GLS regression problem
is defined as:

min
x

ǫT6ǫ

s.t. ǫ = y− Ax,
(3)

where 6 = Var[ǫ|A], and A = [aT1 ; . . . ; a
T
N], where A ∈ R

N×p,
with N equal to the number of observations. Since the cost
function is quadratic in terms of the model parameters x, the
solution has the following closed form:

x̂GLS = (AT6−1A)†AT6−1y. (4)

Substituting Equation (4) in (3) we obtain ŷ =

A(AT6−1A)†AT6−1y, which can be written as ŷ = Zy.
The matrix Z is idempotent, Z2 = Z, and not symmetric,
ZT 6= Z, which indicates that Z is an ObSP matrix, provided
6−1 = Q(k) (Yanai et al., 2011).

GLS considers that the noise variance is not constant and
mitigates its effects by including a weighting matrix that is
obtained from the variance of the estimated noise (Kariya and
Kurata, 2004).
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The noise has a large influence in the performance of ObSP.
Behrens and Scharf (1994), studied the influence of structured
and white noise in the projections when using ObSP. They
found that, when the signal subspace for the structured noise
is known, an ObSP operator can be created such that its kernel
contains this subspace, eliminating the influence of the structured
noise from the estimation. However, even though ObSP can
effectively remove the structured noise, some components from
the white noise might be amplified. They concluded that ObSP
is more efficient when the structured noise is dominant to the
background white noise. Therefore, by reducing the background
noise the efficiency of ObSP to remove structured noise can
be improved. Normally this would not be a problem when the
noise is considered to be another physiological measurement.
However, noise can be reflected in small eigenvalues which might
inflate the estimation producing results with a high variance. This
problem can be mitigated by the use of a regularization term
that numerically stabilizes the solution. This approach will be
discussed in Section 2.2. First we will discuss the geometrical
interpretation for ObSP.

2.1. Geometrical Interpretation
ObSP operators also appear naturally in the least squares solution
of a modified linear regression problem. Consider the linear
regression problem y = Ax+ǫ. By multiplying it byQ(k), defined
in Equation (2), we obtain the following regression problem:

Q(k)y = Q(k)Ax+Q(k)ǫ, (5)

and its Least Squares solution is then given by:

x̂LS = (ATQ(k)A)
−1ATQ(k)y. (6)

Replacing Equation (6) in (5), and using the ObSP operator in
Equation (1) we obtain:

Q(k)y = Q(k)Pk.(k)y+Q(k)ǫ. (7)

Based on Equation (7), we can interpret an ObSP operator as a
linear mapping of a given vector, y, onto a desired subspace, Vk ≡
Span{Ak}, following a reference subspace, V(k) ≡ Span{A(k)},
such that the mapped vector, Pk.(k)y, has the same orthogonal
projection onto the complement of the reference subspace,V⊥

(k)
≡

Null{AT
(k)
}, as the vector y; notice that Ak 6⊂ A(k). This can be

clearly seen in Figure 1.
Interestingly, the least squares solution to the problem in

Equation (5), xLS, is the same as the solution to

Pk.(k)y = Pk.(k)Ax+ Pk.(k)ǫ. (8)

This is proven as follows:

PROOF. The Least Squares solution to Equation (5) is equal to
x̂LS = ((Q(k)A)

TQ(k)A)
−1(Q(k)A)

Ty, since QT
(k)
Q(k) = Q(k),

Q(k)A = Q(k)Ak, and QT
(k)

= Q(k) then the solution simplifies

FIGURE 1 | Geometrical interpretation of the ObSP operator. The dotted

lines represent subspaces, the dashed lines represent the path followed for

the different projections, and the solid lines represent vectors.

to x̂LS = (AT
k
Q(k)Ak)

−1AT
k
Q(k)y. Similarly, solving Equation (8),

we obtain x̂LS = ((Pk.(k)A)
TPk.(k)A)

−1(Pk.(k)A)
TPk.(k)y. Since

Pk.(k)A = Ak, and Pk.(k) is defined in Equation (1), simplifying
the equations we obtain x̂LS = (AT

k
Q(k)Ak)

−1AT
k
Q(k)y.

2.2. ObSP and Tikhonov Regularization
Tikhonov regularization is the most general form of the Ridge
regularization, where a linear regression problem is formulated
as follows (Golub et al., 1999):

min
x

ǫTǫ + γ ‖Ŵx‖22

s.t. ǫ = y− Ax,
(9)

when the matrix Ŵ = I, the problem is known as Ridge
regression. Tikhonov regularization is used in order to impose
some kind of property to the solution vector x. In this manuscript
the solution vector x, due to the construction of the matrix A,
will represent the impulse response of a physiological system.
Therefore, we are interested in imposing smoothness to the
estimated output of the linear problem, since it is expected for
this response to be smooth. In this context, the regularization
matrix Ŵ will take the form of a differential operator, with entries
such as Ŵ(i, i) = −1 and Ŵ(i, i + 1) = 1. In order to obtain a
regularized output for the oblique projections we can solve the
equivalent problem presented in Equation (5):

min
x

ǫ̂
T
ǫ̂ + γ ‖Ŵx‖22

s.t. ǫ̂ = Q(k)y−Q(k)Ax,
(10)

with ǫ̂ = Q(k)ǫ. The solution, x̂ = x̂ObSP, is given by:

x̂ObSP = (AT
kQ(k)Ak + γŴTŴ)−1AT

kQ(k)y, (11)

where Ak represents a partition of A containing only the
columns that contains the kth regressor, Q(k) is computed using
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Equation (2), γ is the regularization constant, and Ŵ represents
the regularization matrix. This problem does not require the
computation of ObSP projectors, which are more costly than
the construction of orthogonal projectors. In addition, since the
norm of oblique projectors might be larger than one, resulting in
the possible amplification of noisy components, solving Equation
(11) is numerically more stable.

3. SIGNAL DECOMPOSITION BASED ON
OBLIQUE SUBSPACE PROJECTIONS
(SIDE-OBSP)

Let’s consider N observations from a linear time-invariant (LTI),
multiple-input and single-output (MISO) system, with output y
and d input variables S = {si}

d
i=1, with si ∈ R

N . The output of
this system in discrete time can be represented as follows:

y[n] =

d
∑

i= 1

pi
∑

m= 0

si[n−m]hi[m]+ ǫ, (12)

where hi represents the impulse response of the subsystem that
links the input variable si and its corresponding contribution to
the output yi, pi is the length of the impulse response, and ǫ is
the background noise. Notice that the number of input variables,
d, also represents the number of signals subspaces spanned by
the system. If the system is stable its impulse response, h, decays
toward zero. Therefore, h can be truncated by an appropriate
sample number p, such that hi[n] > δ ∀i, with δ being an
appropriately chosen threshold, and n = {1, . . . , p}, the selection
of p will be discussed later. Then, the model in Equation (12) can
be represented as a linear regression problem of the form:

y = Ah+ ǫ, (13)

where y ∈ R
N is the output of the system, A ∈ R

N×(dp) is the
regressor matrix that represents the signal subspaces, and h ∈

R
dp is a vector containing the concatenated impulse responses

hT = {hTi }
d
i= 1. Using the input matrix S = [s1, . . . , sd] and

approximating y as the output of a moving average (MA) system
with finite impulse response, we construct the matrixA as a block
Hankel expansion of the input matrix S, using p delayed samples
from each input variable, si, in order to define its signal subspace.

Given a vector sk ∈ R
N , a “Hankel” matrix constructed from

sk consists of forming a square matrix Ak, such that its entries
follow Ak(i, j) = Ak(i − 1, j + 1). The columns of the matrix Ak

are delayed versions of the vector sk. In the proposed framework,
the matrix Ak is a truncated version where the number of
columns per each input signal is limited to the order of the MA
model, p. This matrix is called a block Hankel matrix. The order p
can be found using cross-validation, or can be set to a sufficiently
large number such that all the impulse responses at the sample
number p are smaller in magnitude than a selected threshold.
The matrix A can be obtained by concatenaiting the matrices Ak

obtained by the block Hankel expansion of the input signals sk
for k = {1, . . . , d}, such that A = [A1, . . . ,Ad].

Since we are interested in finding the linear contribution of
each input variable si on the output y, we can reformulate the
model in Equation (13) as follows:

y = Akhi + A(k)h(i) + ǫ, (14)

where Ak is the partition of A that is related to the input si,
and it spans the signal subspace of that input. Notice that due
to the Hankel expansion of the matrix S, the signal subspace
corresponding to the ith input variable, si, now corresponds
to the kth partition of the matrix A, Ak ∈ R

N×p. hi ∈ R
p

represents the impulse response of the system linked to the input
si, A(k) ∈ R

N×(d− 1)p represents the remaining columns of A,

and h(i) ∈ R
(d− 1)p is the vector containing the impulse responses

of the remaining subsystems. In order to eliminate the influence
of the undesired inputs, we can project y onto the Span{Ak}.
However, the subspace spanned by the residual components
A(k) = [A1, . . . ,Ak− 1,Ak+ 1, . . . ,Ad] is likely to be oblique to
the Span{Ak}. Notice that A(k) is obtained by concatenating the
block Hankel expansion of all the inputs except the kth input. To
solve this problem we can modify it by multiplying Equation (14)
by Q(k), computed as in Equation (2). This results in:

Q(k)y = Q(k)(Akhk + A(k)h(k) + ǫ),
= Q(k)Akhk + ηk,

(15)

where Q(k)y can be seen as a preprocessed version of y, where
the linear contribution of the regressorsA(k) has been eliminated,
and ηk = Q(k)ǫ is the residual noise component. The solution
of this problem using the Tikhonov regularization is given
by Equation (11). The linear contribution of the ith input

regressor can be found as ŷi = Akĥi. Since this is equivalent
to ŷi = Pk.(k)y, and taking into account that oblique projectors
might amplify noisy components, as mentioned before, we
should guarantee that the structural noise is larger than the
background noise to avoid these problems. In the framework
of decomposition of biomedical signals, we are interested in
removing physiological interferences, hence the structural noise
will consist of physiological measurements that normally have a
higher power than the background noise.

The decomposition algorithm proposed in this paper, called
from now on SIDE-ObSP, is summarized in the Algorithm
presented below.

Since the column subspace of the oblique projector Pk.(k) is
spanned by the dynamics of the kth input variable, and its Null
subspace is represented by the signal subspace from all the other
inputs, the oblique projector is able to decouple the dynamics of
the kth input from all the other variables, even in the presence of
high correlations among them. However, it is important to notice
than in the pathological case when the signal subspace of the kth
variable is also contained in the Null subspace of the remaining
inputs, then the problems becomes ill-defined and the projection
matrix tends to infinite. In practice this is counter intuitive,
because in this case the Column subspace of the projector will
be contained in its Null subspace. In the case of extremely high
correlated signals, this might lead to numerical problems that
affect the solution, due to the presence of the inverse in Equation
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Algorithm. SIgnal DEcomposition based on Oblique Subspace Projections (SIDE-ObSP)

Input: regressor matrix S ∈ R
N×d, output vector y ∈ R

N .

Output:Matrix formed with the decomposition of the output vector Ŷ = [ŷ1, . . . , ŷd], with Ŷ ∈ R
(N− p)×d.

1. Using the input matrix S create the matrix A, by using a block Hankel expansion of S with an appropriate order p. This
order can be set at the beginning using prior knowledge or can be set automatically using cross-validation.

2. For each input variable partition the input matrix as follows A = [Ak A(k)], where the partition Ak consists of all the
columns related to the ith input si.

3. Using A(k) computeQ(k), as in Equation (2), and postulate the regression problem as shown in Equation (15).
4. Using cross-validation compute the adequate regularization constant γ and the order of the MA system p. When using

cross-validation evaluate the cross-validation error as e = 1
Nv
‖Q(k)y − Q(k)Akhi‖

2
2 +

1
p‖Ŵhi‖

2
2, with Nv the number of

data points used in the validation set. This guarantees smoothness in hi
∗.

5. Compute the estimated linear contribution of the ith regressor on the output as ŷi = Akĥi.

6. Concatenate all the outputs, ŷi, in the matrix Ŷ = [ŷ1, . . . , ŷd].

∗

For numerical stability N ≫ dp. A rule of thumb for the number of observations needed is to use 70% of the available data to compute the model parameters and 30% for validation. Taking this into
account the number of data points needed for the algorithm, defining an upper limit for p = P, will be N = 10dP, and Nv = 4dP.

(6), however, the use of Tikhonov regularization should be able
to partially mitigate this problem as can be seen from Equation
(11).

4. APPLICATIONS

4.1. Simulation Study
We considered N = 1024 observations {yi, xi}, with yi ∈ R and
xi ∈ R

3, following the model y = f1(x1) + f2(x2) + f3(x3) + η,
where η is uniformly distributed random noise with zero mean,
and a chosen standard deviation such that we obtain a signal-
to-noise ratio SNR = 4db in the signal y. The function f1
was selected as a 3rd order low-pass Butterworth filter, with
normalized frequency of 0.15 half-cycles/sample, the functions f2,
and f3 had normalized frequencies of [0.1–0.2] half-cycles/sample
and [0.05–0.15] half-cycles/sample, respectively.

We considered the inputs {x1, x2, x3}, to be three binary
pseudorandom signals (PBRN) in the normalized frequency
range [0–0.3] half-cycles/sample. In addition we induced a
correlation of ρ = 0.5 between the input signals by adding a 4th
reference PBRN signal, x4, to all the inputs using the following
formula:

xi = ρx4 + (
√

1− ρ2)xi; i = {1, 2, 3}. (16)

Before applying SIDE-ObSP, we also contaminated all the inputs
with uniformly distributed random noise N(0, σ 2), where σ was
chosen to reach a SNR = 4db. In addition, to complicate more the
decomposition problem, we filtered the signal x4 using a low pass
Buttherworth filter of 3rd order and normalized cut-off frequency
of 0.3 half-cycles/sample, the filtered signal was mixed together
with the output signal y, imposing a correlation of 0.3 between
them, using Equation (16). We applied ObSP using the noisy
inputs, xi and the noisy output y to find the linear contribution
of each input on the output, yi = fi(xi).

In Figure 2, the estimated impulse responses of the sub-

systems, ĥi, using SIDE-ObSP and its unregularized version are
shown. We performed 100 simulations and plotted the median
and the 95% confidence interval for the estimated impulses

responses using regularized and unregularized SIDE-ObSP. It
can be seen that regularization smooths the estimations of the
impulse response of the systems.

We compared the output from SIDE-ObSP with the output
of four different system identification model structures: subspace
system identification, ARMAX, ARX and an adaptive filtering
model. We used the System Identification toolbox fromMATLAB
in order to estimate the model. For the subspace system
identification we used the function “n4sid” in MATLAB, using
zero delays in the input variables and evaluating the order of the
system between 2 and 8, since the order of the systems to be
identified lie within this range, the final order of the model was
selected based on the suggestion given by the algorithm output.
For the ARX model, we evaluated different model orders and
selected the order that minimizes the Akaike information criteria,
as proposed by the function selstruc. For the ARMAX model we
fixed the model parameters to [na, nb, nc, nk] = [5, 5, 5, 0]1. We
checked that the selected order for the ARMAX models produce
a satisfactory output. Finally, for the adaptive filtering approach,
we used the function adaptfilt from MATLAB, using the LMS

FIR adaptive filter algorithm. The length of the adaptive filter
was selected as the identified optimal order of SIDE-ObSP; in
addition, the LMS step size was set to 0.008.

To evaluate if SIDE-ObSP is able to effectively decompose
the output measurement in a set of linear contributions from
each input variable, and if it outperforms the tested system
identification models, we computed the estimated output for
each one of the three different sub-systems, using the different
methods, and computed the cross-entropy between the estimated
linear contributions on the output from each input and the
different inputs. In short, cross-entropy is a measure of the
information transfer between 2 signals. A cross-entropy value
equal to 0 indicates no information transfer, cross-entropy values
different from zero indicate the amount of information that
is transferred from one signal to another, with larger values
indicating stronger transfer. For more details on this measure we
refer the reader to Faes et al. (2011). We will use from here on

1For the interpretation of the variables [na, nb, nc , nk], please refer to the

documentation of the function armax in MATLAB.
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FIGURE 2 | Impulse response for the three different filters. The dashed black line represents the reference impulse response. The solid gray line with “x”

symbols represents the output of SIDE-ObSP using regularization, and the solid lighter line with filled circles represents the output without regularization. The light gray

shadow represents the 95% confidence intervals for SIDE SIDE-ObSP without regularization, while the darker gray shadow area represents the 95% confidence

interval for the regularized version of SIDE-ObSP. Regularized SIDE-ObSP produces smoother estimates with smaller confidence intervals. The order of the MA model,

for all the 100 repetitions was fixed to m = 50, and the regularization constant γ , was found using 10-fold cross-validation.

the information transfer as a measure for the coupling between
the variables. The results are presented in Table 1. It can be
seen that SIDE-ObSP increases the coupling between each input
variable and their corresponding estimated linear influence,
whilst reducing the coupling with other input variables. The bold
numbers indicate the values of cross-entropy which are different
from zeros, i.e., they indicate the pair of signals which present
at some degree a linked dynamics. As can be seen in the table
only the diagonal elements, in the case of the output provided
by SIDE-ObSP, present cross-entropy values different from 0.
The other algorithms fail to decouple the linear contributions,
since cross-entropy values different from zero can be seen in
the off-diagonal elements for each one of the other methods,
indicating the presence of some degree of coupling between
input variable and the different estimated linear contributions.
In addition, the larger cross-entropy values indicate stronger
coupling between the variables. Only the outputs from the
subspace system identification model produce larger cross-
entropy values between the input signals and their respective
contributions when compared to the output from SIDE-ObSP.

This might be attributed to the fact that the solutions provided by
subspace system identification are less noisy. However, subspace
system identification is not able to completely decouple the
influence of other inputs onto each partial linear contribution.

4.2. Removal of Physiological Artifact from
NIRS Signals
In this section we use SIDE-ObSP to decouple the influence
of the variations in SaO2 from the tissue oxygenation index
(TOI), facilitating the use of TOI as a surrogate measurement
of CBF for the assessment of cerebral Autoregulation (CA).
TOI represents the ratio between oxygenated hemoglobin and
total hemoglobin in the tissue. TOI is measured using spatially
resolved spectroscopy as indicated in Suzuki et al. (1999). CA is
a mechanism that tries to maintain a more or less stable CBF,
despite the changes in MABP (Lassen, 1959). However, it has
been shown that CA is not as simple as initially thought, and it
comprises a set of responses from different mechanisms related
to myogenic, neurogenic and metabolic actions (Panerai, 1998).
Monitoring CA is important in order to avoid brain damage due
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TABLE 1 | Cross-entropy values between each input variable, xi , and the estimated linear contributions, ŷi , for ARX, ARMAX, adaptive filtering (Adap.),

and subspace System identification (SS) models and SIDE-ObSP.

ŷSIDE−ObSP
1

ŷSIDE−ObSP
2

ŷSIDE−ObSP
3

ŷARX
1

ŷARX
2

ŷARX
3

ŷARMAX
1

ŷARMAX
2

ŷARMAX
3

x1 1.0775 0.0000 0.0000 0.3716 0.0129 0.0016 0.4154 0.0153 0.0027

x2 0.0000 0.5962 0.0000 0.0148 0.3319 0.0158 0.0119 0.3954 0.0116

x3 0.0000 0.0001 0.8064 0.0010 0.0152 0.4495 0.0008 0.0168 0.3961

ŷ
Adap.
1

ŷ
Adap.
2

ŷ
Adap.
3

ŷSS
1

ŷSS
2

ŷSS
3

x1 0.0004 0.0025 0.0045 2.2313 0.0029 0.0097

x2 0.0060 0.0007 0.0035 0.0093 1.4360 0.0034

x3 0.0019 0.0009 0.0020 0.0075 0.0122 1.8651

The bold numbers indicate values of cross-entropy which are statistically different from zero.

FIGURE 3 | In the first three figures concomitant measurements of SaO2, TOI, and MABP. It can be clearly seen that the changes in SaO2 are reflected in the

changes in TOI values. The last figure shows the decomposition of the TOI in components related to changes in SaO2 and MABP. The component 1TOIMABP is not

contaminated with the sudden drop caused by the change in SaO2. These data was collected from a newborn.

to ischemia and/or hemorrhage (Wong et al., 2008; Soul et al.,
2007). TOI can be used as a non-invasive monitoring variable
for CBF, it allows the continuous bedside monitoring of CA
(Caicedo et al., 2011). However, TOI only reflects changes in
CBF under a constant brain metabolism and constant arterial

oxygen saturation (SaO2). In premature infants, even thought
it is a strong statement, the first assumption can be considered
valid during the first 3 days of life in the periods of analysis,
which normally involve segments of 15 min. But, for the second
assumption, the premature infants are likely to suffer from
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FIGURE 4 | Schematic representation of the proposed decomposition model, using ObSP, for the removal of physiological influence of SaO2 on TOI. In

the left the problem formulation from a classical identification model, in the right the proposed decomposition algorithm SIDE-ObSP.

TABLE 2 | Cross-entropy values between the input variables and the

output generated by SIDE-ObSP.

TOI TOIMABP TOISaO2

MABP 0.0013 0.99 0.0001

SaO2 0.4224 0.0006 1.27

The bold numbers indicate values of cross-entropy which are statistically different from

zero.

variations in systemic variables, especially in SaO2, during their
stay at the neonatal intensive care unit (NICU). Under these
conditions TOI cannot be used as a robust surrogate for CBF,
limiting the assessment of CA using NIRS in clinical practice.

In this example we used data from 20 infants from the
University Hospital Leuven (Belgium), with a gestational age of
28.4 ± 3.5 weeks and a birth weight of 1113 ± 499 g. Neonates
were included following approval of the study protocol by the
ethical board of the University Hospital, Leuven, Belgium, and
after informed written consent was obtained from the parents.
In all infants concomitant measurements of SaO2, measured
by pulse oxymeter (Pulse oxymeter, Novametrix, USA), MABP,
measured by an indwelling arterial catheter, and TOI, measured
using spatially resolved NIRS (NIRO300, Hamamatsu,Japan),
were obtained during the first 3 days of life with a sampling
frequency of 1/3Hz. The total length of the recordings is between
6 and 9 h. The measurements were obtained during normal
clinical care. For the signal decomposition algorithm, we used
the measurements of SaO2 and MABP as input variables, and
the TOI as output variable. A selected segment of the recordings,
where the influence of SaO2 is clearly seen, is displayed in the
first three panels in Figure 3. The figure shows a sudden drop in
SaO2 that is reflected in the TOI. We expect that SIDE-ObSP will
produce as output the decomposition of TOI into 2 components,
such that ˆTOI = TOIMABP + TOISaO2 , where TOISaO2 is the
component related to changes in SaO2, and TOIMABP is related
to the changes in MABP, as shown in Figure 4.

The results from a representative segment are shown in the
last panel of Figure 3. In order to evaluate that TOIMABP and
TOISaO2 are decoupled we used cross-entropy as explained in

TABLE 3 | Cross-entropy values between the input variables and the

output generated by SIDE-ObSP for the complete studied population.

TOI TOIMABP TOISaO2

MABP 0.1211 0.5853 0.0003

[0.0001–1.3676] [0.0170–3.0900] [0.0000–0.1001]

SaO2 0.0261 0.0009 0.6351

[0.0002–0.6028] [0.0000–0.1733] [0.0453–2.1361]

Values given as median[min-max].

the previous section. The cross-entropy values between MABP,
SaO2, TOI, TOIMABP and TOISaO2 for the representative subject
are summarized in Table 2. As in the previous example, these
values indicate that TOIMABP and TOISaO2 are linked mostly to
the dynamics of MABP and SaO2, respectively, and that there is
not cross linked dynamics in the decomposed signals. According
to these results we can consider that TOIMABP has been effectively
decoupled from the variations in SaO2. In addition, based on the
cross-entropy values, we can see that the TOISaO2 has a stronger
link to the changes in SaO2, than TOIMABP to the changes in
MABP. This might indicate that the dynamic in SaO2 affects
more strongly the changes in TOI than the dynamic of MABP.

The results from the complete population are summarized
in Table 3. It can be seen that cross-entropy values between
SaO2/MABP and TOISaO2 /TOIMABP are larger than the cross-
entropy values between SaO2/MABP and TOIMABP/TOISaO2 .
This indicate that the influence of other input variables in a
given partial contribution are minimized. It is important to note
that some of the cross-entropy values between an input and its
respective partial contribution are low. Possible explanations for
this can be that segments with a low variability in SaO2 and
MABP are not able to produce a proper description of the signals
subspaces; that the segment under analysis is not coupled to
the dynamics of the input signals, therefore the model fails to
produce a component that is linearly related to the given input;
or that the causal relationship, input vs. output, imposed in the
model does not hold.

In the context of cerebral autoregulation assessment,
TOIMABP can be used, directly, to assess the status of the CA
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FIGURE 5 | Measurements of systemic and hemodynamic variables during ECMO “weaning.” From top to bottom HR, MABP, SaO2, EtCO2, ECMO Flow,

and cTOI, pTOI. These data was collected in a 3-years old infant.

mechanism. This component not only represents a version of
TOI decoupled from the variations in SaO2, but also represents
the component of TOI that is linearly linked to the variations
in MABP. SIDE-ObSP clearly offers the possibility of using
NIRS for the assessment of cerebral autoregulation, even in the
presence of changes in SaO2. This is an important result with
a potentially high clinical impact that needs to be evaluated in
further studies.

4.3. Brain Hemodynamics Monitoring
In this section we use SIDE-ObSP in order to decompose the
changes in cerebral and peripheral oxygenation into the partial
contributions of each systemic variable, in order to evaluate
the physiological responses caused by them, independently,
in the peripheral and the cerebral circulation. We use a set
of measurements obtained from a 3 years old infant under
veno-arterial Extra corporeal Membrane Oxygenation (ECMO)
procedure. ECMO is used to provide cardio-respiratory support
to children with cardiac and/or respiratory problems. During this
procedure the main vessels in the neck (right internal jugular
vein and carotid artery) are cannulated. Blood is passed to an
external oxygenator (via the vein cannula) and pumped back

to the heart (via the arterial cannula). The heart and lungs are
bypassed and allowed time to rest until they recover. Once there
is indication that the patient’s heart and lungs have recovered,
they are being weaned off ECMO. During weaning, the ECMO
blood flow is sequentially reduced, allowing the patients heart
and lungs to take over. If during the weaning phase the patients
can sustain normal function of their own heart and lungs they
are decannulated and completely removed from ECMO. Patients
under ECMO are at high risk of hemodynamic instability due to
the possible alteration of the regulation mechanisms caused by
multi-factorial reasons such as heparinitazion, hemodilution, and
reduced arterial pulsatility (Annich et al., 2012).

These data was collected for research purposes, and the
collection of the data was approved by the UCL, Institute of Child
Health and Great Ormond Street Hospital for Children NHS
Trust Research Ethics Committee. Written informed parental
consent was obtained from the participants prior to inclusion.
Cerebral tissue oxygenation (cTOI) was measured using a NIRS
system (NIRO 200, Hamamatsu Photonics KK), using an optode
located in the child’s forehead; peripheral tissue oxygenation
(pTOI) was measured in the calf using the same NIRS system.
Concomitant measurements of MABP, end tidal CO2 (EtCO2),
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FIGURE 6 | On the left partial linear contributions of the systemic variables on the cTOI, gray solid line, and pTOI, black solid line, estimated using

SIDE-ObSP. From top to bottom, partial contribution from HR, MABP, SaO2, EtCO2, and ECMO flow. On the right the frequency response of the individual

subsystems linking each input with the output. This response was computed as the amplitude of the Fourier transform of the estimated impulse responses obtained

from SIDE-ObSP. The frequency responses are organized presenting the one related to the cerebral hemodynamics first followed by the one related to the peripheral

hemodynamics, for each input variable.

Heart Rate (HR), SaO2, and ECMO flow were also recorded
during the ECMO weaning phase. Measurements were done
during stepwise changes in the ECMO flow; the flow was reduced
from baseline (100% ECMO flow) in steps of 10%, approximately
every 10 min, until 70% of the baseline ECMO flow was reached,
afterward the flow was increased back to baseline following the
same profile (Caicedo et al., 2013b).

Figure 5 displays some of the rawmeasurements taken during
ECMO weaning. The upper plots in Figure 5 shows the changes
in HR, MABP, SaO2, EtCO2, and the ECMO Flow. The last plot
presents the variations in cTOI and the pTOI.

The results are presented in Figure 6. In the left panel of
the figure, the partial contributions of each systemic variable
on the cerebral and peripheral circulation are shown. The
right panel presents the frequency response for the different
subsytems. By identifying the gain and the frequency band
for each frequency response, the characteristics of the different
mechanisms involved in the regulation of cerebral and peripheral
hemodynamics can be compared. For instance, the magnitude
of the frequency response can be used in order to estimate
how much the changes on one of the systemic variables affect

the corresponding hemodynamic variable. A larger magnitude
in the frequency response, i.e., larger gain, indicates that the
respective hemodynamic variables are more strongly affected by
the specific systemic variation. This is also reflected in a partial
contribution with a larger amplitude in the time domain. On
the other hand, the bandwidth of the system can be computed
by identifying the frequency region with a magnitude larger
than 0, this information is useful in order to determine the
dynamics of the partial contributions in time domain. Taking
this information into account the results presented in Figure 6

indicate that, in contrast with the peripheral circulation, the
changes in cerebral hemodynamics caused by variations in
MABP, HR, and ECMO flow are highly attenuated since the
gain values are much smaller in the frequency response that
correspond to the cerebral hemodynamics than the one from the
peripheral hemodynamics. This is expected, since the regulation
mechanisms that preserve brain hemodynamics are stronger than
the regulation mechanisms in the peripheral hemodynamics.
On the other hand, changes in SaO2, and EtCO2 seem to
affect cerebral and peripheral hemodynamics strongly, even
though once again their impact on cerebral hemodynamics is
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more attenuated. This might indicate, to some degree, a similar
regulatory action for changes in blood gases concentrations on
both, the peripheral and the cerebral, vascular beds.

5. DISCUSSION

We have proposed a decomposition algorithm based on the use
of ObSP, SIDE-ObSP, for the representation of NIRS signals into
the partial linear contributions of different physiological signals.
SIDE-ObSP assumes that the target signal can be modeled as
the sum of the output of a set of mean average filters, one
per each input variable. By approximating the structure of the
model using MA filters, instead of an ARMAX structure, SIDE-
ObSP is able to correctly define signal subspaces per each input
variable, without contaminating them with the dynamics of
other inputs. The decomposition is then achieved by properly
defining oblique projectors that project the output signal onto
the subspace spanned by a specific input variable. This oblique
projector guarantees that the common dynamics between input
variables is decoupled. Thereby, separating the partial linear
contributions of each input, even if they are correlated.

SIDE-ObSP makes use of Tikhonov regularization using the
derivative operator, in its matrix form, in order to produce
smoother responses. The selection of the derivative operator
was shown to be appropriate for the applications presented.
However, other kernels can be easily integrated into the proposed
algorithm, such as the tune-correlated (TC) kernel (Chen et al.,
2011).

We demonstrated the performance of SIDE-ObSP with a
synthetic example as well as in 2 medical applications in the field
of cerebral hemodynamic monitoring. In the synthetic dataset
we were able to retrieve the underlying impulse responses of
the subsystems that generated the data, we compared the results
obtained from SIDE-ObSP with other available methodologies
and we showed that for this case, SIDE-ObSP outperformed
them. In contracts with ARX, ARMAX, filter adaptive models,
and subspace system identification, SIDE-ObSP was able to
effectively decouple the dynamics between the input variables
and the output, allowing to identify more accurately the
underlying dynamics of the different subsystems. This is mainly
due to the fact that the signal subspace of undesired input
variables is contained in the Null subspace of the ObSP projector.
In the first application example we use SIDE-ObSP in order
to remove the influence of changes in SaO2 from the changes
in brain oxygenation measured using NIRS. This is a very
important application since it facilitates the monitoring of
cerebral autoregulation. In the second application example, we
were able to provide a quantitative analysis of the differences
between the influence of the systemic variables on the peripheral
and cerebral hemodynamics thanks to the use of SIDE-ObSP.

Taking advantage of this decomposition scheme, we present
the performance of SIDE-ObSP in 2 medical applications related
to cerebral hemodynamics monitoring. First, we use SIDE-
ObSP in order to filter out the physiological noise introduced
by the variations of SaO2 on the TOI. This is important for
the non-invasive monitoring of cerebral autoregulation (Liem
et al., 1995; Soul et al., 2007; Wong et al., 2008). We found
that SIDE-ObSP was not only able to decouple the influence

of the undesired fluctuations in SaO2, but it was also able to
project the changes in TOI on the signal subspace spanned by
MABP. This projection carries information about the linked
dynamics between TOI and MABP, which can be directly used
to quantify the status of the cerebral autoregulation mechanism.
In addition, in the second application example, we showed that
SIDE-ObSP decomposes the cTOI in the partial contributions
of several systemic variables. We compared these results with
the decomposition of pTOI and it was found, as expected, that
the cerebral hemodynamics regulation mechanisms are able to
mitigate and react appropriately to the changes in systemic
variables in order to keep the brain hemodynamic homeostasis.
The main advantage that SIDE-ObSP presents in this application
field, is that it facilitates the individual interpretation and analysis
of the influences of the changes in different systemic variables
on the peripheral and cerebral hemodynamics. Such influences
can be used for the analysis of the different mechanisms
that are involved in the regulation of cerebral and peripheral
hemodynamics. For instance, the frequency response of the
sub-mechanism relating the changes in HR and pTOI acts like
a band pass filter with a frequency response between 0 and
0.15Hz, while the sub-mechanism relating changes in HR and
cTOI acts as a low pass filter with a cut-off frequency around
0.1Hz. This indicates that the partial contributions of HR on
the cTOI in the time domain are smoother than the ones in
the pTOI. However, response to changes in HR are 50 time
stronger in the pTOI than in the cTOI, as indicated by the
magnitude of the gain in the filters’ pass band. Due to their
frequency band we hypothesize this mechanism represents the
sympathetic influence on the vascular tone of the cerebral capilar
bed and the peripheral circulation. In a previous work we have
studied the influence of the HR on the cerebral hemodynamics
(Caicedo et al., 2014). Due to the assumption of a linear
relationship between the HR and the cTOI and pTOI, no
influence of the respiration and/or the cardiorespiratory coupling
on the pTOI/cTOI has been included in this analysis, since
the frequency range of the NIRS signals is restricted to a very
low frequency range, we do not expect a large lineal influence
from these variables. When comparing the frequency response
of the subsystem linking MABP and TOI, it can be observed
that the this subsystem behaves like a band-pass filter in the
brain, whilst it exhibits a low-pass frequency response in the
peripheral hemodynamics. Moreover, the response to changes
in MABP are 20 times larger in the leg than in the brain.
This indicates that changes in MABP are passively follow in the
peripheral circulation, while only a small transient should be
observed in the cerebral hemodynamic as response to changes
in MABP, this transient behavior is typical from band pass
systems, and it is caused by the fact that the DC values are
highly attenuated, therefore any perturbation presented in the
input should converge to zero. In addition, the frequency range
of the frequency response in this subsystem indicates that the
pTOI follows passively oscillations with a frequency smaller than
0.01 Hz (period larger than 100 s), while the frequency range
that affects cTOI is restricted to frequencies between 0.01 and 0.1
Hz, representing oscillations between 10 and 100 s. Concerning
the influence of SaO2, even though it affects both the cTOI
and the pTOI, it can be seen that its influence is larger on
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the peripheral hemodynamics, represented by a gain 10 times
larger in the frequency response. This response can be attributed
to the larger compliance of the cerebral vascular bed, which is
able to mitigate larger changes in CBF, and partially mitigate
the effect of large changes in SaO2 on the cTOI. The partial
contributions of EtCO2 to cTOI and pTOI are also similar;
however, it can be seen that, in the brain, the changes in EtCO2

are smoothed out stronger than in the peripheral circulation,
this is also reflected in the lower cut-off frequency exhibit in
the frequency response, around 0.01Hz compared to 0.05Hz
respectively. This smoother behavior, like in the case of SaO2,
can be caused by a higher capillary compliance in the brain than
in the periphery. Finally, it is interesting to observe that the
brain acts as a band-pass filter in the presence to changes in the
ECMO flow, while the peripheral circulation exhibits a low-pass
filter behavior. The protection mechanisms in the brain react to
sudden changes in the ECMOflowwhich afterward are regulated,
preserving a stable brain hemodynamics, whilst in the periphery
these changes are reflected stronger and passively, due to the low-
pass filter characteristic. In addition, the response to changes in
ECMO flow in the pTOI are 80 time larger than the response in
cTOI. These comparison and analysis was possible thanks to the
use of SIDE-ObSP. Monitoring of the cerebral hemodynamics
regulations mechanisms is critical for the prevention of brain
damage and its consequent sequela, however, mathematical tools
to properly monitor them are scarce, mainly, due to the complex
linked dynamics of all the different mechanisms that are involved
in cerebral hemodynamics regulation (Peng et al., 2008). In
this context SIDE-ObSP represents one mathematical tool that
can be effectively used in this field, in particular SIDE-ObSP
can be useful in the study of the hemodynamic low frequency
oscillations (LFO), these oscillations have been observed in since
more than 150 years ago, but their origin and physiological
explanation is still elusive. The complexity for the interpretation
of the LFO is attributed to the coupling of different physiological
processes (Sassaroli et al., 2012), it is here where SIDE-ObSP
can be used in order to identify which systemic variations
are more likely to be related to these oscillation, helping to
unrevealed their possible origin and their potential link with
cerebral autoregulation.

In addition, other algorithms can be used in order to
decompose NIRS measurements in sources that might relate to
physiological processes. In this context, Santosa et al. (2013) have
developed an algorithm to remove noise sources, physiological
or external, from functional NIRS (fNIRS) measurements using
independent component analysis (ICA). ICA generally requires a
set of measurements that are contaminated by common sources,
fNIRS fits naturally within this framework, however, for single
channel NIRS measurements this condition is not met. In such
cases, single channel ICA can be used Davies and James (2007).
However, this approach assumes that the sources are sufficiently
disjoint in the frequency domain, which is a condition that
cannot be imposed in physiological processes. Also the sources
that are obtained using ICA might or might not be related to
physiological mechanism. In comparison SIDE-ObSP is able to
decompose single channels NIRS measurements and relate them
to specific physiological measurements.

However, SIDE-ObSP presents some limitations. First of all,
it assumes a linear relationship between the input variables and
the output, which is likely not to be the case in biomedical
systems. But, if the linear component has a strong contribution
SIDE-ObSP can still produce relevant results, as proven with
the application examples illustrated in the manuscript. Second,
SIDE-ObSP is highly dependent on the available amount of
information. This is due to the fact that the projectors for a
given input variable are computed using information about the
signal subspaces spanned by the other input variables. In case
that one of these variables is not included, its subspace will
be considered orthogonal to the input signal subspace, even
if it is not. This might lead to unexplained dynamics on the
decomposition residuals. In the context of clinical monitoring
this might not be an issue, due to the availability of different
biomedical measurements at the bed side. In addition, since the
results are interpreted based on the input data available, residuals
linked to other physiological sources can be carefully taken into
account for further analysis and interpretation. Furthermore, by
studying the dynamics of these residuals, other physiological
variables that are linked to the dynamics of the output signal
can be found. Finally, SIDE-ObSP assumes stationarity in the
processed data segment. In the presence of nonstationarities,
the computed model will produce a kind of “average” response.
This problem can be mitigated by selecting data segments that
are short enough to be considered stationary. However, the
length of the processed segments should be large enough in
order to guarantee that the number of rows in the regressor
matrix A is larger that the number of columns. Approaches
like subspace tracking methods can be used in order to process
continuous stationary segments. This adaptation is useful for
online monitoring systems, where nonstationarities are likely
to occur but the changes in the system response between two
consecutive segments are smooth.

6. CONCLUSION

We have presented a new algorithm, SIDE-ObSP, for the
decomposition of NIRS signals into the linear partial
contributions of a given set of input variables. SIDE-ObSP
uses ObSP in order to effectively decoupled the dynamics from
different signals. The application examples highlight its potential
use in clinical practice, showing that it might help to enhance
diagnosis, understanding of underlying (patho-)physiology, as
well as to assess treatment. The main advantage of SIDE-ObSP is
that it allows the individual interpretation of the relation between
each input variable used in the model and the desired output
variable. However, it is important to take into account that its
performance relies on the quality and availability of the data used
to train the model. Results should be interpreted with caution,
taking into account the origin of the available measurements that
have been used, and if these measurements are a direct reflection
of the physiological variables of interest, or if they are surrogate
variables that might include dynamics of different physiological
systems. SIDE-ObSP can be extended to be used in other fields
not exclusively for biomedical applications. SIDE-ObSP can
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be easily adapted for online monitoring by means of subspace
tracking algorithms. Furthermore, due to its formulation, it can
easily be adapted to a nonlinear regression framework based
on kernels, such as LS-SVM regression models (Suykens et al.,
2003).
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