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Role of image forces in non-contact scanning force
microscope images of ionic surfaces
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Abstract

We consider the effect of the image interaction on the force acting between tip and surface in non-contact
scanning force microscope experiments. This interaction is relevant when a conducting tip interacts with either a
polar bulk sample or with a thick film grown on a conducting substrate. We compare the atomistic contribution
due to the interaction between the microscopic tip apex and the sample with the macroscopic van der Waals and
image contributions to the force on the tip for several representative NaCl clusters adsorbed on a metal substrate.
We show that the microscopic force dominates above the plain (001) terrace sites and is solely responsible for
image contrast. However, the image force becomes comparable to the microscopic force above the surface
di-vacancy and dominates the interaction above a charged step. © 2000 Published by Elsevier Science B.V. All
rights reserved.

Keywords: AFM; Construction and use of effective interatomic interactions; Insulating films; Metal–insulator interfaces; NaCl;
Surface defects

1. Introduction metal tips are employed. However, recent applica-
tions of scanning tunnelling microscopy (STM ) to
oxides [2] and insulating films grown on metalAlthough the importance of image interactions
substrates [3], and combined applications of STMhas been recognised in metal–insulator interfaces,
and non-contact SFM (NC-SFM ) (e.g. see Refs.electrochemistry and other areas, their role in
[4–6 ]) bring these interactions to the forefront. Inimage formation in scanning force microscopy
these applications, conducting tips are interacting(SFM) has not been analysed in detail [1]. The
with thin polar films grown on metal substrates orreasons are mainly related to the small number of
with conducting oxides. This means that both theexperimental situations where these forces were
interactions of the tip with the film and of the filmevidently important, e.g. where an ionic insulator
with the substrate involve the image force and itwould make a contact with a conducting tip. In
should be taken into account in analysis andparticular, in most of the SFM applications on
interpretations of SFM images. Although the sameinsulators, either insulating tips or oxidised Si and
is true for ‘contact mode’ imaging, in this paper
we will focus on a more simple case of NC-SFM
in vacuum.* Corresponding author. Fax: +44-(0)171-3911360.
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with a constant frequency of 100–200 kHz and 2. Theory
makes oscillations with an amplitude of about

2.1. Theoretical model100–200 Å above the surface [6,7]. When the end
of the tip approaches the sample, the main fre-

We consider a conducting spherical tip of radiusquency of the cantilever oscillations changes due
R interacting with a conducting semi-infinite sub-to the tip–surface interaction. The surface image
strate (substrate) with an adsorbed finite cluster ofis obtained as a map of the displacements of the
ionic material (sample) on it (see Fig. 1). To modelbase of the cantilever required to maintain a
contamination of a conducting tip by an ionicconstant frequency change as the tip scans the
material, we embed a finite cubic MgO clustersurface. Contrast in an image is produced by
oriented by one of its corners down to the NaClmaking displacements away from the surface
cluster adsorbed on the metal substrate, as shownbright, and those towards it dark. The most stable
in Fig. 1. This model is similar to the one used inimaging has been obtained in the attractive region
Ref. [8], except that now the tip and substrate areof the tip–surface interaction near the surface.
conductive. Their conductivity should be enoughExperimental [7] and theoretical estimates [8]
to keep their surfaces at constant potential at eachdemonstrate that, for stable imaging, the distance
point of slow cantilever oscillations. The tip andbetween the end of the tip and the surface atoms
substrate are connected in a joint circuit, as shownshould be larger than about 4–5 Å. However, these
in Fig. 1.experimental conditions are very difficult to main-

Bias applied to the tip and substrate will pro-tain and, in most cases, the tip crashes into the
duce an external non-uniform electrostatic fieldsurface many times during one series of experi-
and an additional contribution to the systemments [9], but a change of the tip structure during
energy, which will affect both the geometry of theone image is a relatively rare event. Therefore, the
sample atoms and those of the tip apex, and thestructure of the tip apex is dependent not only on
force imposed on the tip. However, this effect is

vacuum conditions and tip preparation but also
not very significant for typical experimental values

on the stability of imaging. Most of the metallic of the bias (<1 V ).
or doped Si tips used in SFM experiments are
likely to be covered either by islands of a native
oxide and/or by the surface material.

In this paper we consider the relative impor-
tance of image forces in NC-SFM contrast forma-
tion using the example of a finite cluster of NaCl
adsorbed on a metallic substrate. This system has
been studied in recent STM [3] and NC-SFM
experiments [10,11] and is representative of a
common case of an insulating film grown on a
metal. First, we describe a numerical method for
the effective calculation of the image force between
tips and surfaces and its implementation within an
atomistic simulation technique. Then we study the
relative strength of the image force with respect to
the van der Waals and chemical forces in different
representative tip–surface systems. These include
the surface terrace, neutral and charged steps, and

Fig. 1. Schematic picture of the microscopic model used herea dipole formed by a vacancy pair at a step. to simulate the interaction between the tip and the sample. The
Finally, we discuss the results and limitations of coordinate axes are aligned with respect to the sphere centre (at

x=y=0, z=zs) and the metal plane (at z=0) for convenience.our method.
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Another contribution, which can be more sig- Finally, the sample atoms in region 3 are also
nificant for the processes that take place in an allowed to relax, except in the two layers closest
SFM experiment, is to do with the polarisation of to the substrate (region 4). The interactions
conductive electrodes by the charge density of the between atoms in regions 1 to 4 are calculated
sample. The potential on the tip and substrate is using semi-empirical interatomic potentials and
maintained by external sources (we shall call them the shell model to treat atomic polarisabilities.
a battery). The sample charge density will change Details of these calculations are given in
this potential. To prevent this from happening, the Section 3.1.
battery will move some charge between the tip and In order to calculate the force imposed on the
substrate in order to keep the potential constant. tip we used the following expression for the total
Therefore, there will be some net distribution of energy of the system:
charge density on their surfaces that will also
interact with the sample and will affect the force U=1

2
∑∞
ij

v
ij
+UvdW+Uel , (1)

imposed on the tip. This kind of induced charge
has been commonly referred to as the image charge

where v
ij

is the interatomic potential betweenand we will call this interaction the image
atoms i, j in regions 1 to 4. This interaction energyinteraction.
is a function of both the tip position zs and theA preliminary account of this effect in applica-
coordinates r

i
of all atoms (and shells) involved.tion to SFM has been given in Ref. [12], where a

The energy UvdW represents the van der Waalssimple model example has been considered. Here
interaction between the macroscopic tip and sub-we present the theoretical microscopic model in
strate and depends only on the tip height zs withdetail and propose an efficient method that can be
respect to the substrate (see Fig. 1). Note that inused to take this effect into account in a systematic
the present model the macroscopic van der Waalsmanner. Note that quantum effects in metal polari-
interaction does not affect atomic positions insation [13–16 ] are neglected here and our consider-
regions 1 to 4.ation is based entirely on classical electrostatics.

The last term in Eq. (1) represents the totalAccording to this model, the image charge does
electrostatic energy of the whole system. Wenot penetrate into the bulk of the metal. In reality,
assume that the Coulomb interaction between allhowever, there is some distribution of the charge
atoms in regions 1–4 is included in the first terminside the metals [13–15]. However, this effect is
in Eq. (1) and hence should be excluded fromnot important for processes that occur at distances
Uel. Therefore, the energy Uel includes the inter-of the order of several Ångströms outside the
action of the atoms in the system with the macro-metal and, therefore, will be neglected in this study.
scopic tip and substrate. As has been demonstratedAll the atoms comprising the microscopic part
in Ref. [12], the correct electrostatic energy shouldof the system are split into three regions, as shown
incorporate the work done by the battery to main-schematically in Fig. 1. The tip apex is modelled
tain the constant potential on the electrodes. Thisby a cluster that is formally divided into two
can be written in the following form [12]:regions. The atoms in region 2 are allowed to

adjust their positions, whereas atoms in region 1
Uel=−1

2
Q(0)V+∑

1
q
i
w(0)(r

i
)+1

2
∑
i,j

q
i
q
j
wind(r

i
, r
j
).are kept fixed in order to keep the shape of the

apex. The atoms in region 1 move together with
(2)the macroscopic part of the tip and, therefore,

their positions are determined only by the tip
Here V is the potential difference applied to theposition along the vertical z-axes, which we will
metal electrodes. In the setup shown in Fig. 1,denote zs. Atoms in region 2 follow the tip as well,
without loss of generality [12], one can choose thesince they are strongly bound to the atoms in
potential w on the metal plane to be zero, so thatregion 1. However, their positions can change

appreciably due to the tip–surface interaction. the potential on the macroscopic part of the tip
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will be w=V. We also note that the substrate is the bare electrodes could be calculated [12] if we
knew the exact Green function of the electrostaticconsidered in the limit of a sphere of a very big
problemradius R∞&R, since the metal electrodes formally

cannot be infinite [12]. The charge on the tip
D

r∞
G(r, r∞)=−4pd(r−r∞) (4)

without charges outside the metals (i.e. when there
with the corresponding boundary conditionsare only bare electrodes and the polarization effects
[G(r, r∞)=0 when r or r∞ belong to either thecan be neglected) is Q(0) and the electrostatic
substrate or the tip surface] [18]. Therefore, givenpotential of the bare electrodes anywhere outside
the applied bias V, the geometric characteristics ofthe metals is w(0)(r). The charge Q(0) and the
the capacitor and the positions {r

j
} of the pointpotential w(0)(r) depend only on the geometry of

charges {q
i
} between the tip and sample, one canthe capacitor formed by the two electrodes and on

calculate the electrostatic energy Uel. The problemthe bias V. The charge Q(0) can be calculated
is that the Green function for real tip–samplefrom the potential w(0)(r) as follows [17]:
shapes and arrangements is difficult to calculate.
However, for a number of simple geometries, exactQ(0)=−

1

4p P P ∂w(0)

∂n
ds,

solutions of the corresponding electrostatic prob-
lems exist. The most common is the planar–planar

where the integration is performed over the entire geometry [19–22], although some non-planar
surface of the macroscopic part of the tip with the geometries have also been considered, for example
integrand being the normal derivative of the poten- a planar–hyperboloidal [22,23], a planar–spherical
tial w(0)(r); the normal n is directed outside the [24] and a planar–planar junction with a spherical
metal. Summation in the second term of Eq. (2) boss at one of the electrodes [25,26 ].
is performed over the atoms and shells of the In this study we use the planar–spherical geome-
sample and those of the tip apex that are repre- try of the junction, as depicted in Fig. 1. Although
sented by point charges q

i
at positions r

i
. Note a similar model has already been considered in

that only those atoms and shells of regions 2–4 Ref. [24], no details were given and the authors of
are considered explicitly in the energy Uel and the cited paper claimed that the method of multiple
included in the summation in Eq. (2) (see images that they used did not give a well-converged
Section 3.1). expansion. Therefore, in Section 2.2 we give a brief

description of our method, which is also based onFinally, wind(r, r∞) in Eq. (2) is the potential at
the method of multiple images, together with somer due to image charges induced on all the metals
details that will be important later to derive theby a unit point charge at r∞. This function is
forces acting on the charges and on the tip. Ourdirectly related to the Green function G(r, r∞) of
method appears to be more efficient than the onethe Laplace equation, wind(r, r∞)=G(r, r∞)−
applied in Ref. [24], as we sum the series of image(1/|r, r∞|), and is symmetric [12], i.e. wind(r, r∞)=
charges explicitly only for a small number of thewind(r∞, r), due to the symmetry of the Green func-
first terms, whereas the rest of the series is summedtion itself [18]. The total potential at r due to a
analytically up to infinity. Note that a similar ideanet charge induced on all conductors present in
was employed in Ref. [20], where the rest of thethe system by all the point charges {q

i
}:

series of image charges for the planar–planar junc-
wind(r)=∑

i
q
i
wind(r, r

i
) (3) tion was integrated.

is the image potential. Note that the last double 2.2. Solution of the electrostatic problem of point
summation in Eq. (2) includes the i=j term as charges inside the sphere–plane capacitor
well. This term corresponds to the interaction of
the charge q

i
with its own polarisation (similar to First, let us consider the calculation of the

the polaronic effect in solid-state physics). potential w(0)(r) of the bare electrodes, i.e. the
The function wind(r, r∞) and, therefore, the capacitor problem. We note that the potential

w(0)(r) satisfies the same boundary conditions asimage, wind(r), together with the potential w(0)(r) of
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the original problem, i.e. w(0)=0 and w(0)=−V at charge z
k
∞ (ŝ means reflection with respect to the

the lower and upper electrodes respectively. The substrate surface z=0). To find the charge Q(0),
solution for the plane–spherical capacitor is well which is also needed for the calculation of the
known [19] and can be given using the method of electrostatic energy, Eq. (2), one should calculate
image charges (see also Ref. [12]). Since we will the normal derivative of the potential w(0)(r) on
need this solution for calculating forces later on, the sphere and then take the corresponding surface
we have to give it here in detail. It is convenient integral (see above). However, it is useful to recall
to choose the coordinate system as shown in Fig. 1. that the total charge induced on the metal sphere
Then it is easy to check that the following two due to an external charge is equal exactly to the
infinite sequences of image charges give the poten- image charge inside the sphere [17,18]. Therefore,
tial at the sphere and the metal planes as V and one immediately obtains:
zero respectively. The first sequence is given by
the image charges z1=RV and then z

k+1=z
k
/D

k Q(0)= ∑
k=1
k
0 z:k. (6)

for Yk=1, 2, …, where the dimensionless
constants D

k
are defined by the recurrence Note that the potential w(0)(r) and the charge Q(0)

relation D
k+1=2l−(1/D

k
) with D1=2l and depend on the position zs of the sphere indirectly

l=zs/R>1, zs being the distance between the via the charges z
k

and their positions r
z
k

according
sphere centre and the plane (Fig. 1). The point to the recurrent expressions above. Therefore, one
charges {z

k
} are all inside the sphere along the has to be careful when calculating the contribution

normal line passing through the sphere centre. to the force imposed on the tip due to bias V [i.e.
Their z-coordinates are as follows: z1=zs and when differentiating w(0)(r) and Q(0) in Eq. (2)].
z
k+1=R[l−(1/D

k
)]=R(D

k
+1−l) for Yk= Now we turn to the calculation of the function

1, 2, …. The second sequence of charges {z
k
∞} is wind(r, r∞) in Eq. (2). This function corresponds to

formed by the images of the first sequence with the image potential at a point r due to a unit
respect to the metal plane, i.e. z

k
∞=−z

k
and z

k
∞= charge at r∞. This potential is to be defined in such

−z
k
. An interesting point about the images a way that, together with the direct potential of

charges {zk} is that they converge very quickly at the unit point charge, it should be zero on both
the point z

2
=REl2−1 (i.e. z

k
�2 with k�2) electrodes (the boundary conditions for the Green

and that z
k+1<z

k
Yk. This is because the numbers function). Thus, let us consider a unit charge q=

D
k

converge rapidly to the limiting value 1 at r
q

somewhere outside the metal electrodes, as
D2=l+El2−1, which follows from the original shown in Fig. 2. We first create the direct image
recurrent relation above, D2=2l−(1/D2).

−q of this charge with respect to the plane at theTherefore, while calculating the potential w(0)(r),
point r

q
∞=ŝr

q
to maintain zero potential at theone can consider the charges {z

k
} and {z

k
∞} explic-

plane. Then, we create images of the two charges,itly only up to some k=k0−1 and then sum up
q=1 and −q=−1, with respect to the sphere tothe rest of the charges to infinity analytically to
get two image charges j

1
=−R/|r

q
−Rs | andobtain the effective charge

f
1
=R/|ŝr

q
−Rs |, as shown in Fig. 2, where

Rs=(0, 0, zs). These image charges are both inside
z
2
= ∑

k=k
0

2
z
k
= ∑

n=0
2 z

k
0

Dn
2
=

z
k
0

D
2

D
2
−1 the sphere by construction and their positions can

be written down using a vector function
to be placed at z2. This can be used instead of the f (r)=Rs+R2 [(r−Rs)/|r−Rs |2 ] as follows:
rest of the series: r

j
1

=f (r
q
) and r

z
1

=f (ŝr
q
). Now the potential at

the surface will be zero. At the next step we
w(0)(r)= ∑

k=1
k
0 z:kA 1

|r−r
z
k

|
−

1

|r−ŝr
z
k

|B, (5) construct the images j1∞=−j1 and f1∞=−f1 of the
charges j1 and f1 in the plane, at points ŝr

j
1

and
ŝr
f
1

respectively, to get the potential at the planewhere z:k=z
k

for k<k0 and z:k
0

=z
2

; then,
also zero. This process is continued, and in thisr

z
k

=(0, 0, z
k
) is the position vector of the charge

z
k

and r
z
k

∞ =ŝr
z
k

=(0, 0, −z
k
) is the position of the way two infinite sequences of image charges are
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notation, let us assume that the original charge is
in the xz-plane. Then it follows from Eq. (7) that
x
j
k+1

<x
j
k

. It is also seen that x
j
k

�0 and
z
j
k

�z
2
=REl2−1 (see above) as k�2 and the

same for the f-sequence. This means that the image
charges inside the sphere move towards the vertical
line passing through the centre of the sphere and
finally converge at the same point z

2
. This is the

same behaviour we observed for charges in the
capacitor problem at the beginning of this section
(see Fig. 2). In fact, the calculation clearly shows
a very fast convergence, so that we can again sum
up the series of charges from k=k0. Thus, the
image potential at a point r due to the unit charge
at r

q
is:

wind(r, r
q
)=−

1

r−ŝr
q

+∑
k=1
k
0 Cj:

kA 1

|r−r
j
k

|
−

1

|r−ŝr
j
k

|B
Fig. 2. Construction of image charges in the sphere–plane +f:

kA 1

|r−r
f
k

|
−

1

|r−ŝr
f
k

|BD, (8)
capacitor system due to one charge q outside the metals.

where j:
k
=j

k
for k<k0 and j:

k
0

=j2=
j
k
0

(D
2

/D
2
−1), and similarly for the f-sequence.

constructed, which are given by the following Here D2 is the geometrical characteristic of the
recurrence relations: capacitor introduced at the beginning of this

section.
As has already been mentioned in Section 2.1,j

k+1=j
k

R

|ŝr
j
k

−Rs | the function wind(r, r
q
) must be symmetric with

respect to the permutation of its two variables. It
is not at all obvious that this is the case, since ther

f
k+1

=f (ŝr
j
k

)=Rs+R2
ŝr
j
k

−Rs
|ŝr

j
k

−Rs |2
, (7)

meaning of its two arguments in Eq. (8) is rather
different. Nevertheless, we show in Appendix Awhere k=1, 2, … and similarly for the f-sequence.
that the function wind(r, r

q
) is symmetric.Note, however, that the two sequences start from

different initial charges. Namely, the j-sequence
starts from the original charge q and the f-sequence 2.3. The calculation of the total force acting on the

tipfrom its image in the plane −q. The two sequences
{j
k
} and {f

k
} are to be accompanied by the other

two sequences {j
k
∞} and {f

k
∞}, which are the images In order to calculate the total force acting on

the tip, one has to differentiate the total energy,of the former charges with respect to the plane.
The four sequences of the image charges and the Eq. (1), with respect to the position of the sphere

Rs. Since we are interested only in the force actingcharges q and −q provide the correct solution for
the problem formulated above since they produce in the z-direction, it is sufficient to study the

dependence of the energy on zs. There will be threethe potential that is the solution of the correspond-
ing Poisson equation and, at the same time, is zero contributions to the force. The force from the

electrostatic energy is considered in some detail inboth on the metal sphere and the metal plane.
It is useful to study the convergence properties Appendix B. The second contribution to the force

comes from the van der Waals interaction [27].of the sequences of image charges. To simplify the
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Finally, the interatomic interactions in regions 1– energy Ush. Therefore, finally we have:
4 lead to a force that is calculated by differentiating
the shell-model energy [the first term in Eq. (1)]. Ftip=∑

iµ1
[F(sh)
iz

]
x
0

−
dUvdW

dzs
−A∂Uel

∂zs
B

x
0

, (12)
Therefore:

where the first summation runs only over atoms
Ftip=−

dUsh
dzs

−
dUvdW

dzs
−

dUel
dzs

, (9) in region 1. Thus, in order to calculate the force
imposed on the tip at a given tip position zs, one
has to relax the positions of atoms in regions 2

where Ush=1
2
S
ij
∞v
ij

is the shell model energy. We and 3 using the total energy of the system,
recall that the summation here is performed over Ush+Uel. Then one calculates the shell-model
all atoms in regions 1 to 4. Only positions of the force, F(sh)

iz
, acting on every atom in region 1 in

atoms in region 1 depend directly on zs, since the z-direction as well as the electrostatic contribu-
atoms in regions 2 and 3 are allowed to relax. tion to the force given by the last term in Eq. (12).
However, their equilibrium positions, r(0)

i
, deter- The van der Waals force between the macroscopic

mined by the minimisation of the energy of tip and sample does not depend on the geometry
Eq. (1), will depend indirectly on zs at equilibrium, of the atoms and can be calculated just once for
r(0)
i
=r(0)

i
(z
s
). Then, we also recall that the electro- every given zs.static energy Uel depends only on positions of Although the expression for the force obtained

atoms in regions 2 to 4, as well as on the tip above is exact for the model used in this study,
position zs. such a calculation is quite demanding since it

Let us denote the positions of atoms in regions requires using the electrostatic energy Uel alongside
2 to 4 by a vector x=(r1, r2, …). The total energy with the shell-model energy Ush in the optimisation
U=U(x, zs), where the direct dependence on zs process. Most time is spent in the calculation of
comes from atoms in region 1 of the shell model the forces imposed on atoms due to the energy
energy Ush and from the electrostatic energy Uel. Uel. Therefore, in this work we have adopted the
In equilibrium the total energy is a minimum: following approximate strategy. For every tip posi-

tion, all atoms in regions 2 and 3 were allowed to
relax to mechanical equilibrium in accordance withA∂U

∂x Bz
s

=0, (10)
the shell-model interactions only and we neglected
the effect of the image charges on their geometry.
To investigate the effect of this, we performedwhere the derivatives are calculated at a given
some fully self-consistent calculations in the NaClfixed tip position zs. Let x

0
=(r(0)

1
, r(0)
2

, …) be the
step system. In these calculations, ions in regionssolution of Eq. (10). Then, since x0=x0(zs), we
2 and 3 are allowed to relax completely withhave for the force:
respect to microscopic and image forces. We found
that the displacements of ions in the system due

Ftip=−
dU [x

0
(zs), zs ]

dzs
=−A∂U

∂x
0
B
z
s

∂x
0

∂zs
to image forces was less than 0.01 Å and would
not affect our results.

The force acting on the tip was calculated using
−A∂U

∂zs
B

x
0

=−A∂U

∂zs
B

x
0

, (11) an equation similar to Eq. (12):

where we have used Eq. (10). This result can be Ftip≈∑
iµ1

[F(sh)
iz

]
x
0

+∑
iµ2

[F(el)
iz

]
x
0

−
dUvdW

dzs
−A∂Uel

∂zs
B

x
0

,
simplified further. Indeed, the partial derivative of
the shell-model, −(∂Ush/∂zs), is equal to the sum (13)
of all z-forces acting on atoms in region 1 due to
all shell-model interactions, since only these atoms where in the second summation we sum all z-

forces acting on all atoms of region 2 due to theare responsible for the dependence on zs in the
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electrostatic energy Uel. The calculation of the code [28,29]. We will refer to this interaction as
microscopic in further discussion. The nano-tipelectrostatic contribution to the forces acting on

atoms is considered in detail in Appendix C. and the NaCl cluster are each divided into two
regions, I and II. In terms of Fig. 1, region I
consists of region 2 and the top two layers of the
cluster (region 3), and region II consists of region3. Results
1 and the remaining bottom two layers of the
cluster (region 4). The region I ions are relaxedIn order to demonstrate the relative significance

of the image force with respect to the other forces, explicitly, whilst the region II ions are kept fixed
to reproduce the potential of the bulk lattice andwe applied the interaction model described above

to calculate the tip–surface forces of several char- the remaining tip ions in the relaxed ions. The
calculation is periodic, so that the infinite surfaceacteristic systems. These systems were chosen as

they represent a surface–substrate class that has is represented; however, this means large surface
unit cells must be used to avoid interactionsbeen studied extensively in STM [3] and NC-SFM

experiments [10,11]. Specifically, each of the sys- between tip images in different cells. We made sure
that the shell-model contribution to the force istems represents a feature that is likely to be found

in experiment, and in which image forces may play completely converged with respect to the size of
the periodically translated simulation cell.a significant role in the interactions.

Electronic polarisation of the ions is imple-
mented via the Dick–Overhauser shell model [30].3.1. Details of the calculations
Buckingham two-body potentials were used to
represent the non-coulombic interactions betweenThe systems used to calculate the forces are all

set up as shown in Fig. 1, with only the exact the ions. The parameters for these interactions are
well tested and are fully described in Ref. [31].structure of the NaCl cluster changing between

systems. For these calculations the tip consists of To calculate the shell-model contribution to the
microscopic force between tip and surface,a sphere of radius 100 Å with a 64-atom MgO

cube embedded at the apex. The cube is orientated S
iµ1 [F(sm)

iz
]
x
0

[see Eq. (13)], we first calculate the
total shell-model energy of the system at a rangeso that it is symmetric about the z-axis with a

single oxygen ion at the lowest point of the tip. of tip–surface separations, and then differentiate
it numerically to find the force as a function ofThe top three layers of the cube fall within the

sphere’s radius and constitute region 1, as shown separation.
The image force is calculated by taking thein Fig. 1. The exact number of ions in region 1 is

set so as to keep the nano-tip attached to the relaxed geometry from the shell-model calculation
at each tip–surface separation. Any ions withinsphere neutral. The remaining ions of the cube

constitute region 2. The clusters used consist of the sphere (i.e. region 1) are not considered in the
image force calculation, as it is impossible to havefour layers of NaCl, with the top two layers

designated region 3 and the bottom two layers ions within the conducting sphere. Also, any ions
closer than 2.5 Å to the sphere did not produceregion 4, as in Fig. 1. The metal plate is 2 Å below

the bottom of the cluster and the bias is held at any images within the sphere, as these would
produce an unrealistically large interaction. The1.0 V in all calculations. This setup is consistent

through all systems calculated and, where appro- force on each atom in the system due to the image
interaction is then calculated, and the force on thepriate, for all interactions calculated. This gives us

confidence that we can compare the relative values tip atoms is summed to find the contribution of
the image force to the tip–surface force, see Eq.of forces in the same system and between

different systems. (13). This calculation is not periodic; the NaCl
cluster is now a finite body. However, since ourThe interaction between ions in regions 1–4 was

calculated using a static atomistic simulation tech- NaCl periodic cell is large enough that we can
neglect the interaction between the tip images, wenique as implemented in the MARVIN computer
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can effectively consider the NaCl sample to be a block of atoms. We found that this interaction
converges to a constant value when the radius offinite cluster at all stages of the calculation. The

only difference is that the periodic boundary condi- the sphere exceeds about 30 Å. The force exerted
on one atom due to this interaction at characteris-tions in atomistic simulations do not allow the

atoms at the cluster border to relax as in a free tic tip–sample distances is several orders of magni-
tude smaller than the force between macroscopiccluster. However, this effect is small and does not

affect our conclusions. The approach described tip and substrate. Also, the force decays with
distance as r−4. This effectively means that onlyallows us to ensure the consistency of our model

shown in Fig. 1 throughout the whole modelling the top layer of the sample contributes to the
van der Waals force, and there are not enoughprocess.

The final contribution to the force is the van der ions in that layer for it to be significant. Therefore,
we neglected this interaction in furtherWaals interaction. It includes the following contri-

butions: (i) between the macroscopic Si tip of calculations.
conical shape with the sphere of radius R at the
end [27] and semi-infinite substrate; (ii) the disper- 3.2. NaCl step
sion forces between the atoms in the sample treated
atomistically; and (iii) the interaction between the The first system studied was a stepped NaCl

cluster produced by placing a 5×3×2 (in termsmacroscopic part of the tip and the sample atoms.
The first contribution is calculated analytically of an eight-atom cubic unit cell ) block on top of

a 5×5×2 block so that two corners are aligned.[27]. In fact, the macroscopic contribution to the
van der Waals force is the same in each of the A schematic for the calculation cell of this system

is shown in Fig. 3. This system gives us a goodthree systems described below, as it depends only
on the tip–surface separation, macroscopic sphere opportunity to study the interactions over sites of

different coordination. The upper terrace of theradius, cone-angle and Hamaker constant of the
system [27]. All these quantities are identical in step is a good representation of the ideal (001)

surface of NaCl; as long as we remain at leasteach system we look at, so that the van der Waals
force acts as a background attractive force inde- three rows from the edge the forces are converged

with respect to row choice. However, the ions ofpendent of the microscopic properties of the system
[8]. The Hamaker constant needed for the calcula- the step-edge have a coordination of four, com-

pared with a coordination of five for the terracetion of the macroscopic van der Waals force is
estimated to be 0.5 eV [32]. ions.

To study the difference between these types ofTo estimate the importance of the third contri-
bution, we have calculated explicitly the dispersion site we calculated the interactions over an Na ion

in the terrace and a Cl ion at the step edge, asinteraction between one atom and a spherical

Fig. 3. System schematic for NaCl step.
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This means that for this system the image force
acts in a similar way to the macroscopic van der
Waals force, i.e. as an attractive background force
that is blind to atomic identity and, therefore, does
not contribute to the SFM image contrast.

3.3. Pair vacancy

The second system studied is formed by taking
the NaCl step discussed in Section 3.2 and remov-
ing an Na–Cl pair of nearest-neighbour ions from
the upper terrace, as shown in Fig. 5. This effec-
tively creates a dipole on the upper terrace of the
step, but does not greatly affect the original geome-
try of the step.Fig. 4. Forces over NaCl step.

In this system we calculated the total force
contributions over the ions at the edge of the pair
vacancy: the Na ion labelled 1 in Fig. 5 and Clshown in Fig. 3. This allows us to compare the

effects of coordination and chemical identity with ion labelled 2. The force contributions as a func-
tion of tip–surface separation are shown in Fig. 6.the forces between tip and surface.

The first point to note is that the macroscopic The macroscopic van der Waals force is obviously
identical to the previous example, and is here onlyvan der Waals force is the same for both anion

and cation; this is an obvious effect from the way for comparison. The microscopic force is also very
similar to the previous example. This is expected,in which we calculate this interaction. It is also

the least significant force at tip–surface separations as we are still looking at the interaction over the
same ions and the double vacancy of oppositelyless than 6 Å, as can be seen in Fig. 4.

The behaviour of the microscopic force is as charged ions has little significant effect on this
force. The removal of the vacancy ions does changewould be expected for the interaction of an oxygen

ion (which simulates the end of the tip apex, see the local coordination of the ions at the edge of
the vacancy, but this is compensated by relaxationabove) with the ions in the surface. The force is

attractive over the positive Na in the terrace and of these ions away from the vacancy. This compen-
sation means that the microscopic van der Waalsrepulsive over the negative Cl at the step edge.

The microscopic force becomes the dominant inter- and electrostatic force directly over the edge ions
are similar to the force over the ions in the defect-action in the system at around 5.5 Å. As the tip

gets very close to the Na ion in the terrace the ion
begins to displace towards the tip oxygen, greatly
increasing the attractive force. When the separa-
tion is closer than around 4.7 Å the displacement
of the Na ion towards the tip exceeds 1 Å. This
ion instability can be seen clearly both in the
microscopic and image force curves for Na in
Fig. 4 and has already been described in the litera-
ture in the context of AFM [33].

The image force itself is the dominant inter-
action at longer ranges, but it is fairly consistent
over cation and anion in the NaCl terrace. The
difference in image force over the Cl and Na ions

Fig. 5. System schematic for pair vacancy on NaCl terrace.is less than 0.01 eV/Å until the instability at 4.7 Å.
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attractive and repulsive over the Na ion. The
difference in magnitude of the image force over
the two ions is due to the asymmetry of the nano-
tip ions at the end of the conducting tip. Although
this result implies that the image force is somewhat
sensitive to the geometry of the interacting feature,
it does demonstrate that the image force would
feel a defect in the surface.

3.4. Charged step

In the final system studied, we looked at a
charged step where similar ions run along each
edge of the step. Fig. 7 shows a schematic of the

Fig. 6. Forces over pair vacancy in NaCl step. calculation cell used. The system is created by
taking the neutral step setup from Section 3.2 and
just removing ions from four rows of the upperfree terrace. This is seen clearly by the onset of

Na ion instability at the same tip–surface separa- terrace. This charged row of ions is similar to the
bridging oxygen rows seen in the TiO2 (110)tion of about 4.7 Å.

The image force over the edge ions demonstrates surface, a surface that has recently been studied
experimentally by NC-SFM [34].very different behaviour to the plain step system

studied in Section 3.2. The only similarity is that We calculated the contributions to the total
force over a Cl ion at one edge of the step, labelledthe microscopic force becomes the dominant inter-

action at the same distance of 5.5 Å. The image 1 in Fig. 7, and over an Na ion at the other edge,
labelled 2. The force contributions are shownforce over the Cl vacancy edge ion is attractive

and almost twice as large (−0.05 eV/Å) as the in Fig. 8.
The macroscopic van der Waals force for theforce over the Cl at the plain step edge

(−0.03 eV/Å). The image force clearly feels the charged step is again identical to previous examples
and plotted only for comparison. The microscopicdefect in the terrace and the increase in force

reflects the change in the local charge environment van der Waals and electrostatic forces over both
the ions are increased compared with the previousof the Cl ion. This is even more clearly shown by

the image force over the Na ion at the vacancy two systems. Over the Na ion at the step edge the
force is −0.1 eV/Å at 5.5 Å compared withedge. The force is much smaller than the micro-

scopic force at all separations and actually becomes −0.05 eV/Å at 5.5 Å for the Na ion in the terrace
of the plain step. This doubling of the force is alsorepulsive at around 6.2 Å. This means that the

induced potential in the conducting tip reflects the seen over the Cl ion, where the force at 5.5 Å is
0.025 eV/Å over the charged step and 0.012 eV/Åchange in local charge environment produced by

the vacancy. The net interaction over the Cl ion is over the plain step. This is a consequence of the

Fig. 7. System schematic for charged NaCl step.
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is very sensitive to the charge of the system between
the electrodes.

4. Discussion

In this paper we considered the contributions
to the force acting on a tip in a typical setup of
an NC-SFM, including: (i) a macroscopic van der
Waals interaction between the macroscopic tip and
substrate that is always attractive and gives no
image contrast; (ii) a microscopic force between
the tip apex and the sample that we described
using the shell model; for the first time (iii) the
image interaction due to macroscopic polarisationFig. 8. Forces over charged NaCl step.
of the metal electrodes (both tip and substrate).
The latter two contributions may be either attrac-
tive or repulsive depending on the distance to thechange of geometry of the charged step system:

both ions have lower coordination than the ions surface and the nature of the surface site that the
tip is above. They both play a role in imagein the plain step system. Lowering the coordination

increases the gradient of the electrostatic potential contrast in the NC-SFM experiment. We clearly
demonstrated in this paper the significance of thearound these ions and, therefore, increases the

microscopic force between tip and surface. image interaction, which in some cases is the
dominant force. It is especially interesting to noteThe image force dominates the interactions over

the charged step at nearly all tip–surface separa- the ability of the image force to resolve the charged
di-vacancy and charged step. This shows that thetions; only after the onset of Na ion instability at

4.7 Å does the microscopic attraction between the image force could be the dominant source of
contrast in NC-AFM images of charged features.tip and the step Na overcome the image force.

Over the Cl ion the image force is completely In this study we have adopted several approxim-
ations that we are now going to discuss. First,dominant, and is approximately an order of magni-

tude larger than the microscopic force. At the edge note that we have assumed a particular setup for
our model, in terms of the way the bias is appliedof the charged step, the row of similar ions pro-

duces a row of similar image charges of opposite to the system, as can be seen in Fig. 1. This type
of setup is commonly used [35], but other possi-sign in the conducting tip. In the other systems

this effect is effectively compensated by the bilities may exist. For example, a setup where the
tip and substrate are decoupled and their potentialsalternating ion species. As in the previous system,

the image force does feel the difference between are changed independently is equivalent, since only
the absolute magnitude of the potential differenceone side of the step and the other; this is manifested

in the opposition of the interactions at either side between the tip and the metal substrate matters.
Another limitation of the present model is that,of the step. Over the Cl ion the image force is

attractive and over the Na ion the force is repul- for the calculation of the image interaction, we
studied finite clusters of a particular shape.sive. This is a reflection of the image charge

distribution produced in the tip by the charged However, it is important to understand how the
result of the calculation would depend on the sizestep system, an exaggerated version of the effect

seen over the vacancy. The significance of the of the cluster if we wish to make any general
conclusions about image forces in these systems.image force above the ions of the charged step is

in agreement with our preliminary results of As has been mentioned in previous sections, the
image force over a particular ion is somewhatRef. [12], where it was found that the image force
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dependent on the geometry of the system being the image force could exaggerate the effects of ion
displacement on imaging of conducting materialsstudied. Note that we cannot increase the cluster

size indefinitely, since it is limited to roughly twice or thin films with contact AFM.
The image force also depends on the chargethe radius of the sphere used to model the tip.

Beyond this limit the top of the sphere affects the distribution and ionicity of the nano-tip used, as
well as the charge itself. As has been discussed ininteraction with the surface; this is an unphysical

result as, in reality, the tip has essentially infinite our recent paper [37], a more realistic model of
an NC-SFM tip would probably consist of anheight at this scale. In order to investigate the

effect of the size of the cluster, we calculated the ionic oxide layer covering a semiconducting silicon
tip. The simplest model of this tip is an oxygenimage force over the same terrace Na ion as in the

first system studied, but increased the size of atom or a hydroxyl group adsorbed on a silicon
cluster [37]. This model represents a nano-tip withthe cluster by several hundred atoms (being still

within the limit of the maximum cluster size). This a decaying ionicity as you move away from the
apex. The reduction of the magnitude of theeffectively means that the local geometry and

charge environment of the ion under the tip apex charges in the nano-tip would reduce the magni-
tude of the image charges in the conducting tipremain the same, but the total number of charges

in the system changes significantly. The calcula- and, therefore, the image force.
tions show that the image force over the cluster
does increase as the number of atoms is increased,
but then converges. The increase in image force is Acknowledgements
due to the interactions of the extra charges in the
system, but the difference is an order of magnitude LNK and ASF are supported by EPSRC. We

are grateful to A. Baratoff, R. Bennewitz, E. Meyersmaller than the image force itself and so would
not affect our results significantly. and A.I. Livshits for useful discussions and to

A.L. Rohl for help in MARVIN calculations.For consistency, throughout this study we have
used a neutral nano-tip. It is known, however, that
the tips used in real experiments can be highly
contaminated by external material, which may lead Appendix A
to tip charging. Therefore, it is relevant to study
the effect of a charged tip (i.e. a nano-tip with a In this appendix we show explicitly that the

function wind(rA, r
B
) of Eq. (8) is symmetric withdifferent number of anions and cations) on the

image force. To simulate this, we added four respect to its variables. First of all, one has to be
clear about the notation. While considering theuncompensated oxygen ions to the original nano-

tip so that its net charge became −8e. We found function wind(rA, r
B
), we imply that the polarising

unit charge is located at r
B

and, therefore, allthat the image force more than doubles over the
charged step. This system is an extreme example image charges and their positions entering Eq. (8)

will be designated by the letter B, e.g. f
k
(B),of this effect, but an increase in image force can

be seen when using a charged tip in all the systems j
k
(B), r

j
k

(B), etc. Consequently, while considering
the function wind(rB, r

A
) we imply that the sourcethat have been studied here. The effects of tip

contamination could be even more significant in unit charge is at r
A

and the image charges and
their positions will be marked by the letter A, e.g.the case of contact SFM. In previous studies of

contact SFM imaging [36 ], the importance of ion j
k
(A), r

j
k

(A).
Let us now write down separately Eq. (8) fordisplacements and ion exchange between tip and

surface has been demonstrated. Our results here wind(rA, r
B
) and wind(rB, r

A
) and compare them term

by term. For simplicity we assume that the expan-show that displacement of ions causes a large
increase in the image force between the tip and sions are infinite. The first terms in both expres-

sions are obviously identical since |r
A
−ŝr

B
|=surface. Ion exchange may also charge the tip,

again changing the image force. This means that |r
B
−ŝr

A
|. Let us now prove that the first terms in
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the first sum in both expansions are also identical Then, we notice that the denominator in the left-
hand side can be transformed as follows:term by term, i.e. that for any k
|r(k)
A
−f (r

B
)|=|f (r(k−1)

A
)−ŝf (r

B
)|=|f [r(k−1)

A
]−r(1)

B
|

and similarly for the denominator in the right-j
k+1(A)

|r
B
−r

j
k+1

(A)|
=

j
k+1(B)

|r
A
−r

j
k+1

(B)|
. (14)

hand side. In addition, the product x(r
A
)x(r

B
) is

cancelled out on both sides, so that we are left
First of all, a direct calculation shows that they with:
are identical for k=0, which can be written down
in a symbolic form as

x[r(1)
A

],x[r(k−2)
A

]G x[r(k−1)
A

]

|r(1)
B
−f [r(k−1)

A
]|H

x(x)

|y−f (x)|
=

x(y)

|x−f (y)|
, (15)

=x[r(1)
B

],x[r(k−2)
B

]G x[r(k−1)
B

]

|r(1)
A
−f [r(k−1)

B
]|H. (18)

where x(r)=−R/|r−Rs| and the function f(r) has
Notice that the expression obtained is similar tobeen introduced in Eq. (7). It is implied in the
Eq. (16) with r

B
�r(1)

B
and r

A
�r(1)

A
and the order kabove identity that x=r

A
and y=r

B
; however, it

reduced by one. Repeating the procedure, weobviously holds for any choice of vectors x and y.
reduce the order again and get Eq. (18) withNote that this result simply corresponds to the
r(1)
B
�r(2)

B
and r(1)

A
�r(2)

A
. If k=2p is even, thiscase of a single sphere for which the potential

process is repeated until we get exactly Eq. (15)wind(rA, r
B
) is known to be symmetric [18].

with x=r(p)
A

and y=r(p)
B

, which is true. If k=2p+1Consider now the case of any k. Let us denote
is odd, however, then we will get the same expres-r(n)

A
=ŝr

j
n

(A) and r(n)
B
=ŝr

j
n

(B) for Yn=1, 2, ….
sion |r(p+1)

B
=f [r(p)

A
]|−1 on both sides. Thus, Eq.Then it follows from Eq. (7) that

(14) is proven Yk so that the first terms in the firstr
j
n+1

(A)=f [r(n)
A

] and r(n+1)
A

=ŝf [r(n+1)
A

] for any
sum in Eq. (8) are identical in the two expansions.n≥1 [while r

j
1

(A)=f (r
A

) and r(0)
A
=r

A
for n=0];

Note again that Eq. (14) is valid for any twosimilar formulae can be written for the charges
vectors r

A
and r

B
.generated by the source unit charges at r

B
. Using

Compare now the second term in the first sumthis notation, we have j
k
(A)=(−1)k

in the expansion of wind(rA, r
B
) with the first termx(r

A
)x[r(1)

A
]…x[r(k)

A
] and the same for j

k
(B), so that

in the second sum in the expansion of wind(rB, r
A

),Eq. (14) can be rewritten as:
see Eq. (8). They are identical as well for any k,
term by term:x(r

A
)x[r(1)

A
],x[r(k−1)

A
]G x[r(k)

A
]

|r
B
−f [r(k)

A
]|H

−j
k+1(B)

|r
A
−ŝr

j
k+1

(B)|
=

f
k+1(A)

|r
B
−r

f
k+1

(A)|
. (19)

=x(r
B

)x[r(1)
B

],x[r(k−1)
B

]G x[r(k)
B

]

|r
A
−f [r(k)

B
]|H. (16)

Indeed, by construction, the image charges j
k
(A)

are built due to the positive source unit charge atThe expressions in the square brackets in either
r
A

, whereas the image charges f
k
(A) are built dueside of Eq. (16) can be simplified by means of the

to the source negative unit charge at r
A9
=ŝr

A
, soidentity in Eq. (15). Namely, we use x=r

A
(k) and

that f
k
(A)¬−j

k
(A9 ) and r

f
k

(A)¬r
j
k

(A9 ). Therefore,y=r
B

to simplify the expression in the square
Eq. (19) appears to be exactly the same as Eq.brackets in the left hand side of Eq. (16) and
(14) corresponding to one of the source chargesx=r

B
(k) and y=r

A
in the right-hand side, giving

at r
A9

rather than at r
A
. This also means that the

second term in the first sum in the expansion of
x(r

A
)x[r(1)

A
],x[r(k−1)

A
]C x(r

B
)

|r(k)
A
−f (r

B
)|D wind(rB, r

A
) is, term by term, identical to the first

term in the second sum in the expansion of
wind(rA, r

B
). Similarly, one can prove that the=x(r

B
)x[r(1)

B
],x[r(k−1)

B
]C x(r

A
)

|r(k)
B
−f (r

A
)|D. (17)

second terms in the second sum of the two expan-
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sions also coincide term by term. The proof is The calculation of the derivatives of the second
part of the energy that is to do with charges {q

i
}complete.

proceeds in a similar manner, although the calcula-
tion is more cumbersome. We need the derivatives
with respect to zs of the induced potential,
wind(rj, r

i
). It follows from Eq. (8) that for every

Appendix B charge q
i
we should, therefore, consider the deriva-

tives of the charges j
k
, j

k
∞ as well as of their

In this appendix we explain how the contribu- positions r
j
k

and ŝr
j
k

; after that, the same calcula-
tion −(∂Uel/∂zs) to the total force acting on the tion should be repeated for the f-sequence. Note
tip is calculated. The electrostatic energy Uel is that the actual dependence on zs comes from
given by Eqs. (2), (6) and (8). As has been already rs=(0, 0, zs) in Eq. (7). Let us fix some charge q

i
.

mentioned in Section 2, the calculation of the We first define the derivatives
derivative is not simple since the dependence of
Uel on zs is not only explicit but also contains

C(j
k
)

a
=

∂r
j
k

a

∂zs
, (20)some implicit dependencies. It is the purpose of

this appendix to consider how this derivative is
calculated in some detail. where Greek indices a, b will be used to designate

The energy Uel consists of two parts: that due the Cartesian components of vectors. Using Eq.
to bare electrodes and that due to charges. We (7) one can get the following recurrent relations
first of all consider the first part, i.e. the derivatives for the quantities C(j

k
)

a
:

with respect to zs of the charge Q(0) and the
potential w(0)(r). Using definitions of charges z

k C(j
k+1

)
a

=d
az
+

R2

R2
k
G[h

a
C(j

k
)

a
−d

az
]given in Section 2.2, one has the following set of

recurrent equations for the derivatives of the
charges with respect to zs: −

2

R2
k

∑
b

[h
b
C(j

k
)

b
−d

bz
]R

ka
R
kbH, (21)

∂z
k+1
∂zs

=
1

D
k
A∂z

k
∂zs

−
z
k

D
k

∂D
k

∂zs
B, where the vectors R

k
=ŝr

j
k

−Rs , d
ab

is Kronecker’s
delta symbol and we also defined h

a
as h

a
=1 for

a=x, y and h
z
=−1. Note that this relation canwhere ∂

z
1

/∂zs=0 and the derivatives ∂D
k
/∂zs are

be used starting for k=0 if we set R0=r
i
−Rs andin turn obtained from ∂D

k+1/∂zs=(2/R)+
C(j

0
)

a
=0.[D−2

k
(∂D

k
/∂zs)], which starts from ∂D1/∂zs=2/R.

Finally, the derivatives of the charges j
k

can beThe position of image charges z
k

also depend on
calculated using their definition in Eq. (7) and thezs and the corresponding derivatives are easily
quantities in Eq. (20) as follows:expressed via the derivatives ∂Dk/∂zs as follows:

∂z
k
/∂zs=R(∂D

k
/∂zs)−1. The calculation of the

derivative of z2 and z2 with respect to zs is
∂j

k+1
∂zs

=
R

R
k
G∂j

k
∂zs

−
j
k

R2
k

∑
b

[h
b
C(j

k
)

b
−dbz]R

kbH,
calculated easily owing to their explicit dependence
on it (see Section 2.2). Thus, the calculation pro- (22)
ceeds as follows. First of all, the derivatives
∂D

k
/∂zs for all needed values of k≤k0 are calcu- where again this expression can be used starting

from k=0 if we set: ∂j0/∂zs=−1. First, one calcu-lated using the recurrent relations above, then the
derivatives of the charges and their positions are lates the derivatives C(j

k
)

a
using the recurrent equa-

tions in Eq. (21); then the derivatives of thealso calculated. This makes it possible to calculate
the derivatives of Q(0) and w(0)(r) with respect to charges j

k
are easily calculated from Eq. (22).

Then this procedure is repeated for the f-sequence.zs in a simple fashion in accordance with Eqs. (6)
and (5). The formulae obtained above allow one to
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