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Abstract 

Background: Obsessive-compulsive disorder (OCD) has been linked to functional 

abnormalities in fronto-striatal networks as well as impairments in decision making and learning. Little 

is known about the neurocognitive mechanisms causing these decision making and learning deficits in 

OCD, and how they relate to dysfunction in fronto-striatal networks. 

Methods: We investigated neural mechanisms of decision making in OCD patients, including 

early- and late-onset of disorder, in terms of reward prediction errors (RPEs) using fMRI. RPEs index 

a mismatch between expected and received outcomes, encoded by the dopaminergic system, and are 

known to drive learning and decision making in humans and animals. We used reinforcement learning 

models and RPE signals to infer the learning mechanisms and to compare behavioural parameters and 

neural RPE responses of the OCD patients to healthy matched controls. 

Results: Patients with OCD showed significantly increased RPE responses in the anterior 

cingulate cortex (ACC) and the putamen compared to controls. OCD patients also had a significantly 

lower perseveration parameter than controls.  

Conclusions: Enhanced RPE signals in ACC and putamen extend previous findings of fronto-

striatal deficits in OCD. These abnormally strong RPEs suggest a hyper-responsive learning network in 

patients with OCD, which might explain their indecisiveness and intolerance of uncertainty. 
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Introduction 

Obsessive-compulsive disorder (OCD) is related to abnormal activity in fronto-striatal brain 

loops (Saxena et al. 1998; Aouizerate et al. 2004; Maia et al. 2008; Menzies et al. 2008; Brem et al. 

2012; Walitza et al. 2014). These loops represent segregated, recurrent neural networks (Alexander et 

al. 1986) between cortical regions, such as the anterior cingulate cortex (ACC), and subcortical areas 

including striatum. Fronto-striatal loops are crucial for many cognitive domains involving the 

maintenance and selection of information (Alexander & Brown 2011; Maia & Frank 2011; Hauser et 

al. 2016b) and are closely interconnected with other cortical and subcortical systems (Doya 2008). The 

activity of these loops, is to a large extent modulated by catecholaminergic neurotransmitters, such as 

dopamine (Frank et al. 2007). Dopamine influences the neural gain in the system, changing the 

information conveyed in the network (Fiore et al. 2014, 2016; Hauser et al. 2016b). Impairments in 

these networks can change decision making and learning (Maia & Frank 2011; Cavanagh & Frank 

2014) – processes found to be impaired in OCD (Fear & Healy 1997; Sachdev & Malhi 2005; Nielen 

et al. 2009; Gillan & Robbins 2014). 

Fundamental to learning and decision making are the expression of reward prediction error 

(RPE; Montague et al. 1996; Schultz et al. 1997) signals. These signals indicate the mismatch between 

expectations and experiences – such as outcomes – and drive reinforcement learning and goal-directed 

behaviour (Schultz et al. 1997; Glimcher 2011). RPE signals are known to be encoded by the 

dopaminergic midbrain (Schultz et al. 1997) and being processed in fronto-striatal loops, such as ACC 

(Kennerley et al. 2011; Hauser et al. 2014b, 2015a), the striatum (Rutledge et al. 2010; Daw et al. 

2011), and ventromedial prefrontal cortex (Kennerley et al. 2011; Hauser et al. 2015a). Changes in RPE 

processing have direct impact on fronto-striatal loop activity and thus alter decision making and learning 

(Fiore et al. 2014, 2016; Hauser et al. 2016b). 

There is relatively consistent evidence that areas involved in RPE-processing, such as ACC, 

vmPFC and striatum, are impaired in OCD patients (van den Heuvel et al. 2010; Stern et al. 2011; Brem 

et al. 2012; Becker et al. 2014; Brem et al. 2014; Grünblatt et al. 2014; Walitza et al. 2014; Hauser et 

al. 2016a). Electrophysiological studies further suggest that internal error signals, such as the error-

related negativity (ERN; Falkenstein et al. 1990) are increased in OCD patients (Gehring et al. 2000; 
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Johannes et al. 2001; Endrass et al. 2008; Gründler et al. 2009; Cavanagh et al. 2010; Riesel et al. 2011; 

Xiao et al. 2011; Endrass & Ullsperger 2014; Riesel et al. 2015). Although these internal error signals 

have been related to RPE processing in the ACC (Holroyd & Coles 2002), no study has yet directly 

investigated RPE signals in OCD patients. Increased RPE signals could also explain patients’ subjective 

‘not just right’ experiences (NJR; Coles et al. 2003) and thus favour avoidance and checking behaviour, 

as these NJR experiences have been suggested to reflect mismatch signals, similar to RPEs (Pitman 

1987). 

In this study, we investigated learning and decision making mechanisms in 33 subjects with 

OCD and 34 matched controls. The adolescent and adult participants played a probabilistic reversal 

learning task which is known to be sensitive to detect fronto-striatal impairments in OCD (Remijnse et 

al. 2006; Chamberlain et al. 2008; Valerius et al. 2008; Remijnse et al. 2009; Freyer et al. 2011). We 

used reinforcement learning models (Sutton & Barto 1998) to infer underlying learning mechanisms 

via a model-derived RPE signal measured using functional magnetic resonance imaging (fMRI). We 

hypothesized that OCD patients would show an increased RPE signal in fronto-striatal areas, related to 

abnormal decision making and learning. 
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Materials and methods 

Subjects 

67 adolescent and adult subjects participated in this fMRI study. 33 OCD patients (23.4y±9.5, 

13.4-45.9) were compared to 34 healthy, matched controls (24.5y±11.2, 13.1-45.8; detailed group 

descriptions in Table 1). Patients were recruited from public and private health care services as well as 

through public advertisement. Controls were recruited from the general population. Both groups, OCD 

patients and controls underwent a structured psychiatric interview (SCID or K-SADS-PL, German 

versions; Wittchen et al. 1997; Delmo et al. 2001) and all comorbidities are listed in Table 1. All OCD 

patients fulfilled the DSM-IV-TR and DSM-5 criteria for OCD at least once in lifetime and were 

diagnosed with either early onset (EO: disorder onset < 18y) or late onset (LO) OCD. To investigate 

the role of variability in current OCD-severity, we also included five patients which were in remission 

at the time of the study, but previously met a primary diagnosis of OCD. Symptom severity was assessed 

using the (C)Y-BOCS interview (Goodman et al. 1989). None of the controls reported any major 

psychiatric disorder (psychosis, depression, autism spectrum disorder, substance abuse), but two 

controls reported specific phobias (spiders, syringes) without clinical relevance or any daily life 

impairments. Of the 33 patients, 20 were medicated and 13 were not medicated at the time of the study 

(Table 1). One OCD patient had to be excluded prior to analysis due to a task performance at chance 

level. Data from some of the healthy controls has been reported previously (Hauser et al. 2014a, 2014b, 

2015a, 2015b). The study was approved by the local ethics committee and complied with the declaration 

of Helsinki, and all participants (and if under 18 years: their legal guardians) gave written informed 

consent. 

 

Reversal learning task 

All participants played a probabilistic reversal learning task (Fig. 1) (Hauser et al. 2014b, 

2014a, 2015b) consisting of 120 trials (divided into 2 runs), while fMRI was recorded. The subjects 

were instructed to win as much money as possible. They had to learn the reward-contingencies based 

on trial-and-error. One of the stimuli was assigned with a win probability of 80%, whereas the second 

stimulus had a punishment probability of 80%. After six to 10 correct responses, the reward probabilities 
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reversed (exact reversal rules are detailed in Hauser et al. 2014b). The subjects were informed 

beforehand about the probability of reversals occurring, but no further information about the reversal 

contingencies was provided. As outcomes, either a reward (+50 Swiss Centimes) or a punishment (-50 

Swiss Centimes) was presented. To prevent misses, we punished late answers with -100 Swiss 

Centimes. The location of the stimuli was randomly determined on each trial to prevent motor 

perseveration. 

 

Computational Modeling 

To understand the mechanisms underlying the subjects’ choices, we compared two different 

anticorrelated Rescorla-Wagner learning models (Gläscher et al. 2009; Reiter et al. 2016), one with a 

common learning rate alpha for positive and negative RPEs, the other with separate learning rates (Niv 

et al. 2012; Hauser et al. 2015b).  Each of the models was combined with two different softmax choice 

models. We used a standard softmax choice rule with the stochasticity (inverse temperature) parameter 

beta, and an extended softmax function with an additional perseveration parameter gamma to capture 

potential differences in the participants’ tendency to repeat a given action independent of its value (Lau 

& Glimcher 2005; Daw et al. 2011). We determined the best models using Bayesian model selection 

(Stephan et al. 2009). The parameters and RPEs from the winning model were then used for fMRI 

analyses and further behavioural comparison (using independent sample t-tests). Detailed descriptions 

of the models and procedures are provided in the supplementary material. 

 

fMRI: preprocessing and group comparisons 

fMRI was recorded in a 3T Philips Scanner (Philips Medical Systems, Best, the Netherlands). 

Echo planar imaging (EPI), optimized for maximal orbitofrontal signal sensitivity (TR: 1850ms, TE: 

20ms, 15° tilted downwards of AC-PC, 40 slices, 2.5*2.5*2.5mm voxels, 0.7mm gap, FA: 85° FOV: 

240*240*127mm), was used. Additionally, a T1-weighted structural image was recorded.  

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) standard procedures were used for preprocessing and 

analysis. The raw data were realigned, resliced, and coregistered to the T1 image. For normalization, 

the deformation fields were used, which were obtained using ‘new segmentation’. This resulted in a 
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new standard voxel size of 1.5*1.5*1.5mm. Subsequently, the data were spatially smoothed (6mm 

FWHM kernel). 

Based on our hypothesis that OCD patients show increased RPE signals, we compared the 

neural responses to RPEs during outcome presentation. On the first level, we entered model-derived 

RPEs as a parametric modulator at the time of feedback onset. Several other regressors were entered as 

nuisance regressors: cue onsets and value of chosen option at this time, movement parameters, and 

pulsatile artifacts (Kasper et al. n.d.). At the second level, we compared the RPE effects between the 

groups using independent sample t-tests. Group differences are reported on p<.05, whole-brain 

corrected using cluster-based family-wise error correction (FWE; height threshold p<.005).  

 

fMRI: further analyses (age-of-onset, symptom severity) 

Because of the large age-range of our participants, we re-analyzed the same fMRI-models by 

entering age, as well as log-transformed age (natural logarithm), as a covariate - although age did not 

differ between the groups - to control for more subtle effects which would be driven by age. 

To determine whether these group differences were modulated by age-of-onset or symptom 

severity, we correlated the mean activation in the significant group-difference clusters with the age-of-

onset as well as with symptom severity as measured by (C)Y-BOCS using t-tests and multiple 

regression analyses. 
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Results 

Behavioural group differences 

We found no difference between the groups in whether they were able to learn the stimulus-

valence associations. Both groups performed similarly well in terms of winnings (CTRL: 

16.80CHF±4.81, OCD: 16.60CHF±6.32, t(64)=.15, p=.885), number of rewarded trials (CTRL: 

77.62±4.51, OCD: 77.50±5.84, t(64)=.09, p=.927), number of punished trials (CTRL: 40.74±4.52, 

OCD: 40.56±5.07, t(64)=.15, p=.884), number of misses (CTRL: 1.65±1.92, OCD: 1.88±2.09, 

t(64)=.46, p=.646), and the number of reversals in the stimulus-valence mapping (CTRL: 7.26±1.33, 

OCD: 7.06±1.56, t(64)=.57, p=.573). We found that the groups differed marginally in how often they 

switched between the stimuli (CTRL: 22.62±7.84, OCD: 26.34±9.79, t(64)=1.71, p=.092). We then 

calculated the stay probability, separately for trials with positive and negative feedback. A repeated-

measures ANOVA with within-subject factor valence (reward, punishment) and between-subjects 

factor group (CTRL, OCD) confirmed a marginally significant difference in the group main effect 

(F(1,64)=3.70, p=.059), more evident in a lower stay-probability after rewards in OCD (CTRL: .97±.02, 

OCD: .94±.08, t(64)=2.05, p=.045), than after punishments (CTRL: .48±.16; OCD: .43±.12, t(64)=1.41, 

p=.165). 

 

Computational modeling reveals altered perseveration 

Between the four different model combinations, the anti-correlated Rescorla-Wagner model 

with the perseveration parameter and an identical learning rate for positive and negative RPEs, 

outperformed all other models (Supplementary Table 2). Consequently, we used this model for all 

further behavioural and fMRI analyses. 

To better understand the decision making mechanisms in OCD, we compared the model 

parameters between our OCD patients and healthy controls. The winning model contained three free 

parameters which were estimated for each subject independently. The learning rate alpha determines 

how quickly a participant learns from new evidence. The inverse temperature parameter beta describes 

how stochastic or exploratory the subject makes its decisions. Lastly, the perseveration parameter 
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gamma accounts for the tendency of choosing the same stimulus again, independently of the assigned 

values. 

We did not find any difference between the groups in the learning rate alpha (CTRL: .56±.13, 

OCD: .54±.12, t(64)=.59, p=.560, Fig. 2) or in the choice stochasticity parameter beta (CTRL: 

6.75±4.70, OCD: 5.36±4.66, t(64)=1.20, p=.234). However, we found a significant difference in the 

perseveration parameter gamma (CTRL: .308±.177, OCD: .205±.161, t(64)=2.47, p=.016). The 

difference remained significant when controlling for age (multiple regression, age: t(64)=2.43, p=.018; 

log(age): t(64)=2.48, p=.016). Interestingly, the OCD patients had a lower perseveration parameter 

compared to the matched controls. This means that they are less likely to repeat the same action again, 

independent from the stimulus value. 

In a subsequent exploratory analysis, we assessed whether there was a relation between 

symptom severity and model parameter gamma within the patient group. We did not find any effect of 

symptom severity on any scale ((C)Y-BOCS total: r=.170, p=.352; obsessions: r=1.52, p=.407; 

compulsions: r=.157, p=.392). This suggests that gamma is not an indicator of symptom severity per 

se. 

 

Increased RPEs in OCD 

Based on our hypothesis of increased RPE signals in OCD patients, we compared the RPE 

signals during outcome processing between OCD and healthy controls. We found that OCD patients 

showed increased RPE-related activation in anterior cingulate cortex (ACC; Fig. 3, Table 2) and right 

putamen. Both areas have also been found to be activated as a main effect of RPE (cf. supplementary 

material, Fig. S1, Table S1). There was no region that showed an increased response in healthy controls 

compared to OCD. 

To control for potential age-dependent effects in our sample, we additionally entered age as a 

covariate in our second-level analysis (cf. supplementary material). The same two clusters remained 

significant when regressing out age (OCD>CTRL: ACC: MNI -15 41 19, k=331, z=4.21; putamen: 

MNI 36 8 -3, k=261, z=4.05) and log-transformed age (OCD>CTRL: ACC: MNI -15 41 19, k=327, 
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z=4.23; putamen: MNI 35 9 -2, k=250, z=3.98). We are thus confident, that the group differences in 

these clusters are not influenced by any age-effects.  

In order to understand how the group differences in fMRI were linked to our model parameter 

differences, we performed an exploratory correlation analysis of the perseveration parameter gamma 

and the mean response of putamen and ACC, independently for each group. There was a significant 

correlation between the perseveration parameter gamma and putamen in OCD patients, but not in 

controls (OCD: r=.486, p=.005; controls: r=.089, p=.617, Fig. S3). There was no correlation between 

gamma and the ACC in any of the groups (OCD: r=.073, p=.693; controls: r=.007, p=.970). 

 

No relationship between symptom severity and putamen or ACC activity 

To understand whether regions that showed increased activation in OCD were also related to 

patients’ symptom severity, we extracted the mean effect size of these areas (cf. supplementary 

material) and correlated them with symptom severity scores as measured with the (C)Y-BOCS 

interview. There was no correlation of either ACC or putamen with the total (C)Y-BOCS score 

(putamen: r=.125, p=.496; ACC: r=.160, p=.380). There was also no correlation with the obsessions 

(putamen: r=.232, p=.202; ACC: r=.240, p=.186) or compulsions subscales (putamen: r=-.006, p=.976; 

ACC: r=.051, p=.783). There was no correlation between disorder duration and putamen or ACC 

activity (putamen: r=.122, p=.520; ACC: r=-.042, p=.825). These findings suggest that the increased 

activation in ACC and putamen reflect a trait-like property of OC-behaviour, rather than a marker of 

the disorder severity. 

 

Age-of-onset related to putamen activation 

Previous findings of bimodally distributed incidence rates in OCD and behavioural, genetic and 

neural differences in early- and late-onset OCD patients (Walitza et al. 2010; Grünblatt et al. 2014; 

Walitza et al. 2014; Boedhoe et al. 2016) suggest that there might be differences between early- (EO) 

and late-onset (LO) OCD patients (details of the patient sub-groups are listed in Table S3). EO in 

comparison to LO might represent a more severe specific developmental subtype of OCD with 

increased heritability and differences in the nature of OCD symptoms, the illness course and the pattern 
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of comorbidity (Walitza et al. 2011). Therefore we compared ACC and putamen activity between the 

two onset-subgroups and found a significant difference in the putamen (EO=-.23±1.07, LO=1.31±.98, 

t(30)=3.89, p=.001, Fig. S2), but not in the ACC (t(30)=1.16, p=.256). However, because both groups 

showed significant differences in their age as well as in their intellectual abilities (Table S3), we 

additionally controlled for these factors using multiple regression. The association between putamen 

activity and age-of-onset remained significant even after controlling for these other factors (t(28)=2.37, 

p=.024), which themselves did not have an effect on putamen activity (age: t(28)=.70, p=.490; IQ: 

t(28)=.27, p=.790). 

Because of the difference in putamen activity between the age-of-onset groups, we also 

compared the perseveration parameter gamma between the two age-of-onset groups and indeed found 

a significant difference (EO: γ=.17±.15, LO: γ=.29±.16, t(30)=2.22, p=.034). This, however, did not 

remain significant when controlling for age and IQ (t(28)=1.54, p=.134). Additional exploratory 

analyses of age-of-onset and the other model parameters did not reveal any significant effect (all p’s 

>.05). Generally, it should also be noted that the LO group with 10 subjects was markedly smaller than 

the EO group (N=22).  

 

Medication effects on behaviour and RPEs 

Because the majority of our patients were being treated with medication, we investigated 

whether the effects reported above might be related to the patients’ medication status (medicated/non-

medicated) using independent-sample t-tests. There was no significant difference in the model 

parameters (alpha: non-medicated: .56±15, medicated: .53±.11, t(30) = .59, p=.560; beta: non-

medicated: 4.6±4.3, medicated: 5.9±4.9, t(30)=-.75, p=.462; gamma: non-medicated: .21±.20, 

medicated: .20±.14, t(30)=.14, p=.892). Likewise, there was no difference in the ACC (non-medicated: 

.25±.73, medicated: .47±.70, t(30)=-.84, p=.407) or putamen (non-medicated: .22±1.17, medicated: 

.28±1.34, t(30)=-.145, p=.886) cluster.  
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Discussion 

Neuroimaging studies of OCD patients have reported activation differences in fronto-striatal 

areas, such as ACC or striatum (van den Heuvel et al. 2010; Brem et al. 2012; Walitza et al. 2014; 

Hauser et al. 2016a). Because of the importance of these areas in OCD, they have often been selected 

as target regions for invasive OCD treatments such as cingulotomy or deep brain stimulation (DBS) in 

severe refractory patients (Greenberg et al. 2010; Figee et al. 2013). Both areas are known to be 

responsive to reward prediction errors (RPEs) and are critically involved in decision making 

(Rushworth et al. 2011; Haber & Behrens 2014) which in turn is impaired in OCD patients. 

To understand the mechanisms underlying such decision making impairments in OCD, we 

investigated the neural correlates of RPE signals during a reversal learning task. We found that striatum 

as well as ACC expressed an RPE across all subjects (Fig. S1). When comparing the OCD patients to 

the healthy controls, we found an increased RPE signal in the ACC as well as in putamen for the OCD 

patients, meaning that OCD patients have increased expression of an RPE in these areas.  

To our knowledge, this is the first study to investigate RPE signals in OCD patients. Our 

findings extend a relatively consistent literature reporting increased internal error signals in OCD 

patients (Gehring et al. 2000; Johannes et al. 2001; Endrass et al. 2008; Gründler et al. 2009; Cavanagh 

et al. 2010; Riesel et al. 2011; Xiao et al. 2011; Endrass & Ullsperger 2014; Riesel et al. 2015). This is 

crucial, because these signals have been related to RPEs (Holroyd & Coles 2002), but previous attempts 

to indirectly measure RPEs using feedback-related signals in event-related potentials, such as the 

feedback-related negativity (FRN; Walsh & Anderson 2012; Hauser et al. 2014b), have remained 

inconclusive (Nieuwenhuis et al. 2005; Gründler et al. 2009; O’Toole et al. 2012; Endrass et al. 2013). 

This might be due to the unclear relation between RPEs and the FRN (Talmi et al. 2013; Hauser et al. 

2014b; Sambrook & Goslin 2014) and the limited spatial specificity of the latter. Our findings thus 

support the theory that patients with OCD have a hyper-responsive learning and monitoring system 

(Ullsperger et al. 2014) that causes these regions to be more responsive if errors occur (i.e., higher ERN) 

or if adjustments in behavior are needed (i.e., stronger RPEs). 
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OCD patients have previously been suggested to show impairments in cognitive flexibility 

tasks, such as reversal learning (Remijnse et al. 2006; Chamberlain et al. 2008; Valerius et al. 2008; 

Remijnse et al. 2009; Freyer et al. 2011; Endrass et al. 2013). However, the mechanisms and processes 

of these impairments remained unclear. Here, we used reinforcement learning models to better 

understand the neurocognitive mechanisms and processes involved. By analysing the model-derived 

parameters, we found that the OCD patients significantly differed in the perseveration parameter 

gamma. This change in perseveration was also reflected by a lower stay probability in the behavioural 

analysis. This might be surprising at first, because OCD has previously been associated with an increase 

in perseveration and excessive habit formation (Gillan et al. 2011; Voon et al. 2014; Gillan et al. 2015, 

2016; Hauser et al. 2016a). However, these studies often used over-trained and/or speeded tasks which 

do not involve learning and uncertainty as in our task. Additionally, perseveration parameters have 

previously been used in different learning tasks where the parameter had a slightly different function 

(Lau & Glimcher 2005; Daw et al. 2011). In the context of probabilistic reversal learning models, a 

decreased perseveration parameter may reflect a form of ‘checking’ behaviour. A lowered perseveration 

behaviour in OCD could reflect an obsessive need for certainty, which can only be satisfied by making 

sure that an alternative stimulus indeed reveals the predicted outcome. An alternative explanation of a 

worse learning in OCD patients seems less likely because both groups performed the task equally well 

(e.g., money won, number of rewarded trials, number of reversals), and a failure of learning would have 

been reflected in either a lower learning rate alpha or an altered choice stochasticity parameter beta. It 

should also be noted that a decreased perseverative behaviour does not affect task performance in trivial 

ways, as there was also no difference in earnings between the groups. Interestingly, a similar switching 

behaviour as in our OCD patients has been observed in non-human primates after ACC lesioning 

(Kennerley et al. 2006) – consistent with our finding of an altered RPE signal in the ACC.  

The finding of increased RPEs in OCD fits well with decreased perseveration. For example, if 

one constantly experiences that ‘something is wrong’ one might feel tempted to double-check whether 

the alternative option really conveys the predicted outcome, and thus to switch more frequently. This 

relation between the perseverative behaviour and the RPE signals is also reflected in a significant 

correlation between the perseveration parameter and RPE activity in putamen in the OCD patients (Fig. 
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S3). It is noteworthy that patients that are more different from controls in their striatal response show 

more similar perseveration parameter values. Although counterintuitive at first, one could speculate that 

this might reflect a compensatory process. A strong link between striatum and ACC through fronto-

striatal loops (Alexander et al. 1986; Frank et al. 2007; Haber & Behrens 2014; Hauser et al. 2016b), 

for example, could suggest that an increased striatal activity counterbalances a hyperactive ACC signal 

and thus ‘normalises’ the behavioural output of this loop. 

It was previously suggested that OCD patients are loss avoidant (Carr 1974; Kaufmann et al. 

2013) and thus show compulsion-like behaviours. However, loss aversion is generally difficult to 

dissociate from a valence-independent need for making correct decisions. Our decreased perseveration 

parameter favours the latter hypothesis, because OCD patients sacrifice small punishments for being 

reassured that they know which of the stimuli currently depicts the ‘correct’ one. If OCD patients were 

to be loss avoidant, this would have been reflected in an increased learning rate for punishments and 

more switches after losses, but not wins.  

RPE signals are well known as markers of the dopaminergic system (Pessiglione et al. 2006; 

Chowdhury et al. 2013). Our findings of hyperactive RPE signals thus support recent genetic and other 

findings that suggest the dopaminergic system being involved in OCD pathogenesis (Denys et al. 

2004b, 2004a; Brem et al. 2014; Pauls et al. 2014). Moreover, our findings may also help to explain 

why an augmentation of the first line treatment (serotonergic medication) with neuroleptic medication 

(with mainly dopaminergic effects) as well as  invasive treatments such as DBS targeting dopaminergic 

areas (Rück et al. 2008; Figee et al. 2013) can have beneficial effects, especially in severe refractory 

OCD. However, RPEs and phasic dopamine is known to also interact with other neurotransmitter 

systems, such as serotonin (Doya 2008; Maia & Cano-Colino 2015). It is thus likely that increased RPEs 

are caused by complex interaction between multiple neurotransmitters. Likewise, it should also be noted 

that the majority of our patients were treated with (serotonergic) medications and that serotonin also 

affects decision making (Seymour et al. 2012). However, we did not observe any difference between 

the medicated and non-medicated OCD patients, neither in behaviour nor in the fMRI activation. It is 

thus unlikely that the medication was driving the differences that we found in this study. 
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To test whether our differences in RPE processing reflected severity of OCD symptoms, or 

rather an obsessive-compulsive trait independent of severity, we correlated the (C)Y-BOCS symptom 

scores with the RPE difference clusters and model parameters. We did not find any significant 

correlation. This - together with the fact that we also included participants that were currently in 

remission and on medication - suggests that the altered RPE responses may reflect a trait rather than a 

symptom severity marker. Again, medication of our patients might have confounded our symptom 

severity analysis to a certain extent, despite symptom severity not being significantly different between 

medicated and non-medicated patients ((C)Y-BOCS total: t(30)=1.49, p=.146; obsessions: t(30)=1.86, 

p=.073; compulsions: t(30)=.86, p=.398). An additional caveat is that the severity of the disease (as 

measured by the (C)Y-BOCS) may be underestimated – especially in adolescents –, depending on the 

degree of insight of the patients. 

RPEs have been shown to have specific developmental trajectories in healthy participants 

(Hauser et al. 2015b). Because we were interested in determining disorder-specific differences in OCD 

independent of developmental effects, we additionally controlled for age. The clusters in ACC and 

putamen remained significant, supporting a notion that these OCD-related differences are not 

influenced by age and consistent with a similar RPE activation across adolescence and adulthood in 

these regions (Hauser et al. 2015b). However, a significant age-of-onset difference in the putamen 

suggests that the putamen effect is particularly pronounced in LO patients. 

In this study, we report data from a relatively large group of OCD patients. Several limitations, 

in particular related to the patient sample, apply. Our patient group is relatively heterogeneous with 

several subjects being in remission at the time of scanning. Moreover, a majority of the patients was 

treated with medication and suffered from additional comorbidities. Although controlling for age in our 

analyses, it would be desirable to have a more narrow patient age range. Lastly, our post-hoc comparison 

between early- and late-onset patients revealed interesting differences, but a marked difference in group 

size as well as a difference in IQ and age demands for a replication in better controlled subgroups.  

In summary, this study investigated the mechanisms underlying the decision making and 

learning impairments in OCD patients. We found increased RPE signals in ACC and putamen in 

patients. As an RPE signal is influenced by a dopaminergic system this can be seen to support the idea 
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that OCD may be linked to a dysregulation in this neuromodulatory system (Denys et al. 2004b). 

Additionally, we found that decision making in OCD was characterized by a change in perseverative 

behaviour. Together, the behavioural and neural findings support the idea of a hyperactive monitoring 

system that is crucial not only for error monitoring but also for learning and decision making. 
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Figure 1. Probabilistic reversal learning task. Subjects performed a probabilistic reversal learning task while 

fMRI was recorded. The participants had to learn which of the stimuli had the higher reward probability in order 

to earn maximal amount of money. Every now and then, the reward contingencies changed and the subjects had 

to adjust accordingly. 
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Figure 2. Comparison of the model parameters. OCD patients had a significantly lower perseveration 

parameter gamma (A). The subjects did not differ in their learning rate alpha (B) or in the choice stochasticity 

beta (C). * p=.016 
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Figure 3. Reward prediction error changes in OCD. OCD patients showed significantly increased RPE 

activations in the anterior cingulate cortex (A) and in the putamen (B). 
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Table 1. Characteristics of the participants. Groups were matched for age, sex and intelligence (mean±SD). 

This table includes all subjects; please note that one OCD patient was excluded from behavioural analysis due to 

performance on chance level. AD: antidepressants; ADHD: attention deficit hyperactivity disorder; AN: 

anorexia nervosa; CD: conduct disorder; GAD: generalized anxiety disorder; NaSSA: noradrenergic and 

specific serotonergic antidepressant; SSNRI: selective serotonergic and noradrenergic reuptake inhibitors; SSRI: 

selective serotonergic reuptake inhibitors. 

 controls (N=34) OCD (N=33) significance 

age 24.5±11.2 

(13.1-45.8) 

23.4±9.5 

(13.4-45.9) 

t(65)=.42, p>.05 

sex (m/f) 13/21 21/12 χ2 (1)=3.36, p>.05 

IQ estimate1 110±14 105±20 t(65)=1.26, p>.05 

(C)Y-BOCS total2 - 15.47±9.87 

(0-34) 

 

early-/late-onset3 - 22/10  

medicated/unmedicated 0/34 20/13  

medication  SSRI (n=13)  

neuroleptics (n=4)  

SSNRI (n=3)  

benzodiazepine (n=2)  

Levothyroxin (n=2) 

NaSSA (n=1)  

anticholinergics (n=1) 

tricyclic AD (n=1) 

 

current comorbitities4 F40.2 specific phobia 

(n=2) 

F32/33 depression (n=3) 

F40.01 panic disorder 

with agoraphobia (n=2) 

F40.1 social phobia 

(n=4) 

F40.2 specific phobia 

(n=4) 
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F41.1 GAD (n=2) 

F45.2 body dysmorphic 

disorder (n=1) 

F45.4 pain disorder 

(n=1) 

F50.0 AN (n=2) 

F90.0 ADHD (n=2) 

F91.0 CD (n=1) 

F93.8 other childhood 

emotional disorders 

(n=2) 

F95.1 chronic tic 

disorder (n=1) 

1 (Waldmann 2008), model 65 

2 (Goodman et al. 1989) 

3 Early onset was clinically diagnosed when patients received a diagnosis under age 18 or when they 

retrospectively reported having clinically relevant symptoms under age 18. OCD patient performing on chance 

level not reported. 

4 Assessed using K-SADS-PL or SCID structured interview (both German version) in patients and controls.  
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Table 2. RPE differences between OCD patients and healthy controls. OCD patients showed increased RPE 

activations in ACC and putamen (p<.05, cluster-extent FWE corrected). No area showed increased activation 

for controls. 

 

Contrast Region Hemisphere Cluster size 

(voxels) 

x y z z Score 

        

controls>OCD ns       

OCD>controls ACC left 295 -15 41 19 4.26 

 putamen right 225 35 9 -2 4.03 

        

 

 

 


