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Abstract 

 

High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using 

CD8+ cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type-1 

thymidine kinase (HSV1-TK) and interleukin (IL)-13 zetakine chimeric antigen receptor (CAR), 

is a treatment strategy with considerable potential. To optimize this and related immunotherapies, 

it may be helpful to monitor CTL viability and trafficking to glioma cells. We show that 

noninvasive positron emission tomography (PET) imaging with 9-[4-[18F]fluoro-3-

(hydroxymethyl)butyl]guanine ([18F]FHBG) can track HSV1-tk reporter gene expression present 

in CAR-engineered CTLs. [18F]FHBG imaging was safe and enabled the longitudinal imaging of 

T cells stably transfected with a PET reporter gene in patients. Further optimization of this 

imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based 

therapies for cancer. 
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Introduction 

  

Immunotherapy holds great potential for the treatment and management of cancer patients with 

advanced disease (1). Through numerous divergent mechanisms, including monocyte maturation 

in the presence of tumor antigens (2) and the genetic engineering of immune cells (3), the body’s 

adaptive immune system can be primed to target malignancies normally recognized as ‘self’. 

Although the success of recent Phase III trials has validated the principle that immunotherapy 

can sometimes extend cancer patient survival (4), tumor cells can escape immune surveillance 

and develop resistance to immunotherapy (5). Examples of resistance mechanisms include the 

regulation of immune checkpoints (6), resistance to cell-death signaling (7), or regulation by 

other tumor-associated immune cells, such as regulatory T cell lymphocytes (8). Given the 

variable success of immunotherapy in the clinic (9-11), there is an urgent need to design 

noninvasive techniques that could give early indications of response to treatment and help 

predict patient outcome.  

 

Current methods used for the assessment of tumor response to therapy primarily rely on 

measurements of tumor size through anatomical imaging using the response evaluation criteria in 

solid tumors (RECIST) (12). The limitations of anatomical imaging for response monitoring in 

solid tumors have been well documented (13). Assessment of immunotherapy efficacy provides 

particular challenges in that the influx of effector cells to the tumor microenvironment may result 

in “pseudoprogression” as defined by RECIST, which is not linked to long-term outcome (14). 

These limitations have led to the development of a specific set of immune-related response 

criteria (irRC) (14, 15). irRC measurements, however, provide no biological information and can 
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take between 8–12 weeks for an initial response assessment, by which time non-responding 

patients may have missed their therapeutic window and experienced unnecessary therapy-related 

toxicity. In addition, adaptive immune responses involving T and B lymphocytes, which have 

demonstrated great therapeutic potential, require monitoring of immune cell trafficking to the 

tumor site, lymphocyte retention, and immune cell engagement with the tumor cells. At present, 

techniques to non-invasively assess the in vivo viability and trafficking of these immune cells in 

cancer patients are not available. 

 

We previously provided a demonstration of imaging cells in a single case report using reporter 

gene technology (16). In that case study, therapeutic T cells expressing a positron emission 

tomography (PET) reporter gene were injected into the tumor resection site of a 57-year old male 

high-grade glioma patient and then visualized by molecular imaging with a PET reporter probe 

(16). For that study, we used genetically modified CD8+ autologous cytotoxic T lymphocytes 

(CTLs) stably expressing the chimeric antigen receptor (CAR) interleukin (IL)-13 zetakine for 

IL13Rα2+ tumor targeting (17-19) and the herpes simplex virus type-1 thymidine kinase gene 

(HSV1-tk) as a dual-purpose suicide (20, 21) and imaging reporter gene (Fig. 1) (22, 23). HSV1-

tk was fused in-frame with the hygromycin phosphotransferase (hph) gene and expressed as a 

fusion protein. HPH expression conferred hygromycin B resistance for dominant positive 

selection. Through imaging of HSV1-tk reporter gene expression using 9-[4-[18F]fluoro-3-

(hydroxymethyl)butyl]guanine ([18F]FHBG), which is a fluorine-18 radiolabeled analogue of the 

anti-herpes drug penciclovir (Fig. 1 insert), we were able to image [18F]FHBG trapping in the 

brain tumor, thought to correspond to CTL accumulation. This corroborated the extensive 

preclinical assessment of this targeted strategy (24). This study in a single patient was limited, 



 6 

however, because at that time we only had FDA approval to perform one PET scan after the 

infusion of CTLs and did not have a critical baseline PET image before CTL injection. We were 

therefore unable to confirm that the brain-associated [18F]FHBG signal was CTL-specific (22). 

 

Expanding on this pilot case study, we sought to assess the ability of [18F]FHBG to 

longitudinally monitor CTL trafficking, survival, and proliferation in multiple patients with 

recurrent high-grade gliomas that were resistant to conventional therapies. Under this protocol, 

seven patients received several infusions of either autologous or allogeneic engineered CTLs 

(Fig. 1). CTL location and response were noninvasively measured by PET using a strategy 

outlined in Fig. 2. In addition, we evaluated the safety of the CTLs injected into the central 

nervous system and the safety of recombinant human IL-2 delivery in conjunction with CTL 

adoptive cell transfer, a strategy used to prolong the survival of engineered CTLs and potentially 

improve their therapeutic efficacy. 
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Results 

Patient enrolment and CTL characterization 

To conduct a detailed evaluation of the utility of [18F]FHBG to track genetically engineered 

CTLs for immunotherapy, we enrolled a total of 4 men and 3 women (average age of 57 ± 8 

years old with recurrent high-grade glioma, under two separate IRB-approved protocols (Table 

1). Patient 1 in this study is the patient from our previous case report (16). Autologous 

(NCT00730613)(17) and allogeneic (NCT01082926) CTLs for immunotherapy were engineered 

to express the tumor-targeting IL-13 zetakine CAR and the wild-type HSV1-tk gene reporter. 

This CAR recognizes IL13R2, a cell surface receptor expressed in over 50% of glioblastoma 

cells, but not in normal brain tissue (25, 26). The CTLs were > 99% CD8. We first confirmed our 

previous finding (27, 28) that [18F]FHBG specifically accumulates in genetically modified CTLs 

expressing the HSV1-tk reporter gene rather than the naïve parental cells obtained from a human 

buffy coat (fig. S1). Here, [18F]FHBG accumulation at one hour was 12-fold higher in 

transfected CTLs versus non-transfected parental cells, at 7.37 ± 2.17 % [18F]FHBG uptake/108 

cells and 0.61 ± 0.27 % [18F]FHBG uptake/108 cells, respectively (n = 3; P = 0.006). 

Furthermore, 60 min incubation with [18F]FHBG had no significant effect on cell proliferation of 

non-transduced CTLs or those expressing HSV1-tk (taken from Patient 1), up to 48 h after 

addition of the radiotracer (fig. S2; P > 0.05). 

 

Safety 

[18F]FHBG PET scans were performed in patients before and after CTL infusions to assess the 

spatial location of the engineered CTLs within the body. Patients 3-7 received IL-2 infusions to 

improve CTL survival. Patient vital signs and lab results were within normal limits throughout 
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and after [18F]FHBG administration. Patient 1 experienced a mild, transient headache without 

any neurological deficits. Patient 2 developed new neurological deficits two days before the 

initiation of CTL therapy, corresponding to vasogenic cerebral edema (diagnosed from MRI) and 

not related to either [18F]FHBG or disease progression. Patient 5 had a mild rash on the shoulders 

with redness on the lower face at two hours after intravenous injection of [18F]FHBG during pre-

CTL imaging. Twenty-five milligrams of oral diphenhydramine was subsequently administered 

to Patient 5, and the rash resolved within one hour. None of the seven patients had any major or 

life-threatening events related to [18F]FHBG or CTL injections throughout the duration of their 

participation within this trial. Most patients died within 12 months after the last CTL infusion. 

Patient survival data after initial diagnosis and since the first CTL infusion are presented in table 

S1.  

 

Biodistribution 

The stability and detailed pharmacokinetics of [18F]FHBG in healthy volunteers have been 

previously reported (29). Here, we observed similar radiotracer biodistribution (fig. S3), as 

assessed by standardized uptake value (SUV)mean measurements on the pre- and post-CTL 

injection scans using a 50 mm diameter spherical volume of interest. In pre-CTL treatment scans, 

at a mean time of 137 ± 11 min after injection of [18F]FHBG (n = 6), the average (±SD) SUVmean 

was 0.25 ± 0.08 for left ventricular blood pool, 1.57 ± 0.69 for right hepatic dome, 0.09 ± 0.04 

for lung parenchyma, and 0.36 ± 0.14 for right thigh. There was no significant difference in 

[18F]FHBG uptake in these tissues after immunotherapy (P > 0.05; table S2). In the normal brain, 

contralateral to either suspected lesions or resection sites, and before CTL infusions, [18F]FHBG 

SUVmean was 0.04 ± 0.01 (n = 6). After CTL infusions, we observed no significant change in 
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normal brain uptake (SUVmean = 0.04 ± 0.01; n = 6; P > 0.05). We next quantified the amount of 

[18F]FHBG activity in the vicinity of tumors where a breakdown of the blood-brain barrier was 

observed based on the post-contrast T1-weighted MRI scan. The low background from non-

target tissue (normal brain) permitted visualization of brain tissue abnormalities such as tumors 

(Fig. 3A), with [18F]FHBG uptake in untreated tumors and sites of tumor resection statistically 

higher than in the normal contralateral brain tissue (3.3-11.5-fold increase, P = 0.0009).  

 

[18F]FHBG imaging of CTLs in patients 

Given the observation of some nonspecific [18F]FHBG retention in both gliomas and previous 

surgical sites before CTL infusion, it was essential to perform baseline and follow-up scans in 

the same patients after CTL injection (16). A total of ten tumor foci were analyzed in the seven 

patients, with two sites each assessed for Patients 1, 4, and 7. We did not obtain a pre-CTL 

[18F]FHBG scan in Patient 1 because the use of two [18F]FHBG scans per patient was not yet 

approved by the FDA when the patient was enrolled in 2006. Qualitative assessment of 

[18F]FHBG uptake by PET imaging revealed an increase in PET signal after CTL infusions, 

likely corresponding with CTL cell trafficking and viability (Fig. 3A & B and movie S1).  

 

To quantify [18F]FHBG radioactivity and distribution, we initially evaluated the maximum 

concentration (SUVmax) of [18F]FHBG on pre- and post-CTL injection scans, where we observed 

a large variation in response, ranging from +53% (Patient 2) to -15% (Patient 7, lesion B) (fig. 

S4). After intracerebral injection, there is potential for CTLs to diffuse in the surgical cavity or 

the brain parenchyma. To optimize the monitoring of CTL trafficking to targeted areas, better 

imaging metrics were needed to replace single-voxel measurements such as SUVmax, particularly 
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when the localization of CTLs, and therefore the volume of interest (VOI), was unknown. The 

first challenge was to define an accurate VOI. Given the availability of contrast-enhanced MR 

images taken from the same patients before and after CTL infusions, it was possible to derive 

VOIs from enhancing regions of the tumor. MRI-based [18F]FHBG voxel analysis, however, 

excluded radioactivity outside of enhancing regions (fig. S5A), which may represent CTLs that 

have failed to target to the tumor or potential targeting to tumor cells that were not visible on 

MRI. Analysis of these therapeutic cells is essential, because an indication of poor CTL 

trafficking to tumor tissue has implications for the efficacy of the immunotherapy strategy. To 

circumvent the exclusion of non-tumor-associated radioactivity, we used different SUVmax 

thresholds to draw a growing volume of interest. The contouring algorithm used selected the 

highest [18F]FHBG SUV as the center of the VOI before generating peripheral limits based upon 

the desired threshold value, as illustrated in fig. S5B. VOIs for all patients were analyzed using 

threshold values from 10% to 90% in 10% increments (fig. S6). For [18F]FHBG analysis, a 50% 

SUVmax threshold was selected to create VOIs that best represented [18F]FHBG distribution 

throughout the brain.  

 

Having determined a suitable, non-biased method for VOI delineation, the next challenge was to 

devise a method of analysis that could assess CTL trafficking 1) to a region within the brain of 

fixed volume, such as a tumor and 2) when the [18F]FHBG signal was widely dispersed after 

CTL infusions, for example as a result of poor trafficking to the tumor site, CTL dilution in the 

ventricular system, or correct trafficking to tumor tissue not visible by MRI. The SUVmean 

provided a means to assess tumor-specific CTL trafficking when the VOI did not change 

between pre- and post-CTL scans (fig. S7; Patients 2 and 6), but failed to accurately depict 
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changes in [18F]FHBG radioactivity after CTL infusions in patients for whom the VOI was 

increased in the post-CTL scan. To detect potential changes in [18F]FHBG radioactivity before 

and after CTL infusions, regardless of the size of the VOI, we next assessed the total [18F]FHBG 

activity (SUVmean  volume of interest) for each scan.  

 

Analysis of the total activity in patients for whom the size of the VOI did not change, such as 

Patient 6, clearly indicated a shift in SUV histograms after CTL infusions (Fig. 3C), 

corresponding to a doubling of total [18F]FHBG activity from 4.1 to 8.4 in this patient. A further 

example is provided with Patient 2, whose total activity was increased from 10.1 to 20.3 (fig. S8). 

Total activity measurements were also able to detect radioactivity disseminated over an increased 

volume after CTL infusions, an example of which is illustrated in Fig. 4A,B (Patient 7). Here, as 

evident from histogram analysis (Fig. 4C), despite an absence of a large change in median 

[18F]FHBG radioactivity between scans, the total radioactivity increased 3.7-fold, from 1.8 in the 

pre-CTL scan to 6.8 post-CTL infusions, in part because of a substantial increase in the VOI. A 

further example of changes in [18F]FHBG total activity after CTL infusions in the absence of a 

change in SUVmean was observed with Patient 3 (fig. S9). Across all patients, in clinically-

confirmed sites of tumor recurrence, [18F]FHBG total activity was significantly increased in the 

PET scan after CTL infusions versus the baseline scan (Fig. 5; P = 0.014; paired Wilcoxon test). 

 

[18F]FHBG uptake in untreated tumor sites  

In patients with multifocal disease, in addition to the injected tumor site, distant tumor foci not 

injected with CTLs were also analyzed with [18F]FHBG (Patient 7; Fig. 4D-F). No CTLs were 

infused locally, and therefore no changes in [18F]FHBG uptake at the site were expected between 
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scans. In the post-CTL scan, however, a 66% increase in total [18F]FHBG activity was measured 

by comparison to the baseline scan, from 1.6 to 2.7, further supported by minimal changes in the 

dispersion of voxel intensities (Fig. 4F). This is in contrast to the 5-15-fold changes observed at 

the injected disease site (Fig. 5). Small changes in [18F]FHBG uptake at untreated tumor sites 

after CTL versus baseline scans were confirmed in an additional patient (Patient 4). In this 

patient, [18F]FHBG total activity in the CTL-treated focus was increased 2.2-fold on the post-

CTL scan, increasing from 2.9 at baseline to 6.3 at the site of tumor recurrence, whereas the 

focus corresponding to the primary untreated site increased just 32%, from 2.4 to 3.2 (fig. S10).  

The modest increase in [18F]FHBG activity in the untreated sites in these two patients may 

represent trafficking of CTLs to distant tumor foci in the brain.  

 

Challenges of CTL tracking with [18F]FHBG 

As a result of the complexity of implementing a robust immunotherapy treatment strategy for the 

treatment of high-grade gliomas in humans, a number of key experimental limitations presented 

themselves during the course of this study. In Patient 1, FDA restrictions prevented the 

acquisition of a pre-CTL [18F]FHBG scan, however, we have previously shown in a post-CTL 

[18F]FHBG scan that CTL-associated radioactivity exquisitely corresponded to enhancing foci on 

MRI, not detectable by [18F]FDG-PET (fig. S11) (16). Therefore, we believed that CTLs had 

likely properly migrated to the target tumor areas, but given that high-grade glioma cells in pre-

CTL scans were [18F]FHBG-positive in other patients, we were unable to confirm this hypothesis.  

 

The CTL infusion techniques used in this study are also expected to play a role in the survival of 

CTLs in vivo and their homing to the tumor site. In Patient 3 (NCT01082926), the CTLs were 
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injected using a slow infusion technique over several hours. This delivery technique resulted in 

cell clumping that may have reduced cell viability, however, [18F]FHBG total activity was still 

increased 2.4-fold from 3.5 to 8.4 in this patient (fig. S9), reflecting the likely survival of a 

substantial proportion of these CTLs. The positioning of the Rickham catheter tip next to the 

ventricular system may also affect optimal CTL trafficking to tumor sites. In Patients 4 and 5, the 

Rickham catheter tip was positioned next to the ventricular system. In these patients, CTLs likely 

diffused into the cerebrospinal fluid, as evidenced by the diffusion of [18F]FHBG within the 

lateral ventricles in the post-CTL [18F]FHBG scan, which was not observed on the pre-CTL scan 

(fig. S10A,B). These findings suggest that the dilution phenomenon might potentially affect the 

therapeutic effect by reducing the overall number of CTLs at the recurrent tumor site. On the 

other hand, this might be beneficial for patients whose tumors are located next to the ventricular 

system and are at higher risk of spinal leptomeningeal dissemination (30, 31). Nevertheless, 

these explanations require further validation.  

 

The tumor vascular supply may also affect the ability to track CAR-engineered CTLs with 

[18F]FHBG. In Patient 5, the recurrent glioma was adherent to the dura mater, which contributed 

to a rich vascular supply with disrupted blood-tumor barrier. As a consequence, intravenously 

injected [18F]FHBG could readily diffuse from the leaky vascular supply into the tumor. In this 

patient, baseline [18F]FHBG total activity was substantially higher at 23.1, compared to a mean 

total activity of 6.2 ± 2.9 for all other patients for whom a pre-CTL scan was available (n = 7 

foci). It is highly plausible that elevated baseline [18F]FHBG tumor uptake is a direct result of 

increased delivery and non-specific retention of the radiotracer in the tumor. Furthermore, high 

baseline [18F]FHBG uptake on pre-CTL infusion scans may confound accurate measurement of 
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CTL tracking. Indeed, [18F]FHBG total activity in Patient 5 was increased by just 21% in the 

post-CTL infusion scan when compared to the baseline scan, at 28.1 and 23.1, respectively (fig. 

S12).  

 

 

Discussion 

 

Malignant gliomas are the most frequently occurring primary brain tumors and are associated 

with a very poor survival rate (32). Tremendous efforts have focused on the design of diagnostic 

and therapeutic tools for this devastating disease, among which targeted immunotherapy holds 

great promise (33). Unlike current conventional cancer treatments, the potential of 

immunotherapy resides in selectively targeting cancer cells while leaving healthy cells 

unharmed. One of the main immunotherapeutic methods under exploration is through CAR 

engineering of CTLs to become tumor-reactive and tumor-specific (34).  

 

To fully validate immunotherapeutic strategies, it is crucial to monitor the viability, 

biodistribution, and trafficking of therapeutic cells to the site of the tumor. At present there is no 

means to assess the fate of these cells. Imaging via MRI, optical, or nuclear medicine-based 

techniques, however, has the potential to noninvasively monitor and track these cells in vivo. 

Two main approaches have been undertaken for cell tracking: direct and indirect labeling 

methods (35, 36). Direct labeling of cells involves incubation and retention of an imaging agent 

by the therapeutic cells which are injected into the subject, with the imaging agent monitored 

over a time course of hours to days. One example of a direct labeling method, using 
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superparamagnetic iron oxide (SPIO)-labeled cells, has demonstrated great potential for the 

accurate assessment of image-guided cell injection into the tissue of interest (37).  

 

Although they are relatively inexpensive and easy to perform, direct labeling methods are 

hampered by potential toxicity to the therapeutic cells (38). Moreover, the contrast agent 

becomes diluted upon cell division and is lost from the cells upon cell death, making image 

analysis difficult to interpret (39). To circumvent these issues, we and others have developed 

noninvasive indirect imaging reporter strategies to successfully track these cells (40-43). These 

methods enable imaging over the entire lifetime of the cell, with signal maintained after cell 

division, and provide information regarding cell viability (39). The majority of the signal is 

obtained from living cells because the production of the imaging reporter is dependent on 

translation of a gene into a functional protein, in a process requiring ATP. In this study, we 

demonstrated in humans that therapeutic CAR T cells can be detected noninvasively after 

intracranial adoptive transfer, through the PET imaging of a reporter gene. 

 

Here, CTLs were engineered to express the tumor-targeting IL-13 zetakine CAR and the wild-

type HSV1-tk reporter gene, with HSV1-TK expression monitored by [18F]FHBG PET imaging. 

In cell culture, [18F]FHBG uptake was 12-fold higher in HSV1-tk-expressing CTLs compared to 

naïve human T lymphocytes that were isolated from a human buffy coat. [18F]FHBG incubation 

also had no effect on CTL proliferation rate in cell culture, presumably due to the low amount of 

mass tracer used. The functional and cytolytic activity of CTLs obtained from Patient 1 has been 

shown previously (18). For all other patients, insufficient tumor material was obtained at biopsy 

to enable primary GBM or patient-derived xenografts to be established in immunocompromised 
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mice. We were therefore unable to assess functional activity of the CTLs against each patient’s 

GBM cells. 

 

[18F]FHBG is a relatively poor substrate for mammalian thymidine kinases, resulting in low 

background accumulation in cells not expressing the HSV1-tk reporter gene, such as naïve human 

T lymphocytes and normal brain cells (22). Negligible brain-associated radioactivity was 

observed in [18F]FHBG scans both before and after CTL infusions, with [18F]FHBG not able to 

diffuse across an intact blood-brain barrier (BBB) (29), thereby providing an ideal low 

background signal. In glioma patients with a disrupted BBB, however, [18F]FHBG accumulation 

in tumors was evident before CTL infusions. Retention of [18F]FHBG in untreated tumors before 

CTL infusion may result from slow washout of the radiotracer from the resection cavity or be a 

consequence of off-target retention in the tumor cells. It was therefore vital to perform 

[18F]FHBG imaging both before and after CTL infusions for accurate monitoring of this CAR T 

cell therapy strategy. 

 

Because the location of the CTLs within the brain cavity were unknown, better imaging metrics 

were needed to replace single-voxel measurements such as SUVmax to define both the location 

and quantity of the therapeutic cells. We used a contouring algorithm based upon a set 

radioactivity threshold value relative to SUVmax to determine an accurate VOI. Through this 

method we could accurately assess not only tumor-associated CTLs, but also poorly targeted 

CTLs and CTLs that had targeted diffusely growing tumor cells undetected on contrast-enhanced 

MRI. For quantitation, we assessed [18F]FHBG total activity within the generated ROI (SUVmean 

 volume of interest) as an unbiased measure of [18F]FHBG signal in a fixed volume region 
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within the brain (namely the tumor) and in the setting where the [18F]FHBG signal, and therefore 

CTLs, was widely dispersed after CTL infusions. This metric is comparable to total lesion 

glycolysis used with [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) PET, which is a more 

sensitive marker than SUVmax or SUVmean for the evaluation of therapeutic response and 

prognosis (44-46). 

 

The noninvasive imaging of genetically engineered CTLs for cancer immunotherapy held some 

specific challenges. Because [18F]FHBG was the first PET reporter probe to receive an 

investigational new drug (IND) approval from the FDA (IND #61,880), strict regulations 

prevented repeat [18F]FHBG scans before and after immunotherapy for the initial patient. This, 

coupled with the complexity of the immunotherapy strategy, markedly high cost (estimated at ~ 

$200,000 USD per patient), and limited access to this patient population restricted the number of 

patients who were enrolled in this study. In spite of these obstacles, a significant increase in 

[18F]FHBG total activity representing CTL trafficking to tumor sites was observed across our 

patient cohort (P = 0.014; paired Wilcoxon test), highlighting the potential of this imaging 

strategy. It is unclear, however, whether IL-2-mediated changes in BBB permeability contributed 

to changes in [18F]FHBG signal in the post-CTL scan. Moreover, we were unable to assess 

accurate delivery of CTLs to the tumor and its effect on differential [18F]FHBG uptake. These 

variables will need to be evaluated in future studies. Although the absolute intrinsic uptake of 

[18F]FHBG per cell remained relatively low, the mutant HSV1-tk reporter gene, HSV1-sr39tk, 

may provide increased sensitivity for detection through increased trapping of [18F]FHBG in 

engineered cells in future clinical trials (23, 47). Finally, because of the limited number of 

patients enrolled on this study, it was not possible to link changes in [18F]FHBG signal before 
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and after CTL infusions to clinical outcome. Future work will need to link CTL trafficking and 

viability, as measured by [18F]FHBG PET, to tumor response and patient survival. In summary, 

this work highlights an approach that uses a specific PET tracer to image HSV1-tk reporter gene 

expression in engineered CTLs to monitor CAR therapy for the treatment of high-grade gliomas. 
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Materials and methods 

Study design 

The primary research objective was to test the feasibility of [18F]FHBG gene reporter imaging 

for the monitoring of therapeutic T cell distribution and viability in glioma patients. Patients 

from 18-70 years old with an average clinical status (a Karnofsky Performance Status > 60) and 

evidence of disease progression twelve weeks after the end of radiotherapy were included in this 

study. Exclusion criteria were a survival expectation of less than four weeks, any organ 

dysfunction, a large tumor requiring decompression surgery, a tumor located in the basal ganglia, 

thalamus, or brainstem, a patient treated for severe infection or recovering from major surgery, a 

history of IL-2 intolerance, and a history of ganciclovir and/or MRI contrast allergy or 

intolerance. Authors were not blinded to the results and no randomization was performed. 

 

Patient recruitment 

Seven patients (4 men, 3 women; mean age ± SD, 57 ± 8 years old) were prospectively enrolled 

from April 2006 to October 2013, in two separate clinical trials to evaluate the safety and 

feasibility of intratumoral immunotherapy with CTLs (Table 1). Patients 1 and 2 were treated 

with autologous CTLs (NCT00730613) (17), whereas Patients 3-7 received allogeneic CTLs 

(NCT01082926). Patients included in this study were diagnosed with recurrent glioblastoma 

overexpressing the IL-13Rα2 receptor, thus allowing the recognition of malignant glioma cells 

by the genetically modified CTLs (17, 19, 48). It has previously been shown that patient 

prognosis and survival are inversely proportional to the abundance of tumor-associated IL-

13Rα2 (25). Nevertheless, the presence of these specific targets helped to define patients who 

would likely benefit and respond to immunotherapy. No patient received additional radiotherapy 
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or chemotherapy throughout this study. All patients were initially treated and followed up at the 

City of Hope, Duarte, California, USA. The Institutional Review Board and the local ethics 

committee approved all study protocols, and informed consent was obtained from each patient. 

 

CTL engineering 

The T-cell manufacturing process has been described previously in detail (17). For Patients 1-2: 

T-cells were expanded from clones that had been selected from genetically modified T-cells 

isolated from the patient’s peripheral blood mononuclear cells (PBMC). A plasmid DNA 

construct encoding the IL-13 zetakine CAR and the wild-type HSV1-tk genes under the 

transcriptional control of a modified human Elongation Factor-1 (EF-1) promoter and the 

cytomegalovirus (CMV) immediate/early promoter, was transfected into the isolated cells using 

electroporation in a cell production facility at the City of Hope, Duarte, (California, USA). 

Hygromycin resistant CTLs were cloned in limiting dilution, then expanded using the rapid 

expansion method (REM) method to numbers in excess of 109 and subsequently cryopreserved 

(17).  Following the diagnosis of tumor relapse the cryopreserved cells were thawed, REM 

expanded and formulated for intracranial infusion in 2 mL of preservative-free normal saline 

(PFNS). For Patients 3-7: The GRm13Z40-2 CTL line was derived from a healthy volunteer 

donor apheresis unit. The GRm13Z40-2 CTL line is an ex vivo expanded allogeneic genetically 

modified oligoclonal CD8+ cytotoxic T lymphocyte line that expresses the IL-13 zetakine CAR 

and contains a biallelic deletion in the glucocorticoid receptor (GR) to confer steroid resistance. 

PBMC were subjected to electroporation to introduce plasmid IL-13 zetakine CAR DNA, 

followed by activation with monoclonal antibody Muromonab CD3 (30 ng/mL; trade 

name Orthoclone OKT3, marketed by Janssen-Cilag), ex vivo REM expansion (17), and 
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selection in the presence of cytotoxic concentrations of hygromycin (0.2 mg/mL). Hygromycin-

selected IL-13 zetakine CTLs were then subjected to transfection using the chimeric Ad5/35 

adenovirus encoding a zinc finger nuclease (ZFN) pair that targets the human GR, which led to 

permanent disruption of the reading frame. Adenovirus transfected IL-13 zetakine CTLs were 

subjected to selection in dexamethasone. Surviving T cells underwent large-scale REM 

expansion followed by cryopreservation to generate an allogeneic IL-13 zetakine CTL bank. 

Following the diagnosis of recurrent GBM the cryopreserved cells were thawed and formulated 

for intracranial infusion in 2 mL of preservative-free normal saline (PFNS). 

 

Infusion methods 

Patients 1-2 underwent craniotomy for tumor resection and placement of Rickham reservoir and 

catheter for CTL injection, as previously detailed (17). These patients were treated with a series 

of twelve infusions of autologous CTLs (each over 10 minutes) on days 1, 3, and 5 over a period 

of 5 weeks, with a break on week 3. If the initial dose of 1 × 107 CTLs was tolerated, subsequent 

infusions were increased to 5 × 107 and then 1 × 108 autologous CTLs per injection. Patients 3-7 

had unresectable recurrent glioblastoma. These patients underwent stereotactic tumor biopsy and 

insertion of Rickham reservoir/catheter for intratumoral CTL infusion. These patients were 

treated with a series of four infusions of 1 × 108 allogeneic CTLs along with escalating doses of 

recombinant human IL-2 to prolong the survival of CTLs (49). Allogeneic CTLs were infused on 

days 1 and 3 for two consecutive weeks; IL-2 was infused on days 2, 3, 4, and 5 of the first week 

(2500 IU/day) and on days 1, 2, 3, 4, and 5 of the second week (5000 IU/day) (table S3). In 

Patient 3, CTLs and IL-2 were administered directly into the tumor cavity by convection-

enhanced delivery, which is a drug delivery strategy designed to circumvent the central nervous 
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system defense system and improve drug distribution (50). It allows for delivery of high 

concentrations of therapeutic agents directly into brain tumors and surrounding parenchyma with 

minimal systemic toxicity. Because of cell clumping associated with slow infusion, CTL delivery 

technique was switched to a “manual push” technique over 10 minutes in Patients 4-7.  

 

 

Clinical assessment 

Before each [18F]FHBG scan, we obtained a physical exam, a 12-lead electrocardiogram (ECG), 

vital signs (blood pressure, heart rate, respiratory rate, body temperature, and blood 

oxygenation), blood sampling (for complete blood chemistries, complete metabolic panel, 

international normalized ratio, and activated partial thromboplastin time), and urine (for urine 

analysis and pregnancy test, if needed). These values were used as a baseline. The patients’ 

routine medications and medical history were also recorded. Vital signs were taken at 5, 10, 15, 

60, and 120 minutes after [18F]FHBG injection. ECGs were monitored every 15 minutes up to 

120 minutes after the tracer injection and were analyzed for PQ/QRS and QT changes. 

 

After the PET scan was completed, another set of vital signs and ECG were collected. Within 24 

hours of the scan, the participants returned to the clinic, and vital signs and ECG were again 

collected, as well as blood and urine samples. Seven days later, a similar assessment was 

performed in addition to a neuropsychological test (mini mental state examination) that was also 

performed at baseline. Any adverse events noted by the members of the research team or the 

participants during the whole procedure were recorded for up to a week during follow-up. 

 



 23 

Imaging studies 

9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine, or [18F]FHBG, was synthesized as previously 

described (22). The mean [18F]FHBG activity injected was 259 ± 7 MBq (7.0 ± 0.2 mCi), with 

no significant differences between pre- and post-CTL infusion PET scans (P > 0.05). The 

maximum amount of unlabeled product was less than 2 µg, and the specific activity was greater 

than 37Gbq/µmol (22). 

 

The tracer was administered as a bolus injection over less than 5 seconds via a hand or an arm 

vein. Approximately two hours after intravenous injection of [18F]FHBG, PET images were 

obtained from the skull vertex to mid-thighs. Scans for patients 1-2 were performed with a 

standalone PET scanner (Siemens ECAT EXACT™ HR+ PET scanner; CTI PET Systems, Inc.). 

[18F]FHBG PET scans, at 7 minutes per bed position, were performed for both Patients 1-2, but 

no baseline scan was done for Patient 1.(16). In addition, delayed brain PET images were 

obtained for Patient 1. After the emission scan, the patient underwent a transmission scan for 3 

minutes per bed position, using 3 rotating 68Ge rod sources. PET images were reconstructed with 

OSEM algorithm with attenuation correction on a 128 × 128 matrix size. The images for patients 

3-5 images were obtained with a PET/CT scanner (Siemens Biograph TruePoint 64-slice). A 

topogram scan (120 kVp, 35 mAs) was acquired, followed by a low-dose non-contrast CT 

(helical mode, rotation 0.5 sec, slice thickness 5.0 mm, 120 kVp, 100 mA) for attenuation 

correction and anatomic localization. PET images were obtained in 3D mode for 7 minutes per 

bed position, using an iterative reconstruction algorithm (2 iterations and 24 subsets) on a 168 × 

168 matrix size and a Gaussian filter cut-off of 5.0 mm. Images for Patients 6 and 7 were 

obtained on another PET/CT scanner (Siemens Biograph mCT 64-slice). All image protocols 
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were similar to those on the Biograph TruePoint, except for the matrix size, which was larger at 

200  ×  200. All PET images were decay corrected to the time of injection. Each patient was 

asked to void their bladder before each scan to reduce their total radiation exposure. All 

[18F]FHBG PET images were obtained at the University of California, Los Angeles, California, 

USA. All PET scanners were fully calibrated and tested for quantitative accuracy; these 

procedures were performed according to the manufacturer’s recommendations. 

 

In addition, brain [18F]FDG and MRI were performed before and after CTL infusions, using 

standard oncological protocols. These images were obtained at City of Hope, Duarte California, 

USA, and were scheduled within a few days of the [18F]FHBG imaging. 

 

Image analysis 

All data analyses were performed at Stanford University (California, USA), University College 

London (London, UK), and Hôpital de la Cité-de-la-Santé de Laval (Québec, Canada). 

[18F]FHBG images were co-registered to MRI images on MIM Encore v6.4, MIM Software and 

on Siemens Inveon v4.2, Research Workplace. Automatic image registration was applied 

initially, and manual positioning was performed as necessary. [18F]FHBG images were analyzed 

in all axial planes and with different thresholds to detect subtle abnormal uptake. Standardized 

uptake values (SUVs) were measured in different areas using a three-dimensional 50 mm 

diameter spherical volume of interest for healthy tissue. Values were obtained for the left 

ventricle of the heart (referred to as blood pool); the left and right lung parenchyma; the right 

hepatic dome (referred to as liver); the left and right quadriceps musculature (referred to as 

thigh); the bone marrow; the left and right frontal lobes, parietal lobes, temporal lobes, occipital 
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lobes, and the cerebellum (table S2). Activity within all brain areas except the site of surgical 

resection or tumor recurrence, was averaged to represent the background brain uptake. An 

irregular three-dimensional volume of interest was drawn over the abnormal uptake area in the 

brain (tumor recurrence and/or CTL foci): we used the native volume growth algorithm from 

MIM Encore 6.4, MIM Software, and we applied different thresholds for delineation. A 10% 

threshold of SUVmax was initially drawn, and 10% increments were subsequently applied until 

90% of SUVmax was obtained. MRI and [18F]FHBG PET images were always compared side-by-

side to help in visual adjustment of boundaries. In addition, MRI and [18F]FHBG PET images 

were fused together to optimally visualize the uptake area. To do this, rigid-body registration 

with rotations was initially applied, followed by deformable registration. In most cases, the 

delineation on [18F]FHBG PET images followed the enhancing boundaries visualized on T1 post-

gadolinium sequence on MRI images. For treatment response, we always considered the 

background activity as part of baseline normal brain uptake. Therefore, we subtracted 

background activity from the activity measured in each volume of interest. 

 

Different strategies were used for evaluating therapy response: we used SUVmax, SUVmean, three-

dimensional volumes encompassing the tumor, individual voxel histogram analysis, and a 

parameter which takes into consideration the [18F]FHBG concentration and the volume of 

interest. This parameter, referred to as total activity, corresponds to the SUVmean multiplied by 

the volume of interest. To calculate the percentage of signal change between two scans, we used 

a formula that accounted for background activity in the brain:  

(𝑝𝑜𝑠𝑡 𝐶𝑇𝐿 𝑆𝑈𝑉 𝑙𝑒𝑠𝑖𝑜𝑛 − 𝑆𝑈𝑉 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) − (𝑝𝑟𝑒 𝐶𝑇𝐿 𝑆𝑈𝑉 𝑙𝑒𝑠𝑖𝑜𝑛 − 𝑆𝑈𝑉 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑝𝑟𝑒 𝐶𝑇𝐿 𝑆𝑈𝑉 𝑙𝑒𝑠𝑖𝑜𝑛 − 𝑆𝑈𝑉 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 × 100 

Movie rendering was performed with Amira v5.2.2, Visage Imaging Inc. 
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Assessment of FHBG toxicity to transduced CTLs 

Patient-derived CTLs: GRm13Z40 (HD040-IL13z-ZFN) – Control cell ID# cJ05105 and WCB-

031-4C11-01 (UPN-031-IL13-zeta_DIIHyTK-pMG (pj00429#7)Cl.4C11) Cell ID# cj02331 

were obtained from the T cell therapeutics lab at City of Hope Hospital, Duarte, CA as frozen 

vials. The CTLs were recovered in RPMI medium with L-glutamine and Hepes. Human IL-2 (50 

units/mL) was added as a supplement. 15,000 cells for each cell type were plated in a 96 well 

tissue culture dish in RPMI medium. For the cells that needed to be exposed to the tracer, 7.4 

kBq of FHBG was added to each well. 1 h after exposure to tracer, cells were washed with PBS 

twice and either lysed for counting accumulated radioactivity or plated in medium for an 

additional 24 h and 48 h. Viability assessment was performed using the Presto Blue assay as per 

the manufacturer’s instructions (Thermofisher). Presto Blue uses the reducing environment of 

living cells to quantify viability. In brief, the desired volume of Presto Blue was added to the 

cells to a final concentration of 10%. The accumulated fluorescence was quantified using a 

microplate reader (excitation 540 nm, emission 600 nm), 30 min and 1 h after the addition of 

Presto Blue.  

 

Statistical analysis 

Statistical analysis was performed in Microsoft Excel 2010 v14.0.6 and GraphPad Prism 

Software v.5.0. Values were expressed as mean ± standard deviation (SD). To compare uptake in 

healthy organs before and after CTL infusions, and when comparing the effect of [18F]FHBG 

incubation on CTL proliferation rate, the Student paired t-test was used. For comparison of 

[18F]FHBG total activity measurement in lesions before and after CTL infusions for all patients, 
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a paired Wilcoxon test was used. Probability values less than 0.05 were considered as 

statistically significant. 
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Fig. S1. [18F]FHBG uptake in parental and genetically-modified CTLs. 

Fig. S2. Assessment of FHBG toxicity to transduced CTLs. 

Fig. S3. [18F]FHBG whole body biodistribution. 

Fig. S4. SUVmax corresponding to tumor tissue in patients before and after CTL infusions. Fig. 

S5. [18F]FHBG volume of interest delineation. 

Fig. S6. Detailed threshold analysis to define the localization of [18F]FHBG radioactivity.  

Fig. S7. SUVmean corresponding to tumor tissue in patients before and after CTL infusions.  

Fig. S8. [18F]FHBG PET imaging in Patient 2.  

Fig. S9. [18F]FHBG PET imaging in Patient 3. 

Fig. S10. [18F]FHBG total activity in recurrent disease and the site of surgical resection.  

Fig. S11. Post CTL infusion [18F]FHBG PET and [18F]FDG PET imaging. 

Fig. S12. [18F]FHBG PET images of a patient with a glioblastoma that originated from the dura 

mater. 

Table S1. Patient survival data after diagnosis and initial CTL infusion. 

Table S2. [18F]FHBG uptake in organs before and after CTL infusions.  

Table S3. Injection protocol for Patients 3-7. 
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Movie S1. Movie of tumor-associated [18F]FHBG activity in the same patient before and after 

CTL administration.  
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Table 1. Imaging and demographic data for all seven patients enrolled in this study.  

Patient # 1 2 3 4 5 6 7 

Gender M F F M F M M 

Age (years) 57 41 61 62 53 66 60 

CTL type autologous autologous allogeneic allogeneic allogeneic allogeneic allogeneic 

Histology Glioma Glioma Glioma Glioma Glioma Glioma Glioma 

IL13Rα2 
expression 

N/A N/A 2-3+ / 80% 2-3+ / 80% 2-3+ / 70% 2+ / 60% 2+ / 90% 

Site of 
primary 
tumor 

right 
parietal 

right 
parieto-
occipital 

splenium of 
corpus 

callosum 
and left 
parietal 

right 
occipital 

left 
temporal 

right fronto-
parietal 

left frontal 

Site of 
recurrence 

right 
occipital 

right 
parieto-
occipital 

splenium of 
corpus 

callosum 
and left 
parietal 

genu of 
corpus 

collosum 
and 

bifrontal  

left 
temporal 

right fronto-
parietal 

left parietal 

MRI pre-
CTL 

08/03/2006 15/01/2009 23/03/2011 15/02/2012 09/05/2012 12/09/2012 06/03/2013 

MRI post-
CTL 

18/04/2006 25/02/2009 15/05/2011 12/03/2012 05/06/2012 08/10/2012 26/03/2013 

[18F]FDG 
pre-CTL 

09/03/2006 14/01/2009 23/03/2011 15/02/2012 10/05/2012 14/09/2012 08/03/2013 

[18F]FDG 
post-CTL 

N/A N/A 16/05/2011 17/03/2012 06/06/2012 08/10/2012 27/03/2013 

[18F]FHBG 
pre-CTL 

N/A 05/01/2009 21/04/2011 17/02/2012 11/05/2012 13/09/2012 07/03/2013 

[18F]FHBG 
post-CTL 

17/04/2006 23/02/2009 09/05/2011 06/03/2012 01/06/2012 04/10/2012 28/03/2013 

Lesion 
total 
activity 
pre-CTL 

- 10.1 3.5 2.9 23.1 4.1 1.8 

Lesion 
total 
activity 
post-CTL 

#1, 4.9; #2, 0.8  20.3 8.4 6.3 28.1 8.4 6.8 

Non-
injected 
foci total 
activity 
pre-CTL 

- - - 2.4 - - 1.6 

Non-
injected 
foci total 
activity 
post-CTL 

- - - 3.2 - - 2.7 
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Figure legends 

 

Fig. 1. The herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) complex and 

monitoring by [18F]FHBG. The herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) 

complex is a genetically modified structure that was transfected into either autologous or 

allogeneic CTLs. This complex expresses a fusion protein consisting of a selective gene 

(hygromycin resistance locus) for adequate in vitro expansion of the CTL line; a PET reporter 

gene and safety gene, HSV1-tk; a glucocorticoid receptor (GR) resistance locus for improving 

CTL survival despite the high doses of steroids routinely given to high-grade glioma patients; 

and a IL-13 zetakine domain which is a chimeric receptor that enables glioma cell recognition by 

CTLs. CTL transfection was performed by electroporation. Inside the transfected cells, HSV1-tk 

is transcribed and translated to produce the HSV1-TK enzyme. [18F]FHBG is a labeled analog of 

penciclovir and substrate for HSV1-TK. In the presence of HSV1-TK, the radiolabeled probe is 

phosphorylated and trapped within the cell. The magnitude of [18F]FHBG signal reflects the 

activity of HSV1-TK enzyme and thus HSV1-tk gene expression. Abbreviation: pmRNA, pre-

messenger RNA.  
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Fig. 2. Schematic demonstrating the workup and monitoring of CTL infusion after an 

initial treatment for high-grade glioma. After enrollment in this study and upon tumor 

recurrence, an intracerebral Rickham catheter was installed for repetitive infusions of CTLs. 

Each patient underwent [18F]FHBG PET and MRI before and after CTL infusions. In addition, 

IL-2 was administered at regular intervals to further increase the survival and enhance the 

potency of the administered CTLs. CTL distribution was imaged by measuring changes in 

tumoral [18F]FHBG accumulation before and after infusions of cells. 
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Fig. 3. Tumor-associated CTL imaging with [18F]FHBG. [18F]FHBG PET imaging was 

performed in a 66 year-old male (Patient 6) with a recurrent right frontoparietal glioblastoma 

before (A) and one week after (B) CTL infusions. Allogeneic CTLs and IL-2 were injected 

intratumorally (red arrows) as described in Materials and Methods. Tumor recurrence was 

monitored by T1-weighted (T1W) MRI (top panels). [18F]FHBG PET images were fused with 

MRI images (bottom panels), and 3D volumes of interest were drawn using a 50% [18F]FHBG 

SUVmax threshold, outlined in yellow. (C) Voxel-wise analysis of [18F]FHBG SUV in pre- and 

post-CTL infusion scans. 



 38 

 

Fig. 4. [18F]FHBG PET imaging in recurrent disease and at untreated tumor sites. 

[18F]FHBG PET imaging was performed in a 60 year-old male (Patient 7) with multifocal left 

hemispheric glioma. CTLs were injected into the medial left frontal lobe tumor (yellow arrows).  

(A) Tumor size was monitored by T1-weighted (T1W) contrast-enhanced MRI (top left panels). 

[18F]FHBG PET images were fused with MRI images (bottom left panels), and 3D volumes of 

interest were drawn using a 50% [18F]FHBG SUVmax threshold, outlined in red. (B) MRI and 

[18F]FHBG PET-MR images one week after CTL infusions. (C) Voxel-wise analysis of 

[18F]FHBG total radioactivity in pre- and post-CTL infusion scans. [18F]FHBG activity was 
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additionally assessed in a non-injected tumor focus (red arrows) before (D) and after (E) CTL 

infusions, with voxel-wise analysis of this lesion performed for comparison (F). 

 

 

Fig. 5. Changes in [18F]FHBG total activity in patients after CTL infusions. The total 

activity (SUVmean × uptake volume) was measured for each patient on pre- and post-CTL 

[18F]FHBG scans, with the VOI obtained after a 50% SUVmax threshold. Clinically-confirmed 

sites of tumor recurrence that received CTL infusions are indicated in blue. Non-injected tumor 

foci in patients with multifocal disease are indicated in gray. In Patient 1, for whom no pre-CTL 

scan was available, the total activity values for the two tumor foci are shown in red. For 

reference, patient numbers are indicated next to the post-CTL [18F]FHBG values. The increase in 

[18F]FHBG signal after CTL infusion was statistically significant (P = 0.014; paired Wilcoxon 

test). 


