
  

Abstract—As part of the Accessible Routes from 

Crowdsourced Cloud Services project (ARCCS) we conducted a 

series of experiments using the ARCCS sensor to identify push 

style of wheelchair users. The aim of ARCCS is to make use of a 

set of well-calibrated sensors to establish a processing chain that 

then provides ground truth of known accuracy about location, 

the nature of the environment, and physiological effort. In this 

paper we focus on two classification problems 1) The push style 

employed by people as they push themselves and 2) Whether the 

person is being pushed by an attendant or pushing themselves 

(independent of push style). Solving the first enables us to 

develop a level of granularity to pushing classification which 

transcends rehabilitation and accessibility.  The first problem 

was solved using a wrist-mounted ARCCS sensor, and the 

second using a wheel-mounted ARCCS sensor. Push styles were 

classified between semi-circular and arc styles in both indoor 

and outdoor environments with a high-decrees of precision and 

recall (>95%). The ARCCS sensor also proved capable of 

discerning attendant from self-propulsion with near perfect 

accuracy and recall, without the need for a body-worn sensor.  

I. INTRODUCTION 

In high-income countries, a leading cause of death is 
inactivity. In the UK it is the 4th largest cause of disability and 
death [1], making it as deadly as smoking [2]. Manual 
wheelchair users have been shown to be less prone to meet 
health guidelines for physical activity, which puts them at 
greater risk for cardiovascular, musculoskeletal and metabolic 
disorders [3], [4][5]. The associated increase in body mass 
might further favor the likelihood of developing upper limb 
pain and injury, causing further damage to the individual’s 
health and social participation [6], [7].  A proven method for 
successfully increasing activity levels is to embed active travel 
into a daily commute to work or school. However, wheelchair 
users frequently encounter barriers in the built environment, 
which prevent them from being able to embed active travel 
into their daily routine. In order to build such activity patterns 
into a routine, there are two issues to consider - the basic need 
of accessibility (i.e. can the person physically push themselves 
to the place) and injury prevention (i.e. will the route invoke a 
push style and pattern which might, in the long-term, cause 
upper-limb injury). Approximately half of the manual 
wheelchair user population will suffer an upper-limb injury 
[8], [9]. Injury prevalence has been linked to age and time 
spent in a wheelchair [10] and push styles which create high 
peak forces with a rapid rate of rise of force [11]. Such forces 
have been shown to be linked to the environment [12]. 
According to the Guidelines for Preservation of Upper Limb 
Function Following SCI, a semicircular push style should be 
encouraged during rehabilitation and wheelchair training as it 
reduces the likelihood of pain development [13]. However, 
pushing style adopted outdoor is affected by environmental 
conditions with people needing to adapt their push-style when 

pushing up hills [14]. Therefore there is a need to link both 
accessibility and rehabilitation parameters. 

The aim of the ARCCS project is to make use of a set of 
well-calibrated sensors to establish a processing chain that 
then provides ground truth of known accuracy about location, 
the nature of the environment, and physiological effort. In 
doing so we are enabling the wheelchair to become a part of 
the Internet of Things. In previous work we have investigated 
the types of sensors [15] which could be used for such a system 
and shown measurements obtained from both smartphones and 
standalone Inertial Measuring Units (IMUs) sensor devices 
can be used with a high level of credibility in wheelchair 
accessibility studies.  By crowd-sourcing such data ARCCS 
will allow wheelchair users with similar self-identified levels 
of ability to use each other’s suggested routes and times in 
order to plan their journey. ARCCS combines and advances 
work which has been completed in the activity 
monitoring/rehabilitation and geomatic information services 
domains.  

Here we focus on how ARCCS can advance the 
rehabilitation and activity monitoring domains. A number of 
studies have investigated the use of wheel mounted 
accelerometers to measure the activity of wheelchair users and 
have found good correlations (>0.99 IC(2,1)) from this data to 
number of wheel rotations and  duration of movement. 
Learmonth and colleagues [16] have recently established 
cutoff points in the vector magnitude of accelerations (VMA) 
measured using a wrist-worn triaxial AciGraph accelerometer 
system. The study took place on a treadmill across a number 
of speeds and with 24 wheelchair users. It established cut-off 
points for 1.5mph (2.4kmph), 3.0mph (4.8kmph) and 4.5mph 
(7.2 kmph). Further, it demonstrated a strong linear correlation 
between the VMA and VO2, thus allowing a method for 
characterizing physical activity of wheelchair users. The study 
is limited, as admitted by the authors, is that the focus was on 
physically active wheelchair users who were capable of 
propelling 4.5 mph for 6 min. Many wheelchair users do not 
achieve such exercise bouts. Sonenblum et al. [17] has shown 
the median activity bout (of 28 manual wheelchair users) lasts 
21s, resulting in 8.1m travelled and a velocity of 1.5kmph. [18] 
have used a wrist-mounted accelerometer to classify the push 
style with an accuracy of over 90%  using a k-Nearest 
Neighbor (kNN) classifier.  

More recently [19] claim that  the draw-back of a single 
device is that it can only be mounted in one place. If wheel-
mounted it is unable to measure upper-limb movement, and if 
on the arm it is incapable of measuring wheelchair movements. 
A particular criticism of wheel-mounted sensors is that they 
are unable to distinguish between self-propulsion and 
attendant propulsion [19]. The researchers therefore use a gyro 
based wheel sensor combined with an accelerometer based 
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system placed on the arm (both wrist and upper arm are 
trialed). This system allows for different activities to be 
identified, using a two-step process. The process first identifies 
the stationary, near-stationary or moving and then further 
classifies an activity (e.g. folding clothes).  

II. METHODS 

The aim of this study was to expand  the work done by [18] 
by introducing self-selected speed and therefore a variety of 
velocities and to establish classifiers which would therefore be 
able to detect push styles both indoors and outdoors over a 
variety of terrains. In addition, we wished to investigate if it 
was possible to detect attendant-pushing from self-pushing 
using a wheel-mounted sensor to help determine the best 
placement of ARCCS sensors for future studies. The wheel-
based sensor would be attractive if we could identify between 
attendant and self propulsion as it would allow us to discern 
how much activity a person was getting from an unobtrusive 
sensor. 

A. The ARCCS sensor  

The sensor node developed in ARCSS (Figure 2) uses a 

system-on-a-chip processor that has embedded wireless 

capabilities. It contains a 3D accelerometer, 3D gyroscope, 

3D magnetometer, an absolute pressure sensor (to detect 

when the person is going uphill), a micro SD card and 

Bluetooth transmission capabilities. It also contains a real-

time clock, used to wake the device at particular times to 

conserve battery. A bespoke 3D printed bracelet and wheel 

mount were created for the sensor and used for data 

collection. The sensor and mounts are shown in Figure 1. 

A. Data collection 

Initial data was collected along a 10m corridor with low pile 

carpet. Non-regular wheelchair users were asked to push 

along the corridor, turn and return and to complete this until 

they had completed 5 `loops' of the corridor. They first 

completed this using a semi-circle push style and then using 

an arc push style. Data was collected by a single participant 

who was not a regular wheelchair user, but who learnt the 

push styles in the presence of a physiotherapist over several 

days prior to data collection. A follow-up data set was 

completed over different terrains outside, these terrains 

formed a loop around a block of the University campus; 

again the subject completed the loop first with a semi-circle 

style and then with an arc style. Data was recorded at 100Hz. 

B. Data Processing 

Data was initially visualized in the ARCCS data visualizer to 

check for any errors in the data and to confirm the start and 

end time of each trial. The data was then pre-processed in 

Matlab (Version R2015a). The orientation of the sensor was 

calculated using the three channels of accelerometer and 

three channels of gyroscope data as inputs for the Madgwick 

filter [20]. Time domain features were then extracted. These 

consisted of mean and standard deviation the 3 channels of 

acceleration, gyroscope and angle. An ARFF file was built 

in Matlab to be used in WEKA (V.3.16.13). 

 

 
Figure 2: visARCCS, the ARCCS visualization tool 

C. Classification of push patterns 

Classifiers were trained in WEKA. A 10-fold-cross 

validation (10-fold-CV) was preformed using a naïve 

Bayesian classifier and a sequential minimal optimization 

algorithm (SMO) obtained by training a support vector 

machine (SVM) classifier. 

D. Push Styles 

Distributions of each of the attributes are shown in Figure 3.  

 
 
Figure 3: Pre-processed variable distributions in WEKA 
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Figure 1: ARCCS sensor, battery and mounts. 



  

All 18 attributes were used in the classification and both NB 

and reliable results (see Table 1). The SVM classifier was 

more accurate over the NB classifier though both achieved 

good results. 

Table 1: Results of NB and SVM classifiers on indoor and outdoor 

wrist-mounted sensor data 

 True 

 positive 

False  

positive 

Precision Recall 

Indoor 

(NB) 

.954 .008 .991 .954 

Indoor 

(SVM) 

.997 .003 .997 .997 

Outdoor 

(NB) 

.986 0 1 .986 

Outdoor 

(SVM) 

.998 0 1 .998 

 

The confusion matrices for both indoor and outdoor data 

are given in Table 2. For both classifiers it was more likely 

that the SVM gave more accurate classifications. 

 
 Table 2:  Confusion matrices from the NB and SVM classifiers on 

indoor and outdoor wrist-mounted sensor data with predicted 

labels given in each column. 

 

E. Attendant V’s Pushed from wheel sensor 

Precision values were 100% on this data set when an SVM 

or NB classifier was used, with recall recorded as 100% and 

96.1% respectively. This high level of correct classification 

fell when attributes from only the accelerometer were used 

(mean and standard deviations from each channel). Precision 

dropped to 75% with the NB and 82% with the SVM; recall 

was 73% for the NB and 71% for SVM. These lower levels 

are reflected in the confusion matrices shown in Table 3 &4. 

 
Table 3: Confusion matrices self-propelled (self) and attendant-

propelled (attendant )with gyro and accelerometer-based 

attributes. 

 
Table 4:Confusion matrices self-propelled (self) and attendant-

propelled (attendant )with accelerometer-based attributes. 

 

III. DISCUSSION 

The results presented in this study have demonstrated the 

ability to classify push styles using a wrist-mounted IMU 

using only time-based attributes. Our results, using self-

selected speeds, have shown similar accuracy in 

classifications as [21], which is the nearest research to that 

we present.  This has been accomplished with the addition of 

gyroscope and angle attributes, and has meant we did not 

need to use frequency-based attributes which have been 

needed in previous studies (e.g. [19]). The use of less-

computationally demanding attributes has the potential to 

enable us to process and classify pushes onboard the 

ARCCS sensor before streaming simple metrics of a journey 

or exercise bout to a wheelchair user’s mobile phone or 

tablet. In keeping with results from [18] we also found that 

when the rolling resistances were higher (i.e. outdoors) the 

classifiers were more accurate. 

We believe our study complements existing literature which 

has focused on classifying distinct activities (e.g. basketball, 

from household chores and regular pushing [19]). and on 

studies which have validated wheel-mounted accelerometer-

based methods for measuring wheelchair activity bouts (e.g. 

[22]). In our study we add a level of granularity to 

wheelchair pushing classification moving from activities to 

the quality of movement within an activity, which builds on 

the initial work of [21]. This level of granularity opens up 

the possibility of further investigation into how 

environmental conditions affect pushing styles and to 

monitor how well people learn to apply pushing styles 

during wheelchair skills training in real life conditions. 

This paper presents what the authors believe to be the 

potential to realize the ARCCS system. However, data has 

been collected and cross-validated on a single subject, and it 

is entirely possible that performance might drop when 

applying the classifier to another person. Future work should 

address this issue by collecting a larger dataset. In addition, 

the results of this granular-level push-style classification and 

the identification of hands on and off timings should be 

combined. These could then be used to constrain a 

calculated path to that of the wheel between these points 

The second aim of this paper was to demonstrate the 

feasibility of identifying when a person is being pushed by 

an attendant and when they are self-propelling using only a 

wheel-mounted sensor. Our results show that when only 

accelerometer-based attributes are used the accuracy of the 

classifiers drops to 75% with a NB classifier and 82% with 

  NB NB SVM SVM 

  Arc Semi Arc Semi 

True 

labels 

(indoor) 

Arc 

 

20161 975 21079 57 

Semi-

circle 

174 20962 71 21065 

True 

labels 

(Outdoor) 

 

Arc 

 

10998 153 11130 21 

Semi-

circle 

0 11151 0 11151 

  Predicted labels – Acceleration and 

orientation attributes 

  Attendant 

NB 

Self 

NB 

Attendant 

SVM 

Self 

SVM 

T
ru

e 
la

b
el s 

Attendant 770 31 801 0 

Self 0 801 0 801 

  Predicted labels – Acceleration and 

orientation attributes 

  Attendant 

NB 

Self 

NB 

Attendant 

SVM 

Self 

SVM 

T
ru

e 
la

b
el s 

Attendant 585 216 572 229 

Self 193 608 127 674 



  

an SMO algorithm. However, when the gyro-based attributes 

were included the accuracy increased to 100%. It must be 

stressed that while a range of velocities were used for both 

pushing and pushed the sample was still quite small. This is 

also true for the self-propelled study. In addition, we were 

unable to test sensors on both the wheel and the wrist 

simultaneously as we had only manufactured a single sensor. 

Therefore, future work will focus on collecting a larger data 

set, with wheelchair users across a longer time period. 

IV.  CONCLUSION 

This study shows the potential of using a wrist worn IMU to 

detect pushing styles across different surfaces and at various 

self-selected speed. In addition, it shows it is possible to use 

a single sensor mounted on the wheel to distinguish between 

self and attendant wheelchair pushing. These results advance 

the possibilities for linking wheelchair rehabilitation and 

accessibility measures in the future; and make possible the 

identification of pushing styles which are more likely to 

cause injury as a person pushes every day.  
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