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B-cell populations discriminate between
pediatric- and adult-onset multiple
sclerosis

ABSTRACT

Objective: To comparatively assess the B-cell composition in blood and CSF of patients with
pediatric-onset multiple sclerosis (pedMS) and adult-onset multiple sclerosis (adMS).

Methods: In this cross-sectional study, we obtained blood and CSF samples from 25 patients with
pedMS (8–18 years) and 40 patients with adMS (23–65 years) and blood specimens from 66
controls (1–55 years). By using multicolor flow cytometry, we identified naive, transitional, iso-
type class-switched memory, nonswitched memory, and double-negative memory B-cell subsets
as well as plasmablasts (PB) and terminally differentiated plasma cells (PC). Flow cytometric data
were compared to concentrations of B-cell-specific cytokines in serum and CSF as determined by
ELISA.

Results: Frequencies of circulating naive B-cells decreased with higher age in controls but not in
patients with multiple sclerosis (MS). B-cell patterns in CSF differed between pedMS and adMS
with an acute relapse: in pedMS-derived CSF samples, high frequencies of nonswitched memory
B cells and PB were present, whereas class-switched memory B cells and PC dominated in the
CSF of patients with adMS. In pedMS, PB were also elevated in the periphery. Accumulation of
PB in the CSF correlated with high intrathecal CXCL-13 levels and augmented intrathecal synthe-
sis of immunoglobulin G and immunoglobulin M.

Conclusions: We demonstrate distinct changes in intrathecal B-cell homeostasis in patients with
pedMS during active disease, which differ from those in adults by an expansion of plasmablasts in
blood and CSF and similarly occur in prototypic autoantibody-driven autoimmune disorders. This
emphasizes the particular importance of activated B-lymphocyte subsets for disease progression
in the earliest clinical stages of MS. Neurol Neuroimmunol Neuroinflamm 2017;4:e309; doi: 10.1212/

NXI.0000000000000309

GLOSSARY
adMS 5 adult-onset multiple sclerosis; ASC 5 antibody-secreting cells; CIS 5 clinically isolated syndrome; CSM 5 class-
switched memory; FITC 5 fluorescein isothiocyanate; IFN 5 interferon; IgG 5 immunoglobulin G; IgM 5 immunoglobulin M;
IL 5 interleukin; MS 5 multiple sclerosis; NMO 5 neuromyelitis optica; ON 5 optic neuritis; PBMC 5 peripheral blood
mononuclear cells; pedMS 5 pediatric-onset multiple sclerosis; SLE 5 systemic lupus erythematosus; USM 5 unswitched
memory; VLA-4 5 very late antigen–4.

Multiple sclerosis (MS) is an inflammatory disease of the CNS that usually becomes manifest
between the ages of 20 and 40 years. Only about 3%–4% of patients experience their first
symptoms prior to age 18 years.1,2 In the last decade, pharmacologic options to treat patients
with adult-onset MS (adMS) have expanded remarkably, which raises our expectations of being
able to transmit novel therapies to the pediatric-onset MS (pedMS) population. The feasibility
of controlled clinical trials to generate data on the efficacy and safety of new drugs in pedMS is
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limited due to the rarity of this entity. Disease-
modifying therapies are thus applied empiri-
cally in pedMS although the evidence of
efficacy is insufficient.3 This seems reasonable
as the pathophysiologic principles of adMS
and pedMS are considered to be similar. How-
ever, substantial concerns remain since the
developing immune system of younger people
has specific properties and the clinical course
of pedMS is characterized by higher inflamma-
tory activity with more frequent relapses and
a high risk of irreversible disability early in the
course of disease.2,4–6 Therefore, it is impor-
tant to identify immunologic similarities and
differences between pedMS and adMS so as to
better appraise treatment effects when novel
drugs are applied in patients with pedMS.
Here, we wanted to clarify whether the dis-
tinct homeostatic shifts within the B-cell com-
partment detectable in adMS7 can also be
discerned in pedMS. This is of particular rel-
evance because B cells are a target for immu-
notherapies in adMS, and B-cell-depleting
drugs (rituximab, ocrelizumab, and ofatumu-
mab) have recently shown impressive effects
on the disease course and are likely to be
approved for adMS in the near future.8–10

METHODS Study participants. In collaboration with the

Department of Pediatric Neurology, University Children’s Hos-

pital, Heidelberg, we recruited 25 patients with pedMS according

to the revised McDonald criteria11 and the consensus definitions

proposed for pedMS and related disorders.1 All patients with

pedMS had experienced their first symptoms at age #18 years

(median 16 years, range 8–18 years) and had not been treated

with corticosteroids or disease-modifying drugs in the last month

before study entry. The adMS cohort consisted of 40 untreated

patients (median age 33 years, range 23–65 years). Blood–CSF

barrier function was determined by nephelometrically assessing

serum and CSF albumin concentrations and calculating the CSF

to serum albumin ratio (Qalb 5 albumin CSF [mg/L]/albumin

serum [mg/L]31023; normal5 2–8).12 As controls, we included

39 children who were diagnosed with idiopathic adipositas or

microsomia or who were scheduled for surgery for fronto-orbital

advancement in craniosynostosis, as reported recently.13

According to age, we subdivided this group into children (n 5

22; 1–13 years) and adolescents (n5 17; 14–17 years). To depict

B-cell homeostasis over a broad age range, we also included 27

adult healthy volunteers (median age 37 years, range 25–55

years). Demographic and clinical data of all study participants

are given in the table.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the ethics committee of

the University Hospital Heidelberg. Written informed consent

was obtained from all patients and parents.

Sampling. From all study participants, 10–50 mL peripheral

blood and 10 mL serum were collected. Sera were immediately

stored at270°C. Peripheral bloodmononuclear cells (PBMCs) were

isolated from peripheral blood by Ficoll-gradient centrifugation

(Biochrom, Berlin, Germany). Parallel CSF samples from 12

patients with pedMS and from 20 patients with adMS (0.5–

3.0 mL) were obtained by lumbar puncture, immediately placed

on ice, and sedimented for 10 minutes at 300 g and 4°C. Freshly

isolated CSF cells were analyzed by flow cytometry. Supernatants

were snap-frozen and stored at 270°C.

Multicolor flow cytometry. Flow cytometric B-cell analysis

was performed as described before.7 Briefly, 1 3 106 PBMCs

and, depending on cell count and volume of CSF samples,

3.03 103 to 5.73 104 (mean 1.653 104) CSF cells were stained

with monoclonal antibodies specific for human B-cell markers

(CD20-PerCP, CD27-PE, immunoglobulin D–fluorescein iso-

thiocyanate [FITC], CD38-APC, human leukocyte antigen–DR-

FITC, CD138-PE [BD Biosciences, Heidelberg, Germany]) and

analyzed with a fluorescence-activated cell sorting Calibur

cytometer and CellQuest software (BD Biosciences). Gating

procedures are illustrated in figure e-1 at Neurology.org/nn.

ELISA. Cytokine levels of interleukin (IL)–6 and CXCL-13 in

serum andCSF supernatants were determined byHumanQuantikine

HS ELISA Kits (R&D Systems, Nordenstadt, Germany), according

to the manufacturer’s instructions. All samples were measured in

duplicate.

Statistical analysis. Two-sided t tests or 2-sided paired t tests
were used to compare normally distributed samples. Mann-

Whitney U tests or Wilcoxon tests were used to compare non-

normally distributed paired and unpaired samples. Q-Q plots were

used to check for the normality assumption of a dataset. Correlations

between 2 variables were calculated with Pearson correlation tests.

p , 0.05 Was considered statistically significant. p Values were

interpreted descriptive due to the exploratory character of the

study, and thus, no adjustment for multiple testing was performed.

Table Demographic and clinical characteristics of study patients

Pediatric-onset
MS (n 5 25)

Adult-onset
MS (n 5 40)

Female, n (%) 16 (64) 25 (63)

Median (range) age at sampling, y 16 (8–18) 33 (23–65)

Median (range) disease duration, y 0.0 (0–3) 2.0 (0–12)

Median (range) EDSS at sampling 1.0 (0–3) 1.5 (0–4)

In acute relapse, n 15 20

In clinical remission, n 10 20

Blood samples, n 24 40

CSF samples, n 12 20

Mean CSF cell count, cells/mL 15.4 7.9

Mean (range) CSF cell count per sample 20.8 3 103 (4.0–57.0) 14.0 3 103 (3.0–40.5)

Mean QAlb, 31023 4.3 5.9

Median IgMIF, % (range) 1.5 (0–94.7) 0.0 (0–0.27)

Median IgAIF, % (range) 0.0 (0–78.8) 0.0 (0–20.3)

Median IgGIF, % (range) 43.6 (0–78) 25.7 (0–82.9)

OCB, n (%) 25 (100) 38 (95)

Abbreviations: EDSS 5 Expanded Disability Status Scale; IgA 5 immunoglobulin A; IgG 5

immunoglobulin G; IgM 5 immunoglobulin M; MS 5 multiple sclerosis; OCB 5 oligoclonal
bands.

2 Neurology: Neuroimmunology & Neuroinflammation

http://nn.neurology.org/lookup/doi/10.1212/NXI.0000000000000309


RESULTS Frequencies of circulating naive and memory

B cells are age-dependent in control donors but not in

patients with MS. First, we assessed physiologic B-cell
homeostasis in blood specimens of 66 controls. We
observed a clear age-related decline in naive B cells
(R 5 20.724, p , 0.00001) together with an
increase in memory B cells (class-switched memory
[CSM], unswitched memory [USM]) (R 5 0.694,
p , 0.00001) (figure 1). Highest concentrations of
naive B cells and lowest frequencies of memory B cells
were found in childhood (naive: 76.6% 6 7.4%;
memory: 18.9% 6 7.1%) and in adolescence
(naive: 73.8% 6 8.3%; memory: 21.5% 6 7.8%),
while in adulthood a marked drop in the frequency of
naive B cells along with a concomitant increase in
percentages of memory B cells were detected (naive:
52.0% 6 12.4%; memory: 41.6% 6 13.8%).

When analyzing the composition of peripheral B
cells in the MS cohort (n5 65) we found no, or only
moderate, age-dependent changes in both naive and
memory B-cell subsets (naive: R 5 20.229, p 5

0.07; memory: R 5 0.162, p 5 0.034) (figure 1).
Correspondingly, the frequency of naive and memory
B cells did not significantly differ between blood

samples from patients with pedMS (naive:
68.3% 6 11.4%, memory: 38.1% 6 20.9%) and
those from patients with adMS (naive: 63.6% 6

14.3%; memory: 42.8% 6 20.1%; p 5 0.45 and
0.28, respectively). Moreover, no age dependence
was observed when the MS cohort was divided into
subgroups of patients who were tested during acute
relapse (n 5 35; naive B cells: R 5 20.211, p 5

0.23; memory B cells: R 5 0.357, p 5 0.038) or
while in clinical remission (n 5 30; naive B cells:
R 5 20.174, p 5 0.037; memory B cells: R 5

0.145, p 5 0.045) prior to regression analysis.

Changes in peripheral B-cell homeostasis are related to

the stage of disease and differ in adMS and pedMS. An
expansion of the relative frequency of naive B cells
along with a concomitant reduction in CSM pheno-
types in peripheral blood can typically be detected in
patients with adMS with acute disease activity, as we
have demonstrated previously.7 The comparative anal-
ysis of peripheral B-cell homeostasis in patients with
adMS with clinically active (n5 20) or clinically stable
disease (n 5 20) performed in this study confirmed
these data (naive B cells, relapse: 68.3% 6 12.3% vs

Figure 1 Frequencies of naive and memory B cells (BC) are age-dependent in control donors but not in patients with multiple sclerosis (MS)

(A) Dot plots represent relative percentages of naive BC (left) and memory BC (right) in peripheral blood samples obtained from 66 control donors (gray
circles) and 65 patients with MS (black circles), as determined by multicolor flow cytometry. Linear regression curves depict a decrease in naive BC with
age in controls accompanied by an increase in memory BC, whereas in theMS cohort no, or only moderate, age-dependent changes in both naive andmemory
BC were present. (B) Relative percentages of naive (white circles) and memory BC (filled circles) in CSF samples obtained from 28 patients with MS as deter-
mined by multicolor flow cytometry. Linear regression curves depict a moderate decrease in naive BC and increase in memory BC with age. Pearson corre-
lation coefficients (R) and statistical significances (p) are indicated.
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remission: 57.5%6 15.9%, p5 0.042; CSM, relapse:
13.7% 6 8.7% vs remission: 21.0% 6 5.5%, p 5

0.025) (figure 2A). Notably, similar alterations tended
to be present in the pedMS cohort (naive B cells,
relapse [n 5 15]: 73.3% 6 11.4% vs remission
[n 5 10]: 60.5% 6 10.9%, nonsignificant; CSM,
relapse: 12.5% 6 4.8% vs remission: 16.9% 6

7.2%, nonsignificant) (figure 2). However, unlike in
adults, PB were expanded in the systemic circulation of
patients with pedMS (0.13%6 0.03% of PBMCs) as
a distinctive feature (figure 2B) and were 1.5-fold to 2-
fold higher than in the circulation of age-matched
controls (0.07% 6 0.03% of PBMCs, p 5 0.029).

The CSF of patients with pedMS exhibits distinct B-cell

patterns. To depict the intrathecal B-cell compart-
ment in pedMS, we assessed CSF specimens from
12 patients with pedMS and compared the data to
those of 20 adult patients (all in relapse). In contrast
to findings in blood, we found distinct differences
between the 2 cohorts in CSF B-cell homeostasis.
The divergences comprised a clear reduction in fre-
quency of CSM-B cells and PC along with an
increase in proportions of USM-B cells and of PB
in CSF samples obtained from patients with pedMS
(CSM: 36.6% 6 18.2% of CSF B cells; USM:
29.4% 6 10.7% of CSF B cells; PC: 42.9% 6

15.9% of antibody-secreting cells [ASC]; PB:
56.2% 6 16.9% of ASC) vs patients with adMS
(CSM: 58.5%6 16.5%, p 5 0.013; USM: 17.4% 6

12.8%, p 5 0.037; PC: 60.0% 6 17.1%, p 5 0.044;
PB: 39.1% 6 17.4%, p 5 0.048) (figure 3).

When comparing absolute cell numbers in the
CSF, we found higher cell counts for total B cells
(328.8 cells/mL), USM (90.0 cells/mL), ASC (420.9
cells/mL), and PC (214.9 cells/mL) in pedMS than de-
tected in adMS (total B cells: 168.7 cells/mL, p 5

0.078; USM: 27.2 cells/mL, p 5 0.028; ASC: 168.5
cells/mL, p 5 0.015; PB: 53.9 cells/mL, p , 0.001).

High levels of CXCL-13 correlate with PB counts in the

CSF of patients with pedMS. We used ELISA to deter-
mine concentrations of CXCL-13 and IL-6 in CSF
supernatants and parallel serum samples obtained
from 12 patients with pedMS and 20 patients with
adMS (all in acute relapse). On average, the
concentrations of CXCL-13 in adMS-derived CSF
were comparable to those reported earlier,7 yet
showed a marked variability, with half of the samples
tested having CXCL-13 concentrations near the
detection limit of the ELISA assay used (2–4 pg/mL)
and 4 specimens reaching levels .100 pg/mL.
Although CXCL-13 levels in the CSF of patients
with pedMS were universally higher than 10 pg/mL,
the difference between the 2 cohorts (pedMS: median
52.6 pg/mL, range 11.5–203.2 pg/mL; adMS: median
8.1 pg/mL, range 3.0–224.7 pg/mL) was not
statistically significant (p 5 0.142) (figure 4A).
Notably, when comparing CXCL-13 data with
numbers of B-cell subsets, the highest correlation was
observed for total cell counts of PB in all CSF samples
assessed (R 5 0.712, p , 0.001) (figure 4B).
Interestingly, the 4 patients with adMS with high
CXCL-13 levels in the CSF exhibited intrathecal
pleocytosis (mean 16.5 CSF cells/mL), high PB
counts (mean 132 cells/mL), and marked intrathecal
immunoglobulin G (IgG) and immunoglobulin M
(IgM) synthesis (medians, IgG 55.9%, IgM 47.9%),
whereas the remaining 16 patients with adMS
presented with lower CSF cell counts overall (mean

Figure 2 Disease stage–dependent changes in blood–B-cell homeostasis are
similar in adult-onset multiple sclerosis (adMS) and pediatric-onset
multiple sclerosis (pedMS)

Stable bars represent percentages of (A) B-cell subsets and (B) antibody-secreting cells in
the peripheral blood of 25 patients with pedMS (relapse: n 5 15; remission: n 5 10) and
40 patients with adMS (relapse: n5 20; remission: n5 20) as determined by multicolor flow
cytometry. ASC 5 antibody-secreting cells; CSM 5 class-switched memory B cells; DNM 5

double-negative memory B cells; PB 5 plasmablasts; PC 5 plasma cells; TN 5 transitional B
cells; USM 5 unswitched memory B cells.
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5.5 CSF cells/mL, 54 PB/mL), and less pronounced
intrathecal immunoglobulin synthesis (medians, IgG
15.0%, IgM 0.0%). In the parallel serum samples,
CXCL-13 concentrations tended to be higher in
pedMS (pedMS: median 66.1 pg/mL, range 26.2–
349.5 pg/mL; adMS: median 37.4 pg/mL, range
24.0–301.5 pg/mL; nonsignificant with p 5

0.199) and did not correlate with intrathecal
CXCL-13 levels or with the prevalence of B-cell
subsets in either compartment. IL-6 levels were
similarly low in CSF and serum of all patients

tested, with no significant differences between
pedMS and adMS cohorts.

DISCUSSION Current treatment of patients with
pedMS occurs mostly under off-label conditions and,
in terms of efficacy and safety, is based on therapeutic
concepts developed and formally evaluated in adults.
However, a potential concern of this approach is
inherent in the different developmental stages of the
pediatric and adult immune system, all the more so
as modern disease-modifying drugs target distinct

Figure 3 Distinct B-cell patterns in the CSF of patients with pediatric-onset multiple sclerosis (pedMS)

Scatterplots represent percentages of CSF B-cell subpopulations in patients with pedMS (n 5 12) compared to patients
with adult-onset multiple sclerosis (adMS) (n 5 20) (all in acute relapse). The mean of each set of values is shown as
a horizontal line. Statistical significances between different cohorts are indicated. ASC 5 antibody-secreting cells; CSM 5

class-switched memory B cells; DNM 5 double-negative memory B cells; n.s. 5 nonsignificant; PB 5 plasmablasts; PC 5

plasma cells; TN 5 transitional B cells; USM 5 unswitched memory B cells.
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populations of immune cells, which undergo dramatic
changes in phenotype and frequency with aging.
Such age-related differences also apply to B cells,
an immune cell compartment that, according to
current knowledge, is fundamentally involved in
MS immunopathogenesis and counteracted by
novel therapeutic strategies targeting the CD20
surface molecule, such as rituximab, ocrelizumab,
and ofatumumab.14

Here, we first comprehensively assessed the pheno-
types of peripheral B cells in a cohort of 66 control
donors aged between 1 and 55 years to demonstrate that
B-cell homeostasis undergoes marked changes as a func-
tion of age.While in peripheral blood of newborns more
than 90% of B cells harbor a naive phenotype, the fre-
quency of naive B cells decreases with age and, in line
with the current literature,15 this natural decline is
paralleled by a concomitant rise in proportions of
antigen-experienced memory B cells. Notably, the
age dependence in naive-to-memory ratios of periph-
eral B cells is nearly lost in individuals with MS aged
between 12 and 55 years and this distinctive feature
can already be discerned in the youngest patients.
Accordingly, a considerable divergence in the naive-
to-memory ratio was observed when comparing pedi-
atric controls (14–17 years) with adult controls (25–55
years).

We next wondered whether MS-related alterations
in peripheral B-cell homeostasis as previously
described for adults7 are common or differ in patients

with pedMS. Indeed, the abnormal B-cell pattern
detectable in patients with pedMS during acute re-
lapses largely matched those in adults, with an
expanded circulating CD272IgD1 naive subset
and a concomitantly contracted CD271 memory
B-cell pool, indicating compartmentalized shifts in
B-cell subsets driven by acute MS disease activity.
This finding implies that disease-specific variations
in peripheral B-cell phenotypes take place indepen-
dently of age and obviously resemble the marked and
age-inappropriately altered naive-to-memory cell
ratios affecting conventional and regulatory T cells
as reported earlier.13 Interestingly, in contrast to
adMS, PB—i.e., cells that are barely detectable in
the periphery under normal conditions—turned out
to be expanded overall in the pedMS cohort assessed
here. Notably, heightened frequencies of circulating
PB can also be detected in some prototypic,
autoantibody-driven autoimmune disorders such as
systemic lupus erythematosus (SLE) or neuromyelitis
optica (NMO)16,17 and are considered to be a bio-
marker for disease activity.17

In our previous study, we found that relapse-
associated shifts in peripheral B-cell profiles are closely
related to crossover changes in the CSF that include
intrathecal accumulation of CSM-B cells and ASC,
in particular of mature PC.7 Here, multicolor flow
cytometry assessment of CSF samples collected from
12 patients with pedMS and from 20 patients with
adMS during active disease revealed similar intrathecal

Figure 4 High levels of CXCL-13 correlate with plasmablast counts in the CSF of patients with pediatric
multiple sclerosis (pedMS)

(A) CXCL-13 levels in CSF supernatants obtained from patients with pedMS (n5 12) compared to patients with adult-onset
multiple sclerosis (adMS) (n5 20) (all in acute relapse) as determined by ELISA. Box plots showmedians (line within the box),
interquartile ranges (IQR, upper and lower limits of the box), and extreme values (lines extending from IQR). Statistical
significance between study cohorts as determined by nonparametric, 2-tailed Wilcoxon-test test is indicated (n.s. 5
nonsignificant). (B) High correlation between CXCL-13 levels and numbers of plasmablasts in CSF samples of patients with
multiple sclerosis (MS) (black circles 5 pedMS, gray circles 5 adMS). Each symbol represents one individual. Linear regres-
sion curve, Pearson correlation coefficient (R), and corresponding p value are shown. PB 5 plasmablasts.
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frequencies of total B cells and ASC, constituting
approximately 2% and 3% of CSF cells, respectively.
Likewise, antigen-experienced CD271 memory B
cells dominated in both cohorts, in contrast to the
systemic circulation, where naive subtypes preponder-
ated. Even so, the compartmentalized redistribution of
B-cell phenotypes detectable in patients of all age
groups markedly diverged in pedMS vs adMS. Pediat-
ric patients not only displayed significantly higher CSF
cell counts and increased intrathecal numbers of B-
lineage cells overall, but also a marked variation in
the composition of the memory cell and ASC cell
fractions. Unlike in the CSF of adults, where the vast
majority of memory cells consisted of CSM-B cells in
this and in a previous study,7 total B cells were clearly
enriched in USM phenotypes in the CSF of patients
with pedMS. This disparity in relative proportions of
isotype class-switched and nonswitched memory sub-
sets was paralleled by reciprocally distributed ASC sub-
types between study cohorts. In pedMS, intrathecal
ASC comprised predominantly PB with a PB:PC ratio
of 3:2—a feature correlating with more pronounced
intrathecal IgG and IgM synthesis—whereas their
counterparts in adMS contained higher amounts of
terminally differentiated PC, resulting in a PB:PC ratio
of 2:3, as also described earlier.7 Notably, patients with
pedMS exhibiting enhanced proportions of intrathecal
PB correspondingly had a high frequency of PB in
peripheral blood. A numerical increase in PB in the
target organ or in the systemic circulation has been
reported in several autoimmune diseases characterized
by a strong humoral component in their pathology,
such as NMO,16 Sjögren syndrome,18 pediatric ulcer-
ative colitis,19 SLE,17 and rheumatoid arthritis,20 thus
supporting the perception that expanded PB might be
involved in tissue damage associated with these
disorders.

Evidence that PB also might contribute to the im-
munopathogenesis of early-stage MS comes from
a recent study that demonstrated unique expansion
of PB in the CSF of patients presenting with transverse
myelitis as manifestation of a clinically isolated syn-
drome (CIS) suggestive of MS.21 Here, patients with
CIS with transverse myelitis had a worse prognosis
than patients presenting with optic neuritis (ON)
when converted into definite MS.22–25 In that study,
intrathecal accumulation of PB was exclusively seen in
patients with CIS with transverse myelitis but not in
those with ON, and—akin to the patients with pedMS
assessed here—was accompanied by expanded PB in
the periphery.21

The accrual of PB in the systemic circulation might
result from the activation of B cells in the periphery
before they are recruited into the CNS to exert effector
functions and to participate in the formation of ectopic
germinal centers in the meninges.26,27 Unlike mature

PC, PB are motile cells28 and are able to traffic to the
CSF through an integrin a4b1 (very late antigen–4
[VLA-4])–dependent mechanism as, similar to mem-
ory B cells, they express high levels of VLA-4.29,30

Accordingly, treatment with natalizumab, which in-
hibits the entry of immune cells into the CNS by
blocking VLA-4, was more efficacious in patients with
MS who had low intrathecal PB counts prior to initi-
ation of therapy.31 In the present study, intrathecal
expansion of PB in pedMS coincided with high CSF
levels of CXCL-13, a chemokine promoting recruit-
ment and maintenance of effector B cells in the CNS,
which was shown to be elevated in the CSF of patients
with MS during active and stable MS.7,32 In contrast,
IL-6, a proinflammatory cytokine and important sur-
vival factor for PB that is considered to play a relevant
role in NMO16 and in patients with MS who do not
respond to interferon (IFN)–b treatment,33 was not
elevated in the CSF or serum of our study cohorts.

Despite the fact that, due to the exploratory char-
acter of our study, no corrections for multiple com-
parisons were performed and caution must be
exercised when interpreting the significance level of
our data, our observations clearly support the percep-
tion that the expansion of PB in the CSF and blood of
patients with pedMS might be directly linked to MS
disease progression. This is further underlined by re-
sults from earlier studies showing that intrathecal PB
correlate with acute brain inflammation in MS as evi-
denced byMRI34 and with inflammatory CSF param-
eters such as leukocyte count, intrathecal synthesis of
IgM and IgG, and intrathecal production of matrix
metalloproteinase–9 and CXCL-13.34,35 With respect
to long-term outcome, children and adolescents with
MS have higher relapse rates,4 usually reach mile-
stones of disability about 10 years earlier,36 and have
a higher MRI disease burden at presentation along
with higher disease activity on follow-up scans than
adults at the same disease stage.37 The more pro-
nounced acute axonal damage in inflammatory demy-
elinating lesions of patients with pedMS vs patients
with adMS reported recently38 also fits with the over-
all poor clinical prognosis of pediatric-onset MS.
Hence, one might speculate that expanded PB are
an important biomarker for early-stage MS and indic-
ative of worse prognosis and rapid disease progression.
The therapeutic relevance of this fact for pedMS is
underlined by the PB dependency of natalizumab and
IFN-b treatment31,33 mentioned above as well as by
the significant reduction in PB in response to ritux-
imab therapy.39

Our results pinpoint pedMS-specific alterations of
the B-cell compartment in the CNS and support the
role of B cells and humoral immunity as an important
component of MS pathology in young patients with
early-stage MS.
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