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Abstract

App Store Analysis concerns the mining of data from apps, made possible through

app stores. This thesis extracts publicly available data from app stores, in order

to detect and analyse relationships between technical attributes, such as software

features, and non-technical attributes, such as rating and popularity information.

The thesis identifies the App Sampling Problem, its effects and a methodology to

ameliorate the problem. The App Sampling Problem is a fundamental sampling

issue concerned with mining app stores, caused by the rather limited ‘most-popular-

only’ ranked app discovery present in mobile app stores. This thesis provides novel

techniques for the analysis of technical and non-technical data from app stores.

Topic modelling is used as a feature extraction technique, which is shown to produce

the same results as n-gram feature extraction, that also enables linking technical

features from app descriptions with those in user reviews. Causal impact analysis

is applied to app store performance data, leading to the identification of properties

of statistically significant releases, and developer-controlled properties which could

increase a release’s chance for causal significance. This thesis introduces the Causal

Impact Release Analysis tool, CIRA, for performing causal impact analysis on app

store data, which makes the aforementioned research possible; combined with the

earlier feature extraction technique, this enables the identification of the claimed

software features that may have led to significant positive and negative changes

after a release.



Impact Statement

The work in this thesis seeks primarily to answer the question of “what makes suc-

cessful apps successful?” through performing empirical analysis of app store data.

The contributions work toward this goal, first establishing a feature extraction tech-

nique using topic modelling, and identifying the sampling issues present in mining

app store data (publication at MSR 2015). This work looks at time series data, iden-

tifying the app releases that had the greatest subsequent effect on app success, and

analysing common factors (publications at ICSE 2016 and FSE 2016). One of the

outcomes of this work is the tool, CIRA, an implementation of causal impact anal-
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does through a comprehensive review of literature in the field (accepted for publi-

cation in the Transactions of Software Engineering journal).
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Chapter 1

Introduction

App stores are a recent phenomenon: the largest, Apple’s App Store and Google Play,

were launched in 2008, and were joined by Blackberry World App Store in 2009, and

Windows Phone Store in 2010, in addition to numerous smaller stores. The largest

stores have, since 2008, both accumulated in excess of 1 million downloadable and

rateable apps. Complementing their large collections of hosted apps, mobile app

stores are extremely lucrative: the set of online mobile app stores were projected

to be worth a combined 25 billion USD in 2015 [181], a number that is sure to

grow in the coming years, as smartphones become ever more pervasive [69], even

in developing countries [257].

The vast success of app stores has been driven by mass consumer adoption.

Google announced that there were 1.4 billion activated Android devices in Septem-

ber 2015 [39]. Smartphones existed prior to the launch of these stores, but it was

not until 2008 that users could truly exploit their extra computing power and re-

sulting versatility through downloadable apps. In-house and even commercial ap-

plications had been available before the launch of app stores, but app stores had

some differences: availability, compatibility, ease of use, variety, and user-submitted

content [188].

It is the user-submitted content that fundamentally distinguishes app stores

from the ad-hoc commercially available applications that existed beforehand. As a

result, software engineering researchers have access to large numbers of software

applications together with customer feedback and commercial performance data,

unavailable in previous software deployment mechanisms. Furthermore, through

readily available downloadable toolkits, users can write their own applications to

make use of a smart device’s hardware. They can subsequently publish their soft-

ware in the central app store for users to download (and possibly pay for). This

publication process is subject to the store’s in-house review and certification poli-
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cies but, in general, apps and app updates can be made available quickly (typically

within hours/days).

Following the aforementioned inception of the major app stores Google Play

and Apple App Store, and mass consumer adoption, there has followed a collection

of innovative and insightful research papers centred on the study of mined collec-

tions of apps from app stores. This field of research is called “App Store Analysis”,

and it is the primary focus of this thesis. A comprehensive review of the literature

is undertaken in Chapter 2, identifying the key research papers that have advanced

the field, and tracking the growth of the field up until November 2015.

In Chapter 3, the methodology used throughout this thesis for data collection

and analysis is introduced. We describe the statistical analysis techniques for dataset

comparison and correlation analysis, and how they are used. We give an overview

of the data collected to facilitate the studies in this thesis, as well as how it was col-

lected, and any metrics extracted via information retrieval. We also give an overview

of an unsupervised machine learning approach called topic modelling, and detail the

text pre-processing techniques that are performed prior to its application.

The driving question throughout this PhD was “what makes successful apps

successful”, which is tackled from multiple perspectives throughout this thesis. The

uniform hosting of apps by app stores makes them a good source for data extraction.

We can extract technical information, such as the size and supported devices for

each app, and non-technical information, such as descriptions. App descriptions can

provide a large amount of information about apps that we would otherwise not be

aware off. We can apply algorithms in order to extract the technical features that

developers claim are present in an app, in addition to other information such as new

or added content. In Chapter 4, we show that topic modelling can be used to extract

technical features from app descriptions in a way that is analogous to n-gram based

feature extraction. Performing correlation analysis on the mean metrics from each

topic yields almost identical results to the same approach applied to features. An in

depth look at the apps with 0 and 1 ratings reveals that they are special cases and

must be treated carefully when conducting empirical studies.

Mining data from app stores can also present issues: app store owners may

choose what data to make available, and in which order to present the apps. These
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choices can lead to sampling issues, such as the “App Sampling Problem”, where

app samples typically reflect only the most popular apps in a store, and only a cross

section of the submitted user feedback. This is discussed in more detail in Chapter 5,

where we define dataset types of varying completeness in order to investigate the

issue, and conduct experiments to weight the potential effect of the problem on

results. It is important that researchers become aware of the issue, and seek ways

to ameliorate the problem.

Understanding what is present in apps at any given time is useful, but perhaps

even more critical to understanding how apps are successful is to look at how they

change over time. Apps that are hosted in app stores often adopt frequent releas-

ing strategies for various reasons, such as stimulating user downloads and reviews,

fixing bugs or adding new content. By mining app data over a period of time, it is

possible to identify the points in time (the releases) at which significant increases or

decreases in performance are realised. This is done using a technique called causal

impact analysis, that trains a statistical model on the time series data of both the app

in question, and a non-releasing control set, in order to detect where a significant

change has occurred that may be a result of the new release.

In Chapter 6, we use this technique to identify the releases that have had the

most impact on their respective apps’ subsequent user rating success, and identify

common factors among them. One such finding is that amongst the releases of non-

free apps, it is the new releases of expensive apps that are most likely to cause a

positive change. We introduce CIRA, a tool for applying causal impact analysis to

app store datasets, and elicit the feedback from app developers of positive and neg-

ative impactful releases, who agree with the observed impacts, and express interest

in learning from the results of these studies. Furthermore, we conduct an examina-

tion and comparison of the features present in impactful and non-impactful releases,

and positive and negative releases, in order to reveal the features that are added, or

removed, in apps that achieve better rating performance after their releases.

This thesis is structured as follows: Chapter 2 performs a comprehensive liter-

ature survey on the field of App Store Analysis for software engineering; Chapter 3

discusses the analysis techniques used throughout this thesis; Chapter 4 studies the

use of topic modelling as a method analogous to feature extraction, for the analysis
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of textual app data; Chapter 5 presents the app sampling problem, as well as a re-

view of literature related to app reviews, datasets used, effects of the app sampling

problem and ways to ameliorate them; Chapter 6 introduces causal impact analysis,

and the tool CIRA for performing this analysis on app store data; Chapter 7 presents

studies using this analysis to identify the properties and features of app releases that

correlate with the greatest subsequent impacts, both positive and negative. Chap-

ter 8 concludes this thesis, and additional supplementary content can be found in

Appendices B to D.



Chapter 2

Literature Review

This is to be published in TSE [186] (pre-print is available at the

time of writing). The first author’s contribution to this paper was

to formulate the idea, implement and execute the experimentation

and collect the results and analyse them; other authors of the paper

contributed to research question formulation, result analysis and

narrative write up.

App Store Analysis studies information about applications mined from app stores.

App stores provide a wealth of information derived from users that would not exist

had the applications been distributed via previous software deployment methods.

App Store Analysis incorporates this non-technical information with technical infor-

mation to learn trends and behaviours within these forms of software repositories.

Findings from App Store Analysis have a direct and actionable impact on the soft-

ware teams that develop for app stores, and have led to techniques for requirements

engineering, release planning, software design, security and testing. This survey

highlights and compares the areas of research that have been explored thus far,

drawing out new directions future research could take to address open problems

and challenges.

2.1 Introduction

This chapter provides a survey of literature that performs “App Store Analysis for

Software Engineering” between 2000 and November 27, 2015. Although we do not

expect app store analysis literature to date back prior to the launch of the major

app stores in 2008, 2000 was chosen as the starting point to ensure that no relevant

literature had been missed, such as literature focused on earlier platforms such as

Nokia Widsets [222]. November 27, 2015 was chosen as the end point as the search

queries were performed starting on November 28, 2015.
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2.1.1 Contributions

The contributions of this study are as follows:

i) Formal definitions of apps, stores, and technical and non-technical attributes,

which are used for App Store Analysis research.

ii) Growth patterns of App Store Analysis literature are studied both overall, and in

each emergent subcategory.

iii) Analysis of the scale of app samples used, and discussion on how this is likely to

progress in the future.

iv) Identification of some of the key ideas published in App Store Analysis, in addi-

tion to common aspects, trends and future directions, to help readers to understand

the progression of the field overall.

2.1.2 Definitions

The following definitions help to clarify key components of App Store Analysis liter-

ature. They are used to find all of the relevant literature.

App: An item of software that anyone with a suitable platform can install without

the need for technical expertise.

App Store: A collection of apps that provides, for each app, at least one non-

technical attribute.

Technical attribute: An attribute that can be obtained solely from the software.

Non-technical attribute: An attribute that cannot be obtained solely from the soft-

ware.

Examples of attributes are shown in Figure 2.1, based on the data that was

collected to facilitate the studies in Chapters 5 and 6. As the diagram shows, some

attributes are distinctly technical or non-technical in a boolean sense, but others lie

in a grey area, depending on the precise interpretation of what can be obtained from

software alone. Those in the grey box cannot be considered technical in the strictest

sense of the definition, because they are not guaranteed to be obtainable solely from

the software in all cases. These attributes can be both non-technical and technical,

depending on how they are obtained. They are attributes that, in some cases, can be

provided by the developer and not the app store, whilst attributes that are strictly

non-technical may only be provided by an app store. For example, consider the

‘author’ attribute. In the case of Android software, the author can be obtained solely



2.1. Introduction 18

category

pricein-app purchases

descriptionname

size

rank of downloads

installs

what’s new

release date

version

platform version

API usage

version control

issues

discussions number of ratings

rating

reviews

reviewers

Technical Attributes Non-technical Attributes

author

Figure 2.1: Example attributes[186]
Left: attributes which are strictly technical
Right: attributes which are strictly non-technical
Centre grey area: attributes which may be in either category

from the distributed apk file. However, in the case of a compiled C binary such as

a simple “hello world” program, the author cannot be obtained directly from the

binary file. The ‘author’ attribute therefore belongs in the grey area. The size of a

C binary can be obtained, and so this attribute is technical; one cannot obtain the

price from either of these example files, and so this is a non-technical attribute.

This definition of App Store may seem simplistic. However, at the time of writ-

ing, app stores serve as more than just collections of apps; they enable more de-

velopers than ever to produce and distribute content, and enable a communication

channel between users and developer via reviewing systems. Therefore, the defini-

tion is aimed at inclusivity. In only 7 years since the launch of the two biggest app

stores, there are already over 180 papers devoted to their study, and each of these

stores has well over 1 million apps each. As this rapid development shows, the con-

cept of apps and app stores is very likely to evolve over the coming years. It is our

aim to encompass this evolution as best as possible through the stated definitions, in

the hope that future surveys will be able to build upon this work and the App Store

Analysis literature to come.
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2.1.3 Overview

This survey is structured as follows: Section 2.2 describes the process used to find

the included literature; Section 2.3 breaks down the growth trends in non-technical

research compared with technical-only research, and Section 2.4 breaks down the

growth of scale of apps used; key ideas in each subfield of app store analysis are

identified in Section 2.5.

The following App Store Analysis subfields are defined, based on the literature

gathered through the process explained in Section 2.2: “API Analysis”, which is

discussed in Section 2.6; “Feature Analysis”, which is discussed in Section 2.7;

“Release Engineering”, which is discussed in Section 2.8; “Review Analysis”, which

is discussed in Section 2.9; “Security”, which is discussed in Section 2.10; “Store

Ecosystem”, which is discussed in Section 2.11; and “Size and Effort Prediction”,

which is discussed in Section 2.12. An inclusion checklist for future app store

analysis authors is outlined in Section 2.13.

Closely related work that does not meet the inclusive criteria, but are highly

related, are discussed in Appendix A.

2.2 Literature Search

In this section, the process used to find literature is described, including scope,

search terms and repositories and lessons learned for future app store analysis sur-

veyors.

2.2.1 Scope

App Store Analysis literature encompasses studies that perform analysis on a collec-

tion of apps mined from an App Store. We are particularly interested in studies that

combine technical with non-technical attributes, as these studies pioneer the new

research opportunities presented by app stores. However, studies are also included

whose authors use app stores as software repositories, to validate their tools on a set

of real world apps, or by using specific properties such as the malware verification

process apps go through before being published in the major app stores.

This survey is not a Systematic Literature Review (SLR). The area of App Store

Analysis is still developing, and at the time of writing does not have a well-defined

body of literature, with the exception of the subset of app review analysis, which
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Khalid et al. have helped to identify through their survey [141]. Because there is

not a well defined body of literature for app store analysis as a whole, and no prior

surveys, research questions can be chosen and asked. This study therefore aims to

define, collect and curate the disparate literature, arguing and demonstrating that

there does, indeed, exist a coherent area of research in the field that can be termed

“App Store Analysis for Software Engineering”. We hope that this will prove to be

an enabling study for future SLRs in this area.

The following inclusion criteria are applied:

i) The paper is related to software engineering, and may have actionable conse-

quences for software users, developers or maintainers.

ii) The paper is related to mobile app stores, concerning the use of collections of

apps or non-technical data gathered from one or more app stores.

The following exclusion criteria are applied:

i) The paper focuses on mobile app development but does not extend to collections

of apps nor to app stores.

ii) The paper uses an arbitrary collection of apps to test a tool, but the collection

was not mined from an app store, and the study does not extend to app stores (and

could not clearly be extended to apply to app stores).

2.2.2 Search Methodology

In order to collect all relevant literature to date that meets the scope defined in Sec-

tion 2.2.1, a systematic search was performed for the terms defined below, from

each repository (also defined below). Unique papers are collected into a table, and

a decision is made based on the inclusion and exclusion criteria in three stages:

Title: Publications are removed that are clearly irrelevant from their titles.

Abstract: The abstract is inspected and publications are removed that are clearly

irrelevant according to the scope defined in Section 2.2.1.

Body: Results are read fully and a judgement is made on whether the paper a)

meets the key requirements on what is defined as “app store analysis” in our scope,

or b) is very relevant to the field and so should be included as “expanded literature”,

to put the main literature into context. Papers matching the requirements of a) or

b) are included in this survey.
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A summary of the number of papers found through the search, as well as the

number of papers accepted at each stage of validation, can be found in Table 2.1.

All of the references for papers discussed in this survey are available in an online

repository [246].

Search Repositories

A search was performed in each of the following repositories for papers to in-

clude in the study: Google Scholar, Scopus, JSTOR, ACM, IEEE and arXiv.

Terms

Searches were performed for the following terms and phrases, to encompass the

sub-fields of App Store Analysis that emerge from the literature: “App Store”, min-

ing, API, feature, release, requirements, reviews, security, and ecosystem. Searches

were performed for the following specific queries, where terms joined by an ‘AND’

must appear, and phrases in quotes must appear verbatim:

“app store analysis”

“app store analysis” AND mining

“app store analysis” AND mining AND API

“app store analysis” AND mining AND feature

Searches were then performed for the following more general searches to ensure

that no relevant literature was missed from the survey:

“app store” AND analysis AND API

“app store” AND analysis AND API AND mine

“app store” AND analysis AND feature AND mine

“app store analysis” AND mining AND requirements

“app store analysis” AND mining AND release

“app store analysis” AND mining AND reviews

“app store analysis” AND mining AND security

“app store analysis” AND mining AND ecosystem

The threat of missing papers is mitigated by conducting searches for “app store anal-

ysis” AND “mining” and also each of the names of each of the major subfields of App

Store Analysis literature. Since, by the definition in Section 2.1.2, app store analysis

research uses collections of apps, this should encompass much of the field. Snow-

balling was also performed, which further helps to mitigate the threat of potentially
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Table 2.1: Specific search query results[186]

“app

store

analy-

sis”

“app

store

analy-

sis” AND

mining

“app

store

analy-

sis” AND

mining

AND

API

“app

store

analy-

sis” AND

mining

AND

feature

“app

store

analy-

sis”

“app

store

analy-

sis” AND

mining

“app

store

analy-

sis” AND

mining

AND

API

“app

store

analy-

sis” AND

mining

AND

feature

Google Scholar IEEE
Hits 35 17 9 13 3 40 13 13
Inspect 35 17 9 13 3 40 13 13
Title 15 13 8 12 3 8 8 8
Abstract 13 13 8 12 3 7 4 4
Body 12 13 8 12 3 5 4 4

ACM JSTOR
Hits 7 1,146 295 231 0 36 4 13
Inspect 7 1,146 295 231 0 36 4 13
Title 4 69 44 31 0 0 0 0
Abstract 3 57 27 22 0 0 0 0
Body 3 44 26 17 0 0 0 0

arXiv Scopus
Hits 0 81 28 10 1 128 21 1
Inspect 0 81 28 10 1 128 21 1
Title 0 4 1 0 1 128 21 1
Abstract 0 4 1 0 0 13 6 0
Body 0 4 1 0 0 11 4 0

missing papers. However, the potential threat of missing papers is a threat to the

validity of any survey, including this one.

2.2.3 Snowballing

In addition to the repository searches specified in Section 2.2.2, snowballing [296]

is also performed on the included studies. To do this, the studies cited by each

included study are inspected, as well as the publications that subsequently cited

the included study, using Google Scholar and ACM. By performing this process in

addition to repository keyword searching, we reduce the risk that relevant literature

is omitted from this survey.

2.2.4 Search Results

Search results can be found in Tables 2.1 and 2.2. The tables indicate the number of

hits each query generates, the number of these that were available to be inspected,

the number of titles and subsequent abstracts and paper bodies that were accepted

as valid. Table 2.1 indicates more specific queries run in multiple paper repositories,
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Table 2.2: General search query results[186]

“app

store”

AND

analysis

AND

API

“app

store”

AND

analysis

AND

API

AND

mine

“app

store”

AND

analysis

AND

feature

AND

mine

“app

store

analy-

sis” AND

mining

AND

require-

ments

“app

store

analy-

sis” AND

mining

AND

release

“app

store

analy-

sis” AND

mining

AND

reviews

“app

store

analy-

sis” AND

mining

AND

security

“app

store

analy-

sis” AND

mining

AND

ecosys-

tem

Google Scholar
Hits 3,130 409 1,040 12 9 15 9 9
Inspect 1,000 409 1,000 12 9 15 9 9
Title 87 35 37 12 9 14 8 9
Abstract 61 23 33 12 9 14 8 9
Body 52 21 32 12 9 14 8 9

and Table 2.2 indicates the more general queries run only in Google Scholar. In the

case of Google Scholar, only the top 1,000 results were accessible to inspect at the

time of search due to the repository’s limitations.

An overlap was found between search queries performed, and thus the total

number of discovered papers through search queries was fewer than suggested by

the sum of the bottom rows in Table 2.1. Many papers were discovered through

snowballing, which do not appear in the Table.

A summary of the included literature in Tables 2.4 to 2.10. Histograms depict-

ing the growth of publications studied on App Store Analysis for software engineer-

ing can be found in Figures 2.2 to 2.4, which show the split between technical-only

and technical and non-technical research, the split between different subfields iden-

tified as subsections in this survey, and the split between scale of studies in terms

of the number of apps used, respectively. Numbers in the box plots indicate the

number of studies in each subgrouping, and boxes without numbers had one study.

A breakdown of these studies in each sub-field that emerged from the literature is

also presented in Figure 2.5.

The earliest reported study is 2010. This is likely because the App Stores that

propelled mobile app usage to become widely adopted were launched in 2008. Yet,

it is interesting that studies incorporating technical with non-technical app store in-
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Figure 2.2: Histogram of non-technical and technical-only research papers

showing the period from 2010 to November 27, 2015[186]

formation did not emerge until two years later. Papers were collected until Novem-

ber 27, 2015.

2.2.5 Lessons Learned

As can be seen from Table 2.1, for some queries, there were large drops in the

number of papers upon inspection of their title or abstract, when performing the

more general searches on Google Scholar: searches for “app store” with many of the

combinatoral words resulted in several thousand papers which may have mentioned

“app store” only once. We found that searching for “app store analysis” as a phrase

narrowed the results down a lot, but did miss some relevant papers.

Searches that included “mining” as a keyword did encompass much of app store

analysis research due to the focus on collections of apps that meets our app store

definition. However, we found that the snowballing technique was crucial in the

literature search, because paper discovery through many of the paper repositories

used could not be relied upon to find all relevant papers; in a growing field, terms of

reference are not fully stabilized. Future surveyors are encouraged to visit the App

Store Analysis paper repository [246], which can assist in the discovery of app store

analysis literature.
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ber 27, 2015[186]
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2.3 Non-Technical Research

While software engineering deals primarily with code, it is not confined to deal

with strictly technical sources of information. One can combine data from multiple

(technical and non-technical) sources, and app stores provide a wealth of such infor-

mation. There are 124 of 184 (68%) papers included in this study that incorporate

non-technical information mined from app stores in order to either infer technical
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Figure 2.5: Pie chart showing overall sub-field distribution showing the period

from 2010 to November 27, 2015[186]

Table 2.3: Number of research papers studying each app quantity range from

2010 to November 27, 2015[186]

No. Apps Range Papers No. Apps Range Papers

0 6 [103,104) 36

[1,10) 19 [104,105) 38

[10,102) 21 [105,106) 28

[102,103) 31 ≥ 106 3

attributes (such as features), or to extract useful information such as bug reports

and feature requests from users.

The histogram in Figure 2.2 shows that the number of studies incorporating

non-technical information grew year-on-year, with the notable exception of 2014.

It is unknown what caused the apparent drop in literature in 2014, but with the

exception of this outlier there was linear growth in App Store Analysis research

between 2010 and 2015.

2.4 Scale of Studies

In order to discuss the number of apps that are studied by research papers, we

first need to define a set of ranges. Papers are assigned to app quantity ranges in
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ascending powers of 10, according to the number of apps that they consider. The

ranges that we assign, and the number of research papers that study them, are

shown in Table 2.3.

The median number of apps used in the considered literature is 1,679, and the

mean is 44,807. This result shows that half of the papers study fewer than 2,000

apps, but the other half study a quantity of apps several orders of magnitude larger.

This is reflected in Figure 2.4, where the range [104,105) is shown to grow and in

2015 represents almost half of the app usage literature.

Figure 2.4 shows growth in the the studies using between 104 and 105 apps

from 2011 to 2015, and this result is reflected in studies using between 105 and 106

apps as well, up to 2014. It is important to note that we did not have complete data

for 2015, so this result is subject to change. Studies using smaller scales of apps

show an uncertain change in frequency, indicating that most studies in the future

are likely to continue using over 104 apps. We anticipate larger studies in the future,

based on the growth of App Store Analysis literature, the increasing quantity of apps

studied, and of course the growing app stores themselves.

2.5 Key Ideas Timeline

A timeline depicting the key ideas is shown in Figure 2.6. This highlights the launch

of major app stores studied, as well as the first studies in each subsection.

The timeline includes studies that have advanced the field of App Store Analysis

in some way (based on the qualitative judgement of the author of this thesis), or

introduced influential ideas into their respective subsection and are therefore well-

cited in this subsection.

2.6 API Analysis

Papers that extract the API usage from app APKs or source code, and combine this in-

formation with non-technical data are discussed in this section, and are summarised

in Table 2.4. All API analysis literature studied apps from the Android platform only.

This may be due to the availability of tools which can be used to decompile the

apps and extract their API calls, which are freely available and can be applied to

downloaded app binaries. It is perhaps surprising that such analyses have not also

been performed on the Apple platform, iOS, since the store was launched in 2008.
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2008 • Apple App Store launched

• Google Play launched (as Android Market)

2009 • Blackberry World App Store launched

2010 • [253] Shabtai et al. extracted feature information to differentiate between Tools and Games categories

(Feature)

• [31] Bläsing et al. used the Android Market as a software repository for testing their APK analyser (Security)

• Windows Phone Store launched

2011 • [260] Syer et al. compared Blackberry and Android platforms using feature equivalent apps (Store

ecosystem)

• [151] Lee et al. analysed deployment strategies for optimising download rank (Release engineering)

• [113] Henze and Boll studied release times in the Apple App Store for game deployment (Release

engineering)

• [252] Sethumadhavan discussed function point analysis for mobile apps (Size and Effort Prediction)

2012 • [96] Goul et al. analysed reviews in order to facilitate requirements engineering (Reviews)

• [47] Chandy and Gu mined 6,319,661 reviews from the Apple App Store for spam classification (Reviews)

• [109] Harman et al. connected non-technical, technical & business aspects; extracted technical features from

text descriptions (Feature)

• [240] Ruiz et al. studied class reuse and inheritance in Google Play (API)

• [311] Zhu et al. studied the problem of mobile app classification (Feature)

2013 • [280] Vision Mobile found 72% of developers dedicated to Android; iOS and Android developers earn twice

that of developers using other platforms

• [158] Lim and Bentley simulated an app store ecosystem (Store ecosystem)

• [124] Iacob and Harrison automatically analysed app reviews to identify feature requests and bug reports

(Reviews)

• [313] Zhu et al. studied ranking fraud in App stores (Security)

2014 • [238] Ruiz et al. investigated the effect of ad libraries on app ratings (API)

• [95] Gorla et al. performed malware detection through API usage/description cluster outliers (Feature)

• [281] Vision Mobile paid and with-ads models almost tied in revenue and developer share

2015 • [191] McIlroy et al. studied update frequency of Google Play apps (Release engineering)

• [177] Malavolta et al. investigated hybrid mobile apps from technical and user perspectives (Reviews)

• [219] Park et al. studied the mobile app retrieval problem (Reviews)

• [247] Sarro et al. studied feature migration between apps (Feature)

• [141] Khalid et al. surveyed app store review literature (Reviews)

• [78] Ferruci et al. compared approaches for size and effort prediction in mobile apps (Size and Effort

Prediction)

Figure 2.6: Key ideas timeline for App Store Analysis literature. The primary area

of study is suffixed in parentheses[186]
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Table 2.4: Chronological summary of API-related literature[186]

Authors [Ref], Year Venue No. apps

Ruiz et al. [240], 2012 ICPC 4,323

Linares-Vásquez et al. [164], 2013 FSE 7,097

Shirazi et al. [241], 2013 EICS 400

Minelli and Lanza [195], 2013 ICSM 20

Minelli and Lanza [196], 2013 CSMR 20

Ruiz et al. [238], 2014 IEEE Soft. 236,245

Hao et al. [107], 2014 MobiSys 3,600

Dering and McDaniel [71], 2014 MILCOM 450,000

Linares-Vásquez et al. [167], 2014 MSR 24,379

Ruiz et al. [237], 2014 IEEE Soft. 208,601

Linares-Vásquez [163], 2014 ICSE comp. 0

Viennot et al. [276], 2014 SIGMETRICS 1,107,476

Bartel et al. [19], 2014 IEEE Soft. Eng. 1,421

Zhang et al. [303], 2014 WiSec 10,311

Borges and Valente [35], 2015 PeerJ C. S. 396

Bavota et al. [22], 2015 IEEE Soft. Eng. 5,848

Kim et al. [145], 2015 ASE 350

Khalid et al. [137], 2015 IEEE Soft. 10,000

Watanabe et al. [293], 2015 SOUPS 200,000

Zhou et al. [309], 2015 WiSec 36,561

Wan et al. [287], 2015 ICST 398

Wang et al. [288], 2015 ISSTA 105,299

Syer et al. [261], 2015 Soft. Qual. 5

Azad [16], 2015 Masters Thesis 950

Wang et al. [289], 2015 UbiComp 7,923

Seneviratne et al. [250], 2015 WiSec 4,114

Mean 93,298

Median 5,086
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This might be because iOS binaries are only available for the intended platforms,

and cannot be downloaded to, or used from a desktop computer without an Apple

Developer account, which is not free. Even with such an account, app binaries or

source code would be needed, and neither are freely available due to a) copyright

on binaries and b) many iOS apps being paid-for apps. Due to these difficulties, it

is uncertain whether it will be possible for future studies to extract API information

from iOS apps; in fact, it may become harder since the move (in iOS version 9)

to developer-submitted LLVM [172] intermediate representation binaries, that are

then compiled for specific platforms by Apple. The Windows Phone platform is rela-

tively recent, and we may start to see API analysis studies utilising this platform; the

Google Play store launched in 2008 (as Android Market), but it was not until 2012

that App Store Analysis literature studied API usage in the store.

All API analysis literature has, hitherto, studied apps from the Android platform.

There is large range in the number of apps considered, from 0 apps to over 1

million.

API analysis literature can be decomposed into “API Usage”, “Class Reuse and

Inheritance”, “Faults” and “Permissions and Security”. There is some overlap be-

tween the latter subsection and Section 2.10 on Security. Nevertheless, the liter-

ature discussed in this section is collected together and discussed here because it

directly analyses API usage. Two papers included in this section relate to energy

usage [165, 287], although much of this field of research relates only indirectly to

app stores. For those who wish to learn more on the subject, we point the reader to

the recent paper by Hindle [114].

2.6.1 API Usage

This subsection concerns studies into the usage of APIs, which can be extracted from

Android APK files.

Borges and Valente [35] used association rule mining to infer API usage pat-

terns, using a dataset of 396 open source Android apps. For their study, the authors

extended APIMiner [199] to mine usage patterns and instrument API documents

with extracted usage patterns. They reported a study over 17 months, during which
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instrumented Android documentation was made publicly available, and received ap-

proximately 78,000 visits. Shirazi et al. [241] extracted the API usage with regards

to user interface (UI) elements and layout, and compared statistics between the 21

different categories of the Google Play store that existed in 2012.

Wan et al. [287] explored energy hotspots in apps by transforming their UIs

and producing a ranked list of UI components by energy consumption. The authors

tested their approach on 398 apps mined from Google Play. Azad [16] studied

apps mined from Google Play and F-droid, and produced tools to inspect API usage

and suggest similar APIs based on Stackoverflow discussions; score the similarity of

apps; identify the degree to which apps have copied the source code of open source

projects; and detect license violations. Tian et al. [269] extracted API information

and evaluated apps in terms of code complexity, API dependency, API quality, as well

as a number of other factors, in order to train features to distinguish high from low

rated apps.

2.6.2 Class Reuse and Inheritance

This subsection concerns studies into the reuse of code and classes, and use of in-

heritance in Android apps.

In 2012 Ruiz et al. [240] studied class reuse and inheritance in 4,323 Android

apps mined from 5 categories in Google Play. Of these, 217 apps were found to con-

tain exactly the same set of classes as another app in the same category. The study

was later extended to 208,601 apps by Ruiz et al. [237] in 2014. More evidence of

substantial code reuse was found, and the authors concluded that app developers

benefit from increased productivity but risk dependence on the quality of the code

they reuse.

In 2013 Minelli and Lanza presented a visual analytics web tool for studying

repositories of apps [195, 196]. The tool analyses snapshots of apps throughout

their version history, using an interactive graphical user interface. Following their

subsequent study on 20 free and open source Android apps, the authors found that

3rd party API code is often (incorrectly) committed along with the app code, instead

of including the corresponding 3rd party jar files. Excluding 3rd party code, most

apps were found to have comparatively small code-bases. Additionally the authors

found little use of inheritance in Android apps, and much duplication. Viennot et
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al. [276] introduced the PlayDrone Google Play crawler, which they used to store

daily data on 1.1M apps and decompile 880k free apps. The authors found that

native libraries are heavily used in popular apps, and that approximately a quarter

of free apps are duplicates of other apps. They found that paid apps account for

just 0.05% of downloads, and the top 10% of most popular apps account for 96% of

total downloads as of June 23, 2013.

Linares-Vásquez et al. [167] decompiled and analysed 24,379 APKs from

Google Play, and found that the 82% of detected clones replicate 3rd party libraries.

Zhang et al. [303] proposed ViewDroid, an app plagiarism detection system that

uses view transition graphs as “birthmarks” to capture app behaviour, in order to de-

tect clones in the presence of code obfuscation. Apps mined from Google Play were

used as a false negative set. In a related study, Kim et al. [145] scan API invocations

to identify plagiarised applications, in a more sophisticated approach than similarity

detectors that scan code, as it handles code obfuscation. Wang et al. [288] proposed

WuKong, a two-phase Android clone detection system that first filters third-party

libraries to increase detection speed. The authors tested the system on 105,299

Android apps and found zero false positives.

2.6.3 Faults

This subsection concerns studies into faults that are found to be present in Android

apps, typically through automated procedures.

Linares-Vásquez et al. analysed the effect of fault and change-prone core Google

APIs on app ratings [164]. This is an important study as it combines technical API

information with non-technical information in the form of average user reviews, in

order to assess the impact that API usage can have. Fault and change prone APIs

were found to be used more frequently by poorly-rated apps. Conversely, popular

apps used APIs that were found to be less susceptible to faults and changes. The

paper presents an analysis of 7,097 randomly selected free apps with > 10 reviews.

Changes and faults were measured as the number of API changes and bug fixes,

respectively, to the particular associated core libraries.

Building on the work by Linares-Vásquez et al. [164], Linares-Vásquez also pre-

sented an approach for a recommendation system for Android app developers [163],

to help them to prepare for platform updates and avoid breaking changes and in-



2.6. API Analysis 33

troducing bugs. The authors extended their API analysis work to identify APIs that

have a high energy usage [165], but this study did not combine non-technical app

store information.

Bavota et al. [22] investigated how the number of changes and faults present

in APIs used affected apps’ ratings. Their results showed an inverse correlation

between the popularity of apps and the number of faults and changes in APIs they

used. That is, low rated apps were found to use APIs that are more fault- and

change-prone than highly rated apps. Bavota et al. surveyed 45 Android developers

who confirmed this relationship from anecdotal experience. These studies combined

technical (API usage) with non-technical (user ratings) information to highlight best

practice for API usage in Android development.

Syer et al. [261] studied the effect of platform independence on source code

quality, finding that the more defect prone source files also depend more heavily on

the platform. The authors therefore suggest prioritising platform-dependent source

files for unit testing, as a quality assurance strategy. In 2015, Khalid et al. [137] per-

formed static analysis on 10,000 free Google Play apps, and found that 3 categories

of FindBugs warnings occur more frequently in lower rated apps. The categories

‘bad practice’, ‘internationalisation’ and ‘performance’ had more warnings in lower-

rated apps, suggesting that these areas are the ones developers should focus on to

achieve better rating performance.

2.6.4 Permissions and Security

This subsection concerns studies into the permissions usage, and related security

concerns in Android apps.

In 2013 Peiravian and Xingquan [220] used API calls and permissions data to

train their malware classifier, which they trained and validated on 1,260 malware

samples and 1,250 benign samples, using cross-validation. Hao et al. [107] studied

the insertion of UI handlers into app code. They published the PUMA tools which

makes UI automation programmable, and enables researchers to analyse correct-

ness properties of apps. They tested the tool on a set of 3,600 apps downloaded

from Google Play. Dering and McDaniel [71] downloaded a set of 700,000 app bi-

naries from 450,000 free apps on Google Play and analysed library and permission

usage. They found a strong correlation between the number of libraries used and
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the number of permissions requested by the apps, leading to the conclusion that

libraries tend to have specific use cases that require additional permissions from

the user. This finding presents a security concern: is each library doing what it is

supposed to, and does it need this permission? In conjunction with the finding by

Book et al. [34], this suggests that library usage is a significant security concern,

since libraries often make use of existing permission privileges, and also increase

the number of permissions requested.

Ruiz et al. studied the effect of advertisement libraries on app ratings [238].

They combined non-technical rating information with the extracted technical infor-

mation showing advertisement library usage to perform the study. Advertisement

libraries query their host server at regular intervals to fetch advertisements for dis-

play, and this interval determines the “advertisement fill rate”. Multiple libraries are

often used to obtain higher fill rates in order to increase revenue. From a sample

of 236,245 apps, the authors found no evidence of a correlation between rating and

the number of advertisement libraries. However, certain APIs were found to have

low median ratings from apps that used them. The authors state that this is due to

intrusive behaviours, such as recording entered passwords.

Gorla et al. [95] trained a one-class support vector machine [178] on API us-

age information in order to identify outliers in trained clusters for security pur-

poses. Bartel et al. [19] showed that off-the-shelf static analysis is insufficient for

permission-protected API methods, and investigated alternatives, which they tested

on 1,421 apps downloaded from two Android markets. Watanabe et al. [293] found,

from analysing the description and API usage of 200,000 Android apps, that there

is disparity between their descriptions and requested permissions. This is due to a

combination of factors: unnecessary permissions requested by app building frame-

works, or developers that use similar manifests for multiple app projects; secondary

functionality that is not mentioned in descriptions; and the use of 3rd party libraries.

In a related study, Zhou et al. [309] mined a set of 36,561 Android apps, and pro-

posed the tool CredMiner which is focused on decompilation and program slicing.

They identified over 400 apps that leaked developer user-names and passwords,

required for the program to execute normally.
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Wang et al. [289] decompiled 7,923 apps from Google Play and mined features

from the decompiled code and variable names. They trained a machine learning

classifier on labelled instances of the apps using location and contact information,

in order to identify the way in which sensitive information is used. Seneviratne et

al. [250] studied 275 free and 234 paid Android apps, and found that paid apps

collect personal information, in the same way as free apps do. 60% of the paid

apps collected personal information, compared to 85% in free apps. The authors

subsequently showed that 20% of 3,605 collected Android apps were connected to

more than three trackers.

2.7 Feature Analysis

Papers that extract feature information from either technical or non-technical

sources of information are discussed in this subsection, and are summarised in Ta-

ble 2.5. These research papers study a wide range of platforms: Android, iOS, Nokia

Widsets, Blackberry and Windows Phone. In addition, the publications investigate a

large number of apps: the minimum is 3 and the maximum is 600,000.

Features have been extracted from app descriptions, API usage, manifest files,

decompiled source strings, categories and permissions.

Papers in this section show that it is possible to extract feature information from

sources other than source code or requirements lists. Additionally, many different

methods are used for extraction and categorisation of features, including natural

language processing, topic modelling and clustering. The work shows that analysis

of app collections can be augmented with meaningful technically-oriented informa-

tion, mined from freely-available app store pages.

Many studies in Section 2.9 are relevant to this subfield of research (in particu-

lar the studies discussed in Sections 2.9.3 and 2.9.4 which discuss the extraction of

feature requests and causes of complaints). However, those studies are not discussed

in this section because they use user reviews to extract this information, whereas the

studies discussed in this section do not.

Feature Analysis literature is broken down into “Automated Classification”,

“Clustering”, “Lifecycles”, “Recommendation”, “Store Success” and “Verification”.



2.7. Feature Analysis 36

Table 2.5: Chronological summary of feature-related literature[186]
a: Apple App Store
b: Blackberry
g: Google Play or other Android stores
n: Nokia (or Widsets) platform
s: Samsung (Android)
w: Windows Phone

Authors [Ref], Year Store Venue No. apps

Shabtai et al. [253], 2010 g CIS 2,285

Chen and Liu [49], 2011 a iConference 102,337

Coulton & Bamford [59], ’11 n MobileHCI 3

Harman et al. [109], 2012 b MSR 32,108

Sanz et al. [242], 2012 g CCNC 820

Teufl et al. [265], 2012 g MobiSec 130,211

Zhu et al. [311], 2012 n CIKM 680

Mokarizadeh et al. [198],’13 g WEBIST 21,065

Teufl et al. [264], 2013 g Sec. & Com. Netw. 443

Lulu and Kuflik [25], 2013 g IUI 120

Bhattacharya et al. [29],’13 g CSMR 24

Yin et al. [302], 2013 a WSDM 5,661

Lin et al. [161], 2013 a SIGIR 7,116

Ihm et al. [127], 2013 g CGC 10

Iacob et al. [126], 2013 g BCS-HCI 161
Iacob et al. [125], 2014 g MobiCASE 270
Kim et al. [146], 2014 a Service Business 100,830

Finkelstein et al. [79], 2014 b Tech. report 42,092

Yang et al. [300], 2014 g Tech report 26,703

Zhu et al. [312], 2014 n TMC 680

Zhu et al. [314], 2014 g KDD 170,753

Jiang et al. [129], 2014 g INTERNETWARE 150

Zhu et al. [310], 2014 a IEEE Cybernetics 15,045

Vakulenko et al. [271], 2014 a ICIS 600,000

Lin et al. [162], 2014 a SIGIR 6,524

Maalej and Nabil [174], 2015 a,g RE 1,140
Guzman et al. [102], 2015 a,g ESEM 7
Guzman et al. [103], 2015 a,g ASE 7
Sarro et al. [247], 2015 b,s RE 54,983

Berardi et al. [27], 2015 a,g SAC 5,993

Svedic [259], 2015 a PhD Thesis 60

Seneviratne et al. [251],’15 g WWW 232,906

Tong et al. [270], 2015 g,w JCST 10,000

Wang et al. [289], 2015 g UbiComp 7,923

He et al. [110], 2015 g Big Data 122,875

Tian et al. [269], 2015 g ICSME 1,492

Nayebi and Ruhe [207],’15 g PeerJ C.S. 241

Lulu and Kuflik [26], ’15 g MOB INF SYST 6,633

Mean 52,084

Median 6,579
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This section has an overlap with Section 2.10, in the cases where features are used

to help detect anomalies or verify app functionality.

2.7.1 Automated Classification

This subsection concerns the automated classification of apps, using machine learn-

ing classifiers that are trained using feature information. The source of feature

information varies between studies.

Shabtai et al. [253] extracted feature information from the manifest, XML files,

API calls and methods used from a set of 2,285 Google Play apps. They trained a

classifier on the features to differentiate between Tools and Games categories, as a

proof of concept that malware detectors could be trained in the same way. In 2012

Sanz et al. [242] trained machine learning classifiers to predict app categories, using

extracted features. The features used for prediction were strings extracted from the

decompiled app code, requested permissions, rating, number of ratings and app

size. They tested the approach on 820 apps and found a peak AUC (area under ROC

curve) of 0.93 using the Bayesian TAN classifier [81].

Zhu et al. [311, 312] studied the problem of mobile app classification in the

Nokia Store. The authors mined 680 apps, and experimented by classifying apps

using data from web search and from device logs from users of the apps. Their ap-

proach outperformed other classification techniques, and enabled them to automat-

ically classify a given app onto a predefined category of Apple’s App Store taxonomy.

In 2015 Berardi et al. [27] built on this work, by constructing a classifier using fea-

tures mined from app descriptions, categories, names, ratings and file sizes. They

trained the classifier using a support vector machine for each of 50 classes, and used

the BM25 weighting scheme [235] on the features. Users manually classified 5,993

apps mined from Apple App Store and Google Play, to act as the training (cross

validation) set for the classifier.

Jinh et al. [132] used the features: numbers of app installs, number of reviews,

category and rating score, in conjunction with features based on information flow,

for their machine learning classifier for rating app security risk. Wang et al. [289]

extracted features from decompiled Java code, from their collection of 7,923 apps

mined from Google Play. They used the extracted features to train classifiers for pre-
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dicting how ‘location’ and ‘contact’ information is used, with 85% and 94% accuracy,

respectively.

2.7.2 Clustering

This subsections concerns studies that perform app clustering using feature infor-

mation.

Teufl et al. [265] mined 130,211 apps from Google Play and performed cluster-

ing on both app descriptions and requested permissions, as part of their activation

patterns malware detection approach. They later extended this work [264] to pro-

pose a first-step malware detection method using links between description terms

and security permissions to identify suspicious outliers. In 2013 Mokarizadeh et

al. [198] performed clustering on 21,065 apps, mined from Google Play, after ap-

plying topic modelling on app descriptions. They found that the resultant clustering

was very different from the app’s assigned categories, and apps in the same cate-

gory often had dissimilar description topic distributions. Mokarizadeh et al. also

performed correlation analysis and found that users download free apps more fre-

quently, and that downloads correlate with the number of ratings an app has re-

ceived.

Lulu and Kuflik [25] performed clustering on 120 apps mined from Google

Play, comparing their description-based clustering with the app store’s pre-assigned

categories. They found that descriptions provide good clustering features, and

present the method as the basis of an app recommendation system. The authors

later built on this work [26], by extracting features from 6,633 app descriptions

and enriching them with information mined from the web, found by searching for

the app name. They used the enriched features to provide an installed-app recall

interface, supported by functionality-based categorisation. The interface was vali-

dated by performing a user study with 40 participants, who were able to find apps

faster and found the categorisation more intuitive, when compared with a refer-

ence “smart launcher” interface [88]. Kim et al. [146] mined 100,830 apps from

Apple App Store, and extracted feature keywords from their descriptions using nat-

ural language processing. They clustered apps using the extracted features, and

re-categorised them using the resulting clusters.
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2.7.3 Lifecycles

This subsection concerns the tracking of features between multiple apps.

Sarro et al. [247] proposed a theoretical characterisation of feature lifecycles

in app stores, to help app developers to identify trends and to find undiscovered

requirements. In order to investigate app feature migratory and non-migratory be-

haviours in current app stores, they mined features from app descriptions using the

techniques in the earlier work [109], and used the proposed theory to empirically

analyse the migratory and non-migratory behaviours of 4,053 non-free features from

Samsung and Blackberry stores. The results revealed that features generally migrate

to a category that has similar characteristics. However, there are also a few features

that migrate to apparently non-related categories. The early identification of these

features may allow developers to find undiscovered requirements. The authors also

found that approximately one third of features were intransitive (they neither mi-

grate nor do they die out over the period studied), and such features exhibited

significantly different behaviours with regard to important properties, such as their

price. Being aware of which are the intransitive features in a given category may

support developers in identifying crucial (‘must-have’) requirements for their apps.

2.7.4 Recommendation

This subsection concerns recommender systems that are trained using feature infor-

mation.

Yin et al. [302] proposed the Actual Tempting (AT) model to perform app rec-

ommendation for users. The model incorporates latent tempting parameters. Take

for example two apps, “a” and “b”. The AT model incorporates the number of users

who own app “a” and subsequently download app “b”, and the number who do not

download “b” after owning “a”. The model also uses feature overlap information,

measured by performing topic modelling on app descriptions and computing the

topic overlap between each pair. The authors find that the AT approach outperforms

collaborative filtering and case-based reasoning in their initial experiments.

Lin et al. [161] used topic modelling on the Twitter messages of users that fol-

low an app’s Twitter feed, in order to generate latent groups related to the app. The

groups are then used as part of a recommendation system, in order to help remove

the problem of cold start in app recommendation based on other metadata. The sys-



2.7. Feature Analysis 40

tem was tested on 7,116 apps mined from Apple App Store and the authors found

that it outperformed recommendation using app descriptions. However, in 2014 Lin

et al. [162] used topic modelling on app descriptions in order to produce a recom-

mendation system. The model is semi-supervised and incorporates app version in-

formation using different weights corresponding to update types: so that newer app

versions can be recommended when they add a certain feature to the description.

Resultant topics are weighted based on their category in the app store to provide a

recommendation. The model was trained on 6,524 apps mined from the Apple App

Store.

Zhu et al. [310] mined the daily top 300 free and top 300 paid apps from Apple

App Store charts from February 2, 2010 to September 17, 2012, collecting infor-

mation on 15,045 apps in total. They used popularity information to construct a

Popularity-based Hidden Markov Model (PHMM), to encode trend and other latent

factors. The authors state that this can be used in a variety of ways, including app

recommendation, review spam detection, and demonstrate its usefulness in ranking

fraud detection. Zhu et al. [314] built an app recommendation system using a com-

bination of technical information (device permissions requested) and non-technical

information (app popularity). They tested the system on 170,753 apps mined from

Google Play to show its scalability. However, the system received no human-based

evaluation of its recommendations.

Valulenko et al. [271] performed topic modelling on a set of 600,000 app de-

scriptions mined from Apple App Store. They used the resultant topics to suggest

categories, and to improve and augment existing categorisation approaches used in

app stores. He et al. [110] trained a system for targeting users for advertising, with

a dataset containing app install data on a per-user basis, consisting of 122,875 apps

from the Huawei App Store. The authors reported a higher click rate than current

targeting approaches. Nayebi and Ruhe [207] extracted feature information from

241 Google Play apps, and used crowd-sourcing to assign user value to each of the

features. The authors used the approach for service portfolio planning [3].
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2.7.5 Store Success

This subsection concerns studies that analyse the success of apps in their hosting

app store. Success is measured as rating, as well as the total number of ratings or

rating frequency, downloads or download rank and bug reports.

In 2011, Coulton and Bamford [59] conducted a case study on games created

for the WidSets platform, an earlier app store that targets Nokia phones (includ-

ing non-smartphones). Their findings are transferable to modern app stores: high

download numbers are required in order to gain active users, and popular features

such as chat can increase popularity and the proportion of active users. Chen and

Liu [49] collected 102,337 apps from Apple App Store, and observed no correlation

between download rank and rating, from a sample of the top 200 most popular

apps.

Harman et al. [109] introduced app store mining as an MSR (Mining Software

Repositories) problem. They mined app information and performed correlation

analysis on price, downloads, and rating. Correlations analysis was performed in

both app and feature space, where features were extracted using natural language

processing techniques from app descriptions, and results showed that under most

conditions there is a strong correlation between rating and downloads (popularity).

The proposed approach can be applied to different app stores by modifying the data

extraction and parsing phases to accommodate the different app store structure and

data representations. The authors later extended this work [79], finding that free

apps have higher ratings than non-free apps, with a medium effect size. They also

carried out a developer survey on the extracted features, who found them mean-

ingful, and were able to successfully detect the extracted features over randomly

generated features.

Bhattacharya et al. [29] presented an empirical study of 24 open source An-

droid apps from multiple categories, with the aim of defining metrics of bug report

quality and developer involvement. The authors showed how the bug-fix process is

affected by differences in bug lifecycles. Security bug reports were found to be of

higher quality, but the associated bugs are fixed more slowly. The scale of the study

was large as all apps had more than 1,000 ratings, 100,000 downloads and 200 bug
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reports. The authors found that bug report quality correlates with description length

but not app rating.

Ihm et al. [127] conducted a study on 10 popular apps in the Google Play store,

analysing the correlations between app downloads in the store and external metrics.

The authors found a strong positive correlation between the number of downloads

in the store and the number of registered users on the app’s respective websites,

and a strong correlation between the number of downloads and the app website

(inverse) download rank. Jiang et al. [129] conducted a user survey on 50 app

descriptions in order to identify the attributes most important to the quality of the

description. A support vector machine was trained on the resultant attributes and

tested on a sample of 100 descriptions, finding an accuracy of 0.62. The findings

showed that quick overviews are the most effective form of app description, and the

study contains further heuristics on good description styles.

In a longitudinal study on 60 paid iOS apps, Svedic [259] found that ratings

and reviews can impact sales ranks. The study found that higher, more stable ratings

lead to users associating the app with high quality, and the app sales increased as

a result. Tian et al. [269] studied 1,492 high and low rated apps from Google

Play, and identified the features which most accurately differentiate apps with high

rating from those with low rating. The authors used technical features, such as code

complexity and API usage, with non-technical information such as the category and

the number of images displayed on the app store page. The most important features

for differentiating high from low rated apps were the size of the app and the number

of images on store page. The target SDK version was also an influential feature,

suggesting that high rated apps are updated more frequently and use more modern

features of the Android operating system.

2.7.6 Verification

This subsection concerns the verification of claimed features in app descriptions,

matched to the performance or code calls in the app software.

Yang et al. [300] introduced the APPIC framework, which extracts main theme

tag words from Android description and permission files. It does this using LDA

and Partially Labelled Dirichlet Allocation (PLDA), for the purpose of identifying

misleading app descriptions. It uses an app’s permissions file to establish whether
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its description makes claims consistent with its functionality, and whether it resides

in the appropriate category. The method was tested on 207,865 apps from Google

Play, and was manually evaluated on a subset of 1,000 apps. The authors found that

their method achieved (average) 88.1% category accuracy, and 76.5% permissions

accuracy.

Watanabe et al. [293] found that apps often contain secondary functionality

that is not mentioned in their descriptions. In a study of 232,906 apps, Seneviratne

et al. [251] trained a machine learning classifier on app features in order to de-

tect spam apps. The features used for the classifier were numeric statistics about

an app’s description. The authors labelled apps that were removed from the store

and established potential reasons for removal. Apps that were likely to have been

removed due to being spam (the majority of those removed) were then used to train

a boosting classifier in order to identify potential spam.

Tong et al. [270] proposed the App Generative Model (AGM) topic model,

for extracting semantically coherent app features from descriptions, using term co-

occurrence statistics. The AGM model resulted in lower perplexity [286] (a fitness

function for probabilistic models, that measures the trained model’s log-likelihood

of generating a held-out test set; the lower the better), than the most commonly

used model, LDA. However, the model precision was evaluated only against TF.IDF,

and not LDA or similar topic models such as the weighted topic model [194]. Nev-

ertheless, the study shows the importance of accurate feature discovery and repre-

sentation, and can help lead to future studies using extracted features.

2.8 Release Engineering

This section discusses papers that focus on app releases or release strategies, which

are summarised in Table 2.6. The results in Table 2.6 show that there were two

papers published in 2011 that tackled this issue, one in 2013, and then a steady

increase prior to November 27, 2015. Release studies typically require time series

data, in order that the changes made to apps in their releases can be recorded. Due

to the 2015 spike in release engineering studies, we expect the trend to continue

and contribute to the growing numbers of App Store Analysis literature. As can be

seen in Table 2.6, the stores studied are split almost equally into Apple and Google,

but there are no release studies in Blackberry or Windows Phone Store. The scale of
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Table 2.6: Chronological summary of release engineering-related litera-

ture[186]
a: Apple App Store
g: Google Play or other Android stores

Authors [Ref], Year Store Venue No. apps

Lee and Raghu [151], 2011 a AMCIS 3,168

Henze and Boll [113], 2011 a MobileHCI 24,647

Datta and Kajanan [67], 2013 a CloudCom-Asia 3,535

Lee and Ragu [152], 2014 a JMIS 7,579

Ruiz et al. [239], 2014 g IEEE Soft. 120,981

Guerrouj et al. [100], 2015 g SANER 154

Comino et al. [55], 2015 a,g Tech report 1,000

McIlroy et al. [191], 2015 g ESE 10,713

Gui et al. [101], 2015 g ICSE 21

Carbunar and Potharaju [41], 2015 g ASONAM 160,000

Alharbi and Yeh [6], 2015 g MobileHCI 24,436

Mean 29,772

Median 5,557

the past studies in this section is relatively small, ranging from 21 to 160,000; this

scale is not surprising, given the difficulty of mining longitudinal data for a large

number of data points.

Release Engineering literature has featured Apple and Google platforms but not

yet Blackberry, Samsung or Windows. The scale in studies has been small, most

likely due to the difficulty in obtaining time series data.

Release Engineering literature is broken down into “Content”, “Success” and

“Strategy” subsections.

2.8.1 Content

This subsection concerns studies into the content of app releases.

The 2014 study by Ruiz et al. investigated the updates made to update adver-

tisement libraries [239]. They found that over 12 months, almost half of the 5,937

apps with multiple updates had an advertisement library update. Approximately

14% of advertisement updates contained no changes to the app’s code, indicating
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the effort involved in keeping advertisement libraries updated. Gui et al. found,

from 21 apps in Google Play with frequent releases, that 23% of their releases con-

tained ad-related changes [101].

The findings of Guerrouj et al. [100] indicate that high code churn in releases

correlates with lower ratings. Alharbi and Yeh [6] tracked the design patterns used

by 24,436 Android apps over a period of 18 months. They found that depreciated

patterns are sometimes adopted after they are depreciated, and that new pattern

adoption rates are low. By tracking the app descriptions, they found that authors

sometimes update the app descriptions to reflect changes to their design patterns.

They believe that this shows that descriptions are used as a communication channel

between developers and users. The authors report on apps that start and stop using

certain design patterns. An interesting future research direction might be to record

the migration of these “design features” using the app feature migration terminology

of Sarro et al. [247].

2.8.2 Success

This subsection concerns studies into the relationship between app releases and the

store success of apps, as measured by rating, downloads or popularity.

Moller et al. [204] studied the installation behaviour of users with recently

updated apps, in a security related study. Lee and Raghu [152] studied the factors

that affect an app’s likelihood of staying in the top (most popular) charts in the Apple

App Store. They found that free apps were more likely to ‘survive’ in the top charts,

and that frequent feature updates were the most important factor in ensuring their

survival, along with releasing in smaller categories. The authors also found that

high volumes of positive reviews improved an app’s likelihood of survival.

Carbunar and Potharaju [41] conducted a longitudinal study on 160,000

Google Play apps mined daily over a 6 month time period in 2012. They found

that at most 50% of apps were updated in each category, and that there is an is-

sue of “stale apps” affecting aggregated statistics on large populations. The authors

also found that a few developers dominated the total download counts, that produc-

tive developers did not have many popular apps, and that there was no correlation

between price and downloads.
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2.8.3 Strategy

This subsection concerns releasing strategies for app deployment and updates.

In 2011 Lee et al. [151] mined app information from the top 300 iOS apps in

all 21 categories free and paid, mining at least 3,168 apps. They analysed developer

diversification through publishing apps in multiple categories and in both free and

paid, and found a positive relationship between download rank and app portfolio di-

versification. The study incorporates technical (download rank) with non-technical

information (category, price), in order to identify actionable findings for app devel-

opers.

Henze and Boll [113] analysed release times and user activity in the Apple App

Store, and concluded that Sunday evening is the best time for deploying games.

Their study also found that version updates were an effective strategy for raising

an app’s rank in the store. Datta and Kajanan [67] studied review counts from the

Apple App Store, and found that apps receive more reviews after deploying updates

on Thursdays.

In 2014 Lin et al. [162] incorporated version information in their app recom-

mendation system, in order to ensure that apps are recommended if they add new

features to new versions. Comino et al. [55] studied the top 1,000 apps in Apple

App Store and Google Play. They found that for iTunes, increased numbers of app

releases are more likely when the app is performing badly, and that releases can

boost downloads. Neither finding held true for Google Play, however, which the

authors speculate might be a symptom of “excessive updating” caused by a lack of

quality control from Google.

McIlroy et al. [191] studied update frequencies in the Google Play store, after

mining data about 10,713 mobile apps. They found that only 1% of the studied

apps received more than one update per week, and only 14% were updated in a

two-week period. The authors also found that rating was not affected by update

frequency. Nayebi and Ruhe [207] combined app features with values gained from

crowd-sourcing as an approach to app service portfolio planning.
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Table 2.7: Chronological summary of reviews-related literature[186]
a: Apple App Store
b: Blackberry
g: Google Play or other Android stores

Authors [Ref], Year Store Venue No. apps

Hoon et al. [120], 2012 a OzCHI 17,330
Vasa et al. [274], 2012 a OzCHI 17,330
Chandy and Gu [47], 2012 a WebQuality 3,090
Goul et al. [96], 2012 a HICSS 9
Ha et al. [105], 2013 g CCNC 59
Oh et al. [212], 2013 g CHI 24,000
Hoon et al. [119], 2013 a Tech report 17,330
Iacob and Harrison [124], 2013 g MSR 270
Galvis Carreño et al. [83], 2013 g ICSE 3
Khalid [138], 2013 a ICSE 20
Fu et al. [82], 2013 g KDD 171,493
Chen et al. [51], 2013 a,g WWW 5,059
Pagano and Maalej [214], 2013 a RE 1,100
Hoon et al. [118], 2013 a OzCHI 25
Iacob et al. [126], 2013 g BCS-HCI 161
Iacob et al. [125], 2014 g MobiCASE 270
Khalid [140], 2014 a IEEE Soft. 20
Chen et al. [50], 2014 g ICSE 4
Cen et al. [45], 2014 g PIR 6,938
Guzman and Maalej [104], 2014 a,g RE 7
Khalid et al. [139], 2014 g FSE 99
Wano and Iio [292], 2014 a NBIS 500
Erić et al. [75], 2014 a QIP 968
Khalid et al. [141], 2015 g IJITCS 0
Gao et al. [84], 2015 g SOSE 4
McIlroy et al. [192], 2015 a,g ESE 12,000
Cen et al. [44], 2015 g SIAM 12,783
Vu et al. [284], 2015 g ASE 3
Vu et al. [283], 2015 g CoRR 95
Malavolta et al. [176], 2015 g MS 11,917
Malavolta et al. [177], 2015 g MOBILESoft 11,917
Park et al. [219], 2015 g SIGIR 43,041
Panichella et al. [218], 2015 a,g ICSME 7
Palomba et al. [215], 2015 g ICSME 100
Moran et al. [201], 2015 g FSE 14
Gomez et al. [92], 2015 g MOBILESoft 46,644
Maalej and Nabil [174], 2015 a,g RE 1,140
Pérez [278], 2015 g Masters Thesis 4
Khalid et al. [142], 2015 - IJIEEB 0
Gu and Kim [99], 2015 g ASE 17
Guzman et al. [102], 2015 a,g ESEM 7
Guzman et al. [103], 2015 a,g ASE 7
McIlroy et al. [193], 2015 g IEEE Soft. 10,713
Liang et al. [154], 2015 a IJEC 139

Mean 9,594
Median 161
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2.9 Review Analysis

Literature discussed in this section concerns the study of app reviews; a summary

of discussed literature can be found in Table 2.7. The results in Table 2.7 show

that the majority of studies focus on the Google Play store, with a minority focusing

on Apple App Store, and one paper studying Blackberry store. App review centred

literature first emerged in 2012, and has subsequently gained significant (and in-

creasing) interest and activity: Figure 2.3 shows that there are greater numbers of

requirements/reviews literature each year. We hypothesise that this is due to the

tenure of the stores, and the progression of the field. One avenue of research that

has not been attempted is the study of reviews in the Windows Phone Store, which

was launched in 2010 but has not achieved the widespread success of Google Play

and Apple App Store, in the competitive market.

Review Analysis literature mostly studies Apple and Google stores, inviting fu-

ture comparison with Windows and other store reviews.

Review Analysis literature is broken down into “Classification”, “Content”, “Re-

quirements Engineering”, “Sentiment”, “Summarisation” and “Surveys and Method-

ological Aspects of App Store Analysis”. Many early works have focused on the

content of reviews in 2012-2013, before advancing to sentiment in 2013-2014, and

requirements and summarisation in 2015.

2.9.1 Classification

This subsection both concerns the classification of user reviews, and studies that

have trained classifiers on user reviews.

Chandy and Gu [47] mined 6,319,661 reviews from 3,090 apps in the Apple

App Store. After manually labelling a subset of the mined reviews as spam or not

spam, the authors trained both a supervised decision tree and unsupervised latent

class analysis to identify spam reviews. The unsupervised method achieved higher

accuracy, and took into account factors such as average rating of a user, and number

of apps rated.

Chen et al. [51] compared the maturity ratings of 1,464 equivalent apps be-

tween the Apple App Store and Google Play, and taking the Apple store ratings as
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the accurate ratings, the authors found that 9.7% of the Android apps were under-

rated and 18.1% were overrated. The authors also studied a sample of 729,128

reviews from 5,059 Google Play game apps, and trained a classifier on the sets of

app descriptions, user reviews, and iOS maturity ratings, to automatically verify app

maturity ratings. Ha et al. [105] manually examined 556 reviews mined from 59

Google Play apps, in order to classify them into topics and sub-topics based on con-

tent. They found that most information in reviews concerns the quality of the app,

and not security or privacy concerns.

Cen et al. [45] devised an approach to identify the Comments with Security /

Privacy Issues (CSPI) from a set of mined Google Play app reviews. The authors later

built upon this work, using reviews in order to rank the security risk of apps, by de-

tecting security labels in a crowd-sourcing approach [44]. Using AndroGuard [9]

scores as a ground truth, the authors found that their tool outperformed other met-

rics for ranking app security risk, half of which incorporated user reviews and half

of which relied on declared permissions.

Gomez et al. [92] used an unsupervised machine learning approach in order to

identify apps that may contain errors, using 1,402,717 reviews mined from 46,644

apps. The authors used the error information in addition to permissions used by the

apps, in order to construct a ranked recommender system to analyse app permis-

sions, for app store moderators. Guzman et al. [103] also developed an ensemble

of machine learning classifiers in order to classify user reviews. They tested this sys-

tem on 4,550 reviews mined from 7 apps in the Google and Apple app stores, and

achieved a precision of 0.74 and recall of 0.59 on a manually labelled set of 1,820

reviews.

2.9.2 Content

This subsection concerns studies into the content of user reviews, and how store

success metrics associate with certain review content.

Hoon et al. [120] and Vasa et al. [274] collected a dataset containing 8.7 million

reviews from the Apple App Store and analysed the reviews and vocabulary used.

In 2013 Hoon et al. analysed 8 million reviews from Apple App Store [119]. They

found that the majority of mobile apps reviews are short in length, and that rating

and category influences the length of reviews. The majority of studied apps received
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under 50 reviews in their first year. Half of the apps analysed decrease in the user

assessment of quality, denoted by rating, over time. The authors suggested that user

expectations are changing rapidly towards apps, and that developers must keep up

with demand to remain competitive.

Iacob et al. [126] studied how the price and rating of an app influence the type

and amount of user feedback that it receives through reviews. The authors selected

3,279 reviews for the study, from which they identified 9 classes of feedback: posi-

tive, negative, comparative, price related, request for requirements, issue reporting,

usability, customer support, versioning. From the selected apps, there was a roughly

equal split of positive type reviews with feature/issue type reviews, with very few

other types such as negative or price related.

Khalid et al. [139] studied the devices used to submit app reviews, in order to

determine the optimal devices for testing. Palomba et al. [215] study the Google

Play reviews from 100 open source Android apps, and link the reviews to code

changes. They found that a mean of 49% of review requests are implemented in new

releases, and that the apps with changes more directly implementing the content

of user reviews improve their ratings with new releases. In order to bridge the

gap between software attributes and user reviews, Hoon et al. [117] developed an

ontology of words used to describe software quality attributes in app reviews.

McIlroy et al. [193] studied responses to reviews from 10,713 Google Play apps,

finding that most developers do not respond to reviews. However, in the cases

where a response occurred, 38.7% of users were found to subsequently change their

ratings, resulting in a median increase in individual user ratings of 20%. A summary

of mobile app user feedback classification can be found in the study by Maalej et

al. [285].

2.9.3 Requirements Engineering

This subsection concerns the extraction from user reviews of bug reports, user re-

quests and other information that can be used for requirements engineering. The

extracted information of course relates not only to reviews, but to the app as a

whole.

Oh et al. [212] developed a review digest system which they tested on

1,711,556 reviews mined from 24,000 Google Play apps. They automatically cat-
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egorised reviews into bug reports, functional requests and non-functional requests,

and produced a digest featuring the most informative reviews in each category.

Iacob and Harrison [124] presented an automated system (MARA) for extract-

ing and analysing app reviews in order to identify feature requests. The system is

particularly useful because it offers a simple and intuitive approach to identifying

requests. The authors used 161 apps and 3,279 reviews for manually training lin-

guistic rules. Additionally, 136,998 reviews were used for an evaluation, that found

that 23.3% of reviews contain feature requests. As an extension to the MARA system

they had previously introduced [126], Iacob et al. [125] introduced a set of linguis-

tic rules for identifying feature requests and bug reports in order to help facilitate

app development.

Wano and Iio [292] analysed the textual content of 856 reviews from 500 apps

in the Japanese App Store, and found that the review styles differed between apps

in different categories. In a large scale study, Erić et al. [75] studied the star ratings

of 48 million reviews from 968 popular free and paid Apple apps. They found that

the reviews were mostly positive, and there were significant differences in the distri-

butions between categories, and also between free and paid. Free apps were found

to have more reviews but a lower mean rating, and higher standard deviation. Due

to the higher numbers of reviews for free apps, which may give an app credibility,

the authors argue that in-app purchasing revenue models are a good way to make

money for developers, especially if used as a ‘teaser’ for a paid version.

Park et al. [219] developed AppLDA, a topic model designed for use on app de-

scriptions and user reviews, that discards review-only topics. This enables develop-

ers to inspect the reviews that discuss features present in the app descriptions. The

authors tested the system on 1,385,607 reviews mined from 43,041 apps. Panichella

et al. [218] presented a system for automatically classifying user reviews based on

a predetermined taxonomy, in order to support software maintenance and require-

ments evolution. They verified the system on a manually labelled truth set of 1,421

sentences extracted from reviews, and achieved 0.85 precision and 0.85 recall when

training the system on language structure, content and sentiment features. Maalej

and Nabil [174] produced a classification method identifying bug reports and fea-

ture requests from user reviews. The authors found that upwards of 70% precision
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and 80% recall can be obtained using multiple binary classifiers, as an alternative

to a single multiclass classifier. They also found that the commonly used NLP tech-

niques, stopword removal and lemmatisation, can negatively affect the performance

of this classification task.

Moran et al. [201] propose the FUSION system, that performs static and dy-

namic analysis on Android apps, in order to help users complete bug reports. The

system focuses on the steps to reproduce a bug, using dynamic analysis to walk

through Android system events. Khalid et al. [142], argue that app store reviews

can be used for “crowdsourcing” [180]. They argue that users are inadvertently

performing crowdsourcing when they review apps, solving the following problems:

requests for potential features, suggestions for developer action, recommendations

for other users, and issue reporting.

2.9.4 Sentiment

The works discussed in this subsection have incorporated sentiment in their study

of reviews. Sentiment describes a user’s views or opinions, typically as positive

or negative in the following studies, and is extracted from reviews using ‘positive’

sentiment words such as ‘good,great,love’, or ‘negative’ sentiment words such as

‘bad,hate,terrible’.

In 2012 Goul et al. [96] published the earliest work to study online app store re-

views. The authors performed sentiment analysis on 5,000 Apple App Store reviews

in order to facilitate requirements engineering. Galvis Carreño and Winbladh [83]

extracted user requirements from comments using the ASUM model [133], a

sentiment-aware topic model. Initial results showed that the method aids require-

ments summation with significantly less effort than manual identification, but do

not return all possible requirements. Hoon et al. [118] gathered a set of 29,182

short reviews of up to 5 words, from the top 25 Health & Fitness apps in the Ap-

ple App Store. They analysed the reviews and found they are mostly made up of

sentiment words, and match the star rating of the review closely.

Khalid [138, 140] manually categorised 6,390 negative reviews from a sample

of 20 free iOS apps, and reported the most frequent causes of complaints. The

apps had combined over 250,000 reviews, and so 6,390 reviews is a statistically

representative sample at the 95% confidence level. The authors carried out a manual
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analysis of the 6,390 reviews, finding that 11% of samples concerned complaints

about a recent update. Users were most dissatisfied by issues relating to invasion of

privacy and unethical behaviour, while hidden cost was the second most negatively

perceived complaint. Pagano and Maalej [214] gathered a sample of 1.1 million

reviews from the Apple App Store in order to provide an empirical summary of

user reviewing behaviour. They found that most feedback is provided after releases,

that positive feedback is often associated with highly downloaded apps, and that

negative feedback is often associated with less downloaded apps and often does not

contain user experience or contextual information.

In 2014 Chen et al. [50] produced a system for extracting the most informative

reviews, placing weight on negative sentiment reviews. Guzman and Maalej [104]

studied user sentiments towards app features from a multi-store sample, which also

distinguished differences of user sentiments in Google Play from Apple App Store.

Guzman et al. [102] developed a tool called DIVERSE, that extracts key reviews

specific to a queried feature. DIVERSE groups together reviews with similar senti-

ments about the same feature in order to condense the information. The authors

tested their tool on the dataset used in their earlier study [104]. Liang et al. [154]

performed MultiFacet Sentiment Analysis (MFSA) on user reviews from 139 apps

mined from Apple App Store. They reported that opinions on product quality form

a larger portion of reviews, but opinions on service quality have a bigger effect on

sales.

2.9.5 Summarisation

This subsection concerns the summarisation of large samples of user reviews, using

automated tools.

A large sample was used in the 2013 study by Fu et al. [82], in which the

authors analysed over 13 million Google Play reviews for summarisation. They

designed a system called WisCom that enables summarisation of reviews at a per-

review, per-app or per-market level. This tool can be useful for large-scale overviews

of competitor apps, or for gathering information about a market. The weakness of

the system is the need for a large complete sample of reviews to be mined first, and

the associated mining difficulties. However, the WisCom system enables summari-

sation of ‘complaint’ or ‘praise’ reviews over time, and can produce accurate results
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given a complete sample in a fixed time period i.e. 6 months, so long as the inherent

sample bias is taken into account. The authors found that there was a large differ-

ence between free and paid apps, and that paid apps have an associated ‘complaint’

type about price that free apps do not.

In 2015 McIlroy et al. [192] studied reviews in Google Play and Apple App

Store, and developed an automated labelling scheme that can identify multiple ele-

ments to reviews that could be beneficial to stakeholders. For example, a review

might contain a feature request and a bug report, and so a label for each type

would be applied to it. Gao et al. [84] proposed AR-Tracker, a similar tool to

AR-Miner [50], that automatically collects user reviews of apps and ranks them

in order to optimise the representation of the review set, in terms of frequency and

importance. Pérez [278] mined and labelled 160 user reviews from 5 Google Play

apps in order to train a review categorisation tool, that identifies feature requests

and bug reports. The tool was evaluated on 400 labelled reviews and achieved 0.78

accuracy.

Malavolta et al. [176, 177] analysed 3 million reviews from 11,917 Google Play

apps, and produced a summary of user perceptions about 445 hybrid apps [112]

compared with native apps. The authors found that hybrid mobile apps receive

similar ratings to native apps, but native apps have been reviewed on average 6.5

times more. They plan to replicate the work using multiple stores and a small set

of cross-platform apps to compare their perception across different platforms. Vu

et al. [283, 284] developed MARK, a system that identifies keywords in sets of re-

views in order to assist summarisation and search. The method is one of several

summarisation approaches that are applied to reviews.

Gu and Kim [99] proposed SUR-Miner, a review summarisation and categori-

sation tool, that they evaluated on 2,000 sentences from reviews of 17 Google Play

apps. The tool is intended for use by developers, and produces a visualisation of

the reviews. The authors surveyed the developers of the studied apps, of whom 28

out of 32 agreed that the tool is useful. In the Google Play store it is possible for

developers to respond to reviews, which can lead to users changing their rating.
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2.9.6 Surveys and Methodological Aspects of App Store Analysis

Khalid et al. [141] reviewed recent literature in app store review analysis, and made

several suggestions that could improve the app reviewing process for both users and

developers. They suggested that the process could be improved by assigning cate-

gories to reviews, and adding sort and filtering functionality based on the assigned

category, helpfulness and star rating. The authors also suggest that adding a user

reply feature would assist the developers to get the highest quality reviews.

2.10 Security

Studies relating to app security are discussed in this section, and are summarised

in Table 2.8. The results in Table 2.8 show that the number of studies grew year on

year until 2013 and then remained stable. A large proportion of these papers do not

combine technical with non-technical attributes. Instead, they used properties such

as the validation that highly rated apps have received, through being downloaded,

used, and highly rated by many users. Much of the dedicated security research

in this section used the Google Play store. Specifically, there are no studies using

Blackberry or Apple, and just one study used Windows. Much of the security-related

literature used the property that popular Google Play apps can generally be assumed

non-malware, since they are scanned prior to being hosted in the store (by Google

Bouncer [5]), and they have large user bases. Many studies in this section used

large collections (>10,000 apps) of benign apps to help distinguish between benign

and malicious behaviour.

The number of apps used ranges from 1 to 1,165,847 (which also happens to be

the largest study in this survey).

App security has been well-studied in the literature, and perhaps warrants a

survey of its own. There are many studies on mobile app security that used app

stores in a less direct way than those discussed in this section, some of which are

mentioned in Appendix A.2. Additionally, literature in Section 2.6.4 has identified

potential risks associated with permissions, beyond the more direct security threats

discussed in this section.
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Table 2.8: Chronological summary of security-related literature[186]
a: Apple App Store
g: Google Play or other Android stores
w: Windows Phone

Authors [Ref], Year Store Venue No. apps

Blasing et al. [31], 2010 g MALWARE 150
Batyuk et al. [21], 2011 g MALWARE 1,865
Potharaju et al. [226], 2012 g ESSoS 158,000
Moller et al. [204], 2012 g LARGE 1
Chia et al. [52], 2012 g WWW 19,344
Gibler et al. [86], 2012 g TRUST 24,350
Grace et al. [97], 2012 g WiSec 100,000
Crussell et al. [63], 2012 g ESORICS 75,000
Peng et al. [221], 2012 g CCS 500,000
Zhu et al. [316], 2015 g ICICS 5,685
Bakar et al. [15], 2013 g ACSAT 5,000
Stevens et al. [258], 2013 g MSR 10,300
Book et al. [34], 2013 g CoRR 114,000
Sanz et al. [243], 2013 g Cybernet. Syst. 333
Sanz et al. [245], 2013 g SECRYPT 333
Sanz et al. [244], 2013 g NSS 333
Wang et al. [291], 2013 g DBSec 272,774
Crussell et al. [64], 2013 g ESORICS 265,359
Gibler et al. [87], 2013 g MobiSys 265,359
Peiravian and Xingquan [220], 2013 g ICTAI 1,250
Chakradeo et al. [46], 2013 g WiSec 14,888
Pandita et al. [216], 2013 g SEC 581
Zhu et al. [313], 2013 a CIKM 15,045
Liu et al. [170], 2014 w NSDI 51,150
Crussell et al. [65], 2014 g MobiSys 165,426
Gorla et al. [95], 2014 g ICSE 32,136
Ham and Lee [106], 2014 g IJCCE 10
Bhoraskar et al. [30], 2014 g SEC 1,010
Qu et al. [231], 2014 g CCS 45,811
Zhu et al. [315], 2015 a TKDE 15,045
Schütte et al. [248], 2015 g ConDroid 10,000
Mutchler et al. [203], 2015 g MoST 998,286
Avdiienko et al. [14], 2015 g ICSE 2,866
Ma et al. [173], 2015 g COMPSAC 22,555
Vigneri et al. [277], 2015 g CoRR 5,000
Yang et al. [299], 2015 g ICSE 633
Lageman et al. [150], 2015 g MILCOM 417
Deng et al. [70], 2015 a CCS 2,019
Zhang et al. [305], 2015 g CCS 100
Huang et al. [122], 2015 g SEC 16,000
Chen et al. [48], 2015 g SEC 1,165,847

Mean 106,933
Median 14,888
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Security literature is broken down into “Faults”, “Malware”, “Permissions”, “Pla-

giarism”, “Privacy” and “Vulnerability” subsections.

2.10.1 Faults

This subsection concerns studies that detect faults in Android and Windows apps,

that can be potential security concerns.

Ravindranath et al. [233] used a sample of apps mined from Windows Phone

Store to run their greybox fault detection tool. They found that 1,138 of the sam-

ple of 3,000 apps had failures. Liu et al. [170] presented their DECAF system for

detecting advertisement placement and layout violations, which can indicate adver-

tisement fraud. They tested the system on 51,150 Windows apps for tablet or phone,

and plan to extend it to detect more types of rule violation. The DECAF system was

used by Microsoft Advertising in 2013 to prompt developers to comply with layout

rules.

Crussell et al. [65] presented MAdFraud, a system that detects advertisement

fraud in the form of requesting ads while the application is in the background, and

in the form of simulating user clicks on advertisements. They tested the system

on 165,426 apps gathered from Google Play and a separate security company, and

found that 30% of apps made advertisement requests while running in the back-

ground, and 27 apps simulated user clicks on advertisements. Deng et al. [70]

introduced their iRiS system, which performs static analysis on iOS apps in order

to detect suspicious apps that may violate Apple’s terms of service. The authors

detected 146 apps from a sample of 2019, that accessed sensitive user information

through use of private APIs.

2.10.2 Malware

This subsection concerns studies into Android malware.

In 2010 Bläsing et al. [31] used the top 150 free Google Play apps to test their

static and dynamic APK analyser. They tested these apps against 1 known malware

app which was shown to be an outlier, establishing that their approach has the po-

tential for malware detection. Peng et al. [221] proposed an app risk rating system

trained on metadata from name, category and set of permissions. The system was

trained on a set of 378 malware apps and evaluated on almost 500,000 apps mined

from Google Play. Zhu et al. [316] proposed an approach to malware detection that
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uses permission and description information to detect abnormal permission sets.

They evaluated the system on 5,685 apps mined from Google Play and found some

words that have a large effect on permission validity; they also tested the system on

known malware and found that it was able to successfully detect it as such.

Chakradeo et al. [46] created an app malware triaging tool call MAST, that they

trained on known malware, and a set of 14,888 apps mined from Google Play (that

were assumed to be benign). Peiravian and Xingquan [220] trained a malware clas-

sifier using 1,250 samples of known malware, and 1,250 samples of benign apps

mined from Google Play. They trained the classifier using information on the per-

missions requested and the API calls made by the apps.

Sanz et al. [245] used cosine similarity between the sets of features declared in

Android manifest files, in order to detect anomalies that might suggest the presence

of malware when compared with a benign set. Sanz et al. later trained machine

learning classifiers to distinguish between sets of known malware and 333 benign

apps mined from Google Play [244, 243]. Similarly, Wang et al. [291] proposed

DroidRisk, an app trained on sets of known malware and assumed benign soft-

ware mined from Google Play. DroidRisk rates the security risk of other apps in

order to help prevent users from installing malware unknowingly. Apps mined from

Google Play were assumed benign, as Google’s tool Google Bouncer [5] is run to

detect malware and remove it from the store.

As a means of detecting potentially malicious apps, Gorla et al.[95] performed

topic modelling on app descriptions, and then applied K-means clustering to the

results to form distinct clusters. Utilising API information from the app manifest, the

authors trained a one-class support vector machine (SVM) [178] on each cluster to

detect outliers in terms of API usage, which may suggest the presence of malware.

This approach was later extended by Ma et al. [173] who used known malware

and benignware to train their model, and reported improvements on the resultant

precision, recall and F-measure.

Avdiienko et al. [14] extracted information flow data from apps in order to

train a benign-trained malware classifier. The classifier was trained on 2,950 of

the most popular Google Play apps, which are assumed benign as their download

rank is in the top 100 in each of 30 categories. In this way, the authors combined
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non-technical information (download rank) with extracted technical information

(information flow) to detect malware. The system reported high precision on sets

of known malware from the Genome project [308] and VirusShare database [279].

In a similar way, the 2013 study by Sanz et al. [243] trained machine learning

classifiers to separate known malware and benign apps mined from Google Play.

The 2014 study on identifying malicious apps using system call events, by Ham and

Lee [106], also used apps from the Google Play Games category as a benign set,

against which to compare.

Lageman et al. [150] generated feature sets to be used for classification of mal-

ware and benignware, from runtime log datasets of 419 malware apps and 417

mined benign apps. They tested the feature set and achieved a true positive rate of

90% with a Random Forest classifier [90]. In the largest app study to date, Chen et

al. [48] ran their DiffCom system on 1,165,847 apps mined from Google Play and

third party Android stores. DiffCom detects malware, including zero-day malware,

without prior knowledge of malware, using a simple comparison with known apps

in the corpus. The system was tested on a sample of 50,000 apps and achieved a

false positive rate of 0.04 and false negative rate of 0.06. When run on the entire

dataset, DiffCom detected 127,429 instances of malware and 20 likely instances of

zero-day malware.

2.10.3 Permissions

This subsection concerns studies into permissions misuse and potential security risks

in Android apps from requested permissions.

In 2013 Awang Abu Bakar and Mahmud [15] mined 5,000 apps from the

Google Play store and analysed their permissions. They found statistically signifi-

cant (though weak) Spearman’s rank correlation coefficients of 0.13, 0.24 and -0.13

between (technical) the number of permissions asked for and (non-technical) the

price, download rank and rating, respectively. They highlight the top permissions

requested by apps, and found that 40% of the apps requested the phone’s status

and identity, a source of sensitive information. Stevens et al. [258] mined 10,300

apps from several Android stores including Google Play and applied the permissions

analysis tool Stowaway [13] that can detect declared and used permissions. The

authors found that 44% of apps in their sample contained at least one unneces-
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sary permission, and computed a Spearman’s rank correlation coefficient of 0.72

between the number of search results for a permission on Stackoverflow, and the

number of times it is found to be misused. Book et al. [34] studied library permis-

sions on 114,000 apps mined from the Google Play store, showing libraries bundled

with apps lead to old versions being included. Increasingly advertisement libraries

take advantage of app permissions presenting a potential security risk, which the

authors argue should be solved by the app store or privacy legislation.

Pandita et al. [216] presented the WHYPER system for automatically extracting

the reason a permission is used from the description. They evaluated the system

using 581 apps mined from Google Play, which were manually labelled by the au-

thors. The authors tested the system on the permissions address book, calendar and

audio recording, and achieved an average precision of 82.2% and recall of 81.5%.

In a related study, Qu et al. [231] introduced AutoCog, a tool for checking the fi-

delity between app descriptions and requested permissions. The authors tested the

system on 45,811 Google Play apps, and achieved a precision of 92.6% and a recall

of 92.0% when detecting 11 permissions.

The findings by Dering and McDaniel [71] suggest that library usage presents a

security risk due to permissions usage. This is discussed in more detail in Section 2.6.

2.10.4 Plagiarism

This subsection concerns studies that detect plagiarism in Android apps.

In 2012 Potharaju et al. [226] conducted a study on 158,000 free Android apps,

identifying apps that are likely to be plagiarised in order to spread malware. The

authors found that the 29.4% of apps with the most permissive rights are most likely

to spread malware, and that non-technical information such as category, number

of downloads and publishing day can increase the initial spread of the malware.

Crussell et al. [63] introduced the tool DNADroid, which they used to identify 141

cloned apps in the Google Play store, from a mined set of 75,000 apps. The authors

then introduced the tool AnDarwin, which decompiles apps and compares them to

detect clones [64]. They detected 4,295 cloned apps using this approach from a

mined set of 265,239 apps. This dataset is used in the study by Gibler et al. [87],

who investigated the effects of application plagiarism on developers.
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Zhu et al. [313, 315] mined ranking, rating and review data from 15,045 apps

from the Apple App Store. They detected outliers using hypothesis tests in order to

find potentially fraudulent apps. They took a unique approach to the issue with app

ranks (only the top apps in Google Play, Windows Phone Store and Apple App Store

have download ranks), in that they termed the period in which an app has a rank as

a ‘leading event’ and consecutive events as a ‘leading session’. Several authors used

API information to detect plagiarised apps [145, 288, 303], which are discussed in

more detail in Section 2.6.

2.10.5 Privacy

This subsection concerns studies into privacy risks on the Android platform, and in

Android apps.

In 2011 Batyuk et al. [21] used the top 1,865 free Google Play apps to test

their static APK analyser, which detected that 167 apps accessed private identifiers,

presenting a security risk. 114 of these apps wrote the information after reading

it, which might indicate that the apps contain spyware. The work has since been

extended into a static analysis tool called Androlyzer [66]. Chia et al. [52] eval-

uated the ratings of apps from Facebook, Chrome and Google Play, as a means of

warning against privacy risks. They found a strong correlation between popularity

and the number of ratings apps receive, but no correlations between permissions

sought and privacy risk, nor rating. This result shows that ratings are not an ef-

fective indicator of the privacy of apps, and new suspicious apps are not likely to

receive many ratings that could serve as potential warnings for future users.

Gibler et al. [86] mapped Android API calls to privacy information, and per-

formed static analysis to identify apps where private data is leaked. Using their

tool, AndroidLeaks, they analysed 24,350 apps from Google Play and third party

stores, and found 2,342 apps with privacy leaks. Grace et al. [97] introduced

AdRisk, a static analysis tool for identifying potential privacy risks associated with

advertisement libraries. From their study on 100,000 apps mined from Google Play,

the authors found that 52,067 apps use advertisement libraries, of which 31% use

more than one. The authors remarked that the majority of 100 studied advertise-

ment libraries were found to collect personal information.
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Vigneri et al. [277] used a set of 5,000 apps mined from Google Play, on which

they performed dynamic execution to determine network usage. They focused, in

particular, on network activity to URLs which they claimed could present privacy or

security risks, such as those associated with tracking, spyware or malware. Network

activity was compared both within category and overall, in order to identify apps

with suspiciously high activity. The authors noted that a high proportion of apps,

even those with high ratings and download ranks, downloaded a large number of

advertisements. Huang et al. [122] presented their SUPOR system, that detects pri-

vacy information entry fields as potential privacy or security risks using static anal-

ysis. They evaluated the system on 16,000 apps mined from Google Play, obtaining

a precision of 0.973 and a recall of 0.973, with a false positive rate of 0.087. The

cases of entry fields found include national ID, username, password, credit card and

health data.

2.10.6 Vulnerability

This subsection concerns studies that analyse potential security vulnerabilities from

a variety of sources.

Moller et al. [204] studied the update behaviour of users following recent up-

dates, finding from a case study that approximately half of users did not update their

app for at least a week after the update. The authors argue that this could lead to

users continuing to run vulnerable software even after a fix is available.

In 2015, Zhang et al. [305] argued that the descriptions given to apps contain

insufficient security information. The authors presented the DescribeMe system,

which generates security-centric descriptions using static analysis. They performed

a user study using Amazon’s Mechanical Turk [7], on a set of 100 apps, asking

whether the generated descriptions are readable and whether they can reduce the

rate at which users download malware. The generated descriptions achieved a 4%

lower readability rating than the original human-written descriptions, but decreased

the malware download rate by 39%. Yang et al. [299] used 633 apps mined from

Google Play as the benign set to test their tool for distinguishing between malicious

and benign apps. They found that the intent of security accesses is more related

to whether an app is malicious than the type of security-sensitive resources that it

accesses.
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Schütte et al. [248] tested their dynamic analysis tool ConDroid on the top

10,000 free Google Play apps and found 172 apps suffered from a logic bomb vul-

nerability, by selectively executing code sections that use vulnerable APIs. Mutchler

et al. [203] took a snapshot of 1,172,610 Google Play apps. They found that 998,286

of these apps used WebView, indicating that the apps use an embedded WebView

in some way. The authors searched for several known vulnerabilities and found that

28% of the studied apps had at least one of these vulnerabilities. As a result, the

authors propose a set of API changes to mitigate such threats. In a similar study

Bhoraskar et al. [30] mined 1,010 apps from Google Play and used static analysis

and partial app rewriting to check for known security issues in third party compo-

nents. They found that 13 of the 200 apps using the Facebook SDK were vulnerable

to known attacks, and 175 of 220 children’s apps potentially collected information,

in violation of the US Children’s Online Privacy Protection Act [56].

2.11 Store Ecosystem

This discusses literature that focuses on a store’s ecosystem, or the differences be-

tween stores. This literature is summarised in Table 2.9.

The scale of studies in this section ranges from 1 to 1,164,489, with a median of

848.

Store Ecosystem literature is broken down into “Inter-store”, “Intra-store”, “Rec-

ommendation” and “Simulation” subsection.

2.11.1 Inter-store

This subsection concerns studies on differences between stores.

In 2011, Syer et al. [260] studied the different code practices between app

stores, by selecting 3 pairs of feature-equivalent apps from Android and Blackberry.

The authors analysed the source code, code dependencies and code churn of these

apps, and found that Android apps are generally smaller but rely heavily on the plat-

form. Conversely, Blackberry apps are larger and rely heavily on 3rd-party APIs. In

order to reach the largest customer base developers need to cater for each platform,

and so the authors remarked that it is therefore easier to develop for Blackberry and

port to Android than vice versa. Syer et al. [262] later compared development prac-
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Table 2.9: Chronological summary of ecosystem-related literature[186]
a: Apple App Store
b: Blackberry
g: Google Play or other Android stores
w: Windows Phone
*: over 500 simulated apps (final values not specified in the paper)
**: 500,000 simulated apps
***: 1,250,000 simulated apps

Authors [Ref], Year Store Venue No. apps

Syer et al. [260], 2011 b,g SCAM 3

d’Heureuse et al. [72], 2012 a,b,g,w MCCR 1,164,489

Jung et al. [135], 2012 a Market Lett 1,189

Garg and Telang [85], 2013 a MIS 1,223

Lim and Bentley [157], 2012 a GECCO **

Lim and Bentley [156], 2012 a ALIFE **

Lim and Bentley [158], 2013 a CEC **

Zhong & Michahelles [307],’13 g SAC 191,301

Petsas et al. [223], 2013 g IMC 316,143

Syer et al. [262], 2013 g CASCON 15

McDonnell et al. [190], 2013 g ICSM 10

Cocco et al. [53], 2014 a MWIS *

Wenxuan and Airu [294],’14 a,g,w ICDMW 736,377

Ng et al. [210], 2014 g COMPSAC 506

Liu et al. [168], 2015 g WSDM 6,157

Ruiz et al. [197], 2015 g IEE Soft. 10,150

Joorabchi et al. [134], 2015 a,g ISSRE 14

Gómez et al. [91], 2015 g ICSE NIER 1

Askalidis [12], 2015 a CoRR 162

Xie and Zhu [297], 2015 a WiSec 179,353

Corral and Fronza [57], 2015 g MOBILESoft 100

Lim et al. [159], 2015 a TEVC ***

Mean 144,844

Median 848
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tices between 15 Android apps and 5 traditional desktop and server applications.

They found that mobile apps are most similar to Unix utilities, in terms of smaller

code bases and small development teams. However, they also report that mobile

apps suffer from greater numbers of defects and slower fix times than the studied

traditional applications.

In 2012 d’Heureuse et al. [72] mined 1,164,489 total apps from Apple, Black-

berry, Google and Windows app stores at regular intervals over a period of 3 months,

in order to perform cross store comparison and also to study growth over time. The

authors found that the smaller stores (Blackberry and Windows) had similar rates of

growth to the larger stores (Apple and Google), at 2% in the two month time period

studied. The smaller stores (Blackberry and Windows) were found to be the most

expensive, and all stores displayed a similar power-law curve in price, with many

cheap and free apps. Apps that appeared in multiple markets were on average 7.15

MB larger in the Apple store, and were a similar size in the 3 other stores.

Petsas et al. [223] analysed the downloads of 316,143 apps from 4 third-party

Android app stores. They found that 10% of the apps accounted for at least 70% of

total downloads in the stores, and that user downloads followed a clustering type

behaviour, where subsequent app downloads were usually in the same category.

The authors also found that popularity followed a power-law distribution against

app price, for paid apps. Ng et al. [210] looked into the safety of third-party An-

droid stores by downloading the top apps from Google Play and 20 other third-party

Chinese Android app stores. They compared the APKs to check whether they are the

same as the official releases, and ranked the severity level of differences. The au-

thors concluded that the third party app stores studied cannot be trusted, as the

proportion of apps which do not match their official releases is high, as are the

corresponding difference severity levels.

In 2015 Ruiz et al. [197] conducted a longitudinal rating study on 10,150 apps

over the period of 12 months. They argued that the Amazon style rating system,

in which ratings are accumulated over the lifespan of an app, is too slow to adapt

to changes in apps, whose performance is determined by their current release. The

current Google Play rating system makes it more difficult for an app to increase its

rating with a strong release than, for example, the Apple App Store rating system.
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Joorabchi et al. [134] introduced CheckCAMP, a tool that checks for inconsistencies

between Android and iOS versions of the same app. The authors tested the tool on 7

open source apps and 7 industry apps, and validated their results with a user study,

finding an F-measure of 1.0 on the open source apps and an F-measure of 0.92 on

the industry apps.

There are sources of non-technical information that replicate information found

on app stores, but provide a more accessible means to gather the data. For exam-

ple, the study by Syer et al. [261] uses information on the number of downloads

from AppBrain, a replication of the number of installs bracket on Google Play

(eg. 1,000,000 - 5,000,000 installs appears on AppBrain as 1,000,000+). Ihm

et al. [127] combined download information on 10 social networking apps from

Google Play with the number of registered users on their respective websites. The

authors found a strong correlation between the two metrics.

2.11.2 Intra-store

This subsection concerns studies into the inner workings of individual stores. This

includes ranking behaviours, updates to apps and to the platform, source code qual-

ity and promotions.

Jung et al. [135] assessed the differences between free and paid apps on Ap-

ple’s Korean App Store. They found that customer ratings were more critical to the

survival of free apps, and there was also a benefit from getting an early entrant in

markets. In 2013 McDonnell et al. [190] studied 10 apps using source code from

github [89]. The Android platform was shown to be evolving fast with an aver-

age of 115 API updates per month, due to which 28% of Android references were

out of date, and the median lag time to update to support a new API was found

to be 16 months. The APIs used most were the ones updated most frequently, yet

interestingly API updates were more defect prone than other changes in client code.

Apps in Google Play do not have accessible information on their total num-

ber of downloads, other than ‘ranges’, such as the range 50-100. Zhong and

Michahelles [307] analysed the distributions of download ranges and ratings from

191,301 Google Play apps. They found that a small number of very popular ‘block-

buster’ apps account for the majority of app downloads, and also have high ratings

indicating customer satisfaction. Paid apps achieved more success when they were
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cheaper, but expensive professional apps had a disproportionally high numbers of

downloads. The authors concluded that developers can break into the higher down-

load ranking positions by fulfilling a niche market. Garg and Telang [85] compared

paid app demand in the Apple App Store, using download ranks. They found that the

top ranked paid app was downloaded 120-150 times more than the 200th ranked

app.

Askalidis [12] studied the effects of sales promotions in the Apple App Store on

162 apps. They found that rival apps were able to benefit from a promotion, so long

as their promoted price is cheaper than their competition. They authors also found

that sales where apps become free, or have easily redeemable digital discounts, were

the most successful. Sales were shown to have mixed effects on the ratings of apps.

Gómez et al. [91] proposed an app store feature of automatically patching defective

apps, which they demonstrated by automatically fixing a defective app mined from

Google Play. Xie and Zhu [297] investigated the practice of promoting apps through

buying positive reviews, via illicit “underground” services. The authors registered

on 8 such app promotion sites and exposed approximately 30,000 promoted apps.

Their tool, AppWatcher was used to collect information from 179,353 randomly

selected iOS apps, from which they mined 9,399,014 reviews. The authors reported

on differences between datasets of promoted and random apps.

Corral and Fronza [57] studied 100 open source apps that are available on the

Google Play store. They performed correlation and regression analyses between

source code quality metrics and the store performance metrics: number of down-

loads, number of reviewers and average rating. The authors found no strong cor-

relation and no strong regression coefficients, rejecting their initial hypothesis that

source code quality plays a role in app success.

2.11.3 Recommendation

This subsection concerns studies into recommender systems using app store infor-

mation.

In 2014 Wenxuan and Airu [294] used information on the number of down-

loads and numbers of reviews, as well as the number of apps downloaded by, and

reviewed by, participating users. This data was used as part of a recommenda-

tion system called Interoperability-Enriched Recommendation (IER), which enables
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them to recommend similar apps to a user in the Windows Phone Store using data

mined from 736,377 Google Play, Apple App Store, and Amazon App Store apps. Liu

et al. [168] also studied app recommendation systems, by incorporating the level of

privacy that the app needs as well as user interests. They evaluated their approach

using 6,157 apps mined from Google Play, and found that their recommender per-

formed better when treating each app function with different privacy allowances.

They use the rating distribution over their dataset as the motivation for modelling

user preference with a Poisson distribution.

2.11.4 Simulations

This subsection concerns simulations of app stores.

Lim and Bentley simulated the app store ecosystem using an agent-based evolu-

tionary model, in order to experiment with different publicity strategies [156, 157].

The authors modelled apps with infectious properties, that could spread after being

downloaded by a user. They found that an ‘app epidemic’ is most likely to occur

when the app appears on the ‘new apps’ chart. The authors then used the model

to explore different ranking algorithms [158]. They simulated users, and experi-

mented with alternating time periods for updating the ‘new apps’ chart, and the

degree to which historical performance factors into the ‘top apps’ chart. The study

found that the top apps chart performs best in terms of overall downloads by in-

corporating fresh apps, and for this to work it needs to incorporate less historical

performance data (also found later by Ruiz et al. [197]).

Lim et al. later simulated the ecosystem from a user’s perspective [159], using

collected usage information from over 10,000 participants [155]. They modelled

developer strategies such as ‘innovator’ (who produces apps with random features)

and ‘copycat’ (who copies the app) [159]. They found that ‘optimiser’ (who im-

proves on the original ‘innovator’ apps) and ‘copycat’ working together led to the

best overall fitness, provided they represented a low proportion of the overall mod-

elled developer population. Cocco et al. [53] extended the model used by Lim and

Bentley, and investigated additional ranking algorithms and user behaviour. They

explored store ranking algorithms, and found that a 1% chance of a new app ap-

pearing in the top charts leads to the highest downloads-to-browse ratio.
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Table 2.10: Chronological summary of size and effort prediction literature[186]

Authors [Ref], Year Venue No. apps

Sethumadhavan [252], 2011 ISMA 6

Preuss [228], 2012 The IFPUG Guide to IT &

Software Measurement

1

Preuss [227], 2013 ICEAA 1

van Heeringen and van Gorp [272], 2014 IWSM-MENSURA 0

Abdullah et al. [1], 2014 ICOS 0

D’Avanzo et al. [68], 2015 SAC 8

Francese et al. [80], 2015 SEAA 23

Ferrucci et al. [77], 2015 SEAA 13

Ferrucci et al. [78], 2015 PROFES 13

Mean 7

Median 6

2.12 Size and Effort Prediction

Papers that predict size or effort based on the functionalities offered by an app are

discussed in this section, and are summarised in Table 2.10. Many of the papers

mine apps from Google Play, and compare the resultant predicted size with the

actual size reported in the store and/or LOC (number of Lines Of Code) of the apps.

The scale of size and effort prediction studies is relatively small but, since the

field has witnessed strong growth in 2015, it seems likely that the scale of studies

will grow in the future.

In 2011 Sethumadhavan [252] discussed the application of Function Point

Analysis (FPA) to Android applications, pointing out that compared with traditional

desktop applications, mobile apps contain limited functionality, and often function-

ality is merely a wrapper to system functionality. Preuss [227, 228] then showed

how FPA can be used for the estimation of the cost of a mobile app, using the

approach on a case study Android application. In 2014 van Heeringen and van

Gorp [272] discussed how to use the COSMIC method [58] to measure the func-

tional size of apps. Abdullah et al. [1] discussed using the COSMIC method to
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estimate game apps, using an intermediate representation of required assets and

functionality in the Unity3D game engine.

In 2015 D’Avanzo et al. [68] applied the COSMIC approach to 8 Google Play

apps, and applied linear regression to the functional point size in order to estimate

the code size. By applying leave-one-out cross validation, the authors showed that

the approach can accurately estimate code size based on functionality alone, once

trained. Francese et al. [80] used linear regression to estimate the development ef-

fort needed, and the number of GUI components, based on requirements alone. The

authors found, from a study on 23 Android applications, that the estimates were ac-

curate when trained on source code metrics such as classes, files and LOC. Ferrucci

et al. [77] applied the COSMIC approach to 13 Android applications, showing that

functional size is strongly correlated with app size, and that it can be used to accu-

rately estimate the bytecode size of the app. Ferrucci et al. [78] later compared the

related approaches by D’Avanzo et al. [68] and van Heeringen and van Gorp [272]

on their dataset of 13 Android apps. They found that both functional size results

were correlated with multiple app size measures, but that the approach presented

by D’Avanzo et al. [68] was more accurate.

2.13 Checklist for Future App Store Analysis Authors

This survey has reported on the general content of studies, as well as the scale of

apps used, and the store used. In future surveys it may be possible to synthesise

more information from future literature. Such richer analysis, facilitated by richer

data reporting, could lead to new insights and directions in the field of App Store

Analysis.

To help facilitate this, we present the following checklist as recommendations

for data to include in future studies, to help facilitate future studies such as SLRs:

App Stores used to gather collections of apps.

Total number of apps used in the study.

Breakdown of free / paid apps used in the study, including information re-

garding in-app-purchases where possible.

Categories used, with breakdown of app counts in each category.

Indication of whether API usage was extracted from the studied apps to fa-

cilitate the study.
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Indication of whether code was needed from apps to facilitate the study.

Indication of whether open source apps were used exclusively for all of part

of the study.

Total number of reviews used, if any.

Description of ratings and user feedback categories, including trends and

response ranges.

Details of statical analysis techniques that were used in the study.

2.14 Threats to Validity

Internal validity: Our internal validity may be affected by missing relevant papers

that constitute “app store analysis”, or by using inclusion criteria that exclude rele-

vant literature. To help mitigate this risk, we include influential and related litera-

ture that does not meet the inclusion criteria in Appendix A, and take this literature

into account when making our conclusions.

External validity: Our external validity may be affected by the uniqueness of

current mobile app store data. Conclusions drawn about the research presented in

this chapter may not generalise well to other software systems, or to future app

stores. To mitigate this risk, we make our definitions for app store, technical and

non-technical attributes as general as possible, to be inclusive in order that conclu-

sions may extend beyond the current versions of mobile apps.

Construct validity: Our construct validity may be affected by our carrying out

the search queries and snowballing we describe. It is possible that papers were

missed through this procedure. To mitigate this risk, we were as systematic as pos-

sible; while not able to carry out a “systematic literature review” due to there not

yet being a well defined body of “app store analysis” literature, we repeated search

queries on as many literature repositories as possible, and performed snowballing

extensively.

Conclusion validity: Our conclusion validity may be affected by our under-

standing of the work presented, which incorporates a wide range of software engi-

neering disciplines, and by missing relevant work. We contacted the authors we cite

in order to ensure we has not missed relevant work, or mis-quoted their research.
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2.15 Conclusions

We have surveyed the published literature in App Store Analysis for software engi-

neering, and identified the key sub-fields of App Store Analysis to date: “API analy-

sis”, “feature analysis”, “release engineering”, “review analysis”, “security analysis”,

“store ecosystem comparison”, and “size and effort prediction”. Newer sub-fields

such as “release engineering” and “size and effort prediction” have shown strong

growth in 2015, suggesting that they might eventually overtake other smaller sub-

fields such as “store ecosystem”.

The scale of app samples used in studies has increased: in 2015 the number of

studies using between 10,000 and 100,000 apps was approximately three times that

of 2014. We have observed the emergence of new areas of App Store Analysis, and

the progression from conceptual ideas to practical empirical studies that apply and

refine them.

Many aspects of app data have been used as features in empirical app store

analysis, in the “feature analysis” subsection. One of the potential feature sources

is app descriptions, yet research to date has looked at n-gram mining methods, and

topic extraction has been used only for summarisation. We look at the potential

solution of feature extraction using topic modelling in Chapter 4.

Through our own app store mining, we have noted that app store data availabil-

ity is incomplete, and this is true for review data as well. This creates an inherent

sampling bias when mining app and review data for analysis. The effect of this bias

on results is explored in Chapter 5.

The literature has shown in increase in the field of release engineering, and

has looked at the content of releases relating to ad updates. However, no literature

to date has looked at the aspects of releases which might relate more directly to

success, such as features. This problem is explored in Chapter 7.

In keeping with the checklist proposed in Section 2.13, we give details of the

app stores used, as well as app and review quantity, and metrics used.



Chapter 3

Methodology

This chapter describes the methods, tools and data used throughout this thesis.

3.1 Statistical Analysis

Experiments are carried out with importance placed on achieving results that are

statistically significant. Due to the large number of apps available for analysis, ex-

perimental results are not skewed by use of small datasets.

For correlation analysis, Spearman’s Rank correlation is used. This results in a

rho value and a p-value. The rho value indicates the strength of the correlations,

where 1.0 shows that the compared datasets are entirely linearly dependent (as set a

increases, set b increases by a proportional amount), −1.0 shows that the compared

datasets are negatively linearly dependent (as set a increases, set b decreases by a

proportional amount), and 0.0 shows there is absolutely no correlation whatsoever.

The p-value indicates the chance of observing the rho value given that there is, in

fact, no correlation. Interesting correlations therefore have high absolute rho values

and low p-values; if either the rho value is close to zero, or the p-value is much

higher than zero, then there is little evidence for any correlation.

We compare distributions using a two-tailed unpaired non-parametric Wilcoxon

test [295], that tests against the Null-hypothesis that the result sets are sampled

from the same distribution. We also compare result sets using Vargha and Delaney’s

Â12 effect size comparison test [273], which results in a value between 0 and 1, that

tells us the likelihood that one measure will yield a greater value than the other. The

p value is the probability that one would observe the difference in median values,

given that there is, in fact, no difference in the two distributions from which the

releases are drawn. It is a conditional probability, usually used to reject the Null

hypothesis (that there is no difference).
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3.2 Data

Data from app stores is readily available through their online web pages. In recent

years there has been a transition from static to dynamic content, where data on web

pages is loaded on demand and usually as a result of the user clicking a button. This

development has made automated data mining more difficult, but is solved through

the use of frameworks that load an in-memory browser, such as spynner [230].

These frameworks are able to load a dynamic page and proceed to click on buttons

as a user would in order to load the data. There are still limitations on how much

content can be dynamically loaded without introducing overheads on the system,

i.e. available memory to store the in-memory web pages.

Highly successful stores such as Google Play and the Apple App Store make

compelling arguments to be focal to future studies, as do emerging stores such as

Windows Phone Store. To support the studies in this thesis, snapshots of apps were

mined from Blackberry World App Store, Google Play and Windows Phone Store.

Due to the time taken to mine Blackberry, and larger snapshots from Windows,

these stores were mined fortnightly, whilst Google and smaller Windows snapshots

were mined on a weekly basis. Table 3.1 shows details of the data mined up to

August 1, 2016.

Data mining was carried out using a combination of a dynamic browsing frame-

work to fetch dynamic content (spynner [230]), as was used in the collection script

by Harman et al. [109], and a more traditional web page fetching library to fetch

static content (urllib2 [229]). Data availability is limited, and so the amount of

data collected varies per store. The app collection process is described in Section 3.3.

Blackberry app reviews have also been mined as part of the study in Chapter 5 [183],

and more detail on this process can be found in Section 3.3.1.

3.3 Mining Process

We use a process for mining apps that is based on the 4-step approach used by

Harman et al. [109], shown in Figure 3.1:

Data Mining Phase 1 (Extraction of App List): We use the spynner [230]

framework to continually load more apps to the ‘most popular’ list, but available

memory becomes a limiting factor as the page size grows rapidly, when a large
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Table 3.1: App collection summary as of August 1, 2016

Store Subgroup Start Schedule Latest Snapshots Median Apps

Blackberry Most popular Feb’14 Fortnightly Oct’15 45 23,162

Google Most popular overall Feb’14 Weekly Aug’16 128 1,080

Google Most popular in

(sub)categories

Nov’14 Weekly Aug’16 83 17,079

Google All previously col-

lected

Feb’15 Weekly Aug’16 83 60,008

Windows Most popular overall Mar’14 Weekly Aug’16 123 1,974

Windows Most popular in

(sub)categories

Dec’14 Fortnightly Aug’16 43 22,783

number of apps are available. On a machine with 4GB of RAM, the script is able

to capture a list of between 20k and 24k apps before the framework runs of out

memory.

Due to its loading of dynamic content, spynner is susceptible to memory limi-

tations and delays, particularly if the page it is loading is large. This, combined with

the high app numbers present, limits our ability to mine all available apps from the

Blackberry store. It is unknown how to get around this problem to effectively mine

the entire store due to its size.

In all cases there are limitations on what can be mined, which is related to what

is contained on the pages, how pages are loaded, and available tools. Blackberry

allows all apps to be loaded through a dynamic ordered list, through which we load

up to 24,000 app links, and mine data from those pages. Google allows the top 540

paid and 540 free apps to be loaded, all of which are mined. Windows allows up to

the top 1000 paid and 1000 free apps to be loaded, all of which are mined.

Data Mining Phase 2 (Raw App and Review Data Download): We visit each

app in the list extracted by Phase 1, and download the HTML page which holds the

app metadata. For Blackberry and Windows pages, the spynner framework is used,

and for Google urllib [229] is used.

Data Mining Phase 3 (Parsing): We parse the raw data for a set of unique

searchable signatures, each of which specifies an attribute of interest. These pat-

terns enable me to capture app information such as price, rating, category, descrip-

tion, while other information such as the rank of downloads and the identifier were
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Figure 3.1: App and Review mining process showing the 4-phase approach de-

scribed in Section 3.3

established in Phase 1. For example, the unique searchable signature for Blackberry

rating is awwsProductDetailsContentItemRating.

Data Mining Phase 4 (Database): We store the parsed app data in an app

database. The approach is applicable to any app store, with sufficient changes to

the sections parsing the web pages. However in other app stores, the initial list

popularity information from Phase 1 would need to be adapted, as other stores do

not provide a global popularity ranking, but instead separate free and paid, or by

category.
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Table 3.2: App review data summary

Store Snapshot Median reviews Total apps Total reviews

Blackberry 140205 19 13,171 3,036,601

Blackberry 140306 2,425 489 1,329,938

Blackberry 140903 10 16,301 3,202,398

3.3.1 User Reviews

Review data can be loaded from Blackberry World App Store via dynamic lists. The

complete dataset is available, and it is for this reason that it is used in the study

in Chapter 5. An overview and discussion of the availability of reviews from other

stores can also be found in Chapter 5.

Review data is mined from Blackberry by repeatedly requesting more reviews

via spynner. Reviews are loaded in sets of up to 14, depending on their length,

until either the memory is exceeded and the framework crashes, or the soft limit is

reached in mining code. To prevent crashes, we set this limit to load 4,000 reviews

per app, which consumes between 2GB and 3GB of system memory. An overview of

mined review data from Blackberry World App Store is presented in Table 3.2.

3.3.2 Persistent List Collection

Since February 2015, we have aggregated a list of all unique links captured from

the Google Play store, for weekly collection of all valid apps. Figure 3.2 shows

the number of total unique links, and valid working links mined weekly between

February 2015 and August 2016. The valid links mined is always lower than the

total links, due to apps dropping out of the store. This may be due to a number of

factors:

1) Google removes apps when they are flagged as inappropriate or infringe on copy-

right.

2) Authors remove apps for a number of reasons not always clear. See for instance

the case of Flappy Bird, an app that was reported to have been removed from

the store by the author because it garnered too much media attention [23].
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Figure 3.2: Persistent Google data summary from February 2015 to August 2016

There are two noticeable dips in Figure 3.2, that were caused by changes in the

app store page schema. Since these changes were unexpected, it took a week to

adapt the mining scripts to mine complete snapshots in each case.

3.3.3 Time Series Datasets

The following datasets are used in the time series studies on app releases in Sec-

tions 7.3 and 7.4:

Strongly popular Google: Mined between July 2014 and July 2015, used by Sec-

tion 7.3 and the published papers [182, 184]. This dataset consists of 307 apps.

Strongly popular Windows: Mined between July 2014 and July 2015, used by

Section 7.3 and the published papers [182, 184]. This dataset consists of 726 apps.

Weakly popular Google: Mined between February 2015 and February 2016, used

by Sections 7.4 and 7.5 and the published paper [185]. This dataset consists of

38,858 apps.

3.4 Metrics

The metrics used throughout this thesis are defined in Table 3.3. Metrics are ex-

tracted from mined app store data on a per-app basis. The success metrics can be

used to monitor and compare how well apps are performing relative to other apps

in their store or category.

3.5 Text Preprocessing

Throughout this thesis, the mined qualitative data including app description text

and review body text, is treated to the pre-processing steps shown in Figure 3.3.

These steps are taken to reduce the impact of potentially unwanted (stop)words,
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Table 3.3: App metrics summary

Metric Description

(P)rice The amount a user pays for the app in local currency (in this case

GBP) in order to download it. This value does not take into ac-

count in-app-purchases and subscription fees, thus it is the ‘up

front’ price of the app.

(L)ength of de-

scription

The length in characters of the description, after first processing

the text as detailed in Section 3.5, and further removing whites-

pace in order to count text characters only.

Success Metric Description

(R)ating The average of user ratings made of the app since its release.

(D)ownload rank Indicates the app’s popularity. The specifics of the calculation of

download rank vary between App Stores and are not released to

the public, but one might reasonably assume the rank approx-

imates popularity, at least on an ordinal scale. The rank is in

descending order, that is it increases as the popularity of the app

decreases: from a developer’s perspective, the lower the down-

load rank the better.

(N)umber of rat-

ings

The total number of ratings that the app has received. A rating is

the numerical component of a review, where a user selects i.e. a

number from 1 to 5.

(NW) Number of

ratings per week

The number of ratings that the app has received since the previous

snapshot, which is taken a week earlier.
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Figure 3.3: Text pre-processing process discussed in Section 3.5

and combine multiple forms of the same word. However, there is a risk that this can

reduce the classification performance [174].

Text Preprocessing Phase 1 (Filtering): Text is filtered for punctuation, URLs, 1-

letter words and the list of words in the English language stopwords set in the

Python NLTK data package1. It is then cast to lower case.

Text Preprocessing Phase 2 (Lemmatisation): Each word is transformed into

its ‘lemma form’ using the Python NLTK WordNetLemmatizer. This process ho-

mogenises singular/plural, gerund endings and other non-germane grammatical de-

tails, yet words retain a readable form i.e. faster → fast. The process is similar to

stemming but produces more readable results, which helps with evaluation of the

resultant topics.

3.6 Topic Modelling

Topic modelling is used throughout the literature in app analysis for categorisa-

tion [124, 300], summarisation [50, 82], data extraction [83, 104], and API threat

detection [95]. It has also been used recently in in the MSR community for improve-

ments in error reporting [40, 148], among many other applications. This section

describes the topic modelling process used in the study, and defines terms used later

on.

Topic modelling algorithms such as latent Dirichlet allocation (LDA) [32] take

as input a set of unstructured textual documents, a fixed number of underlying top-

ics, K, an α Dirichlet prior and a β Dirichlet prior distribution (in this case assumed

symmetrical). We compute the topics using the Mallet framework [8], which per-

forms parallelised Gibbs sampling [209], and delivers as output the distribution of

word likelihoods for each topic, φ , and the distribution of topic likelihoods for each

document, θ .

1nltk.corpus.stopwords.words(’english’)
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Table 3.4: Topic modelling parameter choices

Parameter Setting

α 50 (default)

β 0.01 (default)

Gibbs sampling iterations 500

φ and θ are probabilistic multinomial distributions sampled from the Dirichlet

distribution, and each φk and θm sum to 1. In addition, LDA uses the bag of words

model, that ignores the ordering and placement of text within a document, and

treats each word as a separate random sample from a topic.

Topic Modelling Phase 1: The text from each document (app description or

user review) is processed as described in Section 3.5. This text is fed into a modi-

fied version of Latent Dirichlet Allocation (LDA) [32], which enhances performance

through parallelisation [209]. This is applied using Mallet [8], a Java tool for ap-

plying machine learning and language processing algorithms.

Topic Modelling Phase 2: The output of LDA includes a list of topic likelihoods

for each document (app description or user review). From this, we compute a list

for each topic, of the documents for which the topic-document likelihood exceeds a

threshold.

Mallet [8] is run on the processed text with the parameters specified in Ta-

ble 3.4. In the case of the Dirichlet priors, which affect the sparsity of the resulting

per-topic word distributions and per-document topic distributions, we opt to go with

the defaults as these generally work well in the context of natural language [217],

and optimising the topic results are out of the scope of this study. The number

of sampling iterations was selected as 500, since our results converged early and

showed very little change (measured by incremental reductions in perplexity) after

100 iterations.

As with the number of topics, we trialled multiple topic threshold values rang-

ing from 0.1 to 0.005, and selected 0.02. Using this setting, the resultant mean

number of topics said to have generated an app came to a manageable figure of

5.62, and a manual inspection of 10 sampled apps showed an appropriate level of

summarisation of the app description.



3.7. TF.IDF 82

3.7 TF.IDF

TF.IDF [179] finds ‘top terms’ in release text: each term in each document is given a

score of TF (Term Frequency) multiplied by the IDF (Inverse Document Frequency).

The IDF is equal to the log of the size of the corpus divided by the number of

documents in which the word occurs.



Chapter 4

App Feature Extraction using

Topic Models

App Stores provide a wealth of technical and non-technical information on app

pages. This non-technical information may be used in conjunction with technical

data to provide insights on software, that were previously not possible. In par-

ticular, it is possible to extract claimed software features, a method that has been

previously studied using an n-gram feature extraction approach [109]. This study

explores the option of using topic modelling to extract topics, which can then be

treated in a way analogous to features, that offers greater flexibility due to the use

of configurable settings such as number of topics and topic probability thresholds.

We perform empirical analysis on these topics using app ratings, download ranks

and prices, and find that the approach produces very similar results to the feature

based approach on the same dataset.

4.1 Introduction

Non-technical app store data, in the form of app descriptions, has been combined

with technical information, in order to analyse empirical app store data. This

was done by first extracting claimed software features using a greedy n-gram algo-

rithm [79]. The greedy n-gram algorithm works by singling out the list of claimed

features (as sentences) that are present in a Blackberry app description, and extract-

ing bi- and tri-grams from them. These n-grams (“featurelets”) are then clustered

via a greedy algorithm, and the resultant clusters (“features”) with more than one

featurelet are used.

An alternative approach is to use topic modelling [32], an unrelated, but widely

studied language processing technique. Using this technique we can extract topics,
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and apply the same experiments to them as we would to features. Topic modelling

is described in more detail in Section 3.6.

We replicate the study by Harman et al. [109] using a topic modelling approach

in place of their n-gram feature extraction method, showing that topics are analo-

gous to features. Empirical analysis using these alternative methods yields the same

results. Furthermore, we apply a sliding window approach based on the number of

reviews an app has received, in order to identify and filter out the bias caused by

zero-rated apps in the dataset, and extract more ‘signal’.

4.2 Findings

The findings of this study are as follows:

i) Topics are analogous to features: we show that topics are analogous to features,

and can be used to analyse claimed features mined from app descriptions, and other

free-text content.

ii) Zero rated apps should be treated separately from other apps: we identify the

bias that zero-rated apps add to observed trends, by performing correlation analysis

after filtering for the number of reviews an app has, with a sliding window.

4.3 Definitions

Feature: a set of terms that describe something about the app. Features are ex-

tracted from a developer’s list in their app’s description, typically functionality or a

property.

Topic: a probabilistic distribution over a finite set of terms. Terms that co-occur

in multiple documents in a corpus (and are therefore usually related) have high

probabilities together in the same topic, so by applying a threshold probability value

we can obtain a set of related terms, or a theme.

4.4 Data

The same data is used for this experiment as for the study by Harman et al. [109].

This dataset consists of 32,108 paid apps and 9,999 free apps, mined in September

2011.
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4.5 Research Questions

This section explains the research questions explored in order to determine the via-

bility of a topic-modelling based feature extraction approach.

RQ1: How much do correlations from the extracted topics differ from

those of features?

We explore correlations between Price, Rating and Download rank (an inverse mea-

sure of popularity), and compare the results with those for the apps and features

published previously [109]. We apply the Wilcoxon Rank-Sum test [295] to in-

vestigate the similarity of results between each of features, apps and topic results.

Specifically, we test against the Null hypothesis that the mean rank of a pair of sets

(of P, R or D between features and topics) is the same, i.e. there is no difference

between the two methods. Additionally, we qualitatively inspect a sample of 5 of

the extracted topics to verify that they have meaning.

RQ2: What is the chance of producing a similar topic correlation in each

category at random?

In the same way as with the the feature study [109], the metric values for a topic are

computed as the mean over the apps that share the topic. This will show whether

‘pseudo topics’, random sets of apps, can replicate the correlations found. To answer

this question we construct pseudo topics by randomly sampling sets of topics for

each app.

4.6 Application of LDA

LDA, and the process used to train the model, is described in detail in Section 3.6.

We perform the following steps to obtain results:

1) LDA is trained on the set of app descriptions as described in Section 3.6; a mixture

of topics generates each app description.

2) Metrics for topic price, rating and downloads rank are computed from the mean

of the set of apps generated by a topic.

The settings specified in Table 3.4 were used. After trialling multiple values of

K (number of topics) ranging from 10 to 3,000, we select 100 as a balance between

representative topics and granularity based on the size of the dataset: 10 topics were
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Table 4.1: RQ1: Significance test results
P,R: Price / Rating correlation
P,D: Price / Download rank correlation
R,D: Rating / Download rank correlation

Wilcoxon Rank-Sum p-values

P,R P,D R,D

Features / Topics 0.2796 0.3351 0.2304

Apps / Topics 0.2931 0.2201 0.1802

too general, whilst over 500 topics resulted in very specific topics, and an increasing

quantity of low-quality topics [194].

4.7 Results

In the following results, P,R denotes Price/Rating correlation, P,D denotes

Price/Downloads correlation and R,D denotes Rating/Downloads correlation.

RQ1: How much do correlations from the extracted topics differ from

those of features?

The topic-correlation results can be found in Table 4.2. Topic-correlation results on

32,108 non-free apps from the Blackberry World App Store showed the same correla-

tions as the feature-correlation method. These result show very similar correlations

to those in the original study, that performed feature-based correlation analysis. This

finding confirms the rather surprising finding that there is no correlation between

either price and rating, or price and download rank of apps. As expected, there is a

strong correlation between rating and download rank (popularity).

We qualitatively inspect 5 random topics in order to verify they have meaning.

The top 5 terms from each of these topics is given below:

post package dhl ups tracking

theme icon scroll dock included

email send one use application

natural disaster earthquake tsunami always

image photo effect color filter
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Table 4.2: RQ1: Topic-correlation results table showing Spearman’s rank correlation coefficients for results with p < 0.05
P,R: Price / Rating correlation
P,D: Price / Download rank correlation
R,D: Rating / Download rank correlation

Name of Category
Number of

Non-free Apps

Number

of topics

Topic Correlation Feature Correlation App Correlation

P,R P,D R,D P,R P,D R,D P,R P,D R,D

Reference & eBooks 11,584 100 0.83 0.84 0.89 0.06 -0.29 0.77 0.09 -0.13 0.32
Themes 10,936 100 0.41 0.37 0.97 0.15 0.02 0.90 0.16 -0.15 0.81
Games 2,604 100 -0.46 0.14 0.60 0.25 0.39 0.83 -0.10 0.01 0.76
Utilities 1,362 100 -0.13 -0.10 0.93 -0.06 -0.07 0.92 -0.10 0.03 0.77
Entertainment 908 100 -0.18 -0.24 0.83 -0.31 0.06 0.47 -0.17 0.21 0.81
Travel 764 100 0.36 0.26 0.90 0.38 0.29 0.95 0.04 0.02 0.75
Health & Wellness 626 100 -0.63 -0.68 0.92 -0.12 -0.11 0.88 -0.28 0.26 0.85
Education 576 100 -0.05 -0.08 0.76 -0.28 -0.45 0.82 -0.10 0.05 0.83
Productivity 503 100 -0.25 -0.20 0.87 0.03 0.08 0.88 0.01 -0.08 0.73
Music & Audio 499 100 0.52 0.60 0.92 -0.31 -0.28 0.76 0.42 -0.33 0.76
Photo & Video 393 100 0.31 0.36 0.95 -0.33 -0.25 0.91 0.02 -0.06 0.82
Business 350 100 0.11 0.07 0.88 0.20 0.17 0.76 0.02 -0.03 0.83
Maps & Navigation 245 100 0.02 0.07 0.81 0.20 0.06 0.87 -0.06 -0.01 0.78
Sports & Recreation 239 100 0.13 0.17 0.81 0.01 0.37 0.76 -0.10 0.02 0.77
Finance 193 100 0.37 0.37 0.86 0.19 0.31 0.40 0.33 -0.43 0.81
IM & Social Networking 150 99 0.02 0.15 0.77 -0.52 -0.42 0.61 -0.21 -0.02 0.63
News 73 99 0.08 0.07 0.74 -0.25 -0.32 0.82 0.07 -0.16 0.79
Weather 58 99 0.18 0.19 0.68 -0.38 -0.26 0.38 0.07 -0.12 0.54
Shopping 45 88 -0.04 -0.01 0.76 0.60 -0.36 0.26 0.26 -0.21 0.67
All Categories 32,108 100 -0.22 -0.13 0.97 0.07 -0.09 0.89 0.10 -0.12 0.79
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Price/Downloads

Figure 4.1: RQ2: Comparison of Spearman’s rank correlation coefficients including box-and-whisker plots of pseudo topics
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Rating/Downloads

Figure 4.1: RQ2: Comparison of Spearman’s rank correlation coefficients including box-and-whisker plots of pseudo topics
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By the qualitative judgement of the author of this thesis, these topics have meaning,

and appear similar to the n-gram features stated in the earlier study [79].

Results of the Wilcoxon test are shown in Table 4.1. Each of the results compar-

ing the populations of feature-R,D to topic-R,D show a high p-value, indicating that

the Null-hypothesis that mean ranks are the same cannot be rejected.

RQ2: What is the chance of producing a similar topic correlation in each

category at random?

We sampled 6 random ‘pseudo topics’ for each document out of 100 potential pseudo

topics, as 5.62 is the mean number of ‘top topics’ above the threshold value in the

results from RQ1. Results for P,R, P,D and R,D correlations compared between top-

ics, features, apps and pseudo topics are shown in Figure 4.1. The box-and-whisker

plots show the Spearman’s rank correlation coefficients of pseudo topic distribu-

tions for each category, and app, topic and feature results are plotted as triangles,

diamonds and circles, respectively. Plus symbols in the plot show outliers from the

pseudo topic distributions.

These results show that pseudo topics often produce similar correlations to app

level correlation analysis between price, rating and download rank. However, topic-

and feature-based correlation analysis identifies stronger correlation results in al-

most all categories.

The topic-correlation method is potentially faster than the n-gram approach

as the topic training algorithm is heavily optimised, due to its widespread use

and improvements such as parallelisation. However, the artifacts produced by this

method cannot be used in the same way as those produced by the feature-correlation

method: the topics generated are influenced by a random element and are subject to

change during the generative sampling process, so if more data is added, the topics

will change; conversely, the identified features are trigrams which will not change

with new data, and as a result their presence or lack thereof can be tracked and

studied.

4.8 The Problem of Zero Rated Apps

The results in Table 4.2 show a decline in the strength of the ranked Rating/rank

of Downloads correlation, as observed in the original study [109]. We explored the
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Figure 4.2: Sliding window correlation graphs for free apps
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Figure 4.3: Sliding window correlation graphs for paid apps

issue and found that a large number of zero rated apps are present in the dataset, as

shown by Figures 4.2b and 4.3b. We investigate further, using a sliding window me-

chanic where we increment the minimum number of ratings as a filter, and compute

the results each time. Results for individual categories can be found in Appendix B.

The results in Figures 4.2 and 4.3 show that there is a significant correlation

between rating and download rank when all reviews are considered. However, as we

begin to be more selective of apps, choosing those that have a minimum number of 1

review, the correlation drops out and is no longer significant (the ‘dip’ in Figures 4.2

and 4.3). Interestingly, as we raise the minimum number of reviews further, the

correlation increases and almost reaches the peak value again (with minimumN = 0).

This ‘flattened tick shape’ can be seen on almost all rating/download rank

correlation graphs. The exceptions are the categories ‘Reference and eBooks’ and

‘Themes’, which do not exhibit the same relationship due to the large number of

apps containing content and not functionality, i.e. a book or a graphical theme,

but no application. This pattern is consistent among free and paid app correlation

graphs between rating and download rank. The same cannot be said for paid app

graphs for price/rating and price/download rank correlations.

The causes for the ‘flattened tick shape’ are the large numbers of specific cases.

For minimumN = 0, a large number of apps are considered that have no rating, lead-
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ing to a strong correlation as apps with no rating have low download rank. In

the case of minimumN = 1, there is more evidence on which to perform correlation

analysis, however in many categories the large number of apps with 1 rating can

negatively affect the correlation coefficient. For minimumN > 1, there is sufficient

evidence to perform correlation analysis with confidence that the results are repre-

sentative of ’normal’ apps: ones that have been used and reviewed at least a handful

of times.

The strong R,D correlation results show that apps which are downloaded more

are generally considered to be better, in most cases. Conversely, the insignificant

correlations between price/rating, and between price/download rank, tell us that

in most cases with non-free apps, price does not bear a relation to the likelihood of

users downloading apps, or to their satisfaction with apps after using them.

4.9 Threats to Validity

Internal validity: Our internal validity may be affected by the use of the Blackberry

dataset. However, the generalised process of feature extraction using topic mod-

elling extends to any free text app descriptions, and it is the aim that the method is

more generic than n-gram feature extraction.

External validity: Our external validity may be affected by the use of the most

popular apps in the store at the time of mining, and the use of Blackberry data. Find-

ings, therefore, may not extend to other stores or samples. However, the methods

we use can be applied to other samples as future work.

Construct validity: Our construct validity may be affected by the replication

of the same experiments as n-gram features were used for. Our finding that both

methods achieve similar results does not necessarily mean that the methods achieve

similar features. We mitigate this threat by inspecting several topics and features to

verify that similar features are obtained.

Conclusion validity: Our conclusion validity may be affected by our qualitative

human assessment of the features and topics extracted. However, our methodology

can be applied more widely to assess extract features or topics from any dataset.
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4.10 Conclusions

We have shown that topic modelling can be used successfully as an alternative to

the feature n-gram detection approach used in the paper by Harman et al. [109].

This study has shed extra light on the observed trends within the Blackberry data,

and led to a more in depth study of the relationships in the data present once it is

filtered according to number of reviews. The results gained from the topic modelling

approach were not different in nature to the feature-based approach.

Due to the configurable nature of topic models, they could be used where tuning

for better representational performance is desired. The configurable nature could

potentially lead to difficulties in interpretation, however: where topics are too gen-

eral, it may be difficult to extract meaning from them. Through careful tuning,

however, they can be as fine grained as n-gram features. Features remain a better

option to use for applications such as tracking migration: while topics will change

over time, as corpus of app descriptions changes, features will not. But topics can

be better applied to very large corpora, enabling the user to configure the number

of topics to a manageable amount. The topic modelling approach offers the ability

to link developer descriptions with other textual data, such as user reviews; this

technique is later used in Chapter 5.

Future work might use the topic modelling approach as either an alternative to

the feature-based approach, or as a additional method for validation. Other topic

models or inference methods for training the model might also be considered, such

as the weighted topic model [194] or externally weighted model [189].



Chapter 5

The App Sampling Problem for

App Store Mining

This work was published in MSR 2015 Proceedings [183]. The

first author’s contribution to this paper was to formulate the idea,

implement and execute the experimentation and collect the results

and analyse them; other authors of the paper contributed to re-

search question formulation, result analysis and narrative write up.

Many papers on App Store Mining are susceptible to the App Sampling Problem,

which exists when only a subset of apps are studied, resulting in potential sam-

pling bias. We introduce the App Sampling Problem, and study its effects on sets

of user review data. We investigate the effects of sampling bias, and techniques for

its amelioration in App Store Mining and Analysis, where sampling bias is often un-

avoidable. We mine 106,891 requests from 2,729,103 user reviews and investigate

the properties of apps and reviews from 3 different partitions: the sets with fully

complete review data, partially complete review data, and no review data at all.

We find that app metrics such as price, rating, and download rank are significantly

different between the three completeness levels. We show that correlation analysis

can find trends in the data that prevail across the partitions, offering one possible

approach to App Store Analysis in the presence of sampling bias.

5.1 Introduction

Data availability from app stores is prone to change: between January and Septem-

ber 2014 we observed two changes to ranked app availability from the Windows

store: a major change, increasing the difficulty of mining information by refusing

automated HTTP requests; and a minor change, extending the number of apps avail-

able. Google and Apple stores enabled mining of a large number of ranked apps
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during 2012 [82, 119], but far fewer are currently available. At the time of mining

in February 2014, we observed that the availability of app data was incomplete in

Google, Windows and Apple, but not in Blackberry.

This study is concerned with reviews: user-submitted app evaluations that com-

bine an ordinal rating and text body. Table 5.1 shows the availability of reviews at

the time of writing, as well as a summarisation of the quantity of data. The avail-

ability of reviews presents a challenge to researchers working on App Store Review

Mining and Analysis, because it affects generalisability. If it is only possible to col-

lect sets of the most recent data, i.e. from Google Play and Windows Phone Store,

then it is only possible to answer questions concerning this most recent data. For

instance, the research question “What is the type of feedback most talked about in

app reviews?” could not be answered using a data subset, but could be reasonably

answered by collecting a random sample from all published reviews.

Work in App Store Review Mining and Analysis has analysed app review content

and sentiment [104, 119, 126, 138, 214], extracted requirements [83, 124] and

devices used [139], and produced summarisation tools [50, 82]. It is apparent,

however, that the literature on App Store Review Mining and Analysis, with the

exception of three related studies by Hoon et al. [119, 120, 274] and one by Fu

et al. [82], uses only a subset of all reviews submitted (at the times of collection).

We therefore question whether the data provided is sufficient to draw reasonable

conclusions.

As a way of exploring the issue empirically, we assess the level of representation

an app review subset can provide. For this, a full set of user reviews is needed, and

so we study the Blackberry World App Store, where the full published history is

available.

5.2 Contributions

The contributions of this study are as follows:

i) We survey the literature in the field of App Store Review Mining and Analysis,

and identify the prevalent problem of partial datasets.

ii) We present empirical results that highlight the pitfalls of partial datasets and

consequent sampling bias.

iii) We mine and analyse a dataset of apps and user requests, using manually vali-
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Table 5.1: Review availability in February 2014[183]

Store Apps
Most Review Method

reviews availability of access

Apple 1,200,000 600,000 Last release RSS feed

Blackberry 130,000 1,200,000 Full Web

Google 1,300,000 22,000,000 2,400 Web

Windows 300,000 44,000 36 Web

C

F

Z

Pa

C set: all available apps at the time of mining

Pa set:

apps with

a proper

subset

of all

submitted

reviews

F set: apps with all

submitted reviews

Z set:

apps

with no

reviews

Figure 5.1: Venn diagram showing the datasets we define[183]

dated automatic extraction.

iv) We illustrate how the trends identified by correlation analysis are unaffected by

this sampling bias, in our dataset.

5.3 Definitions

We define the following sets, shown in Figure 5.1, in order to describe different

levels of data completeness. These sets refer to the data collected in a sample, at the

time the sample is taken, and enable us to refer to their completeness.

Set unit: an app and it’s collected reviews, in the dataset in question.

(C) Complete: The set of apps and all their available reviews at the time of mining.

This set does not need to contain all of the apps in the store, but for all the apps it

contains, it must also contain all of their available reviews.

(Pa) Partial: The set of apps and their reviews for which the dataset contains only

a proper subset of the reviews submitted to the App Store at the time of mining.
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(F) Full: The set of apps and their reviews for which the dataset contains all of the

reviews submitted to the app store at the time of mining.

(Z) Zero: The set of apps that have no reviews.

(A) All: All mined data in a snapshot: (A = Pa∪F ∪Z).

If the mined dataset contains all available reviews for all mined apps then A =

F = C. If the mined dataset contains half of the reviews for all mined apps then

A = Pa ⊂C and F = /0. If the mined dataset contains all available reviews for some

mined apps and only a subset of available reviews for other mined apps (such as the

dataset used in this study) then A = Pa∪F ∪Z and A⊂C.

5.4 The App Sampling Problem

There has been a surge of work recently in the field of App Store Mining and Anal-

ysis, much of which is focussed on app reviews. 9 out of 13 past studies identified

on App Store Review Mining and Analysis use Pa sets of data, drawn from the most

recent reviews of the most popular apps at the time of sampling. A summary of the

work to date on App Review Mining and Analysis is presented in Table 5.2, and a

further discussion of related App Store research is presented in Section 5.11.

Following from the data accessibility summarised in Table 5.1 in the four App

Stores, sets are available under the following conditions at the time of writing:

Apple App Store: F set available for apps with one release, or where only the most

recent release has been reviewed; Pa set available for apps with multiple reviewed

releases.

Blackberry World App Store: F set available for all apps.

Google Play: Data available for a maximum of 480 reviews under each star rating

via web page (2,400 total) per app; hence F set available for apps with fewer than

481 reviews under each star rating, Pa set available otherwise.

Windows Phone Store: Data available for a maximum of 36 reviews per app; hence

F set available for apps with less than 37 reviews, Pa set available otherwise.

Historically, greater access appears to have been available. Further data access

is also available through 3rd party data collections, subject to their individual pricing

plans, terms and conditions; such collections are out of the scope of this study as

they are not freely available, and have not been used in the literature.
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Table 5.2: Summary of related work datasets [183]
a: Apple App Store
b: Blackberry
g: Google Play or other Android stores
Pa: Partially complete review set
F: Fully complete review set
A: combined set of Pa, F and Zero-rated apps

Authors [Ref], Year Store Apps Reviews Type

Hoon et al. [120] 2012 A 17,330 8,701,198 F

Vasa et al. [274] 2012 A 17,330 8,701,198 F

Hoon et al. [119] 2013 A 17,330 8,701,198 F

Iacob et al. [124] 2013 G 161 3,279 Pa

Galvis Carreño et al. [83] 2013 G 3 327 Pa

Khalid [138] 2013 A 20 6,390 Pa

Fu et al. [82] 2013 G 171,493 13,286,706 F

Pagano et al. [214] 2013 A 1,100 1,100,000 Pa

Iacob et al. [126] 2013 G 161 3,279 Pa

Khalid [140] 2014 A 20 6,390 Pa

Chen et al. [50] 2014 G 4 241,656 Pa

Guzman et al. [104] 2014 A,G 7 32,210 Pa

Khalid et al. [139] 2014 G 99 144,689 Pa

This study B 15,095 2,729,103 A
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Availability of app store data is likely to become a pressing problem for research

if we cannot find ways to mitigate the effects of “enforced” sampling bias: sampling

in which sample size and content are put outside of experimental control. This

may be for reasons unavoidable (app store data availability), pragmatic (memory or

framework limitations on loading large dynamic web pages), or otherwise. We call

this the App Sampling Problem.

App Sampling Problem: The problem of enforced sampling bias, as a result

of incomplete dataset availability, or other mining limitations.

In this study we investigate the effects of the app sampling problem on an app

and review dataset mined from the Blackberry app store.

5.5 Data

The data mining process described in Section 3.3 was used to mine app and review

data. spynner was used to continually load more reviews from Blackberry pages

for review mining. This has the same memory limitation as (Section 3.3) Phase 1,

enabling us to capture between 4k and 4.5k reviews per app, before the framework

runs out of memory. We therefore limit the number of captured reviews to 4k per

app, and it is this limitation that causes a Pa dataset; the set of apps for which we

have mined only a subset of the available reviews.

Spam is common in app reviews, and can occur for reasons of competition, i.e.

to boost one’s own app, or to negate a competitor’s app. Some app stores have

methods in place to help prevent spam, but these methods are not publicly avail-

able, and they can never be 100% effective. Jindal and Liu [130] found that online

reviews that are identical to another review are almost certainly spam, and are also

the largest portion of spam by type. We therefore filter the reviews for duplicates,

including only one copy of each unique review. A unique review is defined by the

rating, review body and author name. We do not use more sophisticated spam de-

tection and filtering methods in this study because there is no prescribed standard,

and spam detection is not the aim of this study.

Errors in app pages such as negative ratings, negative number of ratings and

empty app IDs, led to the exclusion of a number of apps, since we judged that the
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Table 5.3: Blackberry dataset used[183]

Set Apps Reviews

Pa 5,422 1,034,151

F 6,919 1,694,952

Z 2,754 0

A 15,095 2,729,103

anomalies would affect the results of our experiments. The final number of apps

used in the study is therefore 15,0951.

This full set of apps is the A set. As detailed in Table 5.3, it is split into Pa, F and

Z subsets according to the definitions in Section 5.3. In the following experiments,

Pa, F and Z contain distinct sets of apps: Pa 6= F 6= Z.

5.6 Research Questions

In this section we discuss the research questions that are asked in order to explore

the app sampling problem.

RQ1: How are trends in apps affected by varying dataset completeness?

We explore how app-level trends differ, based on the completeness of their review

sets. Since review sets are limited to 4,000 reviews as discussed in Section 3.3, their

completeness (and therefore which set they appear in out of Pa, F and Z) in this case

reflects how many reviews they have received at the time of mining.

RQ1.1: Do the subsets Pa, F and Z differ? The mined dataset is separated

into the subsets of Pa, F and Z, as illustrated in Figure 5.1.

We compare the datasets using the metrics (P)rice, (R)ating, (D)ownload rank,

(L)ength of description and (N)umber of ratings with a 2-tailed, unpaired Wilcoxon

test [295]. The Wilcoxon test is appropriate because the metrics we are investi-

gating are ordinal data, and therefore a non-parametric statistical test is needed,

that makes few assumptions about the underlying data distribution. We make no

assumption about which dataset median will be higher and so the test is 2-tailed;

the test is unpaired because the datasets contain entirely different sets of apps. We

1Data from this study is available at http://www0.cs.ucl.ac.uk/staff/W.Martin/

projects/app_sampling_problem/.
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test against the Null hypothesis that the datasets in question are sampled from dis-

tributions of the same median, and a p-value of less than 0.05 indicates that there is

sufficient evidence to reject this Null hypothesis with a maximum of 5% chance of a

Type 1 error. Because multiple tests are performed, we apply Benjamini-Hochberg

correction [24] to ensure that we retain only a 5% chance of a Type 1 error.

We investigate the effect size difference of the datasets using the Vargha-

Delaney Â12 metric [273]. Like the Wilcoxon test, the Vargha-Delaney Â12 test makes

few assumptions, and is suited to ordinal data such as this. It is also intuitive: for

a given app metric m (from P, R, D, L or N) and the app sets (A, B), Â12(A, B) is an

estimate of the probability that the value of a randomly chosen value of m from A

will be higher than that of a randomly chosen value of m from B.

RQ1.2: Are there trends within subsets Pa, F and Z? We compare the trends

within datasets Pa, F, Z and A using Spearman’s rank correlation [256]. This meth-

ods will be run on each pair of the metrics P, R, D, L and N to check for correlations

in subsets of the data, which we can compare with the overall trends from the A set.

RQ2: What proportion of reviews in each dataset contains a request?

Once a set of app reviews has been obtained, it can be useful to extract user requests

from them. For example, this is useful for development prioritisation, bug finding,

inspiration and otherwise requirements engineering [50, 82, 83, 104, 124, 126,

138]. We explore the subset of reviews that contain a user request, as this is the

most studied in the literature.

RQ2.1: What proportion of user reviews does the Iacob & Harrison process

identify? We use the process proposed by Iacob and Harrison [124] to identify

requests in the set of mined reviews. Reviews are treated to the text preprocessing

algorithm detailed in Section 3.5. The process detects requests on a per-sentence

basis by matching key words in a set of linguistic rules; in this case the sentences are

the entire review bodies as we remove punctuation as part of the text pre-processing

(detailed in Section 3.5). This does not affect the matching except to reduce the

number of possible matches per review to 1 (but we care about reviews that contain

a request in this case, not how many requests they contain).

RQ2.2: What is the Precision and Recall of the extraction process? We

assess the Precision and Recall of the request extraction algorithm, and compare



5.6. Research Questions 102

its performance against a random guessing approach. We sample 1,000 random

reviews from each of 4 sets: Pa (all reviews; requests), F (all reviews; requests). The

sample of 1,000 is representative at the 99% confidence level with a 4% confidence

interval [62]. Under the criterion that “the user asks for (‘requests’) some action to

be taken”, each sampled review is manually assessed as either a valid request or an

invalid request.

RQ2.3: How do valid and invalid requests differ? We compare the set of

correctly identified requests, the true positives (TP) with the set of falsely identified

requests, the false positives (FP), in order to establish whether manual verification

is necessary before using the extracted request data.

Using topic modelling (discussed in Section 3.6), allows for intersections of app

descriptions and user requests that share content to be computed through use of a

threshold probability value. A topic’s ‘strong contribution’ to an app description or

user request indicates that the topic falls above the topic likelihood threshold for that

particular document. Experiments in this section use a topic likelihood threshold of

t = 0.05, as is the standard in the literature.

Trained topics from each set, as well as derived topic metrics, are compared to

establish how different the TP and FP sets are. The metrics P, R, D, L and N are used

as before, except that at the topic level they are computed as the median of all apps

to which a topic strongly contributes. Hence, we compare the metrics for each topic

in the 2 sets, using the Wilcoxon test as well as the Â12 effect size comparison.

RQ3: How are trends in requests differ in the sets Pa, F and A?

RQ1 seeks to establish an experimental approach to handling partial data, which

we now apply to an instance, specifically request analysis. We compare the trends

in each group of requests using correlation analysis. For comparison, we define 3

metrics at the topic level, using the topics from RQ2.3:

Ta: App prevalence: the number of app descriptions to which the topic strongly

contributes.

Tr: Request prevalence: the number of requests to which the topic strongly con-

tributes.

Td: Download rank: the median download rank of the apps to which the topic

strongly contributes.
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Table 5.4: Manual topic classification results[183]

Class Description Count

Valid Defines one or more functional or non-functional properties of an

app.

80

Review Words highly coupled to review text such as

[error,load,sometimes].

8

App Words highly coupled to app description text such as

[please,review,feedback].

6

Spam Highlights spam in app descriptions and reviews used for adver-

tising.

1

Other Does not fit into another category but is not valid. 5

Total All topics 100

For RQ3 we lower the topic likelihood threshold to t = 0.02 (0.05 was used in

RQ2.3) to ensure a large enough set of topics for the statistical set comparison tests

Wilcoxon and Vargha-Delaney’s Â12 measure. Using the set of topics from RQ2.3,

we compare requests between Pa, F and A datasets using both the topics themselves

and the three topic metrics. Because RQ3 concerns request properties and trends,

we exclude the Z set for this question, since it cannot contain requests.

RQ3.1: Do the request sets from Pa, F and A differ? To answer this question

we run the same 2-tailed, unpaired Wilcoxon test and Â12 metric used in RQ1.1.

We apply the statistical tests to the Ta, Tr and Td distributions between Pa, F and

A datasets. This shows the difference between the dataset distributions, and indi-

cates how the effect size differs. We apply Benjamini-Hochberg [24] correction for

multiple tests, to ensure that we retain only a 5% chance of a Type 1 error.

RQ3.2: Are there trends within the request sets of Pa, F and A? We com-

pare the trends of requests within each set by applying correlation methods to each

pair of the topic metrics app prevalence, request prevalence and download rank,

defined above. We run Spearman’s correlation as used in RQ1.2, on the topic met-

rics Ta, Tr and Td. This enables us to identify how requests are affected by varying

dataset completeness, and to establish whether we can learn anything from incom-

plete datasets.
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Table 5.5: RQ1.1: Vargha and Delaney’s Â12 effect size comparison results. Large

effect sizes (≥ 0.8) are marked in bold[183]

Datasets P R D L N

Pa - F 0.533 0.529 0.564 0.554 0.630

Pa - Z 0.514 0.965 0.834 0.718 1.000

F - Z 0.547 0.966 0.811 0.763 1.000

5.7 Topic Modelling

This study uses the topic modelling process discussed in detail in Section 3.6.

Topic modelling with LDA leads to topics that reflect the source corpus, and

so inevitably if spam exists in any of the user requests or app descriptions, it will

also appear in some topics. For this reason we manually verified the 100 trained

topics and classified them as valid or invalid, with the criteria that “the top 5

terms should refer to some functional or non-functional app property or proper-

ties”. Classification results are presented in Table 5.4. An example valid topic

includes the top terms: {gps, speed, location, track, distance...},

and an example invalid topic includes the topic includes the top: terms {great,

much, awesome, worth, well...}. Henceforth only the 80 valid topics are

used for comparison.

Topic settings are discussed in Section 3.6. We experimented with settings of

K = 100, 200, 500 and 1000 topics, and found that the settings of K = 500 and K =

1000 led to over-specialised topics which reflected the descriptions of individual

apps. The settings of K = 100 and K = 200 enabled more generalisation throughout

the topics, and we selected K = 100 as we judged that it was the lowest setting

without any app-specific topics.

5.8 Results

This section answers the research questions defined in Section 5.6.

RQ1: How are trends in apps affected by varying dataset completeness?

RQ1.1: Do the subsets Pa, F and Z differ? The Wilcoxon test results for metrics P,

R, D, N and N between the sets Pa, F and Z were all < 0.001, and remained below

0.05 after we applied Benjamini-Hochberg correction for multiple tests. This shows
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Table 5.6: RQ1.2: Spearman’s rank correlation results. Non significant results

(p > 0.05) are omitted; results in bold have strong correlation coefficients[183]
P: Price
R: Rating
D: Download rank
N: Number of ratings
L: Length of description

Set PR PD RD NP NR ND LP LR LD LN

Pa 0.16 0.12 -0.06 0.11 0.04 -0.64 0.23 0.09 -0.21 0.39

F 0.25 0.39 -0.03 0.12 0.06 -0.35 0.25 0.15 -0.06 0.32

Z -0.06 - -0.23 - - - 0.26 -0.20 - -

A 0.20 0.22 -0.31 0.14 0.45 -0.57 0.27 0.27 -0.22 0.46

that there is a significant difference between sets Pa, F and Z. The Vargha-Delaney’s

Â12 effect size comparison results in Table 5.5 show that the Pa and F sets have a

small effect size difference: hence, Pa and F are unlikely to yield different results for

the metrics tested.

This result is a contrast to the comparisons between sets Pa and Z, and F and

Z. The Z set contains only apps that have not been reviewed and therefore have no

rating, and hence have a large effect size difference with the N (number of ratings)

metric. However, there is also a large effect size difference between the rating,

download rank and description length between Z and the other sets. This shows

that the Z set is very different from the other sets and indicates that it should be

treated separately when analysing app store data.

All sets have a small effect size difference when comparing P (price), which

might be expected because 90% of the apps in the set A are free.

RQ1.2: Are there trends within subsets Pa, F and Z? The results in Table 5.6

serve to further distinguish the need to separate the Z set when performing app

studies, as it possesses almost none of the trends of the other sets. Indeed, almost all

correlation results from the Z set were not statistically significant (marked with ‘-’ in

the table). Conversely, most results from the other sets were statistically significant,

and the following (marked in bold), were strong:

Inverse RD correlation This indicates that as the (R)ating of apps increases, the

(D)ownload rank decreases (a desirable effect since 0 is the top download rank
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with the most exposure). The RD correlation results were not particularly strong,

and were present in the A and Z sets only. The correlation is caused by large numbers

of non-rated apps in the Z dataset: zero rated apps have high download ranks and

zero ratings, which skews Spearman’s rank test.

Positive NR correlation This indicates that as the (N)umber of ratings increases, the

(R)ating of apps increases. The trend was present in the A set only, and non-existent

in the Pa, F or Z sets. Similar to the RD correlation result, this result is caused by

the combination of non-rated and rated apps.

Inverse ND correlation This indicates that as the (N)umber of ratings increases, the

(D)ownload rank decreases, which means that the app is more popular.

Positive LN correlation This indicates that as the (L)ength of descriptions increases,

the (N)umber of ratings for the app increases. This result was consistent across both

Pa and F datasets, and had an even stronger coefficient in the A set.

Figure 5.2 shows density scatter plots for the A set, for between RD, NR, ND

and LN. Logarithmic scale is used where appropriate. Darker cells indicate greater

app density than lighter cells. The plots indicate that the RD and NR correlations

exist only because of a large number of non-rated, and therefore zero-rated, apps

from the Z dataset. Results such as these emphasise the need to consider Pa, F and

Z datasets separately.

RQ1: How are trends in apps affected by varying dataset completeness?

There is a significant difference between Pa, F and Z datasets, in some cases with

a large effect size; the trends observed differ between datasets, especially when Z is

included.

RQ2: What proportion of reviews in each dataset contains a request?

RQ2.1: What proportion of user reviews does the Iacob & Harrison process

identify? Details of the extracted requests can be found in Table 5.7. The proportion

of extracted requests is lower than that reported by the previous study of Iacob &

Harrison [124], which can be attributed to two major differences in this study: 1)

Blackberry World App Store is used in this study instead of Google Play. It may

be that user behaviour in reviews is different, manifesting in fewer requests. It may
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Figure 5.2: RQ1.2: Scatter density plots for (A)ll dataset discussed in Section

5.8[183]
R: Rating
D: Download rank
N: Number of ratings
L: Length of description

also be that users use different words or phrases when making requests, and so the

request extraction algorithm’s recall is diminished. 2) Our dataset contains 19

times more reviews and 56 times more apps. It therefore seems likely, due to the

‘most popular first’ nature of app data availability, that the dataset used in this study
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Table 5.7: RQ2.1: Request datasets[183]
Pa: Apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete
Z: apps with no reviews
A: Pa∪F ∪Z

Set Apps Reviews Requests Proportion

Pa 5,422 1,034,151 32,453 3.14%

F 6,919 1,694,952 74,438 4.39%

Z 2,754 0 0 0%

A 15,095 2,729,103 106,891 3.92%

contains proportionally more low ranked apps. It is possible that users make fewer

requests in their reviews of such apps.

RQ2.2: What is the Precision and Recall of the extraction process? A sample

of 1000 random reviews was taken from each of 4 sets, and each review was man-

ually classified as containing a request for action to be taken or not. The sets used

were the reviews and requests from each of the (Pa)rtially complete dataset and the

(F)ully complete dataset. The manual assessment of request and review samples

was completed by the author of this thesis in two days. Results from the assessment

can be found in Table 5.8, and the computed Precision, Recall and F-Measure are

found in Table 5.9. The resulting Precision is low, yet Recall is very high; the Iacob

& Harrison algorithm [124] performs over 11 times better than random guessing.

An example TP (true positive) request and FP (false positive) request can be read

below.

TP request: “Would be nice to be able to access your account and rate the movies.

Please include for next update.”

FP request: “Amazing app every thing u need to know about real madrid is in this

app and it deserve more than five stars”

A general observation from the sampling process was that the reviews that were

identified as requests were not short, and always contained ‘request-like’ words.

However, there was a large proportion of (FP) reviews which contained words like

‘need’, but did not ask for any action to be taken by the developers. Handling such

cases is a challenge for content analysis of user reviews such as the Iacob & Harrison

algorithm [124]. In order to deal with these cases more research is needed.
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Table 5.8: RQ2.2: Manual assessment of reviews[183]
Pa: Apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete

Set Type Population Sample TP FP Precision

Pa Request 32,453 1000 279 721 0.279

Pa Review 1,034,151 1000 14 986 0.014

F Request 74,438 1000 347 653 0.347

F Review 1,694,952 1000 29 971 0.029

Table 5.9: RQ2.2: Assessment of request algorithm[183]
Pa: Apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete
TP: request identified was true positive
FP: request identified was false positive
FN: request identified was false negative

Set TP FP FN Precision Recall F-Measure

Pa 279 721 10 0.279 0.965 0.433

F 347 653 9 0.347 0.975 0.512

The set of FN (false negative) reviews, that were not identified as requests but

were manually assessed to contain a request, asked for work to be done in different

ways. Linguistic rules could be added to encompass the FN cases, but this would

run the risk of further lowering the Precision. An example FN request is as follows:

FN request: “Sharp, but layout can be worked on!”

RQ2.3: How do valid and invalid requests differ? Results comparing topics

from different request groups are presented in Table 5.10. It can be seen from the

results in Table 5.10 that the content of valid requests is broad, using 31 of the 80

topics; and that the set of 2,000 identified requests used 56 of 80 topics. The two

sets of topics do not differ significantly, as shown in the right hand side of Table 5.10,

where we use the Wilcoxon test to compare topic metrics between the two sets.

The observation that the topical content of identified requests is indistinguish-

able between sets of TP and FP requests shows that they do not differ greatly, and

therefore FP requests have little impact on the topical content, but may affect its

distribution. The high Recall result shows that it is possible to reduce the set of

all reviews to a much smaller set that is more likely to contain requests, and this
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Table 5.10: RQ2.3: Comparison of TP and FP request topics[183]
P: Price
R: Rating
D: Download rank
N: Number of ratings
L: Length of description
TP: request identified was true positive
FP: request identified was false positive

Set Topics Metric Wilcoxon p Median difference

TP 31 P 0.36 0.00

FP 47 R 0.39 0.00

Intersection 22 D 0.14 1322

Total 56 N 0.32 3

Total Available 80 L 0.39 4

process excludes very few requests falsely. We suggest that without a proven better

performing method for data reduction of user reviews, it is sufficient to use the set

of all requests identified by the Iacob & Harrison algorithm [124] for analysis.

RQ2: What proportion of reviews in each dataset contains a request?

Less than 3.92% of A, 3.14% of Pa and 4.39% of F reviews are requests in the

Blackberry dataset, and we found the algorithm to have a recall > 0.96 and pre-

cision < 0.350. Manual inspection identified FN requests using different phrasing

and keywords than those identified by the Iacob & Harrison algorithm.

RQ3: How are trends in requests differ in the sets Pa, F and A?

RQ3.1: Do the request sets from Pa, F and A differ? The Wilcoxon test results for

the metrics Ta (topic app prevalence), Tr (topic request prevalence) and Td (topic

median download rank) between the sets Pa, F and A show that there is a significant

difference between sets Pa, F and A. The Â12 test results in Table 5.11 also show that

there is a large effect size difference for Ta, Tr and Td between the three sets.

It can be seen from the results for RQ1.1 in Table 5.5 that there is a significant

distribution difference, but a small effect size difference between the description

lengths in Pa and F. This means that Pa and F are unlikely to yield different de-

scription lengths. It can seem surprising, therefore, that there is a large effect size

difference between the app prevalence for topics between the Pa and F sets.
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Table 5.11: RQ3.1: Comparison results between request sets[183]
Pa: apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete
Z: apps with no reviews
A: Pa∪F ∪Z
Ta: number of apps topic strongly contributes to
Tr: number of requests topic strongly contributes to
Td: median download rank of apps topic strongly contributes to

Datasets Ta Tr Td

Pa - F 0.794 0.974 0.999

A - F 0.831 0.839 0.874

A - Pa 0.914 0.998 0.971

Recall that app prevalence for a topic means the number of app descriptions to

which the topic strongly contributes. This result is explained by the size difference of

the sets: it stands to reason that in a set with more apps, a topic would be featured

in more app descriptions than in the smaller set. The effect can be seen in greater

magnitude with the larger request prevalence effect size difference. The Pa set has

a large effect size difference in Tr from both the A set and the F set. These results

again show that topics are used more frequently in the larger of the sets, an expected

result.

The results for Td (topic download rank) are more surprising. Table 5.11 shows

that the distributions of topic download rank in the three sets are very different, and

have a large effect size difference. Bearing in mind that the A set is the combination

of apps from Pa, F and Z, the A - Pa result suggests that the Pa set’s median download

rank is different from the overall median, while the F set’s median is closer. However,

the Pa - F results are surprising as they mean that for the same topics, one set leads to

apps with greater median download ranks than the other; yet the results for RQ1.1

in Table 5.5 showed a small effect size difference in download rank for Pa - F.

One possible explanation is that the topic download ranks are exaggerating the

difference in distribution medians. Because of the way the topic model is trained,

each app description must have at least one assigned topic; likely more than one as

the Dirichlet prior α is set to 50 [32]. Therefore, the entire set of app descriptions

must be represented by only the 100 topics (80 of which are used here as explained

in Section 3.6). It is not hard to imagine that the median download rank of apps in
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Table 5.12: RQ3.2: Request Spearman’s rank correlation coefficient re-

sults[183]
Pa: Apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete
Z: apps with no reviews
A: Pa∪F ∪Z
Ta: number of apps topic strongly contributes to
Tr: number of requests topic strongly contributes to
Td: median download rank of apps topic strongly contributes to
-: no significant correlation coefficient (p < 0.05)

Set Ta - Tr Ta - Td Tr - Td

Pa -0.341 -0.230 -

F -0.596 - -

A -0.554 - -

these 80 topics could be very different for Pa, F and A, even if the distributions of

apps have small effect size differences in D.

RQ3.2: Are there trends within the request sets of Pa, F and A? Figure 5.3

shows that the F set has a higher median app prevalence and request prevalence

for topics. That is, topics contribute in a greater number of apps and requests on

average in the F set than the Pa set.

The results presented in Table 5.12 show that there is a strong negative corre-

lation between the prevalence of topics in apps and requests. This is evidence that

users tend to request things to a greater extent when they are present (or absent) in

a smaller proportion of apps. The graphs in Figure 5.3 show that the scatter plot of

Ta-Tr from the F set resembles the Pa set, but appears more stretched out and higher

due to the greater number of apps and requests in the F set.

One might expect there to be a strong correlation between popularity and re-

quest prevalence, indicating that users request things present in more popular apps

(or conversely, a negative correlation indicating users request more from low rated

apps that may have less features), but this is not the case, as there was no significant

correlation between the two metrics. A (speculative) interpretation of this result is

that while users do not discriminate in terms of popularity, they do value diversity,

hence the results of the negative prevalence correlation.

An important finding from these results is that the correlation between app and

request prevalence exists not only in Pa and F datasets, but is actually stronger over-
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Figure 5.3: RQ3.2: Scatter plots for Ta against Tr[183]
Pa: Apps their reviews where review sets are incomplete
F: apps and reviews where review sets are complete
Ta: number of apps topic strongly contributes to
Tr: number of requests topic strongly contributes to

all in the A dataset. This demonstrates that although the Pa dataset is incomplete

and has different properties, the trends are consistent showing that it is still possible

to learn things from the data.

RQ3: How are trends in requests differ in the sets Pa, F and A? Trends

in requests appear more robust to app sample bias than trends in apps; we found

a strong inverse linear correlation between topic prevalence in apps and requests,

that is consistent in Pa, F and A datasets.

5.9 Actionable Findings for Future App Store Analysis

In this study, we have presented empirical evidence that indicates that the partial

nature of data available on App Stores can pose an important threat to the validity of

findings of App Store Analysis. We show that inferential statistical tests yield differ-

ent results when conducted on samples from partial datasets compared to samples

from full data sets; even if one were to exhaustively study the entire partial data set

available, one would be studying a potentially biased sample.

The findings reported in this chapter suggest that this will be a potent threat

to validity. Naturally, where researchers have full data sets available, they should
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sample (randomly) from these or base their results on the exhaustive study of the

entire dataset. However, this raises the uncomfortable question: “What should we

do when only a partial dataset is available?”. This question is uncomfortable, be-

cause partial datasets are so prevalent in App Store Analysis, as the survey in this

study indicates.

Clearly, researchers need to augment their research findings with an argument

to convince the reader that any enforced sampling bias is unlikely to affect their

research conclusions and findings. Or, where possible, researchers can provide an

assessment about the effect of the bias on their findings. This may be possible in

some cases, since the sampling bias is often at least known, and sometimes quan-

tifiable. For example there may be simply a bias on either recency or on popularity.

Alternatively, researchers may choose to constrain study scope, making claims only

about populations for which the sample is unbiased (e.g., all recent or popular apps

on the store(s) studied).

Ideally, one would like to see further studies of other App Stores to confirm

these results. Unfortunately, many App Stores do not make full information avail-

able, as the Blackberry World App Store did at the time we studied it. Nevertheless,

where full information is available, further replication studies are desirable: corre-

lation analysis of App Stores provides a potential tool to understand the relationship

between the technical software engineering properties of apps, and the users’ per-

ceptions of these apps. Understanding such relationships is one of the motivations

for the excitement and rapid uptake of App Store Analysis.

5.10 Threats to Validity

This study is primarily concerned with addressing threats to validity, yet it also may

have some of its own.

Internal validity: Our internal validity could be affected by issues with the data

used in our experiments, which was gathered from the Blackberry World App Store.

We therefore rely on the maintainers of the store for the reliability and availability

of raw data. Due to the large-scale and automated nature of data collection, there

may be some degree of inaccuracies and imprecisions in the data. However, we have

made general observations on large sets of data, rather than detailed observations

from individual apps, which provides some robustness to the presence of inaccura-
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cies in the data. We also make the assumption when processing the (N)umber of

ratings for an app, that reviews are not removed from the store. This would cause

an app that is reviewed to appear non-rated.

The mined review data is parsed in the same way as app data, to capture each

review’s rating, body and author attributes; although the author information is only

used to ensure that no duplicates are recorded as a means of reducing spam.

Were an app with many reviews to have some removed, it is unlikely that this

would impact the overall findings, as the scale of the number of ratings provides

some robustness to small changes. To the best of our knowledge, however, reviews

are neither removed nor changed.

External validity: With regard to external threats, we return once again to the

dataset. We mined a large collection of app and review data from the Blackberry

World App Store, but we cannot claim that these results generalise to other stores

such as those owned by Google or Apple. Rather, this study discusses the issues that

can arise from using biased subsets of reviews, such as the kind available from App

Stores.

Construct validity: Our construct validity is affected by our selection of exper-

iments to measure the effect of the app sampling problem. We chose to compare

empirical app metric distributions and trends, as well as topic trends, but this se-

lection has surely missed other potential experiments which may be affected by the

app sampling problem. We hope that the experiments chosen enlighten the reader

as to the potential pitfalls of the app sampling problem, in order that they are able

to avoid or mitigate its effects.

Conclusion validity: Our conclusion validity could be affected by the human

assessment of topics and requests in answer to RQ2. However, our definitions and

methodology can be applied more widely to assess the effect of the app sampling

problem on any dataset.

5.11 Related Work

This section outlines related work in the field of app review analysis. A detailed

survey of app store analysis literature can be found in Chapter 2.

User reviews are a rich source of information concerning features users want

to see, as well as bug and issue reports. They can serve as a communication chan-
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nel between users and developers. Several studies have utilised (F)ully complete

user review datasets, and these analyse many more user reviews than those using

(Pa)artially complete user review datasets: a mean of 9.8 million reviews are used

by studies on F datasets, which starkly contrasts with a mean of 0.2 million reviews

used by studies on Pa datasets. A summary of recent work on App Review Mining

and Analysis can be found in Table 5.2.

In 2012 Hoon et al. [120] and Vasa et al. [274] collected an F dataset con-

taining 8.7 million reviews from the Apple App Store and analysed the reviews and

vocabulary used. Hoon et al. [119] then further analysed the reviews in 2013, find-

ing that the majority of mobile apps reviews are short in length, and that rating

and category influences the length of reviews. Another F sample was used in the

2013 study by Fu et al. [82], which analysed over 13 million Google Play reviews

for summarisation.

Studies on Pa datasets use smaller sets of reviews, yet have produced useful

and actionable findings. In 2013 Iacob and Harrison [124] presented an automated

system for extracting and analysing app reviews in order to identify feature requests.

The system is particularly useful because it offers a simple and intuitive approach

to identifying requests. Iacob et al. [126] then studied how the price and rating of

an app influence the type and amount of user feedback it receives through reviews.

Khalid [138, 140] used a small sample of reviews in order to identify the main user

complaint types in iOS apps. Pagano and Maalej [214] gathered a sample of 1.1

million reviews from the Apple App Store in order to provide an empirical summary

of user reviewing behaviour, and Khalid et al. [139] studied the devices used to

submit app reviews, in order to determine the optimal devices for testing.

Several authors have incorporated sentiment in their study of reviews. Galvis

Carreño and Winbladh [83] extracted user requirements from comments using the

ASUM model [133], a sentiment-aware topic model. In 2014 Chen et al. [50] pro-

duced a system for extracting the most informative reviews, placing weight on nega-

tive sentiment reviews. Guzman and Maalej [104] studied user sentiments towards

app features from a small multi-store sample, which also distinguished differences

of user sentiments in Google Play from Apple App Store.
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Research on app reviews is recent at the time of writing, but much work has

been done on online reviews [111, 121, 130, 131], all built upon by the papers

mentioned. Morstatter et al. [202] carried out a similar study to this on Twitter

data, finding that the subset of tweets available through the Twitter Streaming API

is variable in its representation of the full set, available via the Twitter Firehose

dataset.

5.12 Conclusions

Sampling bias presents a problem for research generalisability, and has the poten-

tial to affect results. We partition app and review data into three sets of varying

completeness. The results from a Wilcoxon test between observable metrics such as

price, rating and download rank between these partitions show that the sets differ

significantly. We show that by appropriate data reduction of user reviews to a subset

of user requests, we can learn important results through correlation analysis. For ex-

ample, we find a strong inverse linear correlation between the prevalence of topics

in apps and user requests. We build on the methods used by Iacob & Harrison [124]

to extract requests from app reviews,in addition to using topic modelling to identify

prevalent themes in apps and requests as a basis for analysis.



Chapter 6

Causal Impact Analysis for App

Stores

Rapid release strategies can offer significant benefits to both developers and end

users [144], but high code churn in releases can correlate with decreased rat-

ings [100]. Releases occur for a number of reasons [2], such as updating adver-

tisement libraries [101], or stimulating user downloads and ratings [55], in addi-

tion to more traditional bug fixes, feature additions and improvements. Developers

may even find certain days of the week can stimulate user activity more than oth-

ers [67, 113], although this may not be related to user preference [205]. McIlroy

et al. [191] studied update frequencies in Google Play, finding that 14% of their

studied apps were updated in a two-week period. Nayebi et al. [205] found that

half of surveyed developers had a clear release strategy, and experienced developers

believed it affects user feedback.

In this chapter, we study time-series information about apps, and identify how

release frequency can affect an app’s performance as measured by rating, popularity

and number of user reviews. We introduce the method of Causal Impact Analysis,

and describe our tool, CIRA, that performs this analysis for app store data. Using

this tool, we identify the set of ‘impactful’ releases, that statistical evidence suggests

caused a significant change in one of their app’s performance metrics, compared

with a baseline set of non-releasing apps. We then analyse the characteristics of

these highly impactful app releases, in order to understand the properties under

developer control which could lead to releases impacting performance.

6.1 Introduction

Causal inference is a method used to determine the causal significance of an event

or events, by evaluating the post-event changes using observational data. A tradi-
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tional approach to causal inference is differences-in-differences analysis [28], which

compares the differences between the prior and posterior vectors of a group that re-

ceives a given intervention, against a group that does not receive this intervention.

Conversely, the Causal Impact Analysis method [37], based on state-space models,

treats each vector separately, in each case using the full control set to provide global

variance.

In the context of app stores, these methods have the potential to assess the

causal significance of releases upon an app’s success in the store, in terms of user

rating behaviour or download rank. Specifically, the prior and posterior vectors

are observations of a metric such as rating, number of ratings or download rank,

recorded at regular time intervals (i.e. weekly). The given interventions are new

app version releases, as denoted by a change in the app’s version identifier in the

store. The group that does not receive the intervention (release) is the set of apps

that do not release new versions in the studied time period.

Multiple apps typically do not receive the same intervention (release) at the

same time, which makes differences-in-differences analysis difficult to apply in this

case. Causal Impact Analysis, on the other hand, treats each app vector that receives

a release separately, thereby making it better suited to this analysis of app releases.

This motivates the use of Causal Impact Analysis. In this chapter we describe Causal

Impact Analysis, and our tool, CIRA, that implements it.

Release: We determine a ‘release’ to have occurred if and only if the version

identifier changes.

6.1.1 Process

Causal impact analysis trains a Bayesian structural time-series model [116, 249] on

the data vector for each target release, using a set of unaffected data vectors known

as the control set (defined in Section 7.4.2). This enables the model to make a

prediction of the data vector in the posterior time period accounting for local and

global variations. Each metric (R, N, NW) and each release, requires an individual

experiment, as the method works each time on a single data vector.
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1. Train local variance 2. Train spike coefficients 3. Train slab coefficients

6. Counterfactual prediction5. Seasonal variance

4. Local-only prediction

Figure 6.1: Causal Impact Analysis workflow
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Figure 6.2: Causal impact analysis graph for an invoice management application

in Google Play
Shaded vertical bar: target release
Solid line plotted throughout: observed vector
Shaded region: confidence interval of 0.95
Solid line inside shaded region: counter-factual prediction

Figure 6.1 shows the overall Causal Impact Analysis workflow:

1. Train the local trend parameters using the deviation of the observed vector in

the prior time period. This is used to sample changes and compute the confidence

interval.

2. Compute the ‘spike’ [249] for the observed vector from the set of controls, and

assign coefficients for them, in order to make an accurate prediction.

3. Use the rest of the control set as the ‘slab’ [249], assigning equal coefficients for

them, in order to account for global variations in the dataset.

4. Make a set of predictions using the local trend trained earlier, sampling for

changes and noise.

5. Compute seasonal variance (optional). This is not used as app store ratings do

not demonstrate cyclic behaviour over the maximum studied time (52 weeks).

6. Combine local-only prediction with control changes multiplied by their (static or

dynamic) coefficients. This is the counterfactual prediction [37].

We then compute the cumulative pointwise difference between the observed

vector and the prediction, normalised to the length of time at which each deviation

occurs, and compute the cumulative probability from the local trend parameters.
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A low value (p ≤ 0.01) indicates that the success metric changed significantly; see

for example Figure 6.2, which shows that the rating of an invoice management

application deviates significantly from the predicted vector. By setting the threshold

to be 0.01, there is a 0.01 probability of claiming a significant change where one

does not exist, and therefore expect roughly 1% false positive rate.

We use CIRA to identify the set of releases, for which there is evidence of a

statistically significant effect on the metrics we collect. We refer to such releases

as impactful releases in this thesis.

6.2 Causal Impact Release Analysis Tool (CIRA)

This section describes the tool, CIRA, that we have implemented in order to facilitate

further study on app store data using causal impact analysis.

6.2.1 Design

CIRA is written in Java version 1.8 [213], making full use of lambda expres-

sions for increased efficiency and potential for runtime parallelisation. Maven ver-

sion 2 [268] is used to control the build, allowing for modularisation and testing.

Unit tests are implemented in JUnit [136], and the following additional libraries

are used: apache.commons.math3 [267] is used for statistics and regression;

guava [93] is used for general utility functions; JFreeChart [211] is used for

plotting graphs; as is JMathPlot [301] which was used for an earlier version of

the prediction graphs.

The module structure used is shown in Figure 6.4. Three main modules are

used for command line functionality: cira, graph and runner. The runner

module serves to run the command line tool that provides batch computation for

any of the different modules that are implemented, as well as graph drawing on an

individual basis.

Supplementary modules were implemented that provide easier usability, for

demonstration purposes. The tool module provides an executable jar binary that

can be run cross-platform on desktop operating systems (provided they have a com-

patible version of Java installed). Similarly, the server module provides a servlet

that runs on a Tomcat [266] server, providing access from any web browser.
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Figure 6.3: CIRA class diagram Dotted line: inheritance Solid line: subclass
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Figure 6.4: CIRA module diagram Dotted line: dependency

The CIRA class diagram for the three main modules is shown in Section 6.2.1,

and a module diagram is shown in Figure 6.4.

6.2.2 Program Flow

Figure 6.5 shows the workflow of CIRA, which is the algorithm as described in

Section 6.1.1, with the exclusion of the seasonal variance computation (originally

step 5.). The seasonal variance is excluded from CIRA since, as noted in Section 7.3,

the app store data studied does not exhibit signs of cyclic variance.

CIRA takes as input two files: controls and targets. These files must be

in the same format as those for CausalImpact. The format for CIRA input is

specified in the usage manual in Appendix D.

The local trend is computed by evaluating the standard deviation in the prior

time period, σ , and incorporating two variance modulators based on this, vv and vd .

These modulators serve to add general variance, and delta variance, respectively.

For simplicity they are assumed to have the same distribution:

vv ∼N (0,σ2) vd ∼N (0,σ2) (6.1)

The counterfactual local trend is evaluated by sampling each of vv and vd for each

counterfactual value, and adding their modulations to the last counterfactual value

(starting with the final observed value in the prior time period):

counter f actuali = counter f actuali−1 + vv + vd for 1 < i < |posterior| (6.2)
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1. Train local variance

4. Local-only prediction

2. Train spike coefficients 3. Train slab coefficients

5. Counterfactual prediction

Figure 6.5: CIRA workflow explained in Section 6.2.2.

where:

counter f actual0 = prior|prior| (6.3)

The global trend is computed by assigning spike coefficients to a predetermined

number of controls (the default is 3), and slab coefficients to the remaining controls.

CIRA assigns spike coefficients using regression: partitions are assigned, of size

equal to the prior time length - 1, and regression is performed using each partition.

Half of the partition is eliminated (the half with the lowest coefficients), and this

process is repeated until the desired number of spike regressors is reached. In this

way, the controls that most accurately predicted the observed vector are selected.

The coefficents themselves are chosen by performing regression with the chosen

vectors, and then multiplying the coefficients by a spike weight, wspike, divided by the

number of spike coefficients. Spike regressors could be assigned using alternative

methods, but good agreement performance (with CausalImpact) was achieved

using this method.

Slab coefficients are assigned as:

cslab =
wslab

|slab|
(6.4)

where cslab is a coefficient for a slab control, wslab is the weight assigned the slab

portion of coefficients, and |slab| denotes the number of slab controls.
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The default spike and slab weights used in CIRA are:

wslab = 0.5 wspike = 0.5 (6.5)

Different values can be used, but we found good performance giving equal weight

to spike and slab coefficients.

6.2.3 Agreement with CausalImpact

When the number of control vectors in increased, the execution time of

CausalImpact increases exponentially, whereas CIRA is affected in order O(n)

(in terms of additional regression runs) where n is the number of control vectors,

and the complexity order of each regression run is unaffected. This is an advan-

tage of CIRA, and a specialisation for app store data, where the number of control

vectors available may be in the thousands. In contrast, the use case of web site ad

campaign data is more likely to be in the tens.

In order to assess the accuracy of CIRA, We compute the agreement:

agreement =
YY +NN

YY +NN +Y N +NY
(6.6)

and Cohen’s Kappa [54], that takes into account the chance to randomly agree, and

is bounded above by agreement.

We used the dataset that will be used in Section 7.3, consisting of 442 tar-

gets and 100 controls, and manually assessed each target graph to indicate ‘human

agreement’ with the impacts. This, of course, represents a threat to validity, for

the human’s understanding and assessment of causal analysis, but helps to provide

context for the agreement assessment.

Section 6.2.3 shows the results of the agreement test between human,

CausalImpact and CIRA. The results in Section 6.2.3 show that CausalImpact

and CIRA show very similar agreement and Cohen’s Kappa with the human assess-

ment, of approximately 75% agreement and 0.35 Cohen’s Kappa. This indicates

that the approaches both agree with the manual assessment 75% of the time, of

which about half of the agreement may be random. CausalImpact and CIRA are

shown to have 85% agreement with each other, of which again about half of the

agreement may be random. The approaches exhibit greater agreement with each

other than with the manual assessment, indicating that they are providing similar
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Table 6.1: Causal impact analysis agreement
Ag: agreement
CK: Cohen’s Kappa

CausalImpact CIRA CausalImpact

Ag CK Ag CK Ag CK

Human 0.74 0.36 0.76 0.34 CIRA 0.85 0.45

Figure 6.6: Real-world prediction issue flatlining despite an apparent prior trend
Shaded vertical bar: target release
Solid line plotted throughout: observed vector
Shaded region: confidence interval
Dotted line inside the shaded region: counter-factual prediction

results. The runtime of CIRA was approximately 428 times faster for this dataset,

with a median runtime of 1.916 seconds over 5 runs, compared with a median of

820.340 for CausalImpact.

6.2.4 Web Access

CIRA is available for use via the integrated Server module, at http://www0.

cs.ucl.ac.uk/staff/W.Martin/cira.

6.3 Extension 1 – Ensemble Classifier

The default mode in CIRA (known internally as SpikeSlab) relies on the control

set spike partition to help predict the counter-factual trend. However, sometimes

this prediction falls short of what a human, using their own judgement, would call

obvious. This is noticeable when an observed vector is increasing at a steady rate

in the prior time period, yet the counterfactual prediction plot flat-lines. This effect

can be seen in Figure 6.6 and Figure 6.7a.
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(a) Local-only (b) Moving average

(c) Linear regression (d) Polynomial regression

Figure 6.7: Comparison of CIRA baseline methods for correcting flatlining
Shaded vertical bar: target release
Solid line plotted throughout: observed vector
Shaded region: confidence interval
Dotted line inside the shaded region: counter-factual prediction

To combat this issue, we have implemented several alternative means to ‘direct’

the counterfactual prediction:

Moving average: The moving average from the last 3 weeks of the prior time period

observed vector is computed, and the counterfactual prediction is adjusted prior to

the local trend variance samples, in order to ‘continue’ the trend. This technique can

be seen in Figure 6.7b.

Linear regression: Regression is trained on the prior time period, using an arbitrary

increasing predictor variable equal to the week number, and using the observed

vector each week as the response. The prediction is then carried out each week in

the posterior time period, before the local trend variance samples are added. This

technique can be seen in Figure 6.7c.

Polynomial regression: This works similarly to linear regression, except it uses

multiple powers of the predictor variable (week) for training and prediction. The

method is implemented to use as many powers as possible: i.e. 2 powers for a prior

time period of 3. This technique can be seen in Figure 6.7d.

We computed the agreement between each of the different prediction methods,

and present results in Table 6.2. Each of the methods performs similarly, with the



6.4. Extension 2 – Feature Regression 129

Table 6.2: CIRA models agreement on sample of 442 targets using 100 controls
SAg: agreement
CK: Cohen’s Kappa
Local: local-only ‘standard’ prediction
MA: moving-average prediction
LR: linear regression prediction
PR: polynomial regression prediction

Local MA LR PR

Ag CK Ag CK Ag CK Ag CK

Human 0.75 0.33 0.72 0.31 0.74 0.33 0.63 0.22

CausalImpact 0.85 0.47 0.72 0.22 0.79 0.32 0.62 0.15

CIRA (SpikeSlab) 0.95 0.77 0.82 0.41 0.88 0.54 0.66 0.21

exception of polynomial regression, which appears to over-train on the prior time

period (shown in Figure 6.7d).

CIRA’s SpikeSlab method achieves higher overall agreement with the human

assessment, and with CausalImpact, than the other methods, and therefore it re-

mains the default model. Each of the models is available through CIRA’s command

line execution, and furthermore we have implemented an “ensemble classifier” that

runs each model in turn, and presents the user with results from each model, as well

as the overall confidence in its assessment. All of these methods evaluate the predic-

tion in the same as way as CIRA, by computing the inverse cumulative probability

of the difference, after normalisation.

6.4 Extension 2 – Feature Regression

It would be useful to tie features directly to impacts, and to use them to make coun-

terfactual predictions with greater accuracy. This information could then be used

to predict which features could be added in order to produce an impactful release

for a specific app. To facilitate this, we have implemented a feature regression com-

ponent in CIRA, that works in a similar way to the spike partition of the spike-slab

prior method [37] described in Section 6.1.1.

This extended method uses repeat runs of regression in order to select the fea-

tures that most strongly predict the observed vector in the prior time period, and

assigns coefficients to them which add to the overall SpikeSlab prediction. The
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model takes as input the document vector for each release, and the feature vector

for each document.

This model assumes that the feature vectors are fluctuating vectors that can be

used to help predict the response vector. Unfortunately, these assumptions do not

hold true for any of the collected apps: descriptive text is changed too rarely for

this method to work properly. Hence, we have conducted an alternative study into

features impacting releases in Section 7.5. However, this module remains available

in the CIRA codebase as it may prove useful to integrate additional information into

the model.

6.5 Threats to Validity

Internal validity: Our internal validity may be affected by the comparison of CIRA

to CausalImpact, when CIRA is in fact based upon CausalImpact. We miti-

gate this threat by comparing the classification results of both tools with a human

assessment of releases.

External validity: Our external validity may be affected by the dataset we used,

and the scale of the metric changes inherent in it. This threat is mitigated by the

adaptive nature of causal impact analysis, in that the scale (and thus significance)

of a change is relative to its standard deviation prior to the intervention.

Construct validity: Our construct validity may be affected by our agreement

tests, where we tested the classification results of each tool and algorithm only,

without testing the effect size of the significant change detected. However, in our

studies we apply causal impact analysis as a classifier only, and so this seems an

appropriate agreement test in our case. Future work may compare the effect size of

significant changes detected.

Conclusion validity: Our conclusion validity may be affected by our under-

standing of causal impact analysis. We mitigate this threat by comparing classifica-

tion results between the tools directly, and by comparing the results with a human

assessment.

6.6 Conclusions

CIRA is a Java based implementation of causal impact analysis [37], that enables

the use of large scale control sets, such as found in app stores when using non-
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releasing apps as the control set. CIRA differs from CausalImpact in its approx-

imation of the local delta variance parameter vd , and its choice and parameters

of the control set spike partition. Results have shown strong agreement between

CausalImpact and CIRA, and a human evaluation of a sample of releases indi-

cates that both methods perform similarly. A number of modules are built into CIRA,

in order to facilitate future studies: a desktop tool, a web servlet tool, an ensemble

classifier using alternative prediction techniques, and a feature regression predictor.



Chapter 7

What are the Properties of

Impactful Releases?

Causal Impact Analysis [37] (discussed in more detail in discussed in Chapter 6) is a

method for identifying significant events which may have impacted time-series vec-

tors. In this chapter we apply causal impact analysis to identify significant ‘impactful’

app releases. This is done in the first instance using the tool written by Brodersen et

al., CausalImpact [36], and subsequently using our own tool, CIRA (described in

more detail in Section 6.2). We follow up on the causal impact analysis with more

traditionally familiar (frequentist) inferential statistical analysis to further investi-

gate the probabilistic evidence for potential causes, characteristics and effects.

7.1 Introduction

Causal inference[175] is primarily used in economic forecasting, for measuring or

predicting the effect of an event on time-series data, but it has also seen recent

use for software defect prediction [60, 61, 306]. We apply causal impact analysis

to app releases in order to identify “impactful releases”, that significantly impacted

subsequent user rating behaviour or download rank. The subsequent inferential sta-

tistical analysis in Sections 7.3 to 7.5 complements this analysis, pointing to the set

of potential properties which may play a role in this causal significance. Of course,

the degree to which one can assume causality relies on the strength of their causal

assumptions, that the control set is unaffected by the release, and the relationship

of the control to the released app is unchanged.

We compare distributions using a two-tailed unpaired non-parametric Wilcoxon

test [295], that tests against the Null-hypothesis that the result sets are sampled

from the same distribution. We also compare the result sets using Vargha and De-

laney’s Â12 effect size comparison test [273], which results in a value between 0 and
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1, that tells us the likelihood that one measure will yield a greater value than the

other. In this case, we apply these inferential statistical tests to examine differences

in properties between the sets of releases that have demonstrated a causal impact

(using causal impact analysis) and those which have not, as well as between the

sets of releases that positively impacted rating and those that negatively impacted

rating.

To analyse the text of impactful releases, we perform information retrieval anal-

ysis on app descriptions and “what’s new” text, using Topic Modelling and, in the

case of Sections 7.3 and 7.4, also TF.IDF (both techniques are described in Chap-

ter 3). We use these two different techniques to increase the confidence with which

we can identify the top terms that occur in impactful ‘release text’. Text is processed

according to the steps detailed in Section 3.5.

In any and all causal impact analyses, it is of course impossible to identify all

external properties (such as advertising campaigns) that might have played a role

in the changes observed. In the case of app stores, our current analysis cannot, for

example, identify advertising campaigns, timed to coincide with the new release.

However, if such an external factor does have a significant effect, then causal impact

analysis may detect it. We ask developers in Section 7.4 if they are aware of external

factors which may have caused the observed changes, in order to determine how

often this may be the case.

7.2 Developer Controller Metrics

The developer-controlled metrics we use in experiments in this chapter are given

in Table 7.1. We also use (P)rice, defined in Table 3.3. For Google, we measure

release text as the combination of description and ‘what’s new’ text (description

for Windows). Here we do not insist that release text must have changed from a

previous week, since this is reflected by RTchange = 0.
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Table 7.1: Developer controlled metrics

Metric Description

Day Day of release (i.e. Monday, Tuesday)

RTsize The size of RT (release text) in words

RTchange The change in RTsize on the week of release

7.3 What are the Characteristics of Impactful App Re-

leases?
This work was published in ICSE 2016 Companion Proceed-

ing [182]. The first author’s contribution to this paper was to for-

mulate the idea, implement and execute the experimentation and

collect the results and analyse them; other authors of the paper

contributed to research question formulation, result analysis and

narrative write up.

App developers would like to know the characteristics of app releases that achieve

high impact. To address this, we mined the most consistently popular Google Play

and Windows Phone apps, once per week, over a period of 12 months. In total

we collected 3,187 releases, from which we identified 1,547 for which there was

adequate prior and posterior time series data to facilitate causal impact assessment,

analysing the properties that distinguish impactful and non-impactful releases. We

find that 40% of target releases impacted performance in the Google store and 55%

of target releases impacted performance in the Windows store. We find evidence

that higher prices, day of release and fewer mentions of bug fixing can increase

the chance for a release to be impactful, and evidence that higher prices, more

descriptive release text and new features rather than bug fixes can increase the

chance for a release to improve rating.

7.3.1 Findings

Looking ahead to the results of this section, our findings are as follows:

i) Higher priced releases have a greater chance of impacting performance in the

Google store, but the opposite is true in the Windows store: impactful release prices

have a mean of £0.99 compared with £0.65 for non-impactful release prices in the
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Google store, and £0.47 compared with £0.54 in the Windows store.

ii) Of all impactful releases, higher priced releases have a greater chance of posi-

tively impacting rating: releases that positively impacted rating have a mean price of

£1.03 compared with £0.78 for those that negatively impacted rating in the Google

store, and £0.57 compared with £0.38 in the Windows store.

iii) A higher probability of impact for releases between Saturday and Tuesday, with

up to 46% proving impactful on Tuesday, as low as 36% on Wednesday in the Google

store, and up to 63% on Saturday (with as low as 48% on Thursday) in the Windows

store.

iv) Impactful releases had proportionally fewer mentions of (bug, fix) in their

release text than non-impactful releases: 33% to 38% in the Google store and 44%

to 48% in the Windows store.

v) Releases that positively impacted rating had proportionally fewer mentions of

(bug, fix) than those that negatively impacted rating: 29% to 33% in the Google

store and 38% to 43% in Windows store, and more mentions of (new, feature):

30% to 25% in Google store and 55% to 39% in Windows store.

vi) Of all impactful releases, those with longer release text have a greater chance

of positively impacting rating: those that positively impacted rating have a median

filtered word count of 25 (to a median of 19 for those that negatively impacted rat-

ing) in Google store; 135 to 119 in Windows store.

vii) Our results indicate that Causal Impact Analysis is useful for identifying impact-

ful releases for further analysis.

7.3.2 Data

We mined app data from Google Play and Windows Phone Store between July 2014

and July 2015, as detailed in Section 3.2.

The download rank is unavailable for apps outside the ‘top’ free or paid lists for

both Windows Phone and Google Play app stores. For Google Play, this information

is available for only the most popular 540 free and 540 paid apps, while for Windows

Phone, download information is available for only the most popular 1000 free and

1000 paid apps.

We therefore mined apps from the Google Play and Windows Phone stores (on a

weekly basis), recording the most popular 540 free and 540 paid apps from Google,
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and top 1000 free and 1000 paid apps from Windows. The time period that we con-

sidered was from July 2014 to July 2015, giving 52 snapshots for each of Windows

Phone and Google Play. In order to focus solely on the consistently popular apps, we

computed the intersection of 52 snapshots. This resulted in 307 consistently popu-

lar (i.e. always within the top 540) Google apps, and 726 consistently popular (i.e.

always within the top 1000) Windows apps. These 1,033 apps are those studied in

this Section.

Our conclusions thus concern the effect of releases on the most consistently

popular apps over a period of the year (July 2014 to July 2015), and care will

be required before the results could be extended to apps and their releases more

generally, due to the App Sampling Problem [183]. Nevertheless, we believe that

conclusions about the characteristics of impactful releases for the most consistently

popular apps will yield interesting and actionable findings for developers, because

consistently popular apps are an inherently attractive and interesting subset of app

stores.

We extract app metrics from each of the 1,033 apps including price, rating,

download rank, number of ratings, description, what’s new and version. In the case

of Google Play, the app store reports rounded app ratings (rounded to 1 decimal

place), thereby creating a potential source of imprecision, which we would like to

overcome. To improve comparability between the two app stores, we would also like

to ensure that ratings are computed to the same precision. Therefore, we recalculate

the (more precise) Google Play average ratings, using the extracted numbers of

ratings in each of the five star ratings (from 1-5).

We use the following data to answer RQ3 and RQ4:

Control set: apps that have no releases in the 12 month time period: for Google

this set is 97 apps, and for Windows this is 397 apps. We compare different control

set sizes in RQ3.2 in order to establish whether the choice of control set affects the

results.

Target releases: releases that occurred at least 3 weeks after the previous release

of the same app (or start of the time-series), and that occur at least 3 weeks before

the next release (or end of the time-series). This ensures sufficient data availability

to accurately train causal impact analysis.
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Impactful release: a release for which one of the performance metrics (R, D, N

and NW) significantly deviated from the counterfactual prediction. We consider a

significant deviation to be one in which the probability of predicting the observed is

≤ 0.01. This is a cautious choice of probability (corresponding to the 99% confidence

interval) to reduce the likelihood of raising false alarms, which would subsequently

turn out not to be truly impactful after all. By setting the threshold to be 0.01,

there is a 0.01 probability of claiming an impact where one does not exist, and we

therefore expect a false positive rate of roughly 1%.

7.3.3 Research Questions

This subsection explains the questions posed in our study, and how we approach

answering them.

RQ1: Do app metrics change over time?

Before performing detailed analysis of the changes over time, we first set a baseline

by establishing whether app performance metrics change between snapshots. Using

the metrics R, D, N and NW as defined in Section 3.4, we compute their standard

deviations over 52 weeks for each app, and draw them on box plots. This enables

us to establish whether metrics change over time, and to what extent this occurs. If

the metrics do change over time, it motivates further analysis of events that could

cause changes over time, specifically releases.

RQ2: Do release statistics have a correlation with app performance?

We measure whether app performance is affected by the number of app releases, by

measuring the correlation between performance metrics and the number of releases

in 52 weeks, as well as the change in metrics over 52 weeks.

RQ2.1: Does the number of releases have a high correlation with app per-

formance? We perform correlation analysis between the number of releases of each

app and their current value for the metrics R, D and N. We do not use NW because

this number is set on a per-week basis, and instead use the change in R, D and N

from the first snapshot to the last, denoted ∆R, ∆D and ∆N respectively.

RQ2.2: Does the median time interval between releases have a correlation

with app performance? We perform correlation analysis between the median in-

terval between multiple releases of each app and the metrics used in RQ2.1. For

this, only apps that have releases in the time period are used.
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RQ3: Do releases impact app performance?

There are two limitations to correlation analysis. Firstly, correlation analysis seeks

an overall statistical effect in which a large number of apps and their releases par-

ticipate. However, it may also be interesting, from the developers’ point of view,

to identify specific releases that have an atypically high impact, compared to the

‘background’ behaviour and characteristics of the app store as a whole; general cor-

relation analysis is not well-suited to this more specific question. Secondly, of course,

as is well-known any correlation observed does not necessarily imply the presence

of a cause (correlation is not causation). Therefore, even if we were to find strong

correlations, this would not, of itself, help to identify causes. This motivates the

use of causal impact analysis. We apply the causal impact analysis on each target

release to see if it caused a significant change in any of the app-level performance

metrics R, D, N or NW defined in Section 3.4. Causal impact analysis is described

in Section 6.2.

RQ3.1: What proportion of releases impact app performance? We compute

the proportion of apps whose releases have affected performance, and the propor-

tion of overall releases.

RQ3.2: How does the causal control set size affect results? Causal impact

analysis requires a control set (in this case, a set of apps that have zero releases in

the period studied). As the set of potential members of the control set is different in

size between Google and Windows, we carry out experiments to assess how much

control set differences could influence the results. Our approach is similar to the

experiment using different control sets in the study by Broderson et al. [37]. We

compute the causal impact analysis results for each metric for a sample of 100 target

releases in the Windows dataset, using control sets of size 100, 200 and 397, the

smaller of which are randomly sampled from the maximum possible set of 397 non-

releasing apps.

RQ4: What characterises impactful releases?

We use the causal impact analysis results from RQ3 to analyse impactful and non-

impactful releases.

RQ4.1: What are the most prevalent terms in releases? We pre-process

the release text from all releases in a given store as described in Section 3.5, then
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identify the ‘top terms’ (most prevalent) for each set of releases using two methods:

TF.IDF [179] and Topic Modelling [32].

We train both methods on the release text corpus, treating each instance of

release text as a document. Each store is treated separately for training and evalu-

ation, to prevent combining store-specific vocabularies. For both methods, we sum

the resultant scores (probabilities) for terms (topics) over each set of releases.

The topic model is trained using 20 topics in each case. We chose 20 topics for

two reasons: i) the number of documents in each corpus is between 1000 and 2000,

each typically consisting of tens to hundreds of words, which is by no means a large

corpus; ii) we wish to generalise, to avoid training topics that are relevant to certain

apps or releases. The choice of 20 topics allows for generalisation, and for manual

inspection each of the trained topics, without much risk of training a topic that is

overly specific to an app or release.

RQ4.2: How often do top terms and topics occur in each set of releases?

We compute the counts in each set of releases that contain top terms from TF.IDF

and topic modelling, as identified from RQ4.1. We apply a bag-of-words model,

which ignores the ordering of the words in each document. This eliminates the

need to check for multiple forms of text that is discussing the same thing.

RQ4.3: What is the relative probability of each of the candidate causes?

We select the sets of impactful and non-impactful releases, as well as the sets of im-

pactful releases that positively impacted rating and those that negatively impacted

rating, and compare the distributions of several developer-controlled metrics. This

helps to establish probable causes that may have led to the releases being impactful,

or positively affecting one of the most important performance metrics for develop-

ers: the rating.

We use the developer metrics P, Day, RTsize and RTchange in this experiment,

as described in Section 7.2. We perform a Wilcoxon test [295] and Vargha and

Delaney’s Â12 effect size comparison [273] between these distributions, described in

more detail in Section 3.1. We also compare the distributions using box plots, which

show the median and interquartile range of distributions in order that we can see

if one sits higher or lower than another. We compare the distributions of release
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R D N NW

Figure 7.1: RQ1: Standard deviation box-and-whisker plots[182]
R: rating
D: download rank
N: number of ratings
NW: number of ratings per week
Goog: Google Play dataset
Win: Windows Phone Store dataset

days using histograms, which will enable us to see if any particular weekday or set

of weekdays leads to better or worse likelihood of impactful releases.

7.3.4 Application of CausalImpact

In this section, we apply the Causal Impact Analysis method [37] using the Google

CausalImpact framework [36].

7.3.5 Results

This subsection answers the questions posed in Section 7.3.3.

RQ1: Do app metrics change over time? The box plots in Figure 7.1 show that the

metrics (R)ating, (D)ownloads, (N)umber of reviews and (NW) number of reviews

per week do, indeed, change over time, because their median standard deviation is

always positive.

However, Figure 7.1 reveals that not all metrics vary so greatly: the (R)ating

metric exhibits the least variation (median standard deviation < 0.05 for both Google

and Windows). This is a potentially useful baseline finding, because it means that a

high-impact release (that does affect rating), has a chance to ‘stand out against the

crowd’.

Developers are likely to care about such releases, since ratings are important,

and there is some evidence that they impact upon popularity, and thereby revenue

[109].
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Table 7.2: RQ2.1 and RQ2.2: Correlation results for releases[182]
R: rating
D: download rank
N: number of ratings
∆: change in metric from week 1 to week 52
-: correlation not significant (p > 0.05)

Store R ∆R D ∆D N ∆N

Google - - - - - 0.13

Windows 0.20 - -0.17 - 0.32 0.42

RQ2.1: Number of releases

Store R ∆R D ∆D N ∆N

Google - - - - -0.15 -0.19

Windows - - 0.12 0.13 - -

RQ2.2: Release interval

Answer to RQ1: Do app metrics change over time? The metrics

(D)ownload rank, (N)umber of ratings and (NW) number of ratings per week

show a high standard deviation for apps over the 52 week time period, but

(R)ating shows only a small deviation.

RQ2: Do release statistics have a correlation with app performance? Having

established a baseline, we now measure the correlations between the number and

interval of releases in 52 weeks, and performance metrics.

RQ2.1: Does the number of releases have a high correlation with app per-

formance? Table 7.2 presents the results of correlation analysis between release

frequency and app metrics for Google and Windows app stores. We only report

correlation coefficients (the rho values) that are deemed significant (p≤ 0.05), i.e.,

where there is sufficient evidence that rho 6= 0.

The results from our Google dataset in Table 7.2 are sparse, indicating only one

significant correlation between the number of releases and ∆N, the change in the

number of reviews. Even this correlation, although significant, is still weak (rho

= 0.13) so we conclude that there is little evidence for correlation between release

frequency and app metrics in the Google app store. A greater number of significant
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correlations was observed for the Windows app store (Table 7.2). However, the

corresponding correlation coefficients (rho values) remain low, providing evidence

only for a mild correlation between release frequency and the change in the number

of reviews per week (∆N).

We therefore conclude that there is no strong overall correlation between

release frequency and the app metrics we collect for either app store, but there

is evidence for a mild correlation between release frequency and number of reviews

in 52 weeks in the Windows store.

RQ2.2: Does the median time interval between releases have a correlation

with app performance? Table 7.2 presents the results of correlation analysis be-

tween release interval and app metrics for the Google and Windows app stores. As

these results revealed, there is little evidence for any strong correlation between the

median inter-release time period and the app metrics we collect. These findings cor-

roborate and extend the recent findings by McIlroy et al. [191], who reported the

rating was unaffected by release frequency in the Google app store. This is interest-

ing because there is evidence that app developers release more frequently when an

app is performing poorly [55]; our results indicate that this, perhaps rather desper-

ate behaviour, is unproductive.

Answer to RQ2: Do release statistics have a correlation with app per-

formance? Neither higher numbers of releases nor shorter release intervals cor-

relate with changes in performance; developers who increase release frequency

with the aim of improving performance may be wasting their effort.

RQ3: Do releases impact app performance? The results from RQ1 and RQ2 have

established that app performance metrics do vary over releases, but that the number

of releases and time intervals between releases are not important factors in deter-

mining these performance changes. This makes causal impact analysis potentially

attractive to developers. With it, a developer can seek to identify the set of spe-

cific releases that had a higher performance impact, using evidence for significant

changes in post-release performance compared with the set of non-releasing apps.

This is the analysis to which we now turn in RQ3.

RQ3.1: What proportion of releases impact app performance? Table 7.3
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Table 7.3: RQ3.1: Causal impact analysis results[182]
R: rating
D: download rank
N: number of ratings
NW: number of ratings per week

Details of target releases (percentages reported over 754 target releases)

Type Total (of target) Apps 307

Non-impactful 453 (60.1%) Total releases 1,570

Impactful 301 (39.9%) Target releases 754

Details of impactful releases (percentages reported over 301 impactful releases)

Metric Total (of impactful) +ve -ve

R 152 (50.74%) 67 (22.3%) 85 (28.2%)

D 130 (43.2%) 48 (15.9%) 82 (27.2%)

N 54 (17.9%) 54 (17.9%) 0

NW 84 (29.9%) 52 (17.3%) 32 (10.6%)

R ∩ D 32 (10.6%) 9 (3.0%) 12 (4.0%)

R ∩ D ∩ NW 7 (2.3%) 2 (0.7%) 1 (0.3%)

Google

Details of target releases (percentages reported over 793 target releases)

Type Total (of target) Apps 726

Non-impactful 356 (44.9%) Total releases 1,617

Impactful 437 (55.1%) Target releases 793

Details of impactful releases (percentages reported over 437 impactful releases)

Metric Total (of impactful) +ve -ve

R 228 (52.2%) 90 (20.6%) 138 (31.6%)

D 207 (47.4%) 93 (21.3%) 114 (26.1%)

N 267 (61.1%) 267 (61.1%) 0

NW 48 (11.0%) 27 (6.2%) 21 (4.8%)

R ∩ D 90 (20.6%) 15 (3.4%) 36 (8.2%)

R ∩ D ∩ NW 11 (2.5%) 2 (0.74%) 5 (1.1%)

Windows
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Table 7.4: RQ3.2: Impactful releases using different control sets[182]
R: rating
D: download rank
N: number of ratings
NW: number of ratings per week

Control Set

Result 100 200 397

R results 45 43 39

D results 40 42 41

N results 36 40 40

NW results 13 13 14

presents overall summary statistics for the results of causal impact analysis. The

row labelled ‘Apps’ indicates the number of apps summarised in each of the two

sub tables (307 Google apps and 726 apps for Windows). This is the total number

of apps which remain consistently popular over all 52 weeks studied. The total

number of releases reports the number of app releases over the 52 weeks studied,

while the ‘target releases’ denotes the subset of releases for which there is sufficient

prior and posterior information available to support causal impact analysis, in terms

of counterfactual posterior predictions, based on prior observations. Those releases

that occur near the beginning or end of the time period will therefore not have

sufficient information available, and so the causal impact cannot be studied; hence

we select a subset of releases that must also belong in the range of weeks [4, 49],

out of a possible [1, 52]. Of these target releases, some are impactful and some are

not according to causal impact analysis. As Table 7.3 reveals, 39.9% of the target

releases in the Google store and 55.1% in the Windows store are impactful.

The remainder of Table 7.3 reports the observed change in performance met-

rics for impactful releases, thereby identifying candidate causes of these impacts.

For each performance metric change, we report the total number of releases that

exhibited an impactful change in the associated metric and the percentage (of all

app releases) that exhibited the change. We further subdivide this total into those

which are considered positive and those which are considered negative from the

developers’ perspective.
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From the 39.9% of impactful Google releases, approximately a third (31.9%)

impacted more than one performance metric. The releases of most potential interest

to developers are those that impact rating and download rank (since these are most

closely coupled to revenue), of which there were 32 impactful releases.

In the Windows dataset there were a higher proportion of impactful releases:

55.1% were impactful in some performance metric, and of these impactful releases,

approximately half (49.7%) had an impact on multiple metrics. There were 90

releases in the Windows dataset that impacted rating and download rank, and 11

that impacted rating, download rank and number of ratings per week.

These results support the hypothesis that there is a subset of releases that cause

significant changes to their app’s performance in the store.

RQ3.2: How does the causal control set size affect results? Table 7.4 reports the

effect of choosing different control set sizes, from among those apps which did not

undergo any releases during the time period studied. The Table 7.4 results show

that very similar findings are observed for impactful releases (with respect to each

performance metric), irrespective of the choice of control set.

Answer to RQ3: Do releases impact app performance? There is strong

evidence (p≤ 0.01) that approximately 40% of the target releases in the Google

Play store significantly affected a performance metric, and approximately 55% of

target releases in the Windows store significantly affected a performance metric,

perhaps indicating greater maturity in the Google Play store (and thus greater

difficulty in having an “impact”).

RQ4: What characterises impactful releases? The finding from RQ3 indicates that

there are impactful releases in both app stores, but it cannot identify the causes,

merely that there has been an impact in post-release performance. We now turn

to analyse candidate causes, and investigate the relative probability that each has

played a significant role in causing the impacts observed.
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Table 7.5: RQ4.1: Top release text terms TF.IDF terms are on the left and Topic Modelling topics are on the right[182]
R: rating
D: download rank
N: number of ratings
NW: number of ratings per week

Type Overall Apps 307

Non-impactful new fix bug fix bug fixed Target releases 754

Impactful fix bug new fix bug fixed Release text 641

Metric All +ve -ve

R fix bug new sky device channel sky fix bug sky device channel fix bug new app account use

D fix bug new new game experience new game security character new power fix bug new new game experience

N new fix bug sky device channel new fix bug sky device channel

NW new fix improvement photo filter add new performance improvement app music live fix bug improvement photo filter add

R ∩ D fix bug sky app account use sky fruit carp sky device channel bug fix pay app account use

R ∩ D ∩ NW various klingon improvement android song facebook security traveler dim app purchase flight song piano smule android song facebook

Google

Type Overall Apps 726

Non-impactful video photo new message chat free Target releases 793

Impactful video app new file medium server Release text 546

Metric All +ve -ve

R video app phone added app sound video music phone message chat free app video photo added app sound

D video app phone app live new video new app app live new video phone app message chat free

N video app phone file medium server video app phone file medium server

NW app video dating app apps music dating video app added app sound weather shazam app app apps music

R ∩ D video app phone message chat free video music task video fix youtube channel app phone app also account

R ∩ D ∩ NW hike dating event message chat free dating pof free message chat free hike learn learning message chat free

Windows
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Table 7.6: RQ4.2: Occurrences of terms[182]
R: rating
D: download rank
N: number of ratings
NW: number of ratings per week

Type Overall Apps 307

Non-impactful 145 / 379 (38.3%) Target releases 754

Impactful 87 / 262 (33.2%) Release text 641

Metric Total +ve -ve

R 41 / 133 (30.8%) 16 / 56 (28.6%) 25 / 77 (32.5%)

D 42 / 110 (38.2%) 10 / 36 (27.8%) 32 / 74 (43.2%)

N 17 / 46 (37.0%) 17 / 46 (37.0%) 0 / 0

NW 22 / 77 (28.6%) 13 / 48 (27.1%) 9 / 29 (31.0%)

R ∩ D 12 / 29 (41.4%) 2 / 7 (28.6%) 4 / 12 (33.3%)

R ∩ D ∩ NW 3 / 7 (42.9%) 1 / 2 (50.0%) 0 / 1

Google (bug, fix)

Type Overall Apps 726

Non-impactful 118 / 248 (47.6%) Target releases 793

Impactful 130 / 298 (43.6%) Release text 546

Metric Total +ve -ve

R 62 / 152 (40.8%) 22 / 58 (37.9%) 40 / 94 (42.6%)

D 50 / 137 (36.5%) 22 / 71 (31.0%) 28 / 66 (42.4%)

N 77 / 183 (42.1%) 77 / 183 (42.1%) 0 / 0

NW 14 / 33 (42.4%) 8 / 18 (44.4%) 6 / 15 (40.0%)

R ∩ D 18 / 57 (31.6%) 2 / 9 (22.2%) 9 / 18 (50.0%)

R ∩ D ∩ NW 1 / 8 (12.5%) 0 / 1 1 / 3 (33.3%)

Windows (bug, fix)

Type Overall Apps 307

Non-impactful 92 / 379 (24.3%) Target releases 754

Impactful 72 / 262 (27.5%) Release text 641

Metric Total +ve -ve

R 36 / 133 (27.1%) 17 / 56 (30.4%) 19 / 77 (24.7%)

D 34 / 110 (30.9%) 13 / 36 (36.1%) 21 / 74 (28.4%)

N 12 / 46 (26.1%) 12 / 46 (26.1%) 0 / 0

NW 21 / 77 (27.3%) 14 / 48 (29.2%) 7 / 29 (24.1%)

R ∩ D 10 / 29 (34.5%) 4 / 7 (57.1%) 2 / 12 (16.7%)

R ∩ D ∩ NW 3 / 7 (42.9%) 1 / 2 (50.0%) 0 / 1

Google (new, feature)

Type Overall Apps 726

Non-impactful 133 / 248 (53.6%) Target releases 793

Impactful 145 / 298 (48.7%) Release text 546

Metric Total +ve -ve

R 69 / 152 (45.4%) 32 / 58 (55.2%) 37 / 94 (39.4%)

D 68 / 137 (49.6%) 39 / 71 (54.9%) 29 / 66 (43.9%)

N 95 / 183 (51.9%) 95 / 183 (51.9%) 0 / 0

NW 16 / 33 (48.5%) 8 / 18 (44.4%) 8 / 15 (53.3%)

R ∩ D 27 / 57 (47.4%) 6 / 9 (66.7%) 7 / 18 (38.9%)

R ∩ D ∩ NW 4 / 8 (50.0%) 1 / 1 (100.0%) 2 / 3 (66.7%)

Windows (new, feature)
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RQ4.1: What are the most prevalent terms in releases? Table 7.5 reports the

results of information retrieval, using TF.IDF and the topic modelling on the release

text of impactful releases. In this table, we consider only those apps for which

release text is available. For Google, of the 754 target releases (those with sufficient

evidence for causal impact analysis), 641 have release text available. For Windows,

546 of the 793 target releases have available release text. The remainder of the table

consists of four overall columns, giving the metric for which a release is found to be

impactful (leftmost column), followed by the most prevalent terms (for TF.IDF) and

topics (for topic modelling), followed by a subdivision of these prevalent terms into

those whose impacts are positive and negative from the developers’ perspective. We

restrict topics to only the top three terms in the table, in order to give an overview

of each topic in a concise manner.

Table 7.5 reveals that terms and topics themed around bug fixes occur fre-

quently in the Google dataset, while in the Windows dataset, the topics appear to

be more closely associated with features (message chat free, new search feature).

The Windows app store is comparatively more recent than the Google app store,

and it is tempting to speculate that, at this comparatively immature stage, perhaps

users are more concerned with new features than bug fixes. Further research would

be required to investigate this possibility. Nevertheless, these observations motivate

our analysis in RQ4.2 for the tuples (bug, fix) and (new, feature).

RQ4.2: How often do top terms and topics occur in each set of releases? Ta-

ble 7.6 shows the number of occurrences, within impactful and non-impactful re-

leases, of the tuples (bug, fix) and (new, feature) highlighted by information re-

trieval in RQ4.1. The results in Table 7.6 show that the terms (bug, fix) are more

common in the non-impactful releases in both stores. However, it is more strik-

ing that for the metrics (R)ating and (D)ownload, the terms occur more often in

the releases that negatively impact rating, and negatively impact popularity (having

a positive impact on (D)ownloads column). We conclude, therefore, that release

text mentioning bug fixes occurs more frequently in releases that negatively impact

metrics such as rating and download rank.

The results show that there are proportionally more mentions of (new, feature)

in releases that positively impact (R)ating and popularity for both Google and Win-
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Table 7.7: RQ4.3: Probabilistic analysis of candidate contributions[182]
P: price
Day: Day of release (i.e. Monday, Tuesday)
RTsize: size of release text in words
RTchange: change in RTsize on the week of release
+ve R: releases increase rating
-ve R: releases decreased rating

Impactful / Non-impactful +ve R / -ve R

Metric Wilcoxon Â12 Wilcoxon Â12

P 0.006 0.546 0.045 0.570

Day 0.132 0.476 0.444 0.493

RTsize 0.295 0.488 0.054 0.576

RTchange 0.224 0.484 0.155 0.548

Google

Impactful / Non-impactful +ve R / -ve R

Metric Wilcoxon Â12 Wilcoxon Â12

P 0.121 0.480 0.073 0.546

Day 0.158 0.520 0.439 0.506

RTsize 0.359 0.493 0.279 0.523

RTchange 0.241 0.486 0.249 0.526

Windows

dows. There were (proportionally) more impactful releases in the Google store that

mentioned (new, feature), but fewer for Windows.

These results lead to the conclusions that releases are more likely to positively

impact rating or popularity if they claim to introduce new features, and more likely

to negatively impact rating or popularity if they claim to fix bugs. While the former

finding is to be expected, it seems a little unfair on developers that bug fix claims

might reduce performance. Future work might further investigate this effect to see

whether bug fix claims are unsubstantiated, thereby providing a potential explana-

tion.

RQ4.3: What is the relative probability of each of the candidate causes? To

better understand the differences between candidate causes of impacts, we use non-

parametric inferential statistics to investigate the differences between the metrics

we collect for releases, depending on whether they are identified as impactful or

not, and to assess the relative probability that each of these candidate causes plays

a role in the impacts observed. We measure aspects of the release that lie within

the control of the developer: price, day of release, the size of release text and the

change in size of release text on release week.

The results in Table 7.7 show that the most probable candidate causes in each

case are price and the size of the release text. Figure 7.2 presents box plots showing

the distribution of price and release text size, comparing impactful releases against

non-impactful releases, and releases that positively impact rating against those that
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Google

Windows

Figure 7.2: RQ4.3: Box plots of Price and Release Text[182]
I: impactful releases
NI: non-impactful releases
+ve R: releases increase rating
-ve R: releases decreased rating

negatively impact rating. Since half of the apps are free, the median prices are 0

and so the box plots only show the upper quartile; we therefore computed the mean

prices of impactful releases and non-impactful releases: impactful releases had a

mean price of £0.99 and non-impactful releases had a mean of £0.65 in the Google

store; £0.47 compared with £0.54 in the Windows store. The results show that

higher priced releases are more likely to be impactful in the Google store, but con-

versely, lower priced Windows releases are more likely to be impactful, highlighting

interesting differences between the stores.

Unsurprisingly, these results confirm the intuition that users can be expected

to be price-sensitive (in both stores). What is surprising and potentially interesting

for developers is that the releases of higher-priced apps are more likely to have

positive impacts on rating. We computed the mean prices for impactful releases

that positively or negatively affected the rating: £1.03 and £0.78, respectively, for

Google and £0.57 and £0.38, respectively, for Windows.

Of course, the price difference of £0.25 in Google Play appears relatively trivial.

However, the difference in revenue that accrues can be substantial. We conser-

vatively calculate that for the app, OfficeSuite Pro, over its (minimum) 1 million
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Google Windows

Figure 7.3: RQ4.3: Histograms showing the days of release[182]
Clear: impactful releases
Shaded: non-impactful releases

installs [94], the price difference of £0.25 extrapolates to (minimum) £250,000.

Our results revealed that this app had a Google Play release on 9th Sept 2014, for

which we observed a significant impact on the subsequent rating. This calculation is

particularly conservative, since at the time of this release, OfficeSuite Pro was priced

at £8.90. Therefore, this suggests that developers need not fear a price ‘race to the

bottom’ with competitors.

The results in Table 7.7 and Figure 7.3 also show that releases with larger

amounts of release text are more likely to positively impact the rating of an app.

The median number of words in positively impactful release text is 25, compared

to only 19 for negatively impactful release text in Google Play, and 135 compared

to 119 in Windows Phone. This provides evidence that users do read and respond

to release text. The finding also suggests that developers might wish to spend time

carefully choosing their release text to maximise positive influences on the users.

The reader may be surprised to learn that app developers need to choose very

carefully the day of the week on which they choose to release their app [113]. This

is one of the (perhaps) surprising observations that underscores the peculiarities of

software engineering for app stores compared to traditional software development

release practices. The potentially high release frequency, and immediacy of the app

store ecosystem, migrates software engineers into a new world with quite different

concerns from those with which they may be familiar.
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Figure 7.3 presents histograms showing the frequency distribution of impact-

ful and non-impactful releases over the day of release, for Google and Windows.

These results extend (to Google Play and Windows Phone) the previous finding of

Henze and Boll [113], that release activity is lowest on a Sunday in the Apple App

Store. However, we find that, while Windows developers may benefit the most from

weekend releases, Google Play developers are more likely to have impact early in

the week on Monday and Tuesday. Therefore, should a developer seek to coordinate

releases in multiple app stores, the evidence suggests that it would be advisable to

release between Saturday and Tuesday.

Answer to RQ4: What characterises impactful releases? There is evi-

dence that releases with higher prices and more descriptive release text could

be more likely to positively impact rating if they are impactful, and evidence

that releases from Saturday to Tuesday are more likely to be impactful. There

is also evidence that, for both stores, the release text of releases that positively

impact performance make fewer mentions of bug fixes and focus more on new

features.

7.3.6 Threats to Validity

Internal validity: Our dataset is subject to the App Sampling Problem [183]. Per-

formance data is available only for the most popular apps in each of the app stores

studied. We restrict claims about findings to those that apply specifically to the most

consistently popular apps over the 52 week period studied, and thereby do not suf-

fer from the App Sampling Problem in our findings. However, any attempt to extend

and generalise the findings to other apps, would be vulnerable to the App Sampling

Problem, and so great care is required due to this potential threat to validity.

External validity: Naturally, care is required when extending these findings

to other app stores. Indeed, this study on the Google and Windows stores shows

differences between the two, as higher priced releases in Google are more likely to

be impactful, whilst the same is true of lower priced releases in Windows. There are

many common findings, but this difference highlights the fact that our results may

not apply to other app stores. Nevertheless, the methods we used to analyse causal

impacts can be applied to other app stores.
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Construct validity: Our construct validity may be affected by our selection

of price, day of week and release content as potential causes for impact releases.

We test for significant differences between impactful and non-impactful releases

for these metrics, but we may be missing other potential causes. It may be that

impactful releases have other properties that we have missed, which we leave as

as future work to explore. Additionally, we ask developers if they know of external

causes in Section 7.4.

It may also be that developers update an app without updating its documenta-

tion, and thus any feature changes are not detected in the release text of the app.

This threat is mitigated by comparing only apps with changed text.

Conclusion validity: Our conclusion validity could be affected by the qualita-

tive human assessment of ‘top terms’ and topics for sets of releases in RQ4.1. We

mitigate against this threat to validity by asking a quantitative question of the num-

ber of times (bug, fix) and (new, feature) occur in each set of releases in RQ4.2.

7.3.7 Conclusions

Our analysis of the Google Play and Windows Phone app stores, over a period of 52

weeks from July 2014 to July 2015 has found that overall release frequency is not

correlated with subsequent app performance, but that there is evidence that price,

release text size and content and day of release all play a role in whether a release

is impactful and the type of impact it has. Higher priced releases are more likely to

be impactful and, perhaps surprisingly, to positively impact rating; releases launched

between Saturday and Tuesday (and therefore not mid-week) are more likely to be

impactful; releases with text mentioning new features instead of bug fixes are more

likely to be impactful and to positively impact rating, and releases with longer (more

descriptive) text are also more likely to positively impact rating.
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7.4 Causal Impact Analysis for App Releases in Google Play
This work was published in FSE 2016 Proceeding [185]. The first

author’s contribution to this paper was to formulate the idea, im-

plement and execute the experimentation and collect the results

and analyse them; other authors of the paper contributed to re-

search question formulation, result analysis and narrative write up.

App developers would like to understand the impact of their own and their com-

petitors’ software releases. In Section 7.3, we found that causal impact analysis is

useful for identifying impactful releases for further analysis, using a dataset of the

most popular 1,033 apps mined from Google Play and Windows Phone Store. In

order to investigate whether findings extend to the wider app store and less popular

apps, we mined 38,858 popular Google Play apps, over a period of 12 months. The

extension to this dataset raises computation time exponentially, due to the larger

control set size. To address this, we use our Causal Impact Release Analysis tool,

CIRA, that implements causal impact analysis for app stores. For these apps, we

identified 26,339 releases for which there was adequate prior and posterior time

series data to facilitate causal impact analysis. We found that 33% of these releases

caused a statistically significant change in user ratings. We use the approach to re-

veal important characteristics that distinguish causal significance in Google Play. To

explore the actionability of causal impact analysis, we elicited the opinions of app

developers: 52 companies responded, 78% concurred with the causal assessment,

of which 33% claimed that their company would consider changing its app release

strategy as a result of our findings.

7.4.1 Findings

The findings from this study are as follows:

1. The causal impact analysis tool, CIRA1, is useful for performing causal impact

analysis on app store data, where dataset size may raise computation time exponen-

tially for other tools.

2. We contacted developers of impactful releases: 52 developers responded, 78%

of whom agree with CIRA’s assessment, of which 33% claimed that their company

1Available athttp://www0.cs.ucl.ac.uk/staff/w.martin/cira



7.4. Causal Impact Analysis for App Releases in Google Play 155

would consider changing their release strategy.

3. We study Google Play app releases using CIRA, finding:

3.1. Paid app releases have a greater chance of affecting subsequent user rat-

ings (a chance of 40% for paid apps, compared with 31% for free apps).

3.2. Paid apps with releases that had impactful positive effects have higher

prices.

3.3. Free apps with impactful releases have a greater chance for their effects to

be positive (37% for paid apps compared with 59% for free apps).

3.4. Releases that positively affected user ratings had more mentions of bug

fixes and new features.

3.5. Releases that affected subsequent user ratings were more descriptive of

changes.

7.4.2 Data

We mined app data from Google Play between February 2015 and February 2016,

as detailed in Section 3.2.

Full set: All apps mined in the time period. Some apps drop out of the store (for

unknown reasons), but they are included in the full set for the duration in which

they appear in the store. This full set consists of 38,858 apps.

Control set: The set of apps that have no new releases over the studied time period.

We refer to this as the control set, as it is the benchmark by which one can measure

changes in the releasing apps. Apps that drop out of the store are not included in

the control set because consistency is required for a reliable control set. This control

set consists of 680 apps.

Target set: The set of app releases that occur in the studied time period and occur

at least 3 weeks after the previous releases, and at least 3 weeks before the next

release. The target releases have some longevity, which suggests that they are more

than ‘hotfixes’ for recently introduced bugs. They also have a non-trivial window

of data on either side, which makes it possible to observe any effect the release

may have had on the app’s performance. This ensures sufficient data availability to

perform causal impact analysis. Apps that drop out of the store are included in the

target set if they include adequate prior and posterior information as defined above.

This target set consists of 14,592 apps and 26,339 releases.
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7.4.3 Research Questions

This section explains the questions posed in this study and how we approach an-

swering them.

RQ1: Do app metrics change over time?

We establish a baseline by establishing whether app success metrics change over

time, by computing the standard deviation over 52 weeks, of the metrics R, N, NW

and L as defined in Section 3.4. These distributions are drawn using box plots.

We determine whether app success changes more or less for those apps that have

releases, by comparing plots for those apps that have no releases (the control set),

with releasing apps (the target set). If the metrics for the target set change over time

more than those in the control set, this motivates further analysis of releases that

could cause the observed changes. It is expected that releasing apps would show

greater deviation in description length, describing changes and features.

RQ2: Do release statistics have a correlation with app performance?

We build on this analysis by measuring whether app success is correlated with the

number of app releases in the time period studied, and whether it is correlated with

the time interval between releases. This will show whether a large (or conversely,

small) number of releases might lead to increased success, and likewise for release

interval.

For both of these experiments, only apps in the target dataset are used. We

perform correlation analysis between the number of releases of each app and their

value for the metrics R and N at the end of the time period. The metric NW is not

used because this number is set on a per-week basis, but instead use the change

in R and N from the first snapshot to the last, denoted ∆R and ∆N respectively.

Additionally, we do not use L because this does not represent app success.

RQ2.1: Does the number of releases have a high correlation with app per-

formance? We perform correlation analysis between the number of releases in the

studied time period and the metrics R, ∆R, N and ∆N at the end of the time period.

RQ2.2: Does the median time interval between releases have a correla-

tion with app performance? We perform correlation analysis between the median

interval between releases of each app and the metrics used in RQ2.1.
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RQ3: Do releases impact app performance?

Using CIRA to perform causal impact analysis, we identify the impactful releases as

defined in Section 6.1.1, and experiment with different control set sizes to assess

the effect this may have on results.

RQ3.1: What proportion of releases impact app performance? We compute

the proportion of apps whose releases have affected subsequent success. We group

results under the metrics affected: R, N, NW and the intersection of R and NW,

overall and for positive or negative changes.

RQ3.2: How does the causal control set size affect results? Causal impact

analysis uses a control set: a set of unaffected data vectors, which in this case is

the set of apps that have zero releases in the period studied. As the set is used in

two different ways (‘spike’ and ‘slab’ [249], as explained in Section 6.1.1), we test

whether the set size makes a difference that could influence results. Our approach

is similar to the experiment using different control sets in the study by Brodersen

et al. [37]. We compute the causal impact analysis results for each metric with the

full target dataset, using repeatedly halved control sets of size 340, 170, 85, 42,

21, 10, 5, and 3 which are each randomly sampled from the maximal set of 680

non-releasing apps.

We compute the agreement between each set of results and the results used to

answer RQ3.1. Agreement is defined as
(YY+NN

total

)
, where YY indicates a significant

change as detected on both datasets, NN indicates no significant change detected on

both datasets, and total is a count of all results (including disagreements). We also

compute the Cohen’s Kappa [54], which takes into account the chance for random

agreement and is bounded above by the agreement. We compute a second set of

results using 680 control vectors, which will show the expected difference between

consecutive runs with the same control set, since there is a random component in

the predictive model.

RQ4: What characterises impactful releases?

We use the causal impact analysis results from RQ3 to identify the differences be-

tween impactful and non-impactful releases.

RQ4.1: What are the most prevalent terms in releases? We identify the

most prevalent terms for each set of releases using TF.IDF [179] and Topic Mod-
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elling [32]. Both methods are trained on the release text corpus, treating each

instance of release text as a document. For both methods, we sum the resultant

scores (probabilities) for terms (topics) over each set of releases.

The topic model is trained using 100 topics. We chose 100 topics for three

reasons: i) the number of documents in the corpus (updated release text from tar-

get releases), each consisting of tens to hundreds of words, which is a large sized

corpus; ii) we do not wish to over-generalise, nor over-fit; 100 topics will allow di-

versity without assigning the same topic to every document with a release; iii) 100

topics is a common selection for non-trivial datasets, serving as the default setting

in GibbsLDA++[224] and JGibbLDA[225]. Intuitively, the choice of 100 topics al-

lows for diversity in the trained topics, without unduly elevating the risk of training

a topic that is overly specific to an app or release.

RQ4.2: How often do top terms and topics occur in each set of releases?

We compute the counts in each set of releases that contain top terms that emerge

from TF.IDF and topic modelling, as performed in RQ4.1. We apply a bag-of-words

model, which ignores the ordering of the words in each document. This eliminates

the need to check for multiple forms of text that discuss the same topic.

RQ4.3: What are the effects of each of the candidate causes? We select

the sets of statistically impactful and non-impactful releases, as well as the sets of

impactful releases that increased and decreased rating, and compare the distribu-

tions of several developer-controlled properties. This will help to establish potential

causes that may have led to the releases being impactful, or positively affecting an

important success metric for developers: the rating.

We consider properties of the release that lie within the control of the devel-

oper: (P)rice, (RTsize) the size of release text (defined in Section 7.2) in words, and

(RTchange) the change in RTsize on the week of release. For each of these properties,

we use the Wilcoxon test and Vargha and Delaney’s Â12 effect size comparison [273],

to identify statistically impactful differences between causally impactful releases and

non-impactful releases. We use the untransformed Vargha and Delaney’s compari-

son [208] because we are only interested in the raw probability value it produces.

In case a statistical difference is found for a given aspect, we use box plots to un-
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derstand if this property may play a role in the changes observed (i.e. it may be a

candidate cause).

At this point, we will have identified a subset of releases that exhibit statistically

significant success effects, and we will have identified further differences between

sets of impactful and non-impactful releases, as well as the differences between pos-

itive and negative impactful releases. To further explore the actionability potential

of the tool and our findings, we ask the following research question.

RQ5: How useful is causal impact analysis to developers?

Because there is no ground truth, only different implications of any discovered sta-

tistical significance, we can only answer this question semi-quantitatively. To de-

termine whether our results are useful we simply ask the developers of causally

impactful releases, as determined by our tool, CIRA, whether they agree with the

classification. We email developers via the email addresses contained on their app

store pages, informing them of the impactful release and proposing to send a report

detailing the tool’s findings. We expect a large proportion of these emails may fail

to reach a human, and can only confirm contact is established if we hear back from

a developer. Once contact is established with the app’s developers, we ask them the

following questions2:

Agree with detected significance: We ask if the developers of the app agree with

CIRA’s assessment that the release was impactful.

External cause of changes: We ask if the company is aware of an external event

which may have caused the detected significant change, such as advertising cam-

paigns.

Would change strategy: We ask if the company would consider changing their

release strategy based on findings.

Receiving further reports: We ask if the company is interested in receiving further

reports for their app releases.

Learning contributing factors: We ask if the company is interested in learning

more about the characteristics of impactful releases, from the results of our study.

2The full questionnaire is included in Appendix E
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R N NW L
Figure 7.4: RQ1: Standard deviation box plots[185]

R: rating
N: number of ratings
NW: number of ratings in the last week
L: length of description in words
Full: complete set of apps and releases
Con: just control set of non-releasing apps
Tar: target set of apps and releases

7.4.4 Application of CIRA

CIRA is used to apply causal impact analysis in this study. The high number of apps

in the control set resulted in an apparent exponentially long execution time when

running CausalImpact. This is likely due to the selection of control vectors to use

as spike regressors. However, the execution time CIRA is affected in O(n) time.

7.4.5 Results

This section answers the questions posed in Section 7.3.3.

RQ1: Do app metrics change over time? The box plots in Figure 7.4 show that

the metrics (R)ating, (N)umber of ratings, (NW) number of ratings per week and

(L)ength of description do change over time, because their median standard devia-

tion is always positive. The deviation in number of ratings and number of ratings

per week is high, but very low for rating. This is because, for apps with many rat-

ings, even a small change corresponds to thousands of users rating higher or lower

than the established mean.

The deviation is approximately even between the control and target datasets

for rating deviation; this is a surprising result, and indicates that either a) ratings

are unstable (because they change) even for stable, established, non-releasing apps,

or b) app releases have little effect over all, globally detectable, ratings. The finding

of a low deviation in the target set means that a causally significant release (that

affects rating), has a good chance to ‘stand out from the crowd’.
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Table 7.8: RQ2: Correlations between release statistics[185]
R: rating
N: number of ratings
∆: change in metric from week 1 to week 52

Release statistic R ∆R N ∆N

Quantity 0.13 0.09 0.27 0.30

Median interval -0.12 -0.06 -0.19 -0.21

The box plots show that standard deviations in number of ratings and rating

frequency length are significantly higher for the target releasing dataset, than for all

apps in the dataset and for the control set. This is expected, and shows some utility

to app releases: to increase user activity in downloading and rating the apps, and

perhaps to increase the user base.

The deviation in description length is higher for the target dataset as expected,

suggesting that descriptions are updated to provide information about releases. This

finding supports the intuition that descriptions may be used as a channel of commu-

nication between developers and users.

Answer to RQ1: Do app metrics change over time? The metrics

(N)umber of ratings and (NW) number of ratings per week show a high stan-

dard deviation for apps between February 2015 and February 2016, but (R)ating

shows only a small deviation. The deviation in user rating frequency is higher

for the target releasing dataset, suggesting that app releases lead to user activity.

RQ2: Do release statistics have a correlation with app performance? We now

measure the correlations between the number and interval of releases and success

metrics.

RQ2.1: Does the number of releases have a high correlation with app per-

formance? Table 7.8 presents the results of correlation analysis between release

quantity and median interval, and app metrics for the target dataset. We report

correlation coefficients (rho values) that are deemed significant (p≤ 0.05).

The results in Table 7.8, indicate only weak significant correlations between

the success metrics and their change over the time period studied. The strongest



7.4. Causal Impact Analysis for App Releases in Google Play 162

correlation, for ∆N where rho = 0.30, is still too weak to definitely suggest a strong

relationship. We therefore conclude that there is no strong overall correlation be-

tween release frequency and the app metrics we collect, but there is evidence for a

weak correlation between number of releases and number of reviews accrued over

a year.

RQ2.2: Does the median time interval between releases have a correlation with

app performance? Table 7.8 presents the results of correlation analysis between

release interval and app metrics. As these results reveal, there is little evidence for

any strong correlation between the median inter-release time period and the app

metrics we collect. These findings corroborate and extend the recent findings by

McIlroy et al. [191], who reported the rating was unaffected by release frequency

in the Google app store. This is interesting, because there is evidence that app

developers release more frequently when an app is performing poorly [55]; our

results indicate that this, perhaps rather desperate behaviour, is unproductive.

Answer to RQ2: Do release statistics have a correlation with app per-

formance? Neither higher numbers of releases nor shorter release intervals

correlate strongly with changes in success.

RQ3: Do releases impact app performance? The results from RQ1 and RQ2 have

established that app rating metrics do vary over releases, but that the number of re-

leases and time intervals between releases are not important factors in determining

these changes. This makes causal impact analysis potentially attractive to develop-

ers. With it, developers can seek to identify the set of specific releases that had a

higher effect on success, using evidence for significant changes in post-release suc-

cess compared with the set of non-releasing apps. This is the analysis to which we

now turn in RQ3.

RQ3.1: What proportion of releases impact app performance? Table 7.9 presents

overall summary statistics for the results of causal impact analysis. The ‘Apps’ row

indicates the number of apps summarised as part of the target dataset, and the

‘Target releases’ row indicates the number of releases these apps underwent in the

studied time period that were outside of a 3-week window of other releases.
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Table 7.9: RQ3.1: Causal impact analysis results[185]
R: rating
N: number of ratings
NW: number of ratings per week
+ve: releases that increased rating
-ve: releases that decreased rating

Details of target releases (percentages reported over 26,339 target releases)

Type Total (of target) Apps 14,592

Non-impactful 17,639 (67.0%) Target releases 26,339

Impactful 8,700 (33.0%) Control apps 680

Details of impactful releases (percentages reported over 8,700 impactful releases)

Metric Total (of impactful) +ve -ve

R 4,781 (55.0%) 2,563 (29.5%) 2,218 (25.5%)

N 4,747 (54.6%) 4,747 (54.6%) 0

NW 2,226 (25.6%) 862 (9.9%) 1,364 (15.7%)

R ∩ NW 701 (8.1%) 220 (2.5%) 199 (2.3%)

Those releases that occur near the beginning or end of the time period will therefore

not have sufficient information available, and so causal impact analysis cannot be

applied. Hence we select a subset of releases that must also belong in the range of

weeks [4, 49], out of a possible [1, 52]. Of these target releases, some are impactful

and some are not according to causal impact analysis. As Table 7.9 reveals, we found

that 33.0% of releases were impactful.

The remainder of Table 7.9 reports the observed change in success metrics for

impactful releases, thereby identifying candidate causes of these effects. For each

success metric change, we report the total number of releases that exhibited a sig-

nificant change in the associated metric and the percentage (of all app releases) that

exhibited the change. We further subdivide this total into those that are considered

‘positive’ and ‘negative’ (from a developer’s perspective).

From the 33.0% of impactful app releases in Google Play, approximately a third

(30.0%) affected more than one success metric. The releases of most potential inter-

est to developers are likely to be those that affect both rating and rating frequency

(due to their potential for increasing user base and revenue). Of these, there were

701 impactful releases.
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Table 7.10: RQ3.2: Agreement between full control set and different set

sizes[185]
R: rating
N: number of ratings
NW: number of ratings per week

Control Set

Metric 3 5 10 21 42 85 170 340 680

A
gr

ee
m

en
t R 0.93 0.93 0.93 0.91 0.91 0.91 0.93 0.93 0.94

N 0.91 0.91 0.91 0.91 0.91 0.90 0.91 0.91 0.92

NW 0.97 0.97 0.97 0.97 0.97 0.95 0.97 0.97 0.98

All 0.94 0.94 0.94 0.93 0.93 0.92 0.93 0.94 0.94

C
oh

en
’s

K
ap

pa

R 0.78 0.76 0.76 0.72 0.72 0.73 0.76 0.77 0.79

N 0.69 0.70 0.70 0.70 0.69 0.66 0.69 0.69 0.73

NW 0.78 0.78 0.80 0.83 0.81 0.71 0.81 0.83 0.85

All 0.75 0.74 0.75 0.74 0.73 0.70 0.74 0.76 0.78

These results support the hypothesis that there is a subset of releases that cause

significant changes to their app’s success in the store.

RQ3.2: How does the causal control set size affect results? Table 7.10 reports

the effect of choosing different control set sizes, from among those apps that did not

undergo any release during the time period studied.

The results in Table 7.10 reveal strong agreement for each control set size,

indicating that the model is stable in this case (using non-releasing apps). One can

see from the two runs (using the full 680 apps in the control set), that there is

between 0.92 and 0.98 agreement due to the stochastic element of Causal Impact

Analysis. Our results show that restricting the choice of control set does not have

advantages, and so we opt to use the full 680 apps for the control set for subsequent

experiments.

Answer to RQ3: Do releases impact app performance? There is strong

evidence (p ≤ 0.01) that 33% of the target releases in the Google Play store

significantly affected a success metric, and approximately 11% significantly af-

fected more than one success metric.
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Table 7.11: RQ4.1: Top release text terms TF.IDF terms on the left and Topic Modelling topics on the right[185]
R: rating
N: number of ratings
NW: number of ratings per week

Type Overall Apps 14,592

Non-impactful feature fix time mode challenge friend Target releases 26,339

Impactful feature fix device hero monster battle Release text 20,014

Metric All +ve -ve

R feature word fix hero monster battle feature word time wallpaper live christmas bible fix support account mobile card

N feature word time wallpaper live christmas fix feature word wallpaper live christmas

NW map feature word tip local city card map feature hero monster battle map feature time tip local city

R ∩ NW feature video map wallpaper live christmas account card feature account mobile card video time feature hero monster battle

Table 7.12: RQ4.2: Occurrences of the terms in release text[185]

Type Overall Apps 14,592

Non-impactful 4,690 / 13,200 (35.5%) Target releases 26,339

Impactful 2,432 / 6,809 (35.7%) Release text 20,014

Metric Total +ve -ve

R 1,336 / 3,794 (35.2%) 745 / 2013 (37.0%) 591 / 1781 (33.2%)

N 1,300 / 3,693 (35.2%) 1,300 / 3,693 (35.2%) 0 / 0

NW 626 / 1,783 (35.1%) 260 / 685 (38.0%) 366 / 1098 (33.3%)

R ∩ NW 190 / 578 (32.9%) 63 / 179 (35.2%) 48 / 170 (28.2%)

Occurrences of the terms ‘bug’ and ‘fix’ in release text.

Type Overall Apps 14,592

Non-impactful 2,473 / 13,200 (18.7%) Target releases 26,339

Impactful 1,355 / 6,809 (19.9%) Release text 20,014

Metric Total +ve -ve

R 795 / 3,794 (21.0%) 437 / 2013 (21.7%) 358 / 1781 (20.1%)

N 687 / 3,693 (18.6%) 687 / 3,693 (18.6%) 0 / 0

NW 393 / 1,783 (22.0%) 151 / 685 (22.0%) 242 / 1098 (22.0%)

R ∩ NW 149 / 578 (25.8%) 52 / 179 (29.1%) 37 / 170 (21.8%)

Occurrences of the terms ‘new’ and ‘feature’ in release text.
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RQ4: What characterises impactful releases? The finding from RQ3 tells us that

there are impactful releases, but it cannot identify the causes, merely that there

has been a significant change in post-release success. We now turn to identify any

candidate causes, which may have played a significant role in the changes observed,

and analyse their effects.

RQ4.1: What are the most prevalent terms in releases? Table 7.11 reports the

results of information retrieval, using TF.IDF and the topic modelling on the release

text of impactful releases. In this table, we consider only those apps for which

release text is available. The results show only the top TF.IDF terms, and terms from

the top topic, respectively; thereby indicating the most prevalent terms and topic.

Of the 26,339 target releases (those with sufficient evidence for causal impact

analysis), 20,014 have release text available. The remainder of the table consists of

four overall columns, giving the metric for which a release is found to be impactful

(leftmost column), followed by the most prevalent terms (for TF.IDF) and topics

(for topic modelling), followed by a subdivision of these prevalent terms into those

whose effects are positive and negative (from a developer’s perspective).

Table 7.11 reveals that terms and topics themed around bug fixes and features

occur frequently overall in the text of impactful releases. The text of releases that

positively or negatively affected rating is slightly more specific to certain sets of

apps, i.e. “card map feature”, “wallpaper live christmas”, yet still appear to refer

to features. These observations motivate our subsequent analysis in RQ4.2 for the

terms ‘bug’ and ‘fix’ and ‘new’ and ‘feature’.

RQ4.2: How often do top terms and topics occur in each set of releases? Ta-

ble 7.12 shows the number of occurrences, within impactful and non-impactful re-

leases, of the terms ‘bug’ and ‘fix’, and ‘new’ and ‘feature’ which emerged as the top

terms from our information retrieval in RQ4.1.

The results in Table 7.12 show that the terms ‘bug’ and ‘fix’ are far more com-

mon than ‘new’ and ‘feature’ in both impactful and non-impactful releases. This

is unsurprising because bug fixing occupies a large proportion of development ef-

fort [304]. However, it is noteworthy that, in both cases, the terms are more com-

mon in the releases that positively affected metrics, as opposed to those that nega-

tively affected metrics.
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Table 7.13: RQ4.3: Probabilistic analysis of candidate contributions[185]
P: price
RTsize: size of release text in words
RTchange: change in RTsize on the week of release
+ve R: releases increase rating
-ve R: releases decreased rating

Impactful / Non-impactful +ve R / -ve R

Metric Wilcoxon Â12 Wilcoxon Â12

P 0.000 0.539 0.000 0.419

RTsize 0.000 0.532 0.006 0.479

RTchange 0.110 0.505 0.434 0.499

RQ4.3: What are the effects of each of the candidate causes? Based on the low p-

values reported in Table 7.13 we further analyse price and the size of the release text

as candidate causes. Figure 7.5 presents box plots showing the distribution of (paid

app) price and release text size, comparing impactful releases against non-impactful

releases, and releases that positively affect rating against those that negatively affect

rating. Since 61% of the apps are free, we plot paid apps in the price boxplot, and

compute the proportion of free and paid apps in each set, as well as the mean and

median prices.

The results for price are interesting, somewhat surprising, and nuanced. We

found that impactful releases (positive and negative) have higher prices than non-

impactful releases. The mean price of all impactful releases (including free) was

£0.79, and the mean price of all non-impactful releases was £0.59. Paid releases

were more likely to be impactful: 40.2% of paid app releases were impactful, com-

pared with 30.7% of free app releases. A somewhat surprising finding is that higher

priced (paid) app releases are more likely to have a positive effect: a mean of £3.25

and median of £1.72 compared with £2.45 and £1.58 for those with negative effects,

respectively. However, a greater proportion of impactful paid app releases negatively

affected rating: 62.6% compared with 41.0% for free apps.

Overall, a larger proportion of impactful releases are paid than non-impactful

releases (29.6% compared with 21.7%, respectively). As a result, the mean price

of impactful releases is higher by £0.20. Of course, a price difference of £0.20

in Google Play appears relatively trivial. However, the difference in revenue that

accrues can be substantial.
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Figure 7.5: RQ4.3: Box plots of Price and Release Text size[185]
S: impactful releases
NS: non-impactful releases
+veR: releases that increased rating
-veR: releases that decreased rating

We conservatively calculate that for the app, OfficeSuite Pro + PDF (which had a

release on 23rd December 2015, for which we observed a significant effect on the

subsequent rating), over its (minimum) 50,000 installs [94], the price difference of

£0.20 extrapolates to (minimum) £10,000 in accrued revenue. Our revenue calcu-

lation is particularly conservative, since at the time of this release, OfficeSuite Pro

was priced at £11.66. This finding suggests that developers need not fear a ‘race to

the bottom’ with competitors over pricing. Unsurprisingly, these results confirm the

intuition that users can be expected to be price-sensitive.

The results in Table 7.13 also show that there are significant differences be-

tween the distributions of price and release text size, comparing impactful with

non-impactful releases and releases that increase rating to those that decreased rat-

ing. The median number of changed, stopword-filtered words in impactful release

text is 11, compared to only 9 for non-impactful release text. This provides evidence

that users may be influenced by release text, but the effect size is relatively small.

Nevertheless, developers might wish to spend time carefully choosing their release

text to maximise positive influences on the users.

Answer to RQ4: What characterises impactful releases? There is evi-

dence that releases that significantly affect subsequent app success have higher

prices and more descriptive release text. Releases that positively affect rating are

more common in free apps, and in paid apps with high prices. We also note that

the release text of releases that positively affect success make more prevalent

mentions of bug fixes and new features.
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Table 7.14: RQ5: Developer responses to questionnaire[185]

Receiving

further

reports

Agree with

detected

significance

External

cause of

changes

Learning

contributing

factors

Would

change

strategy

Yes 27 35 20 37 17

No 14 11 22 4 23

Total 41 46 42 41 40

RQ5: How useful is causal impact analysis to developers? We sent 4,302 emails

to the email addresses available in the Google Play app store pages of companies

with impactful releases, as detected by our tool, CIRA. Of course, this is something

of a ‘cold call’, and we suspect that many emails never even reached a human. We

can report that 90 immediately failed due to invalid email addresses used on app

store pages, and 127 were immediately assigned to a support ticket. Those that

received a response are the only cases in which we can verify that contact was

established with developers, of which there were 138.

Of these 138 developers, 52 (distributed across 25 of 41 app store categories)

replied to express their opinion in response to follow up questions. All respondents’

apps were established in the store; the smallest had 31 reviews and the largest

had 78,948 at the time of our experiments. We summarise developers’ opinions

in Table 7.14, in each case indicating the instances where developers expressed an

opinion: the most answered question concerned agreement with CIRA’s assessment,

of which there were 46 respondents.

We observe that 35 out of 46 development teams who expressed an opinion,

agreed with CIRA’s assessment that their app release was causally impactful. For

example, the developers of a dictionary application said: “in our case it was obvious

for ourselves because it was a totally new release and with lots of new features”,

resonating with our earlier finding that new features increase the chance for im-

pactful releases (see RQ4.3). Only 11 developers disagreed with CIRA’s assessment.

However, some of them were still able to identify a cause for the significant change

detected by CIRA (but did not think that the release itself could be the cause). For

example, the developers of a security caller app said: “We did not release anything.

We just upload builds for our beta version which uses few users :-) So your tools are
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WRONG.” In this case, although the developers did not consider a beta version as

a full release, the app’s version identifier changed on its app store page resulting in

a ‘release’, by our definition in Section 6.1. This detected release, combined with

increased user activity, resulted in the causal significance detected by CIRA.

About one half of those who expressed an opinion (20 out of 42) indicated

that they knew of an external reason for the changes, and several teams elaborated

further. One might expect the developers who know of an external cause to be a

subset of those who believe there to be a significant causal effect. However, 5 of

20 developers who claimed to know of external causes also disagreed with CIRA

that the corresponding release was impactful. One set of developers described the

release as: “a minor ‘bugfix-only’ release. Therefore I doubt that this release was

the main reason for this change.”. However, as shown in the RQ4 results, mentions

of bug fixes in release text are more prevalent in impactful releases that positively

affected rating. Indeed, this particular release did mention bug fixes in its release

text, and significantly and positively affected rating.

Over half of the developers who expressed an opinion (27 of 41) were inter-

ested in receiving further reports. The majority of developers (37 of 41) indicated

that they would like to learn more about the characteristics of impactful releases,

and 17 of 40 indicated they would consider changing their release strategy based on

our findings. Only 10 of the 17 developers who would change their strategy knew

of an external cause of the changes, thus suggesting that this consideration will be

based on our general findings. These results provide initial evidence that causal

impact analysis can be useful to app developers.

Answer to RQ5: How useful is causal impact analysis to developers?

Three quarters of developers who expressed an opinion (35 of 46) agreed with

CIRA. Most developers (37 of 41) were keen to learn more about the character-

istics of impactful releases, and 17 of 40 said that they would consider changing

their release strategy based on CIRA’s findings. This provides initial evidence

that causal impact analysis is useful to developers.
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7.4.6 Threats to Validity

Internal validity: Like the study in Section 7.3, our dataset is subject to the App

Sampling Problem [183]. We restrict claims about findings to those that apply

specifically to the popular Google Play apps, and thereby do not suffer from the

App Sampling Problem in our findings.

External validity: Care is required when extending these findings to other app

samples and app stores. Nevertheless, the methods used to analyse causal effects can

be applied to other app stores and datasets. Conclusions about the characteristics

of impactful releases over this sample will yield interesting and actionable findings

for developers, and we contact app developers for their opinions on the usefulness

of our technique in RQ5.

We can only report the views of those developers with whom contact could

be established (see Section 7.4.5), and care is required when interpreting their re-

sponses. Since we were able to effectively reach 52 developers, we cannot claim that

our sample is representative of the entire population. However, this is still a fairly

large sample with respect to those used in other studies involving app developers

(e.g., [166, 206]).

Construct validity: Our construct validity may be affected by our study of

empirical app metrics and release text topics, as properties of impactful releases.

To mitigate this threat, we ask developers if they know of external causes of the

observed impacts in RQ5.

As with Section 7.3, it may be that developers update an app without updating

its documentation, and thus feature changes are not detected in the release text

of the app. This threat is mitigated by comparing only apps with changed text for

experiments comparing changed features.

Conclusion validity: The qualitative assessment of ‘top terms’ and topics in

RQ4.1 could affect conclusion validity of this study. This is mitigated in RQ4.2 by

asking a quantitative question of the number of times ‘bug’ and ‘fix’ and ‘new’ and

‘feature’ occur in each release set.

7.4.7 Conclusions

In this work we propose the use of Casual Impact Analysis to identify causally sig-

nificant releases in app stores. In particular, we introduce our tool CIRA to perform
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causal impact analysis on 26,339 Google Play app releases between February 2015

and February 2016, for all apps that appeared at least once in the top rated apps in

the year prior to February 2015. For these apps, we found that overall release fre-

quency is not correlated with subsequent app success, but that there is evidence that

price and release text size and content all play a role in whether a release is impact-

ful and the type of effect it has on success. Higher priced releases are more likely to

be impactful and, perhaps surprisingly, to positively affect rating; there were more

prevalent mentions of new features and bug fixes in releases that positively affected

rating, and impactful releases also had longer (likely more descriptive) release text.

We have shown that causal analysis can be a useful tool for app developers by elicit-

ing their opinions: most of those who responded were interested in the findings and

agreed with CIRA’s assessment, and some said they would consider changing their

releasing strategy based on our findings.
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7.5 What are the Features that are Added to impactful Re-

leases?

Knowing the releases that are significantly impactful is only part of the story for de-

velopers; they want to know the features that can be added to their apps to achieve

impact. Using topic modelling, we identify the features that have changed in app

release text at the time of releases, comparing changes between impactful releases

and non-impactful releases. We identify the features that are added in impactful

releases and not added in non-impactful releases, and therefore might serve as can-

didate features to implement in order to stimulate user download or rating activity.

Conversely, we also identify the features added in non-impactful releases that are

not added in impactful releases, and so may not lead to impact. We conduct this

comparison between positive and negative impactful releases, in order to identify

the features that developers could add to their apps in order to stimulate a posi-

tive user reaction. Using our identified set of 6,776 changed, impactful releases,

of which 3,750 are positive and 3,026 are negative, and our set of 17,639 changed,

non-impactful releases, we identify the features that developers need to know about,

both overall and at category granularity.

7.5.1 Introduction

As is well known, correlation does not necessarily imply causation. Therefore, when

an app happens to have a very impactful release that also adds a new feature, it

does not necessarily follow that the topic has caused this impact. A multitude of

other factors, many outside of the developers’ control, may have contributed to

this impact, outside of the feature. Consider, however, a feature that is very fre-

quently observed to have been included in app releases that were very impactful:

the resourceful developer will begin to wonder if they should include this illustrious

feature in their next release too. This is because correlation provides evidence that

suggests a relationship, even if it cannot prove it.

In this study, we seek to find the set of feature changes that are most preva-

lent amongst the most impactful app releases studied in Section 7.4. We analyse

the changes in features in app release text at the time of release, using the topic

modelling technique to identify topics that are analogous to features (explained in
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Chapter 4). We break down the difference in proportion of topic changes between

impactful and non-impactful releases, and positive and negative releases, in order

to identify the topic changes that are most different between the sets. The results of

this study provide evidence that suggests a relationship between topics and release

impact.

7.5.2 Contributions

The contributions of this study are as follows:

i) We have identified a set of features added to impactful releases that aren’t

added to non-impactful releases, and vice-versa: such as “start stop data gps di-

rectly” and “run smoother make faster content”.

ii) We have identified a set of features added to positive releases that aren’t

added to negative releases, and vice-versa: such as “better performance faster

optimisation enhancement” and “sound thanks rate quality really”.

iii) We have identified specific changed features at a category granularity: pro-

viding meaningful results for developers in each specific category.

7.5.3 Data

We use the dataset mined from Google Play, that consists of 14,592 apps and 26,339

releases, as described in Section 7.4.2.

7.5.4 Research Questions

The following questions are answered using the topic modelling method first de-

scribed in Chapter 4, that treats topics analogously to features.

RQ1: What are the features that are added or removed from releases

that are impactful, that differ from releases that are non-impactful?

We find the features that are most commonly added to impactful app releases, that

aren’t added (or are removed) from non-impactful releases. Additionally, we find

the features that are most commonly removed from impactful app releases, that

may be added to non-impactful releases.

RQ2: What are the features that are added or removed from releases

that are positive, that differ from releases that are negative?

We find the features that are most commonly added to impactful app releases that

positively affected their app performance, that aren’t added (or are removed) from
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negative releases. Additionally, we find the features that are most commonly re-

moved from positive app releases, that may be added to negative releases.

7.5.5 Methodology

Process: We use the following process to identify the how different features appear

in changed release text.

1. Separate impactful from non-impactful releases: We separate the releases

that had a significant change in post-release user rating performance, as identified

by CIRA in Section 7.4.

2. Separate positive from negative impactful releases: We further separate the

impactful releases by analysing the subsequent change as a positive change or a

negative change, i.e. an increase or decrease in rating or rating frequency.

3. Filter app releases for those with changed release text: In order that we can

analyse and compare the changes which may contribute to impactful releases, we

consider only those releases with changed text. It may seem surprising that some

releases, that have significantly impacted the app’s performance, did not change

their release text in any way (yet did update the app). However, this reinforces the

notion that external factors also contribute to an app’s performance. This filtering

process may remove apps that do not have any releases with changed release text.

4. Compute the differences in changes: We consider the topics where one set

reduces the count, and the other increases it, or otherwise the topics where the

impactful count is at least twice that of the non-impactful count. We compute the

proportion that changed from all releases in each particular set, and rank the results

according to the magnitude of the difference between sets.

Topic Modelling: We use topic modelling (described in Section 3.6) in order to com-

pute the features present in the release text, using 1000 topics in order to produce a

high granularity of specialised topics. We use a topic threshold value of 0.05 in the

reported results, which is sufficiently permissive to enable changes of 2-3 terms to

register as an addition or removal of a topic.

Dataset: We use the persistent google dataset, that is also used in Section 7.4. This

dataset consists of 14,592 apps and 26,339 releases.
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Table 7.15: RQ1 + RQ2: Topics that changed at release time
NI: non-impact releases
I: impactful releases
N: releases that decreased rating
P: releases that increased rating
Top: proportion of topics that were added in I/P releases, and taken away

or not added to NI/N releases

Bottom: proportion of topics that were removed or not changed in I/P
releases, but were added in NI/N releases

NI I Topic N P Topic

-0.01 0.30 start stop data gps directly -1.19 -0.05 better performance faster opti-
misation enhancement

-0.03 0.12 reward arena class skill season -0.93 -0.05 facebook follow like twitter
news

-0.02 0.12 flash add widget version lan-
guage

-0.93 -0.11 wallpaper live muzei beautiful
picker

-0.01 0.12 completely redesigned design
reworked companion

-0.40 0.16 map location gps data zoom

-0.03 0.09 expense report transaction in-
come bill

-0.46 0.00 sticker testing line bot chat

-0.01 0.10 updated library internal party
component

-0.43 0.00 android app time improved
present

0.06 -0.06 power level ups unlock time 0.30 0.03 permission read used storage
external

0.16 0.04 run smoother make faster con-
tent

0.13 -0.16 notification push receive alert
receiving

0.05 -0.07 challenge reward win daily earn 0.53 0.00 trip travel destination time
guide

0.03 -0.10 orientation landscape portrait
tablet mode

0.59 0.05 start stop data gps directly

0.04 -0.21 sticker testing line bot chat 0.66 0.05 app inside update mean just
0.13 -0.47 wallpaper live muzei beautiful

picker
0.96 0.13 sound thanks rate quality really

7.5.6 Results

We run the algorithm described in Section 7.5.5 to compute the list of features that

differ between impactful releases with changed text, and non-impactful releases

with changed text. Table 7.15 reports the results for RQ1 and RQ2 for topics.

Several of the top features overall are specific to certain categories of apps,

and thus are not discussed in detail below. Additional category-specific results can

be found in Appendix C, which may be of interest to developers in each of these

specific categories.

RQ1: What are the features that are added or removed from releases

that are impactful, that differ from releases that are non-impactful?

The top topic that is added to releases that become impactful is “start stop data gps

directly”, which seems intuitive in its application as a feature, and does seem like a

useful one for apps that use data. The results in Table 7.15 show that terms from
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“reward arena class skill season” are added to releases that become impactful, and

not added to any releases that are non-impactful. This, however, is ambiguous in

its interpretation as a feature. The second topic, “puzzle pack update piece daily”,

is more clear in its interpretation as a feature. Where applicable, developers might

add daily packs of pieces or puzzles to their apps.

The topic “expense report transaction income bill” seems specific to utility man-

agement applications, but could potentially be applied more widely to apps that

handle or contain assets of value. Several topics are specific for game apps, such as

“tournament player online win ranking” and “race track mode car win”. However,

the topic “completely redesigned design reworked companion” is very general, but

would require a lot of development effort to implement. Another more general topic

is “mode ambient color weather hand”, which could apply and be added to many

apps.

RQ2: What are the features that are added or removed from releases

that are positive, that differ from releases that are negative?

The results in Table 7.15 show that the top impactful topic, “start stop data gps di-

rectly” correlates with negative releases and not positive releases, thus indicating

it is likely not a good feature to add to apps. Similarly, the topic “sound thanks

rate quality really” that appears to elicit user feedback correlates with negative re-

leases. It may also lead to negative impacts to add the feature “notification push

receive alert receiving”, which seems intuitively to relate to push notifications, as

this feature is removed from positive releases and added to negative releases.

Conversely, the topic “facebook follow like twitter news” is removed (or down-

played such that it is no longer a significant proportion of release text) from a much

higher proportion of negative releases than positive. This result suggests that Face-

book and Twitter integration is not a negative feature to have, and that removing

it could lead to a negative impact on success. Similarly, “better performance faster

optimisation enhancement” was removed from a higher proportion of negative re-

leases than positive, perhaps indicating that it was merely downplayed in release

text: no developer would deliberately ‘remove better performance’. A higher pro-

portion of positive releases added “map location gps data zoom”, and a proportion
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of negative releases removed it, thus indicating that map and gps integration may

be a desirable feature to have.

7.5.7 Threats to Validity

In this section we discuss threats to the construct, conclusion and external validity

of our findings.

Construct Validity: The same threats to validity apply from the studies detailed

in Section 7.3 and Section 7.4. We build on the results of Section 7.4, in order to

identify the features discussed as changed in the release text of releases.

Conclusion Validity: The conclusion validity of this study could be affected by

the qualitative human assessment of features and topics in RQ1 and RQ2.

External Validity: Care is required when extending these findings to other app

samples and app stores. We report the proportion of each dataset that added or

removed a topic, and in each case use the maximum set of viable releases; thus

mitigating a potential threat to validity in the representation of each dataset.

7.5.8 Conclusions

We have found that certain features are added exclusively to apps in impactful re-

leases, and that other features are added exclusively to non-impactful releases. By

identifying these features, developers can gain insights into things they can imple-

ment in order to achieve high impact in their releases, and features that might not

result in a high subsequent impact. The feature that most correlates with positive

impact is “map location gps data zoom”, that suggests map and gps integration may

be a feature to add to achieve high positive impact, where applicable. The feature

that most correlates with high (negative) impact is “start stop data gps directly”,

indicating that apps with data usage might implement a direct control over their

usage, in order to control bandwidth and potential costly data usage. We identified

several other features that may apply to a variety of different app types, and that

developers might try adding to their apps.

7.5.9 Threats to Validity

The threats discussed in this Section apply to the studies undertaken and detailed in

Sections 7.3 to 7.5.

Construct Validity: The gap between data analysis and causality is large, forcing

any user to make very strong assumptions if they hope to effectively imply causality.
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Causal analysis can help to reduce this gap, but no such analysis could hope to fully

close it; there will always be unknown factors which may nevertheless have affected

the data. In the case of app stores, there will always be potential external influences

for which no data is available to capture them.

We apply causal impact analysis in our experiments, but there are other forms

of causal analysis such as differences-in-differences. Nonetheless, we believe this

method is the most suitable due to its independent consideration of each app release,

and the ability to use all non-releasing apps as the control set in every experiment,

thus reducing the risk of control set choice influencing results.

Since we are computing multiple p values, the reader might expect some kind of

correction, such as a Bonferroni or Benjamini-Hochberg [24] correction for multiple

statistical testing at the (traditionally popular) 0.05 probability level (corresponding

to the 95% confidence interval). However, since we are not using p values to test

for significance; should a p value lie above this (corrected) threshold, then this

does not necessarily indicate that the property does not contribute to the observed

causal impact. Quite the contrary; since we have already observed that there exists

a causal impact, then the property that exhibits the lowest p value remains that with

the highest probability of having some influence on the causal impact, amongst those

properties assessed using inferential statistics.

7.6 Related Work

In this section, we discuss previous work on software releases and causal analysis in

software engineering.

There has been a large amount of recent work linking software quality with

user perceived quality. Ruiz et al. [238] studied how ad library usage affected user

ratings. Bavota et al. [22] investigated how the changes and faults present in APIs

used affected apps’ ratings. Panichella et al. [218] classified user reviews for soft-

ware maintenance. Palomba et al. [215] studied how developers responding to user

feedback can increase the rating. Moran et al. [200] presented an Android bug re-

porting tool that can increase the engagement between users and software quality.

It therefore stands to reason that software releases affect quality and conse-

quently may affect user rating performance. In 2011 Henze and Boll [113] anal-

ysed release times and user activity in the Apple App Store, and found that Sunday
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evening is the best time for deploying games. In 2013 Datta and Kajanan [67] found

that apps receive more reviews after deploying updates on Thursday or late in the

week. In 2015 Gui et al. found that 23% of releases from frequently-releasing apps

contained ad-related changes [101]. Comino et al. [55] studied the top apps in

Apple and Google stores, finding that releases can boost user downloads.

McIlroy et al. [191] studied update frequencies in the Google Play store, find-

ing that only 1% of studied apps received more than one update per week. These

findings support our weekly data collection schedule, as very few releases can be

‘missed’ by collecting data weekly; additionally the target releases we use (defined

in Section 7.4.2), mandate that very frequently updated apps are excluded due to

lack of sufficient prior and posterior time series data. McIlroy et al. [191] also found

that rating was not affected by update frequency, however the findings by Guerrouj

et al. [100] indicate that high code churn in releases correlates with lower ratings.

Nayebi et al. [205] surveyed developers and users, finding that half of developers

had clear releasing strategies, and many experienced developers thought that re-

leasing strategy affects user feedback. Users were not more likely to install apps

based on release date or frequency, but preferred to install apps which have been

infrequently, but recently, updated.

All of these previous findings on app releases tantalisingly point to the possibil-

ity that certain releases may have higher causal significance than others. However,

no previous study has specifically addressed the question of how to identify the set

of releases that are significant. Furthermore, no previous work attempted to iden-

tify the characteristics of highly significant app releases: the primary technical and

scientific contributions of the present study.

To the best of our knowledge, this is the first study to apply causal impact anal-

ysis to app store analysis. However, causal inference has been discussed in empirical

science papers [147] and it has been previously used in software engineering. For

example the work using the Granger causality test by Couto et al. [60, 61] and Zheng

et al. [306] as a means of software defect prediction, and the work by Ceccarelli et

al. [42] on identifying software artefacts affected by a change. Since CIRA enables

the application causal impact analysis on any time series vector, future work will use

it to analyse other metrics from app store data, and other time series datasets.
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Conclusions and Future Work

App store analysis is a new research field that concerns mining empirical data about

apps from app stores. From 2012 to 2016, the field has continued to grow and ex-

pand in the subfields of research that it encompasses, as discussed by the survey in

Chapter 2. This thesis presents novel contributions to the field of app store anal-

ysis, helping to define the field, identify associated issues that researchers should

perhaps be aware of, and helping to facilitate future research through the inclusion

of a checklist of data inclusion guidelines. These guidelines are adhered to where

relevant in this thesis, but including data on the app stores, quantity and popularity

range, reviews, and any empirical metrics used. It is the hope that future app store

analysis work will bear this checklist in mind when publishing work, and continue to

build on it and increase the information given about research carried out, to support

future synthesis in surveys.

Our survey identified the key sub-fields of app store analysis to date: API anal-

ysis, feature analysis, release engineering, review analysis, security analysis, store

ecosystem comparison, and analysis of size and effort prediction. A key outcome

of this study was the definition of apps and app store in the context of app store

analysis research, that may help to define which research is part of the field and

which research is not. This helps to facilitate future literature surveys, and to point

authors to the relevant literature in their particular subfield in order to help prevent

replication and direct research to new, novel ventures.

The survey included as part of this thesis is not the end point for app store

analysis; rather, it is the starting point of a well defined body of literature, that

will encourage future app store analysis authors and surveyors to advance the field.

We identify areas in which the field can grow, for example the extension to smaller

stores such as Windows Phone store, and an increase in the use of time series data;

but our analysis is by no means complete, and we encourage readers to identify
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potential research options we missed. We also encourage future surveyors to ask

research questions, which can lead to more specific SLRs, now that an initial body

of literature has been identified.

This thesis tries to answer the question of “what makes successful apps success-

ful?”, which it tackles from several different approaches. This was aimed not only

at researchers in the field, but at the developers of apps, hoping to increase knowl-

edge and awareness from their perspective. The first approach was to develop an

approach to feature extraction from textual descriptions, that uses topic modelling

to train topics, in a way analogous to feature extraction. The goal was to uncouple

feature extraction from individual stores, as the n-gram method was. The approach

was validated by replicating results previously run using the n-gram feature extrac-

tion algorithm.

Our topic extraction method was useful in performing the studies in Chapters 5

and 7, but it by no means the only solution which may have been applied. We

encourage researchers to develop alternative methods for feature extraction, and

to reuse the alternatives discussed in Chapter 2. We also encourage comparison

of results, between different methods and sources of feature extraction. This is

particularly relevant to the studies in Chapter 7, where we may miss many potential

properties of impactful releases.

After mining app store data to tackle the problem of what makes apps suc-

cessful, we encounted the problem that only a subset of app store data is available,

starting with the most popular. Further inspection showed that this is a methodolog-

ical problem afflicting app store analysis research more widely. We dubbed the “app

sampling problem”, and investigated its effects by comparing metrics and trends be-

tween sets of varying completeness of review data. Our investigation was limited,

therefore, to our defined sets as ranked by review data, yet the problem applied

more widely. Overall, this study was aimed at raising awareness of the problem,

whilst identifying properties and trends that differ between sets of varying com-

pleteness, and trends that are consistent. We encourage researchers to take the app

sampling problem into account when performing studies, and to extend our work to

investigate how results are affected.
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We next tackled the question of “what makes successful apps successful?” using

a dataset accumulated over time, which featured app releases from Google Play and

Windows Phone Store. Causal inference provides a method with which to assess the

subsequent impact of releases on performance, and causal impact analysis is partic-

ularly suited to app store analysis data sets due to its independent consideration of

each release. For this reason we used causal impact analysis for our experiments,

but other causal inference methods are available, such as differences-in-differences

analysis. We encourage future researchers to explore use of these tools for app store

analysis, and to develop new approaches for identification of events or properties of

significance.

The Google tool CausalImpact was used for our initial study into the re-

leases which had a significant subsequent impact on app performance (“impactful”

releases), and enabled the identification of properties such as price and release text,

in impactful releases from Google and Windows stores. For the extension to the

large app store datasets, such as the dataset of 36,000 Google Play apps recorded

weekly over a period of 12 months, it was necessary to implement CIRA, a Java

implementation of causal impact analysis which uses alternative methods to process

and assign the global variance component: the control set.

CIRA’s implementation enables the processing of large control sets, and made

the analysis of our data set of 36,000 apps possible. This subsequent study proved

that the previous findings held true, such as the finding that higher priced (paid)

app releases are more likely to have a positive effect, and also enabled access to a

larger selection of app developers. As part of the study, we contacted 52 developers

of apps with impactful releases, regardless of whether their particular impact was

positive or negative, in order to ask a number of questions regarding the results of

the study. 78% of developers agreed with the observed impacts, of which 33% said

that they would consider changing their releasing strategy as a result of the findings.

As an extension to this work, we investigated the features that correlate with

highly impactful releases, and that correlate with highly impactful positive releases.

The findings show several general features that correlate with positive impactful

releases, such “start stop data gps directly”, and others that correlate with negative

impactful releases, such as “facebook follow like twitter news”. Many of the features
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that differed the most between impactful and non-impactful (or positive and neg-

ative impactful) datasets were domain-specific. We therefore include the category

specific results in Appendix C, which provide insights for developers in each of these

domains, and show that in-depth analysis is necessary to provide meaningful re-

sults when considering such a large sample of popular apps. The features identified

through this study were very specific to the dataset, and time period, studied, and

we therefore cannot claim that these features correlate with impact in other stores

or samples. Rather, we conducted these experiments to provide some insight into

features which correlate with success, and to demonstrate a means with which to

do so. We encourage both researchers and app developers to try these methods, to

identify other features that correlate with success.

Our implementation of causal impact analysis, CIRA, is available for use on-

line via a web interface, and also has a built-in multi-platform desktop GUI. We

implemented two other extensions, to maximise the utility of such an approach:

an ensemble classifier, that runs multiple classifiers using alternative techniques for

correcting baseline prediction; feature regression, that enables the training via lin-

ear regression of features, to help prediction. Unfortunately we did not apply these

extensions in studies relating to app store analysis, but it is our hope that future

studies will make use of them.

This thesis provides several contributions, through the method of extracting

features via topic modelling, the identification of the app sampling problem, the im-

plementation of CIRA, and the identification of some of the properties of impactful

app releases. We have, in doing so, explored several avenues of what makes suc-

cessful apps successful, yet there remain many unexplored avenues for answering

this question. We hope to have provided some potential options or inspiration for

future research, and to have identified gaps in the research through the literature

survey. In synthesising these two contributions, we find that prediction is likely to be

a powerful tool for app developers and researchers alike, and it may be that causal

inference can be adapted to this task.

No matter how sophisticated the predictors or methodology for analysing data,

it is important that any approaches continue to be applied to recent and relevant

data. Doing this helps to mitigate the app sampling problem and other similar bias
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effects, and provides actionable findings to both researchers and developers, as was

the aim of this thesis.
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plication sandbox system for suspicious software detection,” in Proceedings of the 5th
International Conference on Malicious and Unwanted Software, MALWARE’10, 2010,

pp. 55–62.

[32] D. M. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” JMLR, vol. 3, pp.

993–1022, 2003.
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[75] D. Erić, R. Bač́ık, and I. Fedorko, “Rating decision analysis based on iOS App Store

data,” Quality Innovation Prosperity, vol. 18, no. 2, pp. 27–37, 2014.

[76] D. Ferreira, V. Kostakos, and A. K. Dey, “Lessons learned from large-scale user studies:

Using Android Market as a source of data,” Int. J. Mob. Hum. Comput. Interact., vol. 4,

no. 3, pp. 28–43, 2012.

[77] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating functional and code size

measures for mobile applications,” in 41st Euromicro Conference series on Software
Engineering and Advanced Applications, SEAA ’15. IEEE, 2015, pp. 365–368.

[78] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating functional and code size

measures for mobile applications: A replicated study,” in 16th International Confer-
ence on Product-Focused Software Process Improvement, PROFES ’15, 2015.

[79] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang, “App store anal-

ysis: Mining app stores for relationships between customer, business and technical

characteristics,” Tech. Rep., 2014, rN/14/10.

[80] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tortora, “On the use of require-

ments measures to predict software project and product measures in the context of

Android mobile apps: a preliminary study,” in 41st Euromicro Conference series on
Software Engineering and Advanced Applications (SEAA ’15). IEEE, 2015, pp. 357–

364.

[81] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Mach.
Learn., vol. 29, no. 2-3, pp. 131–163, 1997.

[82] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people hate your app:

Making sense of user feedback in a mobile app store,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13.

ACM, 2013, pp. 1276–1284.

[83] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments: An approach for

software requirements evolution,” in Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13. IEEE Press, 2013, pp. 582–591.

[84] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics of mobile apps via

user review mining,” in 2015 IEEE Symposium on Service-Oriented System Engineering,
SOSE ’15, 2015, pp. 284–290.



BIBLIOGRAPHY 193

[85] R. Garg and R. Telang, “Inferring app demand from publicly available data,” MIS Q.,
vol. 37, no. 4, pp. 1253–1264, 2013.

[86] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Automatically detect-

ing potential privacy leaks in Android applications on a large scale,” in Proceedings
of the 5th International Conference on Trust and Trustworthy Computing, TRUST’12.

Springer-Verlag, 2012, pp. 291–307.

[87] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi, “Adrob: Examin-

ing the landscape and impact of Android application plagiarism,” in Proceeding of
the 11th annual international conference on Mobile systems, applications, and services.
ACM, 2013, pp. 431–444.

[88] GinLemon, “Smart launcher 3 — simple. light. fast.” http://www.smartlauncher.net/,

2011.

[89] GitHub, Inc., “Github,” https://github.com/, 2014.

[90] W. Glodek and R. Harang, “Rapid permissions-based detection and analysis of mo-

bile malware using random decision forests,” in Military Communications Conference,
MILCOM 2013-2013 IEEE. IEEE, 2013, pp. 980–985.
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Appendix A

Closely Related Literature

The following literature is important to the field of App Store Analysis, yet itself does not

meet our exact definition of App Store Analysis. Nevertheless, since this work meets aspects

of the definition, we regard it as closely related. We do not claim to comprehensively survey

this literature, but provide it to add context to the App Store Analysis literature discussed

in Chapter 2.

A.1 User Surveys and Studies
There is a cross section of App Analysis studies which survey or study user behaviour and

feedback, but the information is not specific to observed apps, and is therefore not combined

with technical information. These studies are important to the field of App Store Analysis

and so are included here.

In 2011 Böhmer et al. [33] studied 4,100 Android users for app usage statistics. This

was done using AppSensor, an application that monitors the usage of other apps on an

Android device. They found that the average application usage session was less than 72

seconds long, and that smartphones were used for almost 60 minutes every day. The type

of application was found to differ between times of day, such as news applications in the

morning and games at night. The exception to this rule was communication apps, which

were used throughout the day.

In 2012 Ferreira et al. [76] surveyed 4,035 Android user charging habits, using an

app to record their behaviour. Lin et al. [160] conducted a survey on 179 Android users,

that asked about their expectations of the purpose and sensitive data handling of apps.

They found that the problem of apps not meeting expectations or utilising sensitive data

unexpectedly was prevalent, and outlined potential store interface changes to rectify the

issue. Rein and Münch [234] carried out a user study involving mock purchasing for planned

app features, in order to determine both the priority and ideal pricing for the features. In

2013 Oh et al. [212] surveyed 100 app users and found that the users were more likely to

take a passive approach and delete apps, rather than reviewing or contacting developers,

but when users took an active approach, reviewing was the most popular approach. In 2014

Tan et al. [263] surveyed users and developers of the Apple App Store, regarding the iOS

permission request explanation feature. The feature was infrequently used, but the survey

found that users would be significantly more likely to accept a permissions request if an

explanation was given.

In 2015 Lim et al. [155] surveyed app users from 15 countries to understand how usage

of apps and app stores differs by region. They found that behaviour differed significantly by

region in many regards. In Eastern regions such as China and India, a greater proportion
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of users participated in recommendation and rating of apps, almost 4 times the proportion

of Western users. Additionally, the survey found that app abandonment due to issues was

higher on average in Brazil and the UK, and lower on average in Japan and France, indicat-

ing that any differences were affected by more than global region. It is a unique study as

it gathered user information regarding multiple app stores across a large number of global

app users: the focus is on usage, not on apps, yet the authors identified actionable findings

for app developers.

A.2 Related Security
I present some of the key app security studies that do not perform App Store Analysis, but

that influenced some of the papers described in Section 2.10.

Enck et al. [74] introduced Kirin, an Android app certification tool for flagging po-

tential malware using a set of rules. In 2010 Enck et al. introduced TaintDroid [73], a

tool for tracking the flow of sensitive information within an Android app. TaintDroid was

one of the first static analysis tools for Android and was built on extensively in subsequent

work. Another information flow extraction tool was created by Arzt et al. [11] in 2014,

called FlowDroid. This tool statically analyses information flow to find all possible flows.

Some authors have used sets mined from Google Play as benign app sets to test against

known malware: Xu et al. [298], Rastogi et al. [232], Jing et al. [132], Arp et al. [10], Wang

et al. [290], Liu and Liu [171], Roy et al. [236] and Khanmohammadi et al. [143]. Ho et

al. [115] used the top 10 most popular apps in each category as a benign set, upon which

to test their framework for root kit exploit containment.

Other authors have used sets mined from app stores to test their tools on large real-

world datasets: Barrera et al. [18], Jeon et al. [128], Grace et al. [98], Crussell et al. [63,

64], Ravindranath et al. [233], von Rhein et al. [282], Li et al. [153], Huang et al. [123],

Cen et al. [43], Liu et al. [169] and Bastani et al. [20].

A.3 Reports
Initial studies such as the 2010 work by Sharma et al. [254] evaluated the size and growth

of the apps market up to the time. In 2011 Butler [38] conducted a study on the Android

system, highlighting how it was changing mobile development by enabling people with no

prior development experience to release an app. In 2012 Shuler [255] published a report

on the Apple App Store Education category, comparing it with their previous study in 2009.

They found that over 72% of the top-selling apps in this category targeted children aged

10 or below, a number that had significantly increased from 47% in 2009. Additionally, the

average price of an app had risen by 1 USD since 2009, and the majority of top Education

developers in 2012 had not been present in 2009.

The 2013 report by Vision Mobile [280] on app industry monetary value and growth

found that 72% of developers were dedicated to Android. iOS and Android developers

earned on average double that of developers of other platforms, and iOS was considered

the highest priority platform. As of 2013, iOS, Android and Blackberry were the leading

platforms, despite Blackberry’s decline, and the launch of the prospect Windows Phone

Store in late 2010. Vision Mobile have released yearly reports since 2012 on aspects such
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as developer share, industry revenue and growth. The organisation gathers information by

surveying developers worldwide.

A.4 Mining Tools
Due to the plethora of analysis and research opportunities presented by app store data, and

indeed also due to the difficulties involved with mining app stores, several mining tools have

been published.

In 2013, Bakar et al. [17] published OSSGrab which mines HTML pages from Google

Play. The tool was built in order to facilitate their app permissions study [15]. In 2014,

Viennot et al. introduced the PlayDrone Google Play crawler [275], to facilitate their

large scale API study [276].

The Android Malware Genome Project [308] is a popular source of malware applica-

tions for testing security tools. In 2015 Krutz et al. [149] made available a dataset containing

1,179 open source applications.



Appendix B

App Feature Extraction using

Topic Models

Here we include supplementary result graphs for the Chapter 4 study on app feature extrac-

tion using topic models.

B.1 Sliding Window Rating/Download Correlation Analy-

sis Results

Figure B.1: Sliding Window Rating/Download Correlation Analysis results
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

250

300

350

400

450

500

550

600

To
ta

l n
um

be
r o

f a
pp

s

Entertainment (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100
200
300
400
500
600
700
800
900

1000

To
ta

l n
um

be
r o

f a
pp

s

Entertainment (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100
150
200
250
300
350
400
450
500
550

To
ta

l n
um

be
r o

f a
pp

s

Finance (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

20
40
60
80

100
120
140
160
180
200

To
ta

l n
um

be
r o

f a
pp

s

Finance (paid)
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

500
550
600
650
700
750
800
850
900
950

To
ta

l n
um

be
r o

f a
pp

s

Games (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

500

1000

1500

2000

2500

3000

To
ta

l n
um

be
r o

f a
pp

s

Games (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

50

100

150

200

250

300

350

To
ta

l n
um

be
r o

f a
pp

s

Health & Wellness (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0

100

200

300

400

500

600

700

To
ta

l n
um

be
r o

f a
pp

s

Health &Wellness (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

160
180
200
220
240
260
280
300
320

To
ta

l n
um

be
r o

f a
pp

s

Instant Messaging & Social Networking (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

40

60

80

100

120

140

160

To
ta

l n
um

be
r o

f a
pp

s

Instant Messaging & Social Networking (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100
120
140
160
180
200
220
240
260
280

To
ta

l n
um

be
r o

f a
pp

s

Maps & Navigation (free)
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

50

100

150

200

250

To
ta

l n
um

be
r o

f a
pp

s

Maps & Navigation (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

200
300
400
500
600
700
800
900

1000
1100

To
ta

l n
um

be
r o

f a
pp

s

Music & Audio (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0

100

200

300

400

500

To
ta

l n
um

be
r o

f a
pp

s

Music & Audio (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

200

400

600

800

1000

1200

1400

To
ta

l n
um

be
r o

f a
pp

s

News (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

10

20

30

40

50

60

70

80

To
ta

l n
um

be
r o

f a
pp

s

News (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

110
120
130
140
150
160
170
180
190
200

To
ta

l n
um

be
r o

f a
pp

s

Photo & Video (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

50

100

150

200

250

300

350

400

To
ta

l n
um

be
r o

f a
pp

s

Photo & Video (paid)
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100

150

200

250

300

350

400

To
ta

l n
um

be
r o

f a
pp

s

Productivity (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100
150
200
250
300
350
400
450
500
550

To
ta

l n
um

be
r o

f a
pp

s

Productivity (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

50

100

150

200

250

300

350

400

To
ta

l n
um

be
r o

f a
pp

s

Reference & eBooks (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0

2000

4000

6000

8000

10000

12000

To
ta

l n
um

be
r o

f a
pp

s

Reference & eBooks (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

80
100
120
140
160
180
200
220
240

To
ta

l n
um

be
r o

f a
pp

s

Shopping (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

10

15

20

25

30

35

40

45

To
ta

l n
um

be
r o

f a
pp

s

Shopping (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

150

200

250

300

350

400

450

To
ta

l n
um

be
r o

f a
pp

s

Sports & Recreation (free)
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0

50

100

150

200

250

To
ta

l n
um

be
r o

f a
pp

s

Sports & Recreation (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

380
400
420
440
460
480
500
520
540
560

To
ta

l n
um

be
r o

f a
pp

s

Themes (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0

2000

4000

6000

8000

10000

12000

To
ta

l n
um

be
r o

f a
pp

s

Themes (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

100

150

200

250

300

350

400

450

To
ta

l n
um

be
r o

f a
pp

s

Travel (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

0
100
200
300
400
500
600
700
800

To
ta

l n
um

be
r o

f a
pp

s

Travel (paid)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

300

400

500

600

700

800

900

1000

To
ta

l n
um

be
r o

f a
pp

s

Utilities (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

200

400

600

800

1000

1200

1400

To
ta

l n
um

be
r o

f a
pp

s

Utilities (paid)
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0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

24
26
28
30
32
34
36
38
40
42

To
ta

l n
um

be
r o

f a
pp

s

Weather (free)

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

1.0

0.5

0.0

0.5

1.0

rho
p

0 1 2 3 4 5 6 7 8 9
Minimum number of reviews

15
20
25
30
35
40
45
50
55
60

To
ta

l n
um

be
r o

f a
pp

s

Weather (paid)



Appendix C

What are the Features that are

Added to Impactful Releases?

Here we include supplementary results for the Section 7.5 study on features that are specific

to impactful releases.

C.1 Supplementary Category-Specific Topic Results

Table C.1: RQ1 + RQ2: Category topics that changed at release time
NI: non-impact releases
I: impactful releases
N: releases that decreased rating
P: releases that increased rating
Top: proportion of topics that were added in I/P releases, and taken away

or not added to NI/N releases

Bottom: proportion of topics that were removed or not changed in I/P
releases, but were added in NI/N releases

NI I Topic N P Topic

-0.14 0.76 review help really like nice -1.33 0.00 copy paste clipboard feature de-
sign

-0.85 0.00 import export file csv html -1.33 0.00 improved access feature early
time

-0.28 0.51 ajout plus mail de pour 0.00 1.20 android wear watch smartwatch
support

0.28 -0.51 de le pour correction vous 0.44 -0.60 image gallery preview load crop
0.28 -0.76 copy paste clipboard feature de-

sign
4.42 2.40 permission read used storage

external
3.84 1.78 bible verse reading chapter re-

move
3.10 0.00 bible verse reading chapter re-

move

Books & Reference

NI I Topic N P Topic

-2.63 3.85 expense report transaction in-
come bill

-9.09 0.00 orientation landscape portrait
tablet mode

0.00 3.85 contact list phone using copy -9.09 0.00 display option screen title de-
fault

0.00 3.85 message notification send send-
ing receive

-9.09 0.00 tablet phone available mobile
optimised

1.32 0.00 device range mode wider ex-
tended

0.00 6.67 log change multiple list high-
light

2.63 0.00 task reminder time set view 9.09 0.00 expense report transaction in-
come bill

2.63 0.00 bug fix minor space file 9.09 0.00 backup restore cloud google
drive

Business
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NI I Topic N P Topic

0.00 2.78 tablet phone available mobile
optimised

-2.86 2.70 book reading comic page reader

-0.54 1.39 document pdf text multiple file -2.86 2.70 download downloads file down-
loaded downloading

-0.54 1.39 improved handling handle
startup performance

-2.86 0.00 setting layer color menu back-
ground

0.54 0.00 close force fixed caused compat-
ible

2.86 0.00 document pdf text multiple file

1.63 0.00 faster load loading scrolling
speed

2.86 0.00 improved handling handle
startup performance

0.54 -1.39 news feed article section read 5.71 0.00 tablet phone available mobile
optimised

Comics

NI I Topic N P Topic

-0.16 1.22 new feature create creating geo-
tag

-2.06 0.00 feature allows requested an-
nounce excited

-0.48 0.82 device android lollipop work
mobile

-2.06 0.00 feedback suggestion comment
send app

-0.32 0.82 chinese language simplified tra-
ditional japanese

-1.03 0.68 email send comment request
suggestion

0.16 -0.82 menu button setting section par-
ent

2.06 0.00 free feel email contact app

0.16 -0.82 feedback suggestion comment
send app

2.06 0.00 android lollipop compatibility
kitkat pre

0.32 -0.82 card credit payment account
transaction

2.06 -0.68 language spanish french german
portuguese

Communication

NI I Topic N P Topic

-0.64 1.82 bug fix minor doe symptom 0.00 12.90 weve easier making squashed
feedback

-0.64 1.82 language franais deutsch en-
glish meeting

-8.33 -3.23 word dictionary letter day of-
fline

0.00 1.82 permission read used storage
external

-4.17 0.00 building build city quest decora-
tion

0.64 -1.82 fish fishing scene new imple-
mented

4.17 0.00 bug fix minor doe symptom

0.64 -1.82 building build city quest decora-
tion

4.17 0.00 let know review store like

1.27 -3.64 weve youll just got thing 4.17 0.00 brush color pen drawing paint

Education

NI I Topic N P Topic

-0.28 0.63 baby fun accessory make clothes 0.00 1.20 key keyboard input layout press
-0.14 0.63 free user chaatz number india 0.00 1.20 free user chaatz number india
0.00 0.63 removed permission unneces-

sary needed unused
-0.65 0.00 android wear watch smartwatch

support

0.42 -0.31 support chromecast stream beta
video

0.65 0.00 resolution high device higher
screen

0.28 -0.63 notification push receive alert
receiving

0.65 -0.60 spider man including event
power

0.55 -0.94 movie show content browse film 1.31 0.00 removed permission unneces-
sary needed unused

Entertainment
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NI I Topic N P Topic

-0.48 1.41 expense report transaction in-
come bill

-0.68 1.44 app feedback release improve
experience

-0.36 0.56 version til med role fejlrettelser -0.68 0.48 application launch implemented
launching program

-0.24 0.56 support additional functionality
tablet operation

-0.68 0.48 app includes using version bet-
ter

0.24 -0.28 update future big near hand 0.68 -0.96 calculator tax rate calculation
loan

0.12 -0.56 aplikacji bdw poprawki dla wer-
sji

1.37 -0.48 mobile app customer banking
service

0.24 -0.56 offer app working continuously
better

0.68 -1.44 aplikacji bdw poprawki dla wer-
sji

Finance

NI I Topic N P Topic

-0.64 4.44 app feedback release improve
experience

-14.29 2.63 flight hotel booking app book

-0.64 2.22 run smoother make faster con-
tent

-14.29 2.63 improved touch suit partner
play

-0.64 2.22 weve youll just got thing -14.29 2.63 game mini house run smooth

2.55 0.00 love feedback hear wed sugges-
tion

0.00 2.63 brush color pen drawing paint

1.27 -2.22 hard working weve work bring 14.29 0.00 google drive cloud integration
integrated

1.27 -2.22 app way need update problem 14.29 -5.26 goal tracking track progress ac-
tivity

Health & Fitness

NI I Topic N P Topic

-0.51 1.06 support device android version
initial

0.00 3.45 para melhorias com mais nova

0.00 1.06 version doubled displacement
app randomization

0.00 3.45 issue fixed crashing recovery re-
lated

0.00 1.06 fix bug better localization intro-
duced

0.00 3.45 release note detail github stabil-
ity

0.51 -1.06 refresh auto pull change map 1.54 0.00 fix bug better localization intro-
duced

0.51 -1.06 language spanish french german
portuguese

1.54 0.00 support device android version
initial

1.02 -1.06 scan code scanning barcode
scanner

4.62 0.00 notification push receive alert
receiving

Libraries & Demo

NI I Topic N P Topic

-0.61 1.49 online lot avatar description ta-
ble

-8.33 0.00 youre looking know having peo-
ple

0.00 1.49 article reading read save link -4.17 0.00 location current based network
wont

0.00 1.49 version previous upgrading can-
celling mixcloud

-4.17 0.00 version algorithm major photo
recovery

0.61 -2.99 youre looking know having peo-
ple

4.17 0.00 weather widget forecast temper-
ature current

0.61 -2.99 alarm time mode timer sound 4.17 0.00 backup restore cloud google
drive

0.61 -2.99 recipe like kitchen cooking fea-
ture

4.17 -2.33 weve youll just got thing

Lifestyle
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NI I Topic N P Topic

-0.85 1.33 live stream watch video broad-
cast

-1.94 0.82 sticker testing line bot chat

-0.42 0.89 card external storage support
file

-1.94 0.82 video youtube player playing
thumbnail

-0.64 0.44 language swedish turkish trans-
lation polish

-0.97 0.82 para versin la que mejoras

0.42 -0.44 fixed working properly premium
older

0.97 -0.82 fixed bug crash opening naviga-
tiondrawer

0.21 -0.89 fix bug minor extended reaction 1.94 0.00 album music playlist track artist
0.21 -0.89 add improve refine ons euro 1.94 0.00 support display click download

issue

Media & Video

NI I Topic N P Topic

-0.24 1.71 language spanish french german
portuguese

-8.70 0.00 sticker testing line bot chat

0.00 0.85 addition available club function-
ality reference

-2.17 0.00 android device running compat-
ible lollipop

0.00 0.85 support android cloud guideline
risk

0.00 2.08 support android cloud guideline
risk

0.72 0.00 weve youll just got thing 0.72 -1.04 stuff lot cool great check
0.48 -0.43 social share network medium

sharing
0.72 -1.04 import export file csv html

0.48 -0.43 backup restore cloud google
drive

0.72 -1.04 health improvement updated
check doctor

Medical

NI I Topic N P Topic

-1.01 2.00 version cheating run easter con-
tinue

-12.50 0.00 version previous upgrading can-
celling mixcloud

-0.50 2.00 crash fixed startup causing mark -12.50 0.00 new bamboo dozen enhanced
size

-0.50 2.00 fast news forward slow agent 0.00 2.38 album music playlist track artist

0.50 -2.00 design material layout element
original

12.50 0.00 issue poker thanks playing gov-
ernor

0.50 -2.00 lock password security pin apps 12.50 0.00 page saved list bookmark search
0.50 -2.00 question answer quiz correct ask 12.50 0.00 version cheating run easter con-

tinue

Music & Audio

NI I Topic N P Topic

0.00 1.99 hard working weve work bring -3.61 0.00 article reading read save link
0.00 1.00 aplikacji bdw poprawki dla wer-

sji
0.00 3.39 hard working weve work bring

-0.30 0.50 make better easier experience
faster

-1.20 0.85 live stream watch video broad-
cast

0.30 -0.50 love feedback hear wed sugges-
tion

2.41 0.00 news feed article section read

0.30 -0.50 story directly deep feed include 2.41 0.00 aplikacji bdw poprawki dla wer-
sji

0.15 -1.49 article reading read save link 2.41 -0.85 feature app latest free news

News & Magazines
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NI I Topic N P Topic

-0.19 0.56 theme icon latest rate like -8.48 -0.53 facebook follow like twitter
news

-0.06 0.56 color background text picker
scheme

-8.48 -1.05 wallpaper live muzei beautiful
picker

-0.44 0.14 google play hangout gmail
theme

-0.61 1.05 icon request activity wallpaper
thank

0.31 -0.28 icon white text background set-
ting

0.30 -0.53 resolution high device higher
screen

0.31 -0.70 watch face wear android phone 1.21 -0.79 icon activity request launcher
fixed

1.45 -4.51 wallpaper live muzei beautiful
picker

9.09 0.53 sound thanks rate quality really

Personalisation

NI I Topic N P Topic

-0.61 2.44 facebook twitter share sharing
instagram

-5.26 4.55 theme dark light material design

-0.61 2.44 android support lollipop sam-
sung device

-5.26 0.00 got just weve awesome perfect

-0.61 2.44 list support update menu editor -5.26 0.00 look feel fresh modern refreshed

1.23 -2.44 device samsung htc nexus sup-
port

5.26 0.00 list support update menu editor

1.84 -2.44 image new filter effect tool 5.26 0.00 button load save toolbar using
0.61 -4.88 mode device camera setting fo-

cus
5.26 0.00 change minor api website visit

Photography

NI I Topic N P Topic

-0.34 2.15 language translation translate
thanks error

-3.85 2.99 file folder zip failure open

-2.03 0.00 event calendar day agenda ex-
change

-3.85 2.99 alarm time mode timer sound

-0.68 1.08 android support lollipop lexicon
licensing

-3.85 1.49 backup restore cloud google
drive

0.68 -2.15 setting default changed disabled
shift

3.85 0.00 version tool minor added wind

0.68 -2.15 date view widget day month 3.85 0.00 flash add widget version lan-
guage

1.02 -3.23 apps device support setting
switching

3.85 0.00 fix bug error separately device

Productivity

NI I Topic N P Topic

0.00 20.00 product shopping page talk shop -14.29 0.00 make sure update latest thanks
-2.70 4.00 day valentine love special heart 0.00 5.56 policy google privacy term ana-

lytics
-0.90 4.00 policy google privacy term ana-

lytics
0.00 5.56 offer app working continuously

better

0.90 0.00 fix available link clicking grand 28.57 16.67 product shopping page talk shop
1.80 0.00 item inventory price rare sell 14.29 0.00 und der die mit auf
1.80 -4.00 facebook twitter share sharing

instagram
14.29 0.00 sign account using single regis-

ter

Shopping
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NI I Topic N P Topic

-0.85 2.70 group member create join chat -9.09 0.00 weve easier making squashed
feedback

0.00 2.70 fixed issue known startup way 0.00 3.85 fixed issue known startup way
0.00 2.70 search favourite deal nearby lo-

cal
0.00 3.85 tab custom chrome galaxy spe-

cific

0.85 -2.70 store apps detail play check 9.09 0.00 group member create join chat
0.85 -2.70 weve easier making squashed

feedback
9.09 0.00 search favourite deal nearby lo-

cal
1.69 -2.70 notification push receive alert

receiving
9.09 0.00 search result recent suggestion

radius

Social

NI I Topic N P Topic

-0.09 0.84 tournament player online win
ranking

0.00 1.51 live stream watch video broad-
cast

0.00 0.63 notification sound setting alert
vibration

-0.94 0.38 version doubled displacement
app randomization

0.00 0.63 news feed article section read -0.94 0.38 language spanish french german
portuguese

0.36 0.00 team match cheer vault dream 0.47 -0.75 round course shot golf hole
0.18 -0.21 fixed bug crash opening naviga-

tiondrawer
0.47 -0.75 player stats single profile start-

ing
0.18 -0.21 notification user showing event

loading
1.88 0.00 alarm time mode timer sound

Sports

NI I Topic N P Topic

-0.17 0.66 bug minor fix single end -0.58 1.05 map location gps data zoom
-0.33 0.44 card external storage support

file
-1.16 0.35 import export file csv html

-0.08 0.66 app apps clean installed option 0.00 1.05 app apps clean installed option

0.17 -0.44 fix bug splash prevent process 0.58 -0.35 calculator tax rate calculation
loan

0.08 -0.66 device android compatibility
older newer

1.16 0.00 language english spanish local-
ization french

0.75 -0.44 language swedish turkish trans-
lation polish

1.16 0.00 data weight device setting body

Tools

NI I Topic N P Topic

0.00 2.60 flash add widget version lan-
guage

-0.88 2.58 route map location search ad-
dress

0.00 1.86 booking app taxi favourite ad-
dress

-0.88 1.94 map location gps data zoom

-0.17 1.12 route map location search ad-
dress

-0.88 0.65 flight hotel booking app book

0.17 -0.37 removed permission unneces-
sary needed unused

1.75 0.00 time hour format zone display

0.17 -0.37 device samsung htc nexus sup-
port

2.63 0.65 ticket purchase app send email

1.02 0.00 bus stop journey station line 6.14 0.00 flash add widget version lan-
guage

Transport
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NI I Topic N P Topic

0.00 3.54 start stop data gps directly -9.16 -0.61 better performance faster opti-
misation enhancement

-1.33 -0.37 value select tip graph altitude -2.96 0.61 map location gps data zoom
-1.45 -0.75 screen selected current tapping

displayed
-3.50 0.00 android app time improved

present

1.09 0.19 log available view device con-
nected

4.31 0.61 trip travel destination time
guide

0.97 0.00 booking app taxi favourite ad-
dress

4.85 0.61 start stop data gps directly

0.85 -0.93 option optimization removed
temporarily shadow

5.12 0.61 app inside update mean just

Travel & Local

NI I Topic N P Topic

-1.54 4.35 option menu hide using context -28.57 6.25 weather widget forecast temper-
ature current

-4.62 0.00 fix weather version display op-
tion

-14.29 6.25 language swedish turkish trans-
lation polish

0.00 4.35 traffic information map live alert 0.00 6.25 plane game free pilot waiting

1.54 -4.35 added physical global turned
improved

0.00 6.25 traffic information map live alert

1.54 -4.35 change minor api website visit 0.00 6.25 photo app child kid year
3.08 -4.35 weather widget forecast temper-

ature current
14.29 0.00 design material flat modern

guideline

Weather
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Table C.-4: RQ1 + 2: Games category topics that changed at release time
NI: non-impact releases
I: impactful releases
N: releases that decreased rating
P: releases that increased rating
Top: proportion of topics that were added in I/P releases, and taken away

or not added to NI/N releases

Bottom: proportion of topics that were removed or not changed in I/P
releases, but were added in NI/N releases

NI I Topic N P Topic

-0.65 1.26 key keyboard input layout press -3.92 0.93 guild battle raid event hero
-0.65 1.26 weapon new mission gun sniper -1.96 0.93 graphic control environment re-

alistic driving
-0.33 1.26 clan battle attack unit troop -1.96 0.93 new random item character tool

0.16 -1.26 new ton display call weekend 1.96 0.00 ad removed remove banner in-
terstitial

0.33 -1.89 hero dungeon equipment skill
item

1.96 -0.93 alliance war battle unit attack

1.14 -2.52 power level ups unlock time 1.96 -0.93 level pack designed newly fun

Action

NI I Topic N P Topic

0.00 1.46 pack available free expansion in-
cludes

0.00 2.47 playing thank description date
minor

-0.45 0.73 challenge reward win daily earn -3.57 -1.23 play google service achievement
leaderboards

-0.45 0.73 problem issue updated help con-
tact

-1.79 0.00 day valentine love special heart

0.23 -0.73 fix option improvement bug
screen

1.79 0.00 phone support model android
send

2.50 0.73 adventure level island explore
come

1.79 0.00 day week month view calendar

0.68 -2.19 play google service achievement
leaderboards

1.79 0.00 problem issue updated help con-
tact

Adventure

NI I Topic N P Topic

-1.47 1.89 level candy latest sweet down-
load

-9.09 0.00 leaderboard achievement
leaderboards game score

-0.49 1.89 review help really like nice -9.09 0.00 friend share facebook connect
chip

-0.49 1.89 new horse set stable need -9.09 0.00 version upload delete folder ad-
vanced

0.49 -1.89 level difficulty adjusted adjust-
ment adjust

0.00 2.38 add improve refine ons euro

0.49 -1.89 mode immersive night preview
endless

9.09 -2.38 christmas holiday winter gift
santa

0.49 -1.89 leaderboard achievement
leaderboards game score

9.09 -2.38 feedback thanks based coming
thank

Arcade
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NI I Topic N P Topic

-1.81 0.00 related stability ad option use -4.35 0.00 device samsung htc nexus sup-
port

-0.23 1.44 size reduced apk reduce smaller -2.17 2.15 leaderboard achievement
leaderboards game score

-0.23 0.72 card box draw feature multiple -2.17 1.08 feature available update august
timing

0.23 -0.72 new brand reaction prank dbz 2.17 0.00 added device bacon restored
showroom

0.45 -0.72 tournament player online win
ranking

4.35 0.00 puzzle pack update piece daily

0.45 -0.72 ajout plus mail de pour 4.35 0.00 support device better minor up-
dated

Board

NI I Topic N P Topic

0.00 2.19 nng thm khi hin tnh -1.67 1.30 leaderboard achievement
leaderboards game score

0.00 1.46 policy google privacy term ana-
lytics

-1.67 1.30 option added advertising modi-
fied disabling

-0.65 0.73 related stability ad option use -1.67 0.00 game played brain trivia organ-
ised

0.22 -0.73 support android update hoptime
basiskatalog

1.67 0.00 fix option improvement bug
screen

0.22 -0.73 link browser open page web 3.33 1.30 nng thm khi hin tnh
0.43 -1.46 multiplayer game mode online

player
3.33 0.00 card deck collection pack cake

Card

NI I Topic N P Topic

0.00 5.00 look feel fresh modern refreshed 0.00 18.75 slot machine game win bonus
0.00 5.00 character new unlock jump gen-

der
0.00 6.25 look feel fresh modern refreshed

0.00 5.00 stage new user item upgrade 0.00 6.25 character new unlock jump gen-
der

1.22 0.00 run smoother make faster con-
tent

0.00 6.25 new update car extreme road

1.22 0.00 update thank issue reach enjoy 0.00 6.25 event special reward limited
time

1.22 0.00 release note detail github stabil-
ity

0.00 6.25 save cloud game saved progress

Casino

NI I Topic N P Topic

0.00 3.09 dragon ancient epic kingdom
knight

0.00 4.84 dragon ancient epic kingdom
knight

0.00 2.06 fixed crash bug disappearing
freezing

-2.86 1.61 language spanish french german
portuguese

-0.51 1.03 new portal plant level zombie -2.86 0.00 display change menu direct nav

1.53 0.00 baby fun accessory make clothes 2.86 0.00 like review write help play
4.09 2.06 run smoother make faster con-

tent
2.86 0.00 building build city quest decora-

tion
0.51 -2.06 dont forget review rate leave 2.86 0.00 circle look beauty photo eye

Casual
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NI I Topic N P Topic

-0.41 1.96 dont forget review rate leave 0.00 3.33 language franais deutsch en-
glish meeting

-0.21 1.31 language franais deutsch en-
glish meeting

-1.08 1.67 game played brain trivia organ-
ised

0.00 1.31 touch control area little pad -1.08 1.67 para melhorias com mais nova

1.65 0.65 size reduced apk reduce smaller 4.30 1.67 free feel email contact app
1.44 0.00 better performance faster opti-

misation enhancement
1.08 -1.67 baby fun accessory make clothes

0.41 -1.31 sticker testing line bot chat 3.23 0.00 dont forget review rate leave

Educational

NI I Topic N P Topic

-1.05 3.08 song music piano lyric chord 0.00 6.45 song music piano lyric chord
-0.53 1.54 mode landscape survival re-

named phone
0.00 3.23 fixed bug major play bajiquan

0.00 1.54 brush color pen drawing paint 0.00 3.23 friend share facebook connect
chip

0.53 0.00 let know review store like 2.94 0.00 mode landscape survival re-
named phone

0.53 0.00 game played brain trivia organ-
ised

2.94 0.00 new mod added map change

0.53 0.00 new sound sleep pony bugfixes 2.94 0.00 bug fixed optimization search-
ing waiting

Music

NI I Topic N P Topic

-0.37 3.33 update thank issue reach enjoy -15.00 2.50 language spanish french german
portuguese

-0.74 1.67 chinese language simplified tra-
ditional japanese

0.00 5.00 adventure level island explore
come

-0.37 1.67 energy far time use thank -5.00 0.00 free version paid ad limit

0.74 -1.67 character new unlock jump gen-
der

5.00 0.00 bug fixed minor improved hint

1.12 -1.67 christmas holiday winter gift
santa

5.00 0.00 game gameplay balance like
waiting

1.12 -3.33 language spanish french german
portuguese

10.00 0.00 update thank issue reach enjoy

Puzzle

NI I Topic N P Topic

-0.31 2.30 language spanish french german
portuguese

0.00 2.78 language spanish french german
portuguese

-0.31 1.15 chinese language simplified tra-
ditional japanese

0.00 1.39 save cloud game saved progress

-0.31 1.15 tournament player online win
ranking

0.00 1.39 improvement performance sta-
bility ground extreme

0.63 0.00 leaderboard achievement
leaderboards game score

0.00 1.39 car vehicle racing ford lam-
borghini

0.31 -1.15 challenge reward win daily earn 6.67 0.00 new update car extreme road
1.88 0.00 car vehicle wheel race steering 6.67 -1.39 car vehicle wheel race steering

Racing
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NI I Topic N P Topic

-1.11 2.52 reward arena class skill season -4.65 0.86 coin free earn gold bonus
0.00 1.26 play google service achievement

leaderboards
0.00 4.31 hero dungeon equipment skill

item
0.00 1.26 added physical global turned

improved
-2.33 1.72 increased level max cap limit

0.32 -0.63 help hero email need igg 2.33 -1.72 hero battle tower enemy skill
0.16 -1.26 challenge reward win daily earn 4.65 0.00 new enjoy bundle vehicle tank
1.90 0.00 guild battle raid event hero 4.65 0.00 added physical global turned

improved

Role Playing

NI I Topic N P Topic

-2.54 -1.13 graphic control environment re-
alistic driving

-4.62 -0.89 fixed improved crash updated
performance

-0.32 0.56 hero dungeon equipment skill
item

-3.08 0.00 graphic control environment re-
alistic driving

-0.32 0.56 mode immersive night preview
endless

-1.54 0.89 optimization performance mem-
ory various measure

0.16 -0.56 level episode new pig pop 1.54 0.00 tt text network speech based
0.32 -0.56 scenario upgrade aplikace open

knihoven
1.54 -0.89 thanks playing scene weve game

0.64 -0.56 adventure level island explore
come

3.08 0.00 weapon new mission gun sniper

Simulation

NI I Topic N P Topic

-0.09 0.84 tournament player online win
ranking

0.00 1.51 live stream watch video broad-
cast

0.00 0.63 notification sound setting alert
vibration

-0.94 0.38 version doubled displacement
app randomization

0.00 0.63 news feed article section read -0.94 0.38 language spanish french german
portuguese

0.36 0.00 team match cheer vault dream 0.47 -0.75 round course shot golf hole
0.18 -0.21 fixed bug crash opening naviga-

tiondrawer
0.47 -0.75 player stats single profile start-

ing
0.18 -0.21 notification user showing event

loading
1.88 0.00 alarm time mode timer sound

Sports

NI I Topic N P Topic

-1.30 1.96 guild battle raid event hero 0.00 2.56 building build city quest decora-
tion

-0.87 1.96 reward arena class skill season 0.00 2.56 language spanish french german
portuguese

-0.43 1.96 chinese language simplified tra-
ditional japanese

0.00 2.56 chinese language simplified tra-
ditional japanese

0.43 -1.96 christmas holiday winter gift
santa

0.00 2.56 guild battle raid event hero

0.43 -1.96 thanks exciting issue visit like 8.33 0.00 fixed bug uploading crashing
nowvideo

0.87 -1.96 hero dungeon equipment skill
item

8.33 0.00 reward arena class skill season

Strategy
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NI I Topic N P Topic

0.00 2.44 play google service achievement
leaderboards

0.00 3.70 play google service achievement
leaderboards

-0.70 1.22 friend invite facebook join send -3.57 0.00 world new tour map travel
-0.35 1.22 device crash specific friendly nu-

merous
0.00 1.85 bug fixed minor improved hint

0.35 -1.22 weve easier making squashed
feedback

3.57 0.00 update october april september
november

0.35 -1.22 ad purchase remove app restore 3.57 0.00 para versin la que mejoras
1.05 -1.22 de le pour correction vous 3.57 0.00 friend invite facebook join send

Trivia

NI I Topic N P Topic

-0.24 1.34 updated library internal party
component

-1.61 2.30 friend invite facebook join send

-0.71 0.67 facebook twitter share sharing
instagram

-1.61 1.15 ad purchase remove app restore

-0.71 0.67 friend invite facebook join send 0.00 2.30 word dictionary letter day of-
fline

0.48 -0.67 play google service achievement
leaderboards

1.61 0.00 app time pebble display multiple

0.48 -0.67 coin free earn gold bonus 1.61 -1.15 language spanish french german
portuguese

0.71 -0.67 game play conquer additional
biggest

3.23 0.00 updated library internal party
component

Word



Appendix D

CIRA Usage Manual

D.1 Servlet Tool
Available at http://www0.cs.ucl.ac.uk/staff/W.Martin/cira. Enter the control,

target, release id, confidence interval and graph fields, and the Cira server will process your

request. To perform a single experiment, check graph mode and enter a release id. Targets,

controls and confidence interval are required fields.

D.2 Tool Data Specifications
The format for target files is:

line: targetID(integer),priorStartWeek(count from 1),releaseWeek(

start of posterior),posteriorEndWeek,[comma separated list of

floats for the vector]

Each target goes on a new line. The format for control files is:

line: [comma separated list of floats - week 1 for each control]

line: [comma separated list of floats - week 2 for each control]

and so on

Each control spans every line; each week goes on a new line.



Appendix E

Developer Questionnaire

The following questionnaire was sent to developers who expressed an interest in receiving

a report on their significant release.

Answering these questions will take only 12 keystrokes, including 6 return key presses.

However, if you want to elaborate on your answer, please do feel free to do so in free text.

We are very interested to hear your views on whether this research could be useful to you.

1. Did you find the time series report useful? 0 - no, 1 - yes

2. Would you be interested in further time series reports on your app(s)? 0 - no, 1 - yes

3. Do you agree that the release impacted your app’s performance? 0 - no, 1 - yes

4. Are you aware of any external influences, such as advertising campaigns, that could have

led to the observed effect? 0 - no, 1 - yes

5. Would you be interested in learning about potential contributing factors to significant

releases? 0 - no, 1 - yes

6. Would you make any changes to your app releasing strategy based on these findings? 0 -

no, 1 - yes


