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Abstract—Software engineering and development is well-known to
suffer from unplanned overtime, which causes stress and illness in
engineers and can lead to poor quality software with higher defects. Re-
cently, we introduced a multi-objective decision support approach to help
balance project risks and duration against overtime, so that software
engineers can better plan overtime. This approach was empirically eval-
uated on six real world software projects and compared against state-of-
the-art evolutionary approaches and currently used overtime strategies.
The results showed that our proposal comfortably outperformed all the
benchmarks considered.

This paper extends our previous work by investigating adaptive
multi-objective approaches to meta-heuristic operator selection, thereby
extending and (as the results show) improving algorithmic performance.
We also extended our empirical study to include two new real world
software projects, thereby enhancing the scientific evidence for the tech-
nical performance claims made in the paper. Our new results, over all
eight projects studied, showed that our adaptive algorithm outperforms
the considered state of the art multi-objective approaches in 93% of the
experiments (with large effect size). The results also confirm that our
approach significantly outperforms current overtime planning practices
in 100% of the experiments (with large effect size).

Index Terms—Software Engineering, Management, Planning, Search-
Based Software Engineering, Project Scheduling, Overtime, Hyper-
heuristic, Multi-Objective Evolutionary Algorithms, NSGAII.

1 INTRODUCTION

Few software engineers can have failed to notice the harmful
effects of unplanned overtime on the software industry. Soft-
ware engineering is notorious for effort estimate inaccuracy
and time-to-market pressure, with software engineers often
finding themselves coerced into high levels of unplanned
overtime. It is widely believed that this leads to dissat-
isfaction and depression, which are worrying enough in
themselves [1]. Moreover, asking people to work beyond
their working hours not only increases project costs but
also leads to burnout, errors, and rework [2][3][4], none
of which is a characteristic of a successful project. In its
most extreme form, unplanned overtime results in a so-
called ‘death march project’ [5], with all the implications
this inherently has for quality of software, and the quality
of life of engineers unfortunate enough to find themselves
involved in such projects.

Problems associated with unplanned overtime have been
widely reported upon in the occupational health literature.

This literature contains several systematic studies of the
effects of unplanned overtime on professionals. Demanding
unplanned overtime from people at a short notice could
take time from their lives, disrupting their work-life balance
with consequent negative effect on their morale [4]. Even
from a ‘purely product-focussed point of view’ (divorced
from any concerns over engineers’ welfare), this literature
also highlights the harmful impact of unplanned overtime
the products and services professionals are able to provide
[6][7][8].

Although there is a great deal more literature on the
general problems of unplanned overtime in the wider work-
place than there has been specific evidence focussing on
software engineering projects, there is also evidence specifi-
cally concerned with software engineering professionals: A
controlled study of 377 software engineers found positive
correlations (p < 0.05) between unplanned overtime and
several widely-used stress and depression indicators [2].
There is also evidence that the deployment of overtime can
lead to increased software defect counts [3].

Fortunately, there is also case study evidence that proper
overtime planning (i.e., allocating fairly in advance some
extra amount of time to complete a certain task) leads not
only to greater software engineer job satisfaction, but also
to improved customer satisfaction in the resulting software
products [1][4][9]. Indeed, thanks to overtime planning, a
project manager can analyse in advance if there is any
potential benefit (e.g., reduce risk of overrun) from working
overtime on certain tasks rather than others and evaluate
whether the current team can handle the project or some
overtime is needed to cover the gap [4]. Looking to the
wider (non-software-engineering specific) literature, we can
also find evidence that, if overtime is properly planned then
there are few, if any, of the harmful side-effects that so-
often accompany unplanned overtime [10]. This evidence
all points to the need for research into decision support for
software engineers to help them better plan for overtime,
balancing the need for overtime against project overrun
risks and budgetary constraints.

Given the importance of the problem for both software
engineers and the products they produce, it is surprising
that this problem has not been more widely scientifically
studied. The research agenda we report on in this paper
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seeks to address this lack of work on overtime planning for
software engineering project management.

Previously [11], we introduced an approach to support
software engineers in better planning for overtime by iden-
tifying in advance when is best to work beyond normal
working hours. The problem is to find the right balance
between the conflicting objectives of reducing project du-
ration, amount of overtime, and risk of project overrun.
Complex multi-objective decision problems with competing
and conflicting constraints such as this are well suited to
Search Based Software Engineering (SBSE) [12], which has
proved able to provide decision support for other early-
stage software engineering activities, notably requirements
engineering [13][14][15]. However, this is the first time that
an approach has been introduced to provide decision sup-
port for software engineers attempting to reconcile the com-
plex trade-offs inherent in overtime planning. Our previous
work [11] thus introduced the first search based formulation
of the project overtime planning problem.

Our approach balances trade offs between project du-
ration, overrun risk, and overtime resources for three dif-
ferent risk assessment models. It is applicable to software
project plans, such as those constructed using the Critical
Path Method, widely adopted by software engineers and
implemented in many tools. This paper extends that work,
with novel adaptive algorithms for overtime planning and
wider evaluation on a larger number of real world data sets
concerning software project management.

Our original approach was evaluated on 6 real world
software projects, using 3 standard evaluation measures
and 3 different approaches to risk assessment. The results
showed that the proposed approach is significantly better
than currently used overtime planning strategies with large
effect size. Moreover, they revealed that using the Non-
dominated Sorting Genetic Algorithm II (NSGAII) with
a crossover operator specifically conceived for the over-
time planning problem (i.e., NSGAIIv) leads to significantly
improvement over a standard multi-objective search (i.e.,
NSGAII).

In this paper we extend our previous work [11], as
follows:

1) We investigate adaptive multi-objective approaches
to meta-heuristic operator selection, thereby extend-
ing and (as the results show) improving the algorith-
mic performance of the approach proposed in the
conference version of this paper (which considered
only non-adaptive approaches) [11]. This is the first
use of adaptive multi-objective evolutionary algo-
rithms for software project management.

2) We validate our proposed multi-objective approach
for overtime planning by using two new real
projects in addition to the six ones previously used
in our conference paper [11]. This leads to 288 differ-
ent experiments, comparing Adaptivevsc the pro-
posed algorithm with adaptive crossover selection
and domain specific crossover operator to random
search (a sanity check), and to the two standard
multi-objective algorithms for overtime planning
from the conference version of our paper. Addition-
ally, we have compared our adaptive algorithm to

the adaptive NSGAII originally proposed by Nebro
et al. [16]. The results reveal that our approach is sta-
tistically significantly better than random search in
100% experiments (with large effect size) and is also
statistically significantly better than the considered
state of the art multi-objective approaches in 93% of
experiments (with large effect size).

3) We also compare the performance of seven adap-
tive NSGAII variants introduced in this paper to
assess the impact of using different crossover and
adaptive strategies. This leads to 432 experiments:
Adaptivevsc outperforms the other approaches in
281 cases, provided similar results in 91 cases, and
was worse in only 60 cases. The results suggest
that the criteria used to adaptively select the genetic
operator during the search are important to obtain
an effective algorithm.

4) We compare the new adaptive algorithm to stan-
dard overtime planning strategies reported in the
literature. This reveals that our approach signifi-
cantly outperforms these standard strategies with
high effect size in all the experiments, thus confirm-
ing and extending previous results [11].

The rest of the paper is organised as follows: In Section 2
the overtime planning problem is defined. Section 3 intro-
duces the search based approach proposed to address this
problem using a multi-objective Pareto optimal approach.
Section 4 describes the method used in our empirical stud-
ies, the results of which are presented in Section 5. Section 6
analyses the limitations of the present study, while Section 7
describes the context of related work in which the current
paper is located. Section 8 concludes and presents directions
for future work.

2 OVERTIME PROBLEM FORMULATION

The formulation of the overtime problem we previously
introduced [11] starts from the Work Breakdown Schedule
(WBS) produced by the software engineer. The WBS is a
hierarchical decomposition of the project goals into smaller
and manageable tasks (i.e., work packages) that are exe-
cuted and delivered by the project team to accomplish the
project goals. The upper levels in the hierarchy represent
the major project deliverables, while the lower levels depict
the granular level activities needed to be performed towards
achieving the deliverables. This provides project managers
with a better control of all project planning activities. The
WBS allows indeed to: (i) define the project scope in terms of
deliverable and components; (ii) provide the framework on
which the project status and progress reports are based; (iii)
provide inputs for other project management processes like
estimation, scheduling, staff assignment, risk assessment,
etc. The number and complexity of the WBS levels depend
on the size and nature of the project. Many tools such as
Microsoft project [17] (the tool used by all the organisations
that provided the real world schedules used to evaluate our
approach in this paper), can support software engineers to
produce a WBS.

A formal definition of a WBS follows: Let a project sched-
ule be represented as an acyclic directed graph consisting of
a node setWP = {wp1, wp2, ..., wpn} of work packages and
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an edge set DEP = {(wpi, wpj) : i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤
n} of dependencies between elements of WP, where wpj can
start only when wpi has completed. WP and DEP form a
graph, the set of paths, Π, of which, denote the dependence-
respecting orderings of work packages to be undertaken to
complete the project.

Associated with each work package, wp ∈ WP , is the
estimated effort, ewp, required to complete wp (such an
effort in our study is provided for each work package by the
software company and it is measured as normalized person
hours). The estimated duration (in days) of a given work
package Duration(wp), can be computed by dividing the
estimated effort ewp for the number of hours worked per
day on that work package.

Based on this, the duration of each path p ∈ Π through
the project dependence graph is given by

Durationp =
∑
∀wp∈p

Duration(wp) (1)

and the total estimated shortest possible duration of the
project is given by any maximal length (or ‘critical’) path
in Π. This is a formalisation of the well-known ‘Critical
Path Method’ [18], which has been widely used in project
planning for several decades. Though there may be several
equal length critical paths (for which no other path is longer)
it is traditional to select one and to refer to it as the critical
path, CP [19], in our experiment if there is more than one
critical path we select one of them uniformly at random.

Our problem is to analyse the effects of choice of over-
time assignments, each of which seeks to minimize project
duration, risk of overrun and the amount of overtime de-
ployed. This can be formulated as a three objective decision
problem in which the three objectives of duration, risk and
overtime are conflicting minimisation objectives.

We represent a candidate solution to our problem as
an assignment of overtime to work packages. A feasible
solution is an assignment of a certain number of extra
hours to each work package, denoted by Overtime(wpi)
subject to the following constraint: 0 ≤ Overtime(wpi) ≤
MaxOvertime(wpi), where MaxOvertime(wpi) is the
maximum assignable overtime to the ith work package and
depends on the maximum overtime assignable per each day
of its expected duration1.

We shall use computational search to seek an allocation
of overtime for all work packages that minimises each of the
three objectives of Overtime (O), Project Duration (D) and
Risk of Overrun (R). We therefore measure fitness as a triple
〈O,D,R〉, whose components are defined as follows:

Overtime(O) is the amount of time worked on each work
package beyond the individual time limit Overtime(wpi)

1. The length of a working day and maximum allowed overtime per
day are country specific parameters to our approach, determined by
legal and governance procedures in place. In this paper we set these to
8 hours for a working day and 3 hours maximum overtime per day. Of
course different settings can be used without altering the formulation
of the problem.

summed over all work packages in WP 2. More formally:

O =
n∑

i=0

Overtime(wpi) (2)

Project Duration (D) is the estimated duration (i.e., the
length of the critical path). More formally:

D =
∑

wp∈CP

Duration(wp) (3)

We define the risk of overrun in terms of the risk of overrun
associated to each path, p, in the project schedule:

riskp =
Durationp

DurationCP
(4)

The closer riskp is to 1.0, the greater the chance that
an overrun on a work package along path p will cause p
to supersede the current critical path as the determinant of
project duration (p thus becoming the new critical path due
to the overrun).

We use three different approaches to the measurement of
Risk of Overrun (R), each of which combines the path risk
riskp, above into an overall project risk, R, as follows:

R = RAvgRisk =

∑
p∈Π riskp

|Π|
(5)

R = RMaxRisk = maxp∈Π−CP riskp (6)

R = RTrsRisk(L) =
|{p | p ∈ Π ∧ riskp > L}|

|Π|
· 100 (7)

These are, respectively, average, maximal, and threshold
level risks. Average risk is suited to the engineer who is ‘risk
averse’; it assumes that any overrun on any path could be
a problem. This is ‘risk averse’ in the sense that it reflects a
pessimistic belief that ‘anything that can go wrong will go
wrong’. Maximum risk is better suited to the engineer who
is more concerned that the critical path is not disrupted,
but who is relaxed about overruns in non-critical paths
that do not threaten to supersede the critical path, as these
could be absorbed into the project schedule. Threshold risk
allow the engineer to choose a risk level, making risk level
a parameter to the overall approach (which we set to 0.75
in this paper). These three choices seek to capture realistic
instantiations of approaches that would suit a particular
management style. However, other choices are possible and
we leave the investigation of these to future work.

Of course, overtime allocation is a disruptive process; it
can change the critical path. This is one of the motivations

2. Please, note that this objective does not consider the monetary costs
associated to overtime. Overtime monetary cost can be calculated by
multiplying the overtime hours by the resource’s overtime rate. The
resource’s overtime rate, however, may vary depending on the software
company policies [4] (for example, some resources can be paid the
same hourly rate for extra hours or a more rewarding rate, salaried
employees may not be paid overtime, etc.). Where data is available
the monetary cost may be used as an alternative objective function to
the one defined herein. It is worth to note that even if the salaried
employees are not paid to work overtime (so there is no monetary cost
associated to the overtime) they are anyway demanded to do it, in
this case it would be even more critical to plan overtime since for an
employee is not rewarding to work beyond its regular working time
for no compensation.
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for decision support: engineers cannot be expected to un-
derstand the impact of proposed overtime allocations on
the critical path, while simultaneously balancing budget,
duration, and estimates of overrun. These are precisely
those problems for which we need the kind of automated
analysis we investigate in this paper.

3 THE SOLUTION APPROACH

Our solution uses Search Based Software Engineering
(SBSE) [12][20], for which it is established best practice to
define a representation, fitness function and computational
search algorithm [21]. Since our formulation is a triple
objective formulation we also need to decide how to handle
multiple objectives.

3.1 Handling Multiple Objectives
It is possible to combine multiple objectives into a single
criterion, however, in cases like ours where there are no ob-
vious weights that allow a combination in a single criterion,
it is recommended to use a multi-objective approach.

Since in our case, the three objectives are measured
on orthogonal scales we use Pareto optimality [21], which
states: A solution x1 is said to dominate another solution x2,
if x1 is no worse than x2 in all objectives and x1 is strictly
better than x2 in at least one objective.

Pareto optimality means that we do not suggest to the
engineer a single proposed solution. That would not be
realistic. No engineer would trust an automated tool to
provide a single overtime allocation. Rather, we seek to
provide a decision support tool, by showing the solutions in
a space of trade offs between the three objectives, allowing
the engineer to see the trade offs between them.

Using Pareto optimality we can plot the set of solutions
found to be non-dominated (and therefore equally viable).
In the case where there are three objectives, such as ours,
this leads to a three dimensional Pareto surface, though we
can also project this surface onto a two dimensional Pareto
front to focus any two objectives of interest. The shapes of
such surfaces and fronts can yield actionable insights. For
example, where there is a knee point (a dramatic switch
in the material values of trade off between objectives), this
guides decision making (see Section 5).

3.2 Solution Representation
Feasible solutions to the problem defined in Section 2 are
assignments of a certain number of overtime hours to
each work package. We encoded them as chromosomes of
length n, where each gene represents the number of extra
hours assigned to each work package. The initial popula-
tion, composed by n chromosomes, was randomly obtained
by assigning to each wpi an overtime ranging from 0 to
MaxOvertime(wpi).

3.3 Fitness Evaluation
To evaluate the fitness of each chromosome we employed
a multi-objective function to simultaneously minimise the
objectives described in Section 2, namely Project Duration,
Overtime, and Risk of Overrun. We report results for each
overrun risk assessment measure (AvgRisk, MaxRisk, and
TrsRisk) separately to explore the effects of each approach
to risk assessment.

3.4 Computational Search

In our previous work [11] we employed a widely used
Multi-Objective Evolutionary Algorithm, namely NSGAII
[22] as ranking method to solve the multiobjective overtime
planning problem. We also proposed a variant, NSGAIIv ,
which performed significantly better than NSGAII and some
currently used software engineering practices tipically ap-
plied to overtime planning problems [11]. The main dif-
ference with respect to the original NSGAII lies in the use
of a new crossover specifically conceived for the overtime
planning problem. Indeed, it is often insufficient merely to
apply a generic algorithm like NSGAII ‘out of the box’;
we need to define problem-specific genetic operators to
ensure best performance. In the case of genetic algorithms,
such as NSGAII, the crossover operator plays a pivotal
role [23][24][25] and thus forms a natural focus for such
problem-specific algorithm design.

In this paper, we investigate adaptive multi-objective ap-
proaches to meta-heuristic operator selection. This follows a
recently proposed hyperheuristic SBSE approach in which
the search algorithm learns the best genetic operators to be
used among a given set of available operators during the
search process (i.e., the search algorithms is able to adapt
itself during the search) [26].

In particular, in addition to the above approaches, we
investigated the use of a new adaptive version of NS-
GAII, namely Adaptivevsc, which sinergically combines the
crossover proposed in our previous work [11] with an ex-
tension of NSGAII, namely NSGAIIa, proposed by Nebro et
al. [16]. The general idea is that NSGAIIa works as NSGAII,
but the genetic operators are selected adaptively during the
search from a set of different operators [16]. With respect to
the algorithm proposed by Nebro et al. [16] we extended
the operator set by including a crossover we specifically
conceived for overtime planning [11] and we introduced a
new adaptive strategy to select the genetic operators during
the search.

We analysed the effect of these choices by applying
incremental changes to NSGAIIa, each of them resulted
in a different algorithm that has been evaluated and com-
pared against NSGAIIa and its variations as detailed in
the following. The final algorithm, namely Adaptivevsc, has
resulted to be superior with respect to NSGAII, NSGAIIv ,
and NSGAIIa as detailed in Section 5.

The first algorithm we analysed, referred to as Adaptivev
hereinafter, works as NSGAIIa, but includes in the opera-
tors’ set a crossover we previously proposed for overtime
planning [11]. We also introduced two further adaptations
since we noticed that for the problem under investigation
both NSGAIIa and Adaptivev often converge very early (i.e.,
after 5 to 15 generations) on the selection of the strongest
operator in the set thus preventing the use of other operators
that may still be useful later on in a different phase of the
search. The first adaption (denoted with the subscripted
suffix ‘s’ ) sorts the operators’ set in ascending order each
time that an early convergence is observed giving again
to all the operators equal probability to be selected (this
probability is subsequently updated during the search in the
same way as for NSGAIIa). The second one (denoted with
the subscripted suffix ‘c’ ) uses instead a different adaptive
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selection criterion. We analysed the effect of applying these
adaptions alone or combined, thus considering the follow-
ing variants: Adaptives, Adaptivec, Adaptivesc, Adaptivevs,
Adaptivevc, Adaptivevsc.

In the following we provide details about each of the
algorithms we investigate in this paper. For the sake of
clarity, we first present the original techniques (i.e., NSGAII,
NSGAIIv , NSGAIIa) and then the new variants we introduce
in this paper. Table 1 summarise the key aspects of each
algorithm. We use the “stem” name NSGAII for the 3
existing algorithms and “Adaptive” for the novel variations
in order to clarify which is novel to this paper from which
is studied for comparison.

• NSGAII decomposes the population into several
fronts, as follows: 1 all the solutions are ranked
using the non-dominance concept; 2 all non-
dominated solutions of the population are assigned
to rank 1, then they are removed from the popu-
lation; 3 iteratively, non-dominated solutions are
determined and assigned rank 2. Steps 1-3 are iter-
ated until the population is empty. Then the solutions
are ranked again according to a crowding distance,
namely the difference between the left and right
neighbors or infinity if there are no neighbors. The
use of the crowding distance is crucial to preserve
the diversity in the solutions fronts, since computing
the distance between a given solution and its nearest
neighbors allows NSGAII to approximate the density
of the obtained solution. So, solutions with higher
crowding distance are considered better solutions,
as they introduce more diversity in the population.
Once all the solutions are ranked by both dominance
and crowing distance, crossover and mutation op-
erators are applied to produce an offspring. Then
a tournament selector is applied and the best m
solutions (in terms of dominance and crowding) are
copied into the next generation. The algorithm is
stopped after a fixed number of fitness evaluations
(see Section 4.5). The NSGAII used herein is the same
we used in our previous work [11] and has been
implemented by using the JMetal framework [28].

• NSGAIIv is a variant of NSGAII introduced specif-
ically for the overtime planning problem [11].
NSGAIIv exhibits the same selection and crowding
distance characteristics as the standard NSGAII but
exploits a new crossover operator. This operator aims
to preserve genes shared by the fittest overtime as-
signments, thereby avoiding the well-known disrup-
tive effects of crossover [23]. It is defined as follows:
Let P1 and P2 be parent chromosomes, C the point of
cut randomly selected in the parents, and O1 and O2

the new offspring. For the genes placed before C, O1

and O2 inherit the genes of P1 and P2, respectively.
While each gene gi placed after C inherit genes from
P1 and P2 as follows3:

3. This definition is a simplified but equivalent version of the one
given in our previous work [11]

O1(gi) =
{
P1(gi),p=0.5
P2(gi),p=0.5

}
O2(gi) = (P1(gi) + P2(gi))/2

Note that when the parent genes hold the same
characteristic (i.e., same quantity of overtime) they
are retained in both offspring, otherwise we generate
two different genes for the offspring: one that inherits
the gene from mother or father with equal probabil-
ity and one that inherits both parent characteristics
in terms of overtime average. It is important to note
that in multi-objective optimization, it is better to
create children that are close to their parents in order
to have a more efficient search process [27]. The
NSGAIIv used herein is the same we used in our
previous work [11] and has been implemented by
using JMetal [28].

• NSGAIIa works as NSGAII, but the genetic opera-
tors are selected adaptively during the search from
a set of different operators [16] depending on the
success of each operator in the past. The success is
quantified as the number of children produced by
each operator that survived to the next generation.
The employed operator set is composed of three
genetic operators commonly used in multi-objective
optimization metaheuristics: the SBX crossover, the
polynomial-based mutation, and the variation oper-
ator used for Differential Evolution [16]. The adap-
tion is obtained by giving to the operators a higher
probability of being chosen when they are capable
of producing solutions that survive from one gen-
eration to the next. The adaptive scheme used for
the operator selection is the same used in previous
work [16], [29] and it is shown in Algorithm 2, while
Algorithm 1 shows the pseudocode of NSGAIIa [16].
NSGAIIa proceeds as follows. For each individual in
the population, it produces a random value in [0,1]
(Algorithm 1 line 6) and computes the contribution
(i.e., probabilityOperator) of each genetic oper-
ator (line 7) using the method shown in Algorithm 2.
These values are compared and one out of the three
genetic operators is selected (Algorithm 1 lines 7-18)
as follows: If the random value is less than the prob-
ability value associated to the first genetic operator,
this operator is selected to create the new offspring,
otherwise the second genetic operator is compared,
and so on. If no condition is satisfied, the last op-
erator is selected. The probabilityOperator val-
ues are computed by using the adaptive selection
scheme shown in Algorithm 2. This method takes
as input the set of different genetic operators and a
population P in order to compute the contribution
of each of the genetic operators, i.e., how many
solutions generated by each operator are part of the
next generation of the population (Algorithm 2: line
3). If an operator has contributed with less solutions
than a minimum threshold, its contribution is set to
this minimum threshold (Algorithm 2: lines 4-6). This
helps us prevent discarding an operator if it does not
produce any survival solutions in a certain iteration.
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TABLE 1
The Fixed and Adaptive Multi-Objectives Evolutionary Algorithms to Overtime Planning investigated in this work.

Algorithm Brief Description
NSGAII The NSGAII algorithm originally proposed by Deb et al. [27].
NSGAIIv Modified version of NSGAII that uses a crossover specifically conceived for overtime planning by Ferrucci et al. [11].
NSGAIIa Adaptive NSGAII orginally proposed by Nebro et al. [16] that selects the genetic operator to use during the search from a predefined operator pool.
Adaptivev Same as NSGAIIa but includes in the genetic operator pool a crossover specifically conceived for overtime planning by Ferrucci et al. [11]
Adaptives Modified version of NSGAIIa that uses a different strategy to sort the operator pool.
Adaptivec Modified version of NSGAIIa that uses a different adaptive criterion to select the genetic operators applied during the search.
Adaptivesc Modified version of NSGAIIa that uses the sorting criterion and the adaptive criterion used by Adaptives and Adaptivec, respectively.
Adaptivevs Same as Adaptives but includes in the genetic operator pool a crossover specifically conceived for overtime planning by Ferrucci et al. [11]
Adaptivevc Same as Adaptivec but includes in the genetic operator pool a crossover specifically conceived for overtime planning by Ferrucci et al. [11]
Adaptivevsc Same as Adaptivesc but includes in the genetic operator pool a crossover specifically conceived for overtime planning by Ferrucci et al. [11]

In our work we have considered a threshold equal
to 2 as suggested in previous work [16], [29]. Once
the contribution of all operators has been computed,
the probabiltyOperator is returned to the main
procedure (Algorithm 2: line 12). Then, the NSGAIIa
algorithm behaves as the original NSGAII (Algo-
rithm 1 lines 19-26). A reference implementation
of NSGAIIa is freely available in JMetal [28] since
Version 4.5.

• Adaptivev works as NSGAIIa but we added the
crossover operator used in [11] to the genetic op-
erator set already used by NSGAIIa [16]. To real-
ize Adaptivev (and also the adaptions described in
the following) we extended the implementation of
NSGAIIa provided in JMetal [28].

• Adaptives (Adaptivevs): works as NSGAIIa but ev-
ery time an early convergence is detected the genetic
operators in the set are sorted in ascending order
with respect to the their success (i.e., the number
of children that survived to a next generation) and
equal probability is given to each of them before
continuing the search by applying the same adaptive
selection criterion as used in NSGAIIa (Adaptivev ,
respectively).
Adaptivec (Adaptivevc) works as NSGAII
(Adaptivev , respectively) but adaptively chooses the
genetic operators at each iteration depending on the
quality of the offspring generated by each operator
in terms of each of the single objectives included
in the multi-objective formulation (Section 2). It
works as follows: At each iteration, all the children
that survive to the next generation are compared
against the best individuals survived to the previous
generations and every time a child is better than at
least an existing individual for a given objective,
the success of the genetic operator that produced
that child is incremented. Once the success of each
operator has been updated, for each individual in
the population, a random value in [0,1] is produced
and compared with the operators success in the last
iteration. Depending on this value, one of the genetic
operators is selected. In case the random number
is higher than the success of all the operators, the
genetic operator with the highest success is chosen.
Once the offspring is generated, the algorithm
behaves as the original NSGAII.

• Adaptivesc (Adaptivevsc) sorts the genetic opera-
tors in the same way as Adaptives before applying
the adaptive selection criterion used for Adaptivec

(Adaptivevc).

4 THE DESIGN OF THE EMPIRICAL STUDY

This section explains the design of our empirical study; the
research questions we set out to answer and the methods
and statistical tests we used to answer these questions. We
adopted the same methodology, the same risk assessment
measures and the same quality indicators we used in the
original study [11]. However we extended the study by
adding two new datasets to the six ones previously used
[11].

4.1 Research Questions
We seek to answer the following four research questions.
Three of them (i.e., RQ1, RQ3, and RQ4) were posed in our
previous work [11] and are answered herein to assess the
effectiveness of the adaptive multi-objective algorithms we
introduced in this work4. We also answered a new question
(i.e., RQ2) to investigate the different variants of NSGAIIa.
RQ1 (SBSE Validation): How do NSGAIIa and its variants
perform compared to random search? In any attempt at an
SBSE formulation of a problem this is a standard baseline
question asked. If a proposed formulation does not allow
an intelligent computational search technique to outperform
random search convincingly, then there is clearly something
wrong with the formulation. This question is thus adopted
in SBSE research as a preliminary ‘sanity check’[30]. We
therefore compare the adaptive evolutionary algorithms
proposed in this work with respect to random search.
RQ2 (Comparison of Different NSGAIIa Adaptions): How
does the use of the adaptions we introduced affect the
performance of NSGAII? Since in our previous work [11]
we showed that using a crossover operator specifically
designed for the overtime problem leads to significant im-
provement of NSGAII’s performance, in this paper we stud-
ied adaptive multi-objective approaches to meta-heuristic
operator selection. In particular, we analysed the adoption
of this crossover in combination with a new algorithm,
namely NSGAIIa, that is able to adaptively select the genetic
operators during the search from a pool of different opera-
tors. Therefore, to answer this goal we compare on the con-
sidered datasets the performances of all the NSGAIIa vari-
ants introduced in Section 3.4 (i.e., Adaptives, Adaptivec,
Adaptivesc, Adaptivevs, Adaptivevc, Adaptivevsc) .

4. In our previous work [11] we also investigated how the Pareto-
fronts obtained using multi-objective overtime planning reveal insights
into the trade off between risk, duration and overtime. The same results
hold for the present work.
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Algorithm 1 Pseudocode of NSGAII Adaptive (NSGAIIa) [16]
Require: n, operatorList {n = population size, operatorList = set of genetic operators}

1: P ← RandomPopulation() {P = population}
2: Q← ∅ {Q = auxiliary population}
3: while notTerminationCondition()do do
4: for i← 1 to n do
5: randV alue← rand()
6: probabilityOperator[] ← contribution(P, operatorList) {See Algorithm 2 for the definition of the contribution()

method}
7: if randV alue ≤ probabilityOperator[0] then
8: parents← Selection2(P )
9: offspring ← SBX(parents)

10: else
11: if randV alue ≤ probabilityOperator[1] then
12: parents← Selection3(P )
13: offspring ← DE(parents)
14: else
15: parents← Selection1(P )
16: offspring ← PolynomialMutation(parents)
17: end if
18: end if
19: EvaluateF itness(offspring)
20: Insert(offspring,Q)
21: end for
22: R← P ∪Q
23: RankingAndCrowding(R)
24: P ← SelectBestIndividuals(R)
25: end while
26: return P

Algorithm 2 Computing the contribution of each genetic operator [16], [29]
Require: P, operatorList {P = population, operatorList = set of genetic operators}

1: totalContribution← 0
2: numOperators← size(operatorList) numOperators indicates the number of operators in the pool
3: for operator ← 0 to numOperators do
4: contributionOperator[operator]← solutionInNextPopulation(P, operatorList[operator])
5: if contributionOperator[operator] ≤ threshold then
6: contributionOperator[operator]← threshold
7: end if
8: totalContribution← totalContribution+ contributionOperator[operator]
9: end for

10: for operator ← 0 to numOperators do
11: probabilityOperator[operator]← contributionOperator[operator]/totalContribution
12: end for
13: return probabilityOperator

RQ3 (Comparison to State of the Art Search): How does
Adaptivevsc perform compared to the state of the art? Out-
performing random search is necessary, but not sufficient.
In order for a proposed approach to be adopted it must also
outperform the state of the art for the problem in hand. In
our case the state of the art is represented by NSGAII and
NSGAIIv used in our previous work [11] for the overtime
problem and NSGAIIa [16] that we first use herein to the
overtime planning problem.

RQ4 (Usefulness): How does Adaptivevsc perform com-
pared to currently used overtime planning approaches?
While outperforming a standard multi-objective search may
be a valuable technical result, in order to be useful to

software engineers, our approach must also outperform
existing overtime management strategies used by practicing
software engineers. We therefore repeat the experiments in
RQ1 and RQ3, but for RQ4 we compare our approach with
three currently used strategies.

4.2 Software Projects Used in the Empirical Study

To assess the performance of our approach we used 8
datasets representing real world software projects. All of
them have been used in previous work on project staffing
and scheduling (see, e.g., [31], [32], [33]) and 6 of them have
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been also used in previous work on multi-objective software
project overtime planning5 [11].

The projects came from eight different organisations,
involved different kinds of software engineering develop-
ment, and had different sizes, ranging from 31 to 245 work
packages and from a few person weeks to several person
years in duration.

Table 2 summarises the key information concerning the
8 datasets here described in details:

DB2 concerned the next release of a large data-intensive,
multi-platform software system, written in several lan-
guages including DB II, SQL, and .NET.

Web delivered a web-based IT sales system across North
America. The project included the development and testing
of website, search engine and order management and track-
ing.

Quote was a system developed for a large Canadian
sales company to provide on-demand conversion of quotes
to orders. This change was both internal and customer
facing and ultimately affected every level of the organisation
(Web, internal development, database, sales and customers).

Oracle was large scale database upgrade, migrating an
old, yet mission-critical, Oracle system. The information that
was migrated had an estimated value to the organisation of
several million dollars and formed the cornerstone of the
organisation’s operations. About half of the project involved
taking precautions against possible causes of data loss. This
project primarily involved the Database Administration sec-
tion of the organisation. However, the Software Application
Development section was also involved at the end for train-
ing and for upgrading the existing scripts and triggers to
make use of the newly available database functionality.

Price was an enhancement to the client side of a sales
system to provide improved pricing and features for dis-
counts, vouchers, and price conversions. The enhancement
concerned has a potentially significant influence on the or-
ganisation’s revenue stream, so extensive QA was involved.
This project involved the web portion of the company’s in-
frastructure with smaller impact on the underlying database
and other internal software. The project concluded with an
employee training phase.

The details of project CutOver are the subject of a Non-
Disclosure agreement and so cannot be published.

Broker was a software project developed by an IT com-
pany to implement a vessel insurance policies management
system for a large insurance broker company. The project
consisted of 4 management tasks, 2 database design tasks,
21 programming tasks, and 4 testing tasks [33].

Chartwell was a software for an on-line gaming and
gambling industry developed using several technologies,
such as Java, Flash, and Action Script, by a global software
team [32].

4.3 Multi-objective Evaluation Measurements Used
Assessing the performance of a computational search algo-
rithm for a single objective optimisation problem typically

5. Five of these datasets (those for which non-disclosure agreement
allows us to publish data after publication) will be made publicly
available once the paper has been published. We make this data avail-
able at http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/overtime/ to
support replication and comparison of future work with our results.

requires observations about the best solution found. This
approach is not applicable for multi-objective optimisation
problems because there are a set of candidate solutions, each
of which is said to be ‘non-dominating’. That is, each is
incomparable to the others because no other solution has
better values for all objectives.

Analysis of graphical plots of the solutions can pro-
vide some indications of performance, but it provides a
qualitative evaluation and cannot provide a quantitative
assessment of the quality of solutions from one approach
relative to another. A robust evaluation requires that qual-
itative evaluations be augmented by a more quantitative
evaluation.

To provide this quantitative assessment we employ three
solution set quality indicators, namely Contributions (IC ),
Hypervolume (IHV ), and Generational Distance (IGD), as
done in previous work [11]. To compute these we normalise
fitness values to avoid unwanted scaling effects [28] and
compute a reference front of solutions, RS, which is the
set of non-dominated solutions found by the union of all
approaches compared [34].

The IC quality indicator is the simplest measure. It
measures the proportion of solutions given by an algorithm,
A, that lie on the reference frontRS [35]. The higher this pro-
portion, the more A contributes to the best solutions found
by the approaches compared, and so the better is the quality
of its solutions. IC is a simple and intuitive measure, but it is
affected by the number of solutions produced, unfavourably
penalising algorithms that might produce ‘few but excellent’
solutions. This is why we also consider two other measures
of solution quality, IHV and IGD.

The IHV quality indicator [36] calculates the volume
(in the objective space) covered by members of a non-
dominated set of solutions from an algorithm of interest.
The larger this volume, the better the algorithm, because
the more it captures of the non-dominated solution space.
Zitzler demonstrates [37] that this hypervolume measure is
also strictly ‘Pareto compliant’. That is, the hypervolume of
A is higher than B if the Pareto set of A dominates that of
B. By using a volume rather than a count, this measure is
also less susceptible to bias when the numbers of points on
the two compared fronts are very different.

The IGD quality indicator [38] computes the average
distance between the set of solutions, S, from the algorithm
measured and the reference set RS. The distance between
S and RS in an n objective space is computed as the
average n-dimensional Euclidean distance between each
point in S and its nearest neighbouring point in RS. We
can think of IGD as the distance between the front S and
the reference front RS in the n-dimensional objective space
of the problem.

4.4 Inferential Statistical Test Methods Used
Due to the stochastic nature of evolutionary algorithms, best
practice requires the use of careful deployment of inferential
statistical testing to assess the differences in the performance
of the algorithms used [21], [39]. We therefore performed
30 independent runs per algorithm, per risk assessment
measure, and per project to allow for such statistical testing.

To analyse the normality of distributions we employed
the Shapiro-Wilks test [40]. As we expected, many of our

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/overtime/
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TABLE 2
Software projects used in the empirical study. Effort is measured in normalised person hours.

Project #WPs #Dep. Effort Brief Description
DB2 120 102 594 A multi-platform database upgrade involving several languages such as DB2, SQL and .NET
Web 245 247 6,664 A web-based purchase order system development
Quote 60 64 547 An enhancement of an existing system to include on-demand conversion of quotes to orders
Oracle 106 105 5,390 A large-scale Oracle database migration with tight data security constraints
Price 72 71 1,570 A client-side sales system upgrade to offer additional features to users
CutOver 95 68 2,356 Details cannot be revealed because of a Non Disclosure Agreement with the project data provider
Broker 31 40 2,192 Software project to develop a management system for a broker company
Chartwell 41 29 6,680 Software for an online gaming and gambling industry developed using several languages (Java, Flash, AS)

samples showed no evidence that they come from normally
distributed populations, making the t-test unsuitable. We
therefore used the Wilcoxon test [41] to check for statisti-
cal significance. Using the Wilcoxon test is a safe test to
apply (even for normally distributed data), since it raises
the bar for significance, by making no assumptions about
underlying data distributions. We set the confidence limit,
α, at 0.05 and applied the standard Bonferroni correction
(α/K, where K is the number of hypothesis) in cases where
multiple hypothesis were tested.

As has been previously noted in advice on statistical
testing of algorithms such as these [21], [39], it is inadequate
to merely show statistical significance alone; we also need
to know whether the effect size is worthy of interest.

To this end we used the Vargha-Delaney effect size Â12

[42], the results of which are values between 0 and 1: when
the Â12 measure is exactly 0.5, then the two compared
techniques achieve equal performance; when Â12 is less
than 0.5, the first technique is worse; and when Â12 is
more than 0.5, the second technique is worse. The closer
to 0.5, the smaller the difference between the techniques;
the farther from 0.5, the larger the difference [42]. Given
the first algorithm performing better than the second, Â12

is considered small for 0.6 ≤ Â12 < 0.7, medium for 0.7
< Â12 < 0.8, and large for Â12 ≥ 0.8, although these
thresholds are somewhat arbitrary.

Since our measurement concerns quality measures such
as hypervolume and distance to the reference front, there
is no domain specific transformation required for the effect
size measurement [43]. Indeed, no domain specific transfor-
mation is required when (as in our case) one is interested
in the fact that the probability of one technique outperforms
the other.

To answer RQ1 we implemented a random search to
be compared with the evolutionary approaches considered
in this study (see Table 1). The random search assigns
randomly to each work package of the project, an over-
time varying from 0 to the maximum overtime assignable.
The resulting Pareto fronts were compared for statistically
significant differences with those produced by the evolu-
tionary algorithms, using the quality indicators explained
in Section 4.3. In this sanity check we used the Wilcoxon test
and for significance also performed a Vargha-Delaney effect
size test in all results.

We do not wish to devote too much space to RQ1, since
it is only a ‘sanity check’, preferring to devote more space to
the answers to RQs 2–4, which concern more scientifically
important evidence for the performance and usefulness of
our approach.

To answer RQ2 we compared the performances of all the
considered NSGAIIa variants (see Section 3.4) in terms of
the quality indicators for statistical significance and effect
size, as for RQ1, but additionally presenting the results
using boxplots to give a pictorial account of the distributions
of results obtained. To answer RQ3 we compared the best
approach identified by RQ2 (i.e., Adaptivevsc) with respect
to the current multi-objective state of the art (i.e., NSGAII,
NSGAIIv , and NSGAIIa). To answer RQ4 we repeated the
same experiments and analysis performed for RQ3, but we
compared Adaptivevsc to standard overtime management
strategies. That is, we implemented three strategies cur-
rently used, and compared the results to Adaptivevsc using
the same tests as we performed to answer RQ1 and RQ3.

4.5 Parameter Tuning and Setting

An often overlooked aspect of research on computational
search algorithms lies in the selection and tuning of the
algorithmic parameters, which is necessary in order to
ensure fair comparison, but which often goes unreported
and, thereby, hinders any potential replication. In order to
facilitate replication of our findings, in this section we report
the method adopted for algorithmic parameter tuning and
selection, which is a replication of the methodology previ-
ously adopted [11].

For each algorithm we evaluated five different configu-
rations, characterised by very small (VS), small (S), medium
(M), large (L), and very large (VL) values for population
as detailed in Table 3. All configurations were allowed an
identical budget of fitness evaluations (250,000), thereby
ensuring that all require the same computational effort,
though they may differ in parameter settings. We executed
all the considered algorithms (see Section 3.4) with each con-
figuration 30 times and collected the corresponding IC , IHV ,
and IGD values, testing for significant differences using
the Wilcoxon Test. Figure 1 shows the best configurations
obtained per each algorithm, over all the risk measures
and datasets considered in our study. We can observe that
in general a very large (VL) configuration is used in the
majority of the cases, however the adaptive evolutionary
algorithms require a VL configuration less often than tra-
ditional NSGAII algorithms. We run each of the algorithm
with these configurations in answer our RQs6.

The rest of our parameter settings for both algorithms
were typical standard settings. We report them here for
completeness and replicability.

6. In order to allow for replication we report in Appendix the config-
urations obtained for each algorithm per risk measure and per dataset.
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Fig. 1. Best Obtained Configurations per Algorithm (over 3 risk measures and 8 datasets).

TABLE 3
Configurations explored to tune the nine algorithms.

Configuration Pop. Size Generations Fitness Evals
Very Small (VS) 50 5,000 250,000
Small (S) 100 2,500 250,000
Medium (M) 200 1,250 250,000
Large (L) 500 500 250,000
Very Large (VL) 1,000 250 250,000

For population size n, at each generation, n/2 applica-
tions of the single point crossover operator are used by NS-
GAII and NSGAIIv to construct offspring. As for NSGAIIa
and its variants the operator is adaptively chosen during
the search from a set of different crossovers as explained in
Section 3.4. The mutation operator randomly assigns a new
value between 0 and MaxOvertime(wp). The crossover
and mutation operators are applied with a probability of
0.5 and 0.1, respectively7.

We employed binary tournament selection based on
dominance and crowding distance, and in tied tournaments
one of the two competitor parents is chosen at random (with
equal probability for both).

5 ANALYSIS OF RESULTS

This section presents the results obtained from our experi-
ments for RQs 1–4 set out in Section 4.1.

5.1 Results for RQ1 (SBSE Validation)
We observed that all the adaptive multi-objective ap-
proaches we considered achieved superior values with re-
spect to random search on all the eight projects in terms

7. The crossover and mutation rates used in our experiment fall in
the ranges recommended in previous work on search-based project
management (i.e., from 0.45 to 0.95 for crossover rate and from 0.06
to 0.1 for mutation rate) [44], [45]. The impact of different settings may
be investigated in future work.

of the considered quality indicators (i.e., IC , IHV , IGD). The
Wilcoxon Test (with Bonferroni correction) revealed that the
indicator values achieved by NSGAIIa and its adaptions
were significantly better than those of the random search,
with a ‘large’ Â12 effect size for all the 24 comparisons (3
risk measures, 8 datasets). Thus, we conclude that there is
strong empirical evidence that NSGAIIa and its variations
pass the sanity check denoted by RQ18.

5.2 Results for RQ2 (Comparison of Different NSGAIIa
Adaptions)

To answer RQ2 we compared the performance
of all the NSGAIIa variants introduced in Sec-
tion 3.4 (i.e., Adaptives, Adaptivec, Adaptivesc,
Adaptivevs,Adaptivevc,Adaptivevsc)9.

Table 4 reports the mean values of each of the three
quality assessment indicators obtained for 30 runs of all
projects using the considered algorithms. We can observe
that Adaptivevsc provided better values for all performance
indicators with respect to other approaches in all but 2 cases
(i.e., Ic values for TrsRisk for projects DB2 and Web where
it obtained lower values than Adaptivevc and Adaptivesc,
respectively).

We applied the Wilcoxon Test to assess whether this dif-
ference was statistically significant on each of the datasets.
In particular, for each pair (x, y) of variants we verified
the following hypothesis: “The quality measure values pro-
vided by Adaptivex are significantly better than those pro-
vided by Adaptivey” by taking into account 3 risk measures,

8. The results of each algorithm can be found at http://www0.cs.ucl.
ac.uk/staff/F.Sarro/projects/overtime/

9. Please, note that for brevity, we excluded Adaptivev from our
analysis since we noticed that it shows the same behaviour as NSGAIIa.
We observed that this was due to the fact that both algorithms con-
verged early (i.e. after 5-15 generations) on the selection of the strongest
operator in the pool implying that any additional genetic operator was
not taken into account during the search.

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/overtime/
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/overtime/
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3 quality measures, and 8 datasets. Since we performed mul-
tiple statistical tests, the Bonferroni correction has been used
to ensure that we retain only a maximum 0.05 probability of
Type 1 error.

To summarise the results of the Wilcoxon comparisons,
we use the following win-tie-loss procedure [46]; if the
distribution i is statistically significantly better (less) than j
according to the Wilcoxon test we updated wini and lossj ,
otherwise we incremented tiei and tiej .

Figure 2 reports the percentage of win-tie-loss values
achieved by the algorithms with different risk measures
over all datasets for the MaxRisk, AvgRisk, and TrsRisk. This
graphically illustrates the difference in relative performance
of each of the different NSGAIIa variants.

We can observe that Adaptivevsc provides us the best
balance among win-tie-loss for all risk measures (i.e., 281-
91-60), followed by Adaptivesc (i.e., 221-97-114), while the
worst performance was achieved by Adaptives (i.e., 81-
150-201). Let us recall that the main difference between
Adaptives and Adaptivesc is the criteria adopted to select
the genetic operator during the search (see Section 3), while
Adaptivevsc works as Adaptivesc but adds to the set of
genetic operators available during the search a crossover
operator specifically conceived for the overtime problem
[11]. Thus, the above results suggest that the criteria used
to adaptively select the crossover during the search is im-
portant to obtain an effective overtime planning algorithm.
Moreover, the use of a crossover specifically designed to
the problem in hand allows us to significantly improve the
algorithm performance.

5.3 Results for RQ3 (Comparison to State of the Art
Search)
To assess whether the proposed algorithm (i.e., Adaptivevsc)
improves the state of the art, we compared it with respect
to NSGAII, NSGAIIv , and NSGAIIa for the considered
datasets.

The boxplots in Figure 3 show the performance of
Adaptivevsc and NSGAII relatively to the three risk mea-
sures (i.e., MaxRisk, AvgRisk, TrsRisk) and the three quality
assessment indicators (i.e., IC , IHV , IGD) we considered
(see details in Sections 2 and 4.3). We can observe that
Adaptivevsc provides much better results than NSGAII for
all the considered datasets. This finding is confirmed by the
Wilcoxon test results summarised in Figure 6(a). We observe
that the results provided by Adaptivevsc are significantly
better than those of the standard NSGAII in 71 out of the
72 experiments (99%) with a large Â12 effect size. Only
in one case (i.e., project Quote for MaxRisk and the IC
quality measure) NSGAII performs better than Adaptivevsc
but with a very small effect size (i.e., Â12 = 0.003).

Figure 4 compares the performance of Adaptivevsc and
NSGAIIv , we can observe that Adaptivevsc provides better
results than NSGAIIv in almost all the cases. The Wilcoxon
tests confirm this finding (see Figure 6(b)): Adaptivevsc
significantly outperforms NSGAIIv in 70 out of 72 (97%)
experiments and in all of these it does so with a large Â12

effect size. In the other two cases no significant difference
has been observed.

Figure 5 compares the performance of Adaptivevsc
and NSGAIIa. We can observe that in most of the cases
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Fig. 2. RQ2: Number of win-tie-loss results from the Wilcoxon Test performed on the three quality indicators (Ic, IHV , IGD) of the pareto fronts
obtained by comparing all the NSGAIIa variants for each risk measure on each of the considered datasets.

Adaptivevsc is able to provide better quality indicators than
NSGAIIa. According to the Wilcoxon Test (see Figure 6(c))
Adaptivevsc significantly outperforms NSGAIIa in 59 out of
72 (82%) experiments always with a large Â12 effect size.
In the remaining 13 cases NSGAIIa performs better than
Adaptivevsc with large (8 cases), medium (3 cases), and
small (2 cases) effect sizes.

These results suggest a positive answer to our research
question: Adaptivevsc significantly outperforms the state of
the art with a large effect size in 202 out of 216 cases (93%).

5.4 Results for RQ4 (Usefulness)
In order to answer RQ4, we compared our approach against
the ‘current overtime planning practice’ [11]. There is ev-
idence that current overtime practice employs what has
been termed ‘margarine management’ [11]; spreading the
overtime thinly and evenly over all work packages [47]. We
can therefore compare our adaptive multi-evolutionary ap-
proach to this documented Overtime Management Strategy
(OMS).

There are two other natural strategies (often referred
to anecdotally in the literature and used in [11]): loading
overtime onto the critical path to reduce completion time
and loading it onto the later half of the project to compensate
for earlier delays.

Table 5 reports the mean values of each of the three
quality assessment indicators obtained for 30 runs of all
projects using Adaptivevsc and the three OMS practices
briefly described above. We can observe that Adaptivevsc
outperforms these practices. The Wilcoxon Test confirmed
that all the indicators obtained by employing Adaptivevsc
were significantly better than those obtained with each and
all of the OMS practices and with a high Â12 effect size in

every case. As an example, Figure 7 shows the reference
fronts obtained by Adaptivevsc and the three OMS practices
for the largest project Web10. For completeness, we also
report in Table 6 the mean of the values for each of the
objectives provided by the OMS practices and our approach.
While Table 5 gives the precise technical answer to RQ4,
Figure 7 provides a more qualitative assessment of the
meaning of this technical finding. As can be seen, the Pareto
surface produced by Adaptivevsc offers many more points.
By contrast, the currently used approaches appear to merely
pick relatively arbitrary solutions, which can be sub-optimal
(far away from the frontier) and which thus denote little
more than rather inaccurate guesses.

6 THREATS TO VALIDITY

It is widely recognised that several factors can bias the
validity of empirical studies. In this section we discuss
the validity of our study based on three types of threats,
namely construct, internal, and external validity. Construct
validity concerns the methodology employed to construct
the experiment. Internal validity concerns possible bias in
the way in which the results were obtained, while external
validity concerns the possible bias of choice of experimental
subjects.

In our study, construct validity threats may arise from
the assumptions we make about the current state of the
art and practice. We found comparatively little literature to
guide us on what we should consider to be the ‘standard
practice’ adopted by engineers. We found no new work

10. In this figure overtime is measured in total overtime hours com-
mitted to the project, while project duration is measured as the length
of the critical path (in days).
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(a) MaxRisk - IC (b) MaxRisk - IHV (c) MaxRisk - IGD

(d) AvgRisk - IC (e) AvgRisk - IHV (f) AvgRisk - IGD

(g) TrsRisk - IC (h) TrsRisk - IHV (i) TrsRisk - IGD

Fig. 3. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the
quality measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAII (Algorithm B) on each dataset.

TABLE 5
RQ4: Mean values of the quality indicators for Adaptivevsc and the

three current overtime management strategies (OMS).

Project Risk Measure IC IHV IGD

Adaptivevsc OMS Adaptivevsc OMS Adaptivevsc OMS

DB2
MaxRisk 0.996 0.003 0.371 0.156 0.003 0.227
AvgRisk 0.995 0.005 0.653 0.335 0.002 0.059
TrsRisk 0.994 0.005 0.609 0.000 0.001 0.068

Web
MaxRisk 0.989 0.011 0.209 0.008 0.000 0.555
AvgRisk 0.994 0.006 0.674 0.225 0.000 0.030
TrsRisk 0.977 0.023 0.538 0.215 0.001 0.051

Quote
MaxRisk 0.993 0.006 0.408 0.135 0.000 0.247
AvgRisk 0.993 0.006 0.518 0.230 0.000 0.009
TrsRisk 0.990 0.009 0.000 0.290 0.000 0.004

Oracle
MaxRisk 0.995 0.005 0.491 0.092 0.000 0.125
AvgRisk 0.994 0.006 0.641 0.295 0.000 0.019
TrsRisk 0.994 0.006 0.545 0.360 0.000 0.155

Price
MaxRisk 0.996 0.004 0.528 0.190 0.001 0.103
AvgRisk 0.997 0.003 0.663 0.365 0.002 0.042
TrsRisk 0.992 0.008 0.541 0.342 0.000 0.132

CutOver
MaxRisk 0.990 0.009 0.502 0.133 0.012 1.449
AvgRisk 0.992 0.008 0.723 0.425 0.001 0.006
TrsRisk 0.982 0.170 0.376 0.365 0.000 0.000

Broker
MaxRisk 0.994 0.006 0.541 0.412 0.000 0.035
AvgRisk 0.993 0.007 0.554 0.397 0.001 0.021
TrsRisk 0.993 0.007 0.613 0.431 0.001 0.045

Chartwell
MaxRisk 0.999 0.000 0.206 0.002 0.000 0.047
AvgRisk 0.991 0.009 0.347 0.117 0.000 0.001
TrsRisk 0.984 0.016 0.146 0.118 0.002 0.005

TABLE 6
RQ4. Average Objective Values achieved by our evolutionary approach
(Adaptivevsc) and the three current Overtime Management Strategies

(OMS) for the project Web.

Risk Strategy Adaptivevsc OMS
Overtime Duration Risk Overtime Duration Risk

AvgRisk 332.09 92.60 0.28 291.20 100.05 0.28
MaxRisk 101.78 95.93 1.00 11.50 104.56 1.00
TrsRisk 164.61 92.73 0.05 421.67 98.04 0.05

that addresses the overtime problem since our conference
version of the present paper [11], thus we compared against
the same three “common current practices’ we identified
there. As we noted previously [11] there is some degree of
support in the literature for one of these choices (‘margarine
management’), but there is only anecdotal evidence in the
literature for the other two practices. Another threat to
construct validity can arise from the fact that we did not take
into account resource allocation and skills in the formulation
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(a) MaxRisk - IC (b) MaxRisk - IHV (c) MaxRisk - IGD

(d) AvgRisk - IC (e) AvgRisk - IHV (f) AvgRisk - IGD

(g) TrsRisk - IC (h) TrsRisk - IHV (i) TrsRisk - IGD

Fig. 4. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the
quality measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAIIv (Algorithm B) on each dataset.

of the problem.
We catered for internal threats to validity in the standard

manner for randomised algorithms [21], [39], using non-
parametric statistical testing over 30 repeated runs of the
algorithms.

Our approach to external threats is also relatively stan-
dard for the empirical software engineering literature. That
is, while we were able to obtain a set of subjects that had a
degree of diversity in scope, application and project team,
we cannot claim that our results generalise beyond these
subjects studied. The results reported herein use two more
datasets, and confirm and extend our original findings [11].

7 RELATED WORK

A comprehensive review on Search Based Project Man-
agement can be found elsewhere [45]. In Section 7.1 we
summarise the main work in this field by highlighting the
difference with the approach we proposed herein, while in

Section 7.2 we summarise the main work that analysed the
impact of crossover operator and adaptive algorithms in
Search Based Software Engineering. The approach used in
this paper is also closely related to approaches used in other
works on search based software engineering, but not (in any
way) concerned with project management. We review this
closely related work outside the area of Search Based Project
Management in Section 7.3.

7.1 Search Based Project Management
For a long time, software engineers have used the Critical
Path Method as the principle means of bringing some rudi-
mentary analysis to bear on the problem of project planning
[18]. Many software engineers use this approach to plan
their projects. However, there have been attempts to replace
the human project planner with a more automated planner,
based on scheduling and resource optimisation techniques.

The first attempt to apply optimisation to software
project planning was the work of Chang et al. [48], who
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(a) MaxRisk - IC (b) MaxRisk - IHV (c) MaxRisk - IGD

(d) AvgRisk - IC (e) AvgRisk - IHV (f) AvgRisk - IGD

(g) TrsRisk - IC (h) TrsRisk - IHV (i) TrsRisk - IGD

Fig. 5. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the
quality measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAIIa (Algorithm B) on each dataset.

(a) Adaptivevsc VS. NSGAII (b) Adaptivevsc VS. NSGAIIv (c) Adaptivevsc VS. NSGAIIa

Fig. 6. RQ3: Results of the Wilcoxon Test performed on the Pareto Quality Indicators (i.e., Ic, IHV , IGD) for Adaptivevsc compared to the state of
the art (the number of wins obtained by each techniques is grouped per Very Small (VS), Small (S), Medium(M), and Large (L) Â12 effect sizes).
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Fig. 7. RQ4: Pareto surfaces for Adaptivevsc (depicted by the circles) and for all of the three Overtime Management Strategies (depicted by the
triangles) obtained using each of the three risk assessment approaches: AvgRisk(a), MaxRisk(b), and TrsRisk(c) for the project Web.

introduced the Software Project Management Net (SPMNet)
approach for project scheduling and resource allocation
and assesed it on simulated project data. Subsequent re-
search also formulated the problem of constructing an initial
project plan as a Search Based Software Engineering (SBSE)
problem, using scheduling and simulation [49], [50]. Though
most approaches have focused on minimising project dura-
tion as the sole optimisation objective, there has also been
work on constructing suitable teams of engineers [51], [52],
[53] and work on predicting the effort needed to develop
software projects (e.g., [54], [55], [56], [57], [58], [59]).

Previous work has used a variety of SBSE techniques
such as Genetic Algorithms [49], Simulated Annealing [51],
Co-evolution [31], and Scatter Search [60] as well as hybrids,
for example, combining SBSE with constraint satisfaction
[61]. Though most of the previous work has been single ob-
jective, there has been previous work on multi-objective for-
mulations [51], [62], [63], [64]. However, unlike the present
paper, none of this previous work has considered overtime,
and all previous work starts with the assumption that it is
the role of the optimisation tool (not the software engineer)
to provide the initial project plan.

We believe that the assumption that any automated tool
should have the role of producing the initial project plan,
may not always be realistic. Our experience with practition-
ers is that they would prefer to trust in their own judgement
for the initial project plan. This is because the allocation
of staff to teams and teams to work packages involves all
sorts of human and domain specific judgements for which
an automated approach is ill-equipped and a human may
be far more suitable.

By contrast, our approach to the overtime planning
problem has a fundamentally different starting point and
usage scenario in mind: We do not seek to replace the
software engineer, nor to second guess their decisions.
Rather, we seek to provide decision support in analysing
the effects and trade offs in overtime planning. Few software
engineers set out with the intention of coercing their team
into unplanned overtime, but many well-intentioned and
professional software engineers end up doing just that [2],
[5]. We seek to provide decision support so that this can
be properly planned and better informed by multi-objective
risk analysis.

Other authors have considered overtime planning issues
in software projects, though none has offered an approach
to plan overtime, balancing overtime deployment against
project risks. For example, Jia et al. [65] analysed the use of
System Dynamics Modeling [66], reporting results on a sim-
ulation carried out on a real software project (i.e., ISAM3.1 at
Alcatel Shanghai Bell). They report on the harmful effects of
excessive overtime (above set limits). Lipke [67] presented a
brief report of an effort to control the use of reserve budget
in a software project for the defence industry. Barros and
Araujo Jr [70] have recently reported some lessons learned
by considering both the positive effects of overtime on pro-
ductivity and its negative effects on product quality. There
are many authors who opine overtime’s severe negative
impacts on staff and their projects (e.g., [6], [7], [8], [68],
[69]) but we are the first to offer a technique for automated
decision support to help the engineer better plan the deploy-
ment of overtime [11]. Moreover, unlike previous work (e.g.,
[49], [68], [69]), because the approach we use starts with
the software engineer’s original project plan (rather than
attempting to construct it), it requires no simulation, thereby
removing this source of potential error and the assumptions
that go with it.

7.2 Genetic Operators and Adaptive Algorithms in
Search Based Software Engineering
Previous work has discussed the importance of the genetic
operators for evolutionary algorithms and adaptive search
applied to different optimisation problems (e.g., [71], [72],
[73], [74], [75]). In the following we focus our attention on
Search Based Software Engineering problems.

Raiha et al. [76] investigated the impact of using
crossover for genetically synthesizing software architecture
design. They found that although sexual reproduction is
favoured among various species of animals and plants,
asexual reproduction is more “natural” in the case of genetic
synthesis of software architecture. Subsequently, Raiha et al.
[77] showed that complementary crossover can significantly
improve the use of genetic algorithms to synthesize software
architecture.

More recently, Guizzo et al. [78] introduced a meta-
model and a mutation operator to allow the application of
design patterns in Search Based Product Line Architecture
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design. The model represents suitable scopes, that is, set of
architectural elements that are suitable to receive a pattern.
The mutation operator is used with a multi-objective and
evolutionary approach to obtain PLA alternatives.

Wang et al. [79] investigated the use of a Memetic Algo-
rithm (MA), based on two genetic operators (i.e., breadth-
first crossover and breadth-first mutation) and local search,
to maximize the reliabilty of a system by means of Multi-
Level Redundancy Allocation. The results showed that the
proposed MA significantly outperformed the state of the art
approach on two representative examples.

Harman et al. [80] proposed a specific crossover operator
for Search Based Optimization of Software Modularization
that allowed them to improve the performance of Genetic
Algorithm (GA).

Conrad et al. [81] presented a genetic algorithm-based
test prioritization method that employs a wide variety of
mutation, crossover, selection, and transformation operators
to reorder a test suite. The results of their empirical study
highlighted the crucial role that the selection operators play
in identifying an effective ordering of a test suite.

McMinn analysed how program structure impacts the
effectiveness of the crossover operator in evolutionary test
input generation and the type of crossover which works
most efficiently for different program structures [82], [83].
Harman and McMinn [84] provided evidence that evolu-
tionary testing performs well for Royal Road functions and
that this is due to the effect of the crossover operation. Lehre
et al. [85] investigated the impact of using crossover on the
execution time for the conformance testing of finite state
machines. Arcuri and Fraser [86] empirically investigated
how GA parameter tuning (e.g., crossover and mutation
rate) can have an impact on the performance of the algo-
rithm. The results showed that tuning does indeed have
impact but, at least in the context of test data generation,
it does not seem easy to find settings that significantly
outperform the ‘default’ values suggested in the literature.
Recenlty, LeGoues et al. [87] analysed specific crossover and
mutation operators for improving Evolutionary Software
Repair. Other work mined and analysed large corpus of
software projects to provide useful insights for improving
the genetic operators used for automatic program repair
[88], [89].

In our previous work [11] we investigated the use of
a specific crossover operator to multi-objective overtime
management. In the present work we further analysed the
use of this crossover together with a multi-objective algo-
rithm able to adaptively use different crossovers during the
search. To the best of our knowledge this is the first use of
adaptive multi-objective evolutionary algorithms to Search-
Based Project Management.

The novel algorithms introduced in the present paper
extend our previous work on hyperheuristic learning. This
was proposed in 2012 as a means of increase adaptiveness in
SBSE [26], but the first results for hyperheuristic SBSE have
only recently began to emerge [90].

7.3 Closely Related Work Outside the Area of Search
Based Project Management
This paper is concerned with search based project manage-
ment, which is a subarea of Search Based Software Engi-

neering (SBSE). One of the advantages of SBSE is the way
in which it has the ability to connect apparently unrelated
areas of software engineering. Because SBSE solutions can
share representations and fitness functions, they can exploit
problem formulations that are similar, even though they
attack entirely different software engineering application ar-
eas. Such connections have been demonstrated, for example,
between requirements and regression testing which, from
an optimisation perspective, both involve prioritization and
selection problems [30]. The work reported in this paper
therefore has potential application beyond search based
project management, to search based software engineering
in general, and to wider search based optimisation problems
(that may not even involve software engineering). Evidence
for this potential application comes from the way in which
other authors have reused the formulation of our evalua-
tion methodology in their own work on SBSE and other
multi-objective optimisation problems. For example, Nejati
and Briand [91] re-used our evaluation methodology (intro-
duced in our ICSE paper [11] for which the present paper
is an extension) in their work on trading CPU and temporal
properties, while Olaechea [92] also reused our methodol-
ogy in their work on multi-objective software product line
optimisation. This reuse of the evaluation methodology is
not confined to software engineering alone: Ficco et al. re-
used our evaluation methodology in their work on optimal
selection of positioning systems [93].

8 CONCLUSIONS AND FUTURE WORK

We have extended the search based approach to overtime
planning for software engineering projects we proposed in
previous work [11] and evaluated it on eight real world
software engineering projects. Our approach, evaluated in
terms of three standard measures of result quality, per-
formed significantly better (with large effect size) than cur-
rently used software engineering practice. Furthermore the
adaptive multi-objective evolutionary algorithm introduced
in the present work outperformed the state of the art multi-
objective algorithms applied to the same problem in 202 out
of 216 (93%) experiments (with large effect size) showing
that the criteria used to adaptively select the crossover
during the search together with the use of a crossover
specifically designed to the problem in hand allows us
to significantly improve the evolutionary algorithm perfor-
mance.

We provide qualitative evidence that the approach can
provide actionable insights to the software engineer, backing
up this quantitative evidence that it is effective and useful
[11]. As we show in the results presented in our confer-
ence paper [11], which are confirmed herein), there exist
inflection points that mark sharp differences in the trade-
off between additional overtime, and the advantages that
accrue from its deployment. These trade-offs cannot be un-
derstood without some form of algorithmic approach, since
a human cannot be expected to discover such inflection
points, unaided.

We believe that this paper lays a firm foundation for
future development of semi-automated decision support for
software engineers faced with the challenges of planning
overtime on complex and demanding projects. However,
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there remains much to be done to realise the practical
benefits that this approach offers.

In future work we plan to deploy a version of the tooling
reported upon in this paper as a freely available, open
source plug-in component to popular project planning tools,
such as Microsoft project. This will allow more extensive
evaluation of the interface between the technical aspects of
the work reported in this paper and other related socio-
technical issues for implementation and exploitation, such
as user interface, HCI, and decision support. Moreover, this
will allow us also to get feedback from practitioners on
the usefulness of the insights provided by our approach
and the considered overrun risk strategies. We also plan to
collect more data to analyse how well the model performs
by applying it on actual projects and comparing the out-
comes with projects that use the traditional rule-of-thumb
strategies.

Furthermore, it would be interesting to extend the prob-
lem formulation considering other aspects such as human
and skills allocation [94], team efficiency [95], and voluntary
overtime [1] to better represent real world projects and to
offer a stronger decision support for software engineers.

Recent results showed that integer linear programming
can be successfully applied to the Next Release Problem
(NRP) [96] and future work might investigate exact algo-
rithms for project over time planning. Indeed, finding an
exact solution would be clearly attractive where possible.
However, while it is interesting that there are exact solutions
to some problems in search based software engineering,
there is no guarantee that the same approach will perform
well for a different problem.
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APPENDIX

Table 7 shows the best configuration obtained for each
algorithm, per risk measures and per datasets, as a result of
the tuning process described in Section 4.5. We used these
configurations to answer the research questions set out in
Section 4.1.
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