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In the current issue of Neuron, Bacioglu, Maia and colleagues show that neurofilament 

light concentrations in body fluids reflect pathology and symptoms in mouse models of 

cerebral proteopathies and that these findings translate to human disease (Bacioglu et 

al., 2016).  

 

There are two major types of intermediate filaments in the nervous system: neurofilaments 

(NFs) and glial filaments. NFs exist as 10-nanometer filaments in the axoplasm of neurons, 

where they give tensile strength to dendrites and axons. NFs share several features with other 

intermediate filaments, such as being resistant to extraction at physiological pH and having a 

high degree of helicity. They are composed of three major polypeptides with molecular 

masses of 200, 150 and 68 kilodaltons (kD), respectively. As the name implies, neurofilament 

light (NfL) is the lightest of the three components.  

 

In 1987, Swedish researchers in the team of legendary Kenneth G. Haglid managed to obtain 

pure fractions of the different NFs from bovine brain (Karlsson et al., 1987), which was the 

basis for the generation of polyclonal rabbit antisera specific against the individual NF 

polypeptides (Karlsson et al., 1989). The most promising combination of these was developed 

into the first enzyme-linked immunosorbent assay (ELISA) for NfL (Rosengren et al., 1996). 

Rosengren and colleagues showed that CSF NfL concentration was increased in amyotrophic 

lateral sclerosis (ALS), particularly so in patients with pyramidal tract involvement, and that 

increased concentrations also characterized Alzheimer’s disease (AD), vascular dementia and 

normal pressure hydrocephalus, but with lower magnitude of the rise compared with that seen 



 2

in ALS (Rosengren et al., 1996). The authors concluded that CSF NfL was a promising 

biomarker for neurodegeneration in general; a conclusion that has later been confirmed, e.g., 

in studies examining atypical parkinsonian disorders (Hall et al., 2012; Magdalinou et al., 

2015) and frontotemporal dementias (Scherling et al., 2014).  

 

Monoclonal antibodies against NfL were developed (Norgren et al., 2002), and a new NfL 

ELISA that did not depend on exhaustible antisera was established (Norgren et al., 2003). 

Given the high expression of NfL in large caliber myelinated axons, studies on multiple 

sclerosis (MS) soon followed. Researchers found that CSF NfL is increased in both relapsing-

remitting and primary progressive MS, that CSF NfL concentration indicates ongoing axonal 

injury and reflects the intensity of the process, that CSF NfL concentration normalizes within 

6-12 months in MS patients following initiation of clinically effective treatment and that CSF 

NfL thus is a promising biomarker for disease intensity and progression, as well as for 

treatment response (Teunissen and Khalil, 2012). Similar results on CSF NfL dynamics have 

been obtained in stroke, TBI, HIV-associated dementia and a broad range of other 

neuroinfectious conditions.  

 

None of the clinical studies discussed above, however, have addressed the relationship 

between CSF NfL and neuropathology. To that end, joint first authors Bacioglu and Maia 

with colleagues performed a remarkable set of experiments in which they collected CSF (not 

the regular lumbar puncture and not the volumes clinical neurochemists are used to!) and 

blood over time in three transgenic mouse models of neurodegenerative proteopathies 

(P301S-tau mice as a model for tau pathology, APPPS1 mice as a model for amyloid  [A] 

pathology, and A53T-α-synuclein mice as a model for -synuclein pathology). Using the 

same reagents that constitute the basis for the standard NfL ELISA discussed above but 

transferred onto a platform with electrochemiluminescent detection that yields a 5-fold 

increase in analytical sensitivity compared with the ELISA, they measured CSF and 

serum/plasma NfL (Bacioglu et al., 2016) (Figure 1).  

 

In the mouse models, CSF NfL increased in parallel or slightly before protein deposition. 

Intriguingly, in all three models, CSF NfL increased months before the first symptoms 

appeared, suggesting it might serve as a preclinical marker. By the time symptoms developed, 

CSF NfL concentrations in APPPS1 and P301S-tau mice were 10-20 times those in wild-type 

animals, whilst CSF NfL concentration in A53T-αS mice was a 1000-fold higher. Plasma NfL 
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followed the same pattern; the correlation coefficients with CSF NfL were as high as 0.86-

0.94 in the transgenic animals. However, in wild-type mice the correlation coefficient was 

lower, 0.47, and the increase in plasma NfL before symptom onset was less clear compared 

with CSF NfL. The two latter results may be explained by overall lower concentrations of 

NfL in wild-type mice and in the early phase of protein deposition in the transgenic models; 

these concentrations may simply be closer to the limit of quantification of the assay and thus 

more variable, suggesting that even more sensitive tests would be of value.  

 

Next, Bacioglu, Maia and colleagues performed a series of experiments in which the 

pathology load in the models was modified and the effects of these modifications on NfL 

concentrations were examined. Using a -secretase inhibitor (one of the enzymes essential for 

A production from amyloid precursor protein, APP), they lowered Aβ production in 

APPPS1 mice over six months. Both CSF and plasma NfL concentrations decreased in 

parallel with Aβ load. Thus, the neuronal reaction to the treatment-induced reduction of A 

pathology could be monitored using CSF and plasma NfL. In a differently designed 

experiment, the authors worsened the -synuclein pathology of A30P-αS mice by seeding the 

pathology in young animals with brain extract from aged A30P-S animals. Lesions and 

symptoms developed more rapidly in seeded mice and CSF and plasma levels of NfL 

increased more rapidly, in parallel with the number and size of the -synuclein inclusions, 

corroborating the direct relationship between protein deposition and fluid NfL concentration.  

 

Finally, the researchers measured CSF and serum NfL concentrations in neurodegenerative 

diseases, resembling the three mouse models they examined: Parkinson’s disease (PD), 

dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) that are 

synucleinopathies; progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) 

that are tauopathies (although the latter diagnosis is very hard to make in vivo); and AD that is 

the classical cerebral -amyloidosis. The authors found CSF NfL concentrations to be 

increased over controls in all disease groups except PD. Overall, the NfL increase in the 

patients was smaller than in the mouse models, from 1.5- to 5.5-fold over healthy controls in 

both CSF and serum, but they were still clearly discernible and in agreement with previous 

studies (Hall et al., 2012; Magdalinou et al., 2015).  
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Altogether, the paper by Bacioglu, Maia and colleagues clarifies several outstanding issues in 

regards to the potential use and interpretation of CSF and plasma/serum NfL as a biomarker 

for neurodegeneration. The clinical data support CSF NfL as a general marker of 

neurodegeneration and the plasma/serum results suggest that similar information can be 

gained through a simple blood test (a major step forward). In the clinical work-up of 

suspected neurodegenerative disease, NfL will most likely be of limited value from a 

differential diagnostic perspective (with the differentiation of typical idiopathic PD from 

atypical parkinsonian disorders being one potential exception) but could instead be used to 

determine disease intensity and predict progression, and also identify disease onset in 

autosomal dominant forms of neurodegenerative disease. Uniquely, in the mouse models, the 

data show that CSF and plasma NfL concentrations predict onset of neuronal dysfunction in 

response to pathology and reflect disease modification when pathology load is altered by 

treatment. Taken together, the data speak for a potential clinical scenario in which CSF and/or 

plasma/serum NfL may bridge preclinical research and be used in trials to detect treatment 

effects of novel disease-modifying drug candidates in patients with increased NfL 

concentrations at baseline, and in the clinic to facilitate treatment selection and optimize dose-

finding faster than what would be possible using clinical assessment and/or neuroimaging.  

 

In the field of neurodegeneration, any research team who could report treatment-induced 

changes in NfL, similar to what has been reported after initiation of successful treatment 

against MS (Gunnarsson et al., 2011), would be saluted. The encouraging results by Bacioglu, 

Maia and colleagues suggest that disease modification in neurodegeneration is a reachable 

goal and that biomarkers like NfL may be an additional tool to help us achieving it.  
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Figure legend 

Fig. 1: Schematic drawing of a neuron with the pathologies Bacioglu, Maia and colleagues 

examined in relation to cerebrospinal fluid (CSF) and plasma/serum concentrations of 

neurofilament light (NfL) in animal models of and patients with proteopathic 

neurodegenerative diseases (Bacioglu et al., 2016). Intraneuronal inclusions of tau and -

synuclein (-syn, Lewy bodies) are depicted along with extracellular aggregates of amyloid  

(A). NfL is a protein highly expressed in large caliber myelinated axons. Upon axonal injury, 

irrespective of cause, the protein leaks out into the brain interstitial fluid that communicates 

freely with the CSF and eventually ends up in the blood from which it is cleared by unknown 

mechanisms.  


