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Abstract 17 

Sediment cores from four lakes across the Tibetan Plateau were used as natural archives 18 

to study the time trends of organochlorine pesticides (OCPs). The total concentrations 19 

of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane isomers 20 

(HCH) were in the range of 0.04-1.61 ng/g and 0.08-1.88 ng/g based on dry weight 21 

(dw), while the input fluxes were in the range of 0.3-236 pg/cm2/yr and 0.7-295 22 

pg/cm2/yr in the core sediments, respectively. The input fluxes of DDT and HCH 23 

generally peaked in sediment layers corresponding to the 1970s-90s and peaked in top 24 

sediment layers. The ratio of α/γ-HCH decreased in the top layer sediments, implying 25 

that the contribution of lindane (pure γ-HCH) has been increasing in recent years. In 26 

addition, the ratio of o,p′-DDT/p,p′-DDT increased significantly over the last 15-20 27 

years, suggesting that dicofol (characterized by high ratio of o,p′-DDT/p,p′-DDT about 28 

7.0) has recently become a relatively more important source of DDT compared to 29 

technical DDT itself. The time trends of OCPs recorded in lake sediments examined 30 

the impact on such remote alpine regions by human activities. 31 

Keywords: sediment core, alpine lake, DDT, HCH, historical trend, Tibetan Plateau    32 
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Introduction 33 

Persistent organic pollutants (POPs) are of high concern because they are persistent, 34 

toxic, and bioaccumulative in nature. Being semi-volatile, POPs are able to undergo 35 

long-range atmospheric transport (LRAT) and distribute globally. Alpine regions play 36 

important roles when POPs are transported from lowlands to the high-altitude areas. In 37 

recent years, increasing number of studies has revealed that high mountains can act as 38 

cold condensers, where cooler temperatures lead to enhanced deposition of selected 39 

POPs at high altitude (Daly and Wania 2005). 40 

The Tibetan Plateau (TP), located in Central Asia, is the largest and highest 41 

plateau in the world, with an area of 2.5 million square kilometers and an average 42 

altitude over 4,000 meters above sea level (a.s.l.). Most parts of the TP are remote and 43 

inaccessible, which has led to the presumption of its pristine status. However, the TP is 44 

located at low latitude, and surrounded by regions with growing air pollution, especially 45 

in South and Southeast Asia (Xu et al. 2009). In the past, countries surrounding the TP 46 

such as India and China have experienced heavy use of organochlorine pesticides 47 

(OCPs) including dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane 48 

(HCH). It was reported that about 5×105 tonnes of DDT and more than 106 tonnes of 49 

technical HCH have been applied in India (Li and Macdonald 2005) and about 2.7 × 50 

105 tonnes of DDT as well as 4.5 × 106 tonnes of technical HCH from the 1950s until 51 

its ban in 1983 have been used in China (Li et al. 1998). There is growing concern that 52 

OCP residues continue to have adverse effect on ecosystems. Moreover, lindane (pure 53 

γ-HCH) and DDT are still being used to small extents in tropical and subtropical south 54 
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Asian countries for malaria control (Yadav et al. 2015). Previous studies have 55 

documented that semi-volatile persistent pollutants released from the surrounding 56 

source regions can migrate to TP latitudinally and altitudinally by LRAT (Tao et al. 57 

2011; Yang et al. 2010b, 2013). 58 

Lake sediments can serve as ideal archives for exploring the historical human 59 

disturbance and climate changes (Bettinetti et al. 2011). Sediments in remote alpine 60 

lakes are regarded as sentinels of atmospheric pollution (Guo et al. 2006; Rose and 61 

Rippey 2002). The post-depositional sediment mixing in lakes on the TP is relatively 62 

limited and these lakes are minimally disturbed by direct human activities (Fernandez 63 

et al. 2000). Thus, the inputs of chemical pollutants to alpine lakes are generally 64 

predominated by atmospheric deposition (Juttner et al. 1997). Noticeably, as the world’s 65 

largest ice storage after the Arctic and Antarctic, glaciers on the TP have shrunk more 66 

than 6600 km2 in the past 40 yr or more as a response to climate warming. Climate 67 

change has shown a great impact on Tibetan lakes due to the increased water supply 68 

from melting glaciers and snow (Liu et al. 2009). It was reported that these changes 69 

also have impacts on the recycling of pollutants in lake sediments (Bogdal et al. 2009; 70 

Cheng et al. 2014). 71 

Understanding the temporal change of OCPs content in remote region is crucial 72 

not only to study the fate and transport of POPs but also to assess the impact of human 73 

disturbance and thereafter climate change. Although OCPs were found across the TP in 74 

various matrices including air (Li et al., 2006; Wang et al., 2010), soils (Tao et al. 2011, 75 

Yuan et al., 2014), vegetation (Wang et al., 2006; Yang et al., 2008) and fish (Yang et 76 
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al., 2007). There are a few studies reported on time trends of OCPs in the TP. Wang et 77 

al. (2008) determined that DDT and HCH concentrations in an ice core from the 78 

southern TP were significantly influenced by local emissions from India. Cheng et al. 79 

(2014) inferred that the meltwater from glaciers was a possible new source for OCP 80 

pollution based on analysis of lake sediments in the central TP. Zhang et al. (2003) 81 

reported a zigzag increasing trend of DDT and HCH in two sediment cores towards the 82 

top layers in the central TP. However, knowledge of the historical trends of 83 

environmental contamination by OCPs in the TP is still very limited. In addition, these 84 

studies only focused on specific areas of the TP. Therefore, to improve our 85 

understanding of the fate and transport of POPs in the TP, the present work was 86 

designed with a regional perspective, sediment cores were collected from lakes in three 87 

areas along a south-to-north transect (Fig. 1). The time trend and spatial distribution of 88 

OCPs across the TP were examined, and gain insights on input sources of the OCPs in 89 

the sediments. 90 

Materials and methods 91 

Geographic settings and sampling 92 

In order to study the transport and spatial distribution of OCPs across the TP, four lakes 93 

were selected along a south-to-north transect: Peiku Co, Cuo E, Cuo Na and Keluke 94 

Lake (Fig. 1), with altitudes of 4595 m, 4531 m, 4617 m and 2813 m, and water areas 95 

of 284 km2, 61 km2, 182 km2, and 57 km2, respectively. All the lakes are remote and far 96 

from urban or agricultural pollution sources. All the lakes are freshwater except for Cuo 97 

E, which is brackish with salinity of 892 mg/L in Cl- (Nie et al. 2013). Peiku Co is a 98 
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typical tectonic lake at the southern edge of the TP, and precipitation as well as glacier 99 

meltwater is the main water supply (Yang et al. 2010a). Cuo E and Cuo Na have 100 

developed in broad glaciofluvial basins in the central plateau. Keluke is located in the 101 

semi-arid, grassland-steppe climate zones in the northeast TP (Wang & Su, 1998). 102 

   Sediment cores were collected in August 2006 for Lakes Keluke 103 

(E96°52.922′/N37°17.165′), Cuo Na (E91°30.805′/N32°02.921′) and Cuo E 104 

(E91°29.087′/N31°25.221′) and 2007 for Lake Peiku (E85°31.015′/N28°48.726′). An 105 

HTH gravity sediment corer with an 8.5 cm inner diameter polycarbonate tube was used 106 

to collect sediment cores. Cores were collected from the deepest part of the lakes, 107 

except for the Peiku Co, where it was taken from a shallower sub-basin. The cores were 108 

24.5 cm, 29.5 cm, 43.0 cm and 25 cm in length for lakes Peiku Co, Cuo E, Cuo Na and 109 

Keluke, respectively. The cores were sectioned onsite at intervals of 0.5 cm using a 110 

stainless steel cutter and a total of 136 samples were obtained. All samples were packed 111 

in aluminum foil and were stored at 4°C in a car refrigerator during transportation, and 112 

then they were kept frozen at -20°C in the laboratory. 113 

Sediment characterization 114 

The samples were analyzed for water content and wet bulk density, from which the dry 115 

bulk density was calculated. Organic matter (OM) content of each sample was 116 

determined gravimetrically by loss on ignition (LOI) at 550°C for 4 h. 117 

The sediment was dated using the radionuclides 210Pb and 137Cs by direct gamma 118 

assay using an ORTEC HP Ge GWL series well-type coaxial low background intrinsic 119 

germanium detector. The detailed radiometric dating method was described in a 120 
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previous work (Yang et al., 2010a; Yang et al., 2013). Sediment ages and mass 121 

sedimentation rates (MSR) were calculated using the constant rate of supply (CRS) 122 

model constrained by the relevant 137Cs. The sediment focusing factor (FF), which was 123 

used to evaluate the post-depositional horizontal movement of the sediment particles, 124 

was calculated as the ratio of the unsupported 210Pb accumulation in a core to that 125 

atmospheric 210Pb deposition flux for the region. In this study, lake basin soil was used 126 

as proxy measurements for the atmospheric 210Pb flux. The FF values were 0.17, 6.26, 127 

5.97 and 0.72 in lakes Peiku, Cuo E, Cuo Na and Keluke, respectively. The MSR varied 128 

greatly among the studied lakes with lowest values (0.01~0.05 g cm2/yr) in the southern 129 

lake (Peiku), higher values (0.03~0.20 g cm2/yr) in the northern lake (Keluke) and 130 

highest values (0.09~0.81 g cm2/yr) in the central lakes (Cuo E and Cuo Na). The 131 

unusual increase of MSR in Cuo Na since the 1990s until the 2000s successfully reflects 132 

the impact by the Qinghai-Tibet Railway construction (Yang et al., 2010a). The 133 

corrected fluxes using FF values in this study were aimed to reduce the overall influence 134 

which may cover the environmental factors such as episodes with flood or erosion. Thus, 135 

the fluxes could reflect mean basin accumulation rates at a large extent. Detailed 136 

information was described in the previous work (Yang et al., 2010a). 137 

Chemical analysis 138 

The OCP standards of α-HCH, β-HCH, γ-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-139 

DDD, p,p′-DDD, o,p′- and p,p′-DDT, the surrogate standards polychlorinated biphenyl 140 

209 (PCB209) and 2,4,5,6-tetrachloro-m-xylene (TCmX), and the internal standard 141 

octachloronaphthalene (OCN) were purchased from Dr. Ehrenstorfer Laboratories 142 

(Augsburg, Germany). 143 
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    The solvents n-hexane and dichloromethane used for extraction and cleanup were 144 

ultra residue-analytical grade and were purchased from Fisher Scientific (Andover, 145 

USA). Silica gel (100-200 mesh, Qingdao Marine Chemical, China) was baked at 146 

550C for 12 h and activated at 180C for 2 h. Anhydrous sodium sulfate was baked at 147 

550C for 4 h. Copper powder (200 mesh, Sinopharm Chemical Reagent Co. Ltd, China) 148 

was activated using hydrochloric acid, then washed twice by distilled water, acetone 149 

and dichloromethane, respectively. 150 

    One gram potions of freeze-dried sediment samples were spiked with surrogates 151 

(PCB 209 and TCmX) and extracted using mixed solvents of hexane and 152 

dichloromethane (1:1, v/v) by accelerated solvent extraction (Dionex ASE350, U.S.) at 153 

a temperature of 150C and a pressure of 1500 psi. Activated copper powder was added 154 

to the extract to remove elemental sulfur. The extracts were concentrated to about 1~2 155 

ml by a rotary evaporator. The cleanup was conducted using a glass column packed 156 

with 6 g 3% deactivated silica gel, 4 g 2% deactivated alumina and a 2-cm-thickness of 157 

anhydrous sodium sulfate from bottom to top. The elution was subsequently conducted 158 

using10 ml of hexane and a 50 ml mixture of dichloromethane and hexane (1:1, v/v). 159 

The eluate was concentrated to 1~2 ml and was then finally reduced to 0.2 ml in hexane 160 

under a gentle stream of pure nitrogen. Quantitative internal standards (20 ng of OCN) 161 

were added to the extract before instrumental analysis. 162 

    The OCPs in the samples were analyzed using a gas chromatograph (Agilent-7890 163 

GC, USA) equipped with a 63Ni electron capture detector (micro-ECD). The 164 

chromatographic separation was conducted using two capillary columns with different 165 

polarity (HP-5 and DB-1701). Both columns were 30 m long and had 0.25 mm i.d. and 166 

0.25 μm stationary phase film thickness. The samples were analyzed basically by HP-167 

5 column; while further confirmation was conducted by DB-1701 column. Each 168 
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organochlorine compound is identified on the basis of its occurrence in each of the two 169 

specified retention time for the two columns. This facilitated peak recognition when 170 

compounds or interferences coeluted on one column. The temperatures of the injector 171 

and detector were set at 250C and 350C, respectively. One microliter of the extracts 172 

was injected in the pulsed splitless mode. High-purity helium was used as the carrier 173 

gas with a constant flow of 1.2 ml/min, and high-purity nitrogen was used as the make-174 

up gas and controlled at 48.8 ml/min. The oven temperature program was 80C, held 175 

for 1 min, ramped at 15C/min to 140C, held for 1 min, and then ramped at 5C/min 176 

to 230C, held for 4 min, and finally ramped at 25C/min to 300C, and held for 10 177 

min. 178 

Quality control 179 

A procedural blank using anhydrous Na2SO4 in place of sediment was analyzed in each 180 

batch of 11 sediment samples. The average recoveries of spiked surrogates in all 181 

analyzed samples (N=136) were 74 ± 8.3% for TCmX and 100 ± 7.6% for PCB209. 182 

The concentrations reported in this paper were corrected by the surrogate recoveries. 183 

The breakdown of parent DDT was checked daily and the percentage of the breakdown 184 

products was less than 10%. One or two segments in each core were analyzed in 185 

duplicate, and the average relative percentage differences (RPDs) were in the range of 186 

3.1-28.6%. The method detection limit (MDL) was defined as three times the signal-187 

to-noise ratio (S/N). The MDLs were 0.03, 0.04, 0.01 and 0.06 ng/g dw for α-HCH, β-188 

HCH, γ-HCH and δ-HCH, and 0.05, 0.01, 0.06, 0.04, 0.12 and 0.08 ng/g dw for o,p′-189 

DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′- and p,p′-DDT, respectively. The 190 

instrument performance was routinely checked using quality control standards. 191 
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Estimation of chemical flux and inventory 192 

Flux stands for the accumulation rate of the chemical analyte and has been considered 193 

as a more meaningful way than concentration to assess pollutant inputs. Inventory is an 194 

estimate of the total accumulation of the pollutants over time per unit area. The two 195 

parameters were estimated by the following equations (Perry et al. 2005): 196 

Fluxi (μg/m2/yr) = Ci×MSR×10/FF 197 

Inventory (ng/cm2) = Ciρidi 198 

Where Ci is the dry-weight-based concentration in sediment core segment i (ng/g dw), 199 

MSR is mass sedimentation rate (g/cm2/yr), and FF is the focusing factor 200 

(dimensionless); ρi is the dry mass bulk density (g/cm3), di is the thickness of segment 201 

i (cm). 202 

Results and discussion 203 

Concentrations 204 

Summary statistics of the concentrations and inventories of OCPs in sediments are 205 

shown in Table 1. Concentration comparisons with the results from other remote areas 206 

are presented in Table 2. The detailed isomer concentrations of HCH and DDT are 207 

shown in Table S1 in the supporting information. 208 

The DDT concentrations (sum of o,p′-DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, 209 

o,p′- and p,p′-DDT) were in the range of 0.31-0.73 ng/g dw, 0.07-1.21 ng/g dw, 0.42-210 

1.61 ng/g dw and 0.04-0.75 ng/g dw in the core sediments from Lakes Peiku, Cuo E, 211 

Cuo Na and Keluke, respectively. The HCH concentrations (sum of α-, β-, γ- and δ-212 

HCH) were in the range of 0.26-1.08 ng/g dw, 0.08-1.37 ng/g dw, 0.42-1.88 ng/g dw 213 
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and 0.35-1.15 ng/g dw in the same order as the former lakes. The sediment 214 

concentrations of both DDT and HCH measured in this study were higher than those 215 

from the Canadian Arctic (Stern et al. 2005), the Antarctic (Klanova et al. 2008) and 216 

high altitude lakes from the Southern Himalayas (Guzzella et al. 2011), similar to those 217 

from the Norwegian Arctic (Jiao et al. 2009; Evenset et al. 2007), Rocky mountains 218 

(Usenko et al. 2007), Andean mountains (Borghini et al. 2005), and the central TP 219 

(Zhang et al., 2003; Cheng et al. 2014) but significantly lower than those in European 220 

mountains (Grimalt et al. 2004). The elevated concentrations in the TP might be 221 

explained by the plateau’s proximity to the source regions such as Indian subcontinent 222 

and China (Yang et al. 2008). Studies have documented that selected POPs on the TP 223 

can be transported from the Indian subcontinent by the southern Asian monsoon (Yang 224 

et al. 2008, 2013; Wang et al. 2008). 225 

The concentrations of DDT and HCH generally peaked in sediment layers 226 

corresponding to the 1970s-90s and in the top sediment layers (Fig. 2). Organic matter 227 

usually plays an important role in the distribution and retention of organic contaminants 228 

in sediments (Klanova et al., 2008). The core averaged OM content in this study ranged 229 

from 48 (Lake Peiku Co) to 200 mg/g (Lake Cuo E), with an average of 117 mg/g. 230 

However, no significant correlation between concentration and OM content was 231 

observed for all the studied lakes (P > 0.05). When concentrations were normalized by 232 

OM content, the vertical distribution pattern of HCH and DDT didn’t change much (Fig. 233 

3), suggesting OM content itself does not cause the significant increase in OCP 234 

concentrations in sediment. Thus, OM content played an insignificant role in affecting 235 



12 
 

the trends of vertical distribution of target compounds in the sediments of these lakes. 236 

Input flux and time trends 237 

The input flux of DDT and HCH showed obvious increasing trends for all the studied 238 

lakes since the 1950s, when these pesticides were first applied all over the world (Fig. 239 

2). The heavy use of OCPs in Indian Subcontinent and China is reflected by the peaks 240 

during the 1970s-80s in the input fluxes observed in the lake sediments of this work. 241 

However, it is noted that input fluxes of DDT and HCH continued to increase in 242 

most of lakes at the top layer sediments (Fig. 2). Since the global ban of DDT and HCH 243 

application in agriculture purpose after the late 1980s, their levels in environmental 244 

matrices have largely dropped (Li 1999). Although DDT and lindane are still in use in 245 

some southern Asian countries, the amount has been greatly reduced in recent years (Li 246 

and Macdonald 2005). A recent decreasing trend of OCPs in the air of south India was 247 

also evidenced (Rajendran et al. 1999). As expected, deposition fluxes recorded in an 248 

ice core from the southern TP were in line with the usage of OCPs in India, which 249 

showed a decrease to undetectable levels from the 1980s (Wang et al. 2008). Apparently, 250 

the time trends of OCPs in sediment cores observed in this study are quite different 251 

from the historical records in Tibetan ice cores in the corresponding recent deposition 252 

years. Since there is no official record on the usage of OCPs in this region, the 253 

increasing trends of OCPs in top sediment layers implies other local OCP sources may 254 

contribute to lake sediments in addition to atmospheric deposition from LRAT sources. 255 

The TP and surroundings contain the largest number of glaciers outside the Polar 256 

Regions. Climate warming has significant implications for water resources and eco-257 
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environment in the TP (Yao et al. 2012). It was reported that the mean annual 258 

temperature in the central TP increased at 0.41C/yr during the last decade (1997-2006) 259 

(Liu et al. 2009). In the past 40 yrs., glaciers have shrunk more than 6600 km2 on the 260 

TP with significant retreat occurring since the mid-1980s and strong retreat being 261 

observed since the 1990s (Yang et al. 2015). Considering that meltwater from glaciers 262 

or snow to the lake water has become more significant in the TP due to climate warming 263 

(Liu et al. 2009), Cheng et al. (2014) suggested that the increasing trend of input flux 264 

in the top layers of sediments in the central TP are possibly resulted from the release 265 

that OCPs formerly trapped in glaciers or frozen soils in the TP may have been flushed 266 

into sedimentary basins. The recent glacial origin of pollutants released into lakes has 267 

been also confirmed by several other studies (Bodal et al. 2009; Bettinetti et al. 2011; 268 

Cheng et al. 2014). The water supply to the studied lakes is influenced to a great extent 269 

by meltwater from glaciers or snow (Wang and Dou, 1998), as described in the sampling 270 

section above. The contribution of glacial origin of OCPs for the recent increase in the 271 

top layer sediments in the present work need further study in the future.  272 

Geographical distribution and source assessment 273 

Sources of OCPs to the TP are likely to be significantly affected by the southwest 274 

or southeast air mass from Indian subcontinent (Yang et al. 2013). The geographical 275 

distribution of OCP fluxes in lakes along a south-to-north transect is also examined in 276 

the present study as follows. In the southern Peiku Co, the temporal resolution is 277 

relatively poor due to its low sedimentation rate (Yang et al. 2010a). The input fluxes 278 

of DDT and HCH in southern Peiku Co are much higher than in the central Cuo E 279 
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(Fig. 2). The southern Peiku Co is relatively close to the Indian subcontinent, which is 280 

heavily polluted by DDT and HCH. Our previous work also found that concentrations 281 

of DDT and HCH in pine needles decreased from the south to the north in the southeast 282 

TP, suggesting an important input from the Indian subcontinent by the South Asian 283 

monsoon (Yang et al. 2008). However, for the two central lakes, the Cuo Na Lake is 284 

unusual that the OCP fluxes are about one-fold higher than those in Cuo E Lake (Fig. 285 

2). Because OCP concentrations are similar between the two lakes, the remarkable 286 

increase of OCP fluxes in Cuo Na Lake probably due to local road and railway 287 

construction within the catchment, causing OCP-containing soils (0.23 and 0.17 ng/g 288 

dw for HCH and DDT, respectively) to be washed into the lake (Xie et al. 2014). 289 

This was also in line with the observations that significantly higher sedimentation rate 290 

and mercury accumulation rate occurred in Cuo Na Lake (Yang et al. 2010a). There is 291 

no general decreasing trend along the south-to-north transects for OCP fluxes. The 292 

HCH flux in the northern Keluke Lake is similar to that of the southern Peiku Lake, 293 

implying Northern lake basins are significantly influenced by inland OCP sources using 294 

air mass back trajectory analysis (Xie et al. 2014). The OCP flux differences between 295 

these sites may be related to individual catchment influences, proximity to source areas 296 

and to different meteorological conditions across the TP. 297 

Isomer ratio is often used as a probe for sources and transport of OCPs (Willett et 298 

al. 1998; Yang et al. 2013). Amongst, the ratio of α/γ-HCH has been widely used to 299 

monitor the source and historical use of HCH (Willett et al. 1998). Technical HCH has 300 

an α-/γ-HCH ratio ranging from 3 to 7 (Willett et al. 1998). The averaged α-/γ-HCH 301 
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ratios in the four lakes of this work ranged from 0.96 to 2.99, significantly lower than 302 

the value in technical HCH. In addition, the ratios of α/γ-HCH have generally decreased 303 

since around 1990 (Fig. 4A), implying that the contribution of lindane (γ-HCH) has 304 

been increasing as a potential main source in recent years, which is in line with the fact 305 

that technical HCH was banned in China in 1983 and in India in 1997, while lindane is 306 

still being used in some southern Asian countries (Li and Macdonald 2005). 307 

A high p,p′-DDE/p,p′-DDT ratio usually reflects aged sources, because p,p′-DDT 308 

can be degraded to p,p′-DDE and p,p′-DDD. All the averaged ratios of p,p′-DDE/ p,p′-309 

DDT in the lakes are larger than 1, with an exception in Cuo Na Lake (0.32), indicating 310 

that DDT in the TP are mainly from historical input. However, the averaged ratios of 311 

o,p′-DDT/p,p′-DDT in lake sediments ranged from 0.29 to 1.30, which were 312 

significantly higher than those in technical DDT (85% p,p′-DDT and 15% o,p′-DDT), 313 

suggesting that dicofol, which is characterized by a high ratio of o,p′-DDT/p,p′-DDT 314 

(about 7.0) (Qiu et al. 2005), has recently become a relatively more important source 315 

of the DDT. Asia is the largest consumer of dicofol and the annual usage in China and 316 

India in the year 2000 was 2013 tonnes and 145 tonnes, respectively (Li et al. 2014). In 317 

addition, the ratio of o,p′-DDT to the sum of o,p′-DDT and p,p′-DDT has increased 318 

significantly in lake sediments over the last 15-20 years (Fig. 4B), indicating that the 319 

contribution of DDT from dicofol may have become more predominant in the current 320 

DDT profiles due to the ongoing usage of dicofol in areas surrounding the TP. 321 

Conclusion 322 

This work reveals the time trends of OCP pollution in the TP from retrieved sedimentary 323 
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records in four remote alpine lakes. The elevated concentrations in sediments in the TP 324 

compared to the Polar Regions might be explained by the plateau’s proximity to the 325 

source regions. The input fluxes of DDT and HCH generally peaked in sediment 326 

layers corresponding to the 1970s-90s when the heavy use of OCPs in surroundings of 327 

the TP. Of particular concern is the recent shift in pollution sources of HCHs and DDTs. 328 

Isomer ratio analysis (α/γ-HCH and o,p′-DDT/p,p′-DDT) indicated that lindane (pure 329 

γ-HCH) and dicofol may have recently become relatively more important sources of 330 

HCHs and DDTs. In contrast to recent decline trend that reported in the southern 331 

Tibetan ice core, the ongoing increasing trends of OCP fluxes in the top layer sediments 332 

should be noticeable. Considering that meltwater from glaciers or snow to the lake 333 

water has become more significant in the TP due to climate warming, the influence of 334 

climate change on the recycling of contaminants in lake ecosystems of the TP deserves 335 

more comprehensive study in the future. 336 
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Table1 Concentrations and inventories of DDT and HCH in sediment cores 

Lakes 
Core concentration range (mean) 

(ng/g dw) * 
 

Surface 

concentration  

(ng/g dw) 

 
Inventories 

(ng/cm2)a 

 DDT b HCH c  DDT HCH  DDT HCH 

Peiku 0.21-0.73 (0.40) 0.26-1.08 (0.68)  0.48 0.69  0.42 0.61 

Cuo E 0.05-1.21 (0.34) 0.08-1.37 (0.75)  1.00 1.37  1.47 3.35 

Cuo Na 0.26-1.61 (0.57) 0.46-1.38 (0.77)  0.93 1.23  7.44 7.89 

Keluke 0.04-0.75 (0.28) 0.40-1.15 (0.69)  0.28 1.03  0.67 1.63 

* min-max (mean); a calculated since the 1940s; b sum of p,p′-DDE, o,p′-DDE, p,p′-DDD, o,p′-DDD, p,p′- and o,p′-

DDT; c sum of α-, β, γ- and δ-HCH. 
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Table 2 Comparison of OCP concentrations in sediments from remote lakes (ng/g dw) 

Locations Sampling 

year 

Sediment 

type 

Concentration Reference 

∑DDT ∑HCH 

Mountain lakes, across TP 2006-07 core BDL a -2.5b BDL-1.9c This study 

Mountain lakes, Central TP 2003 core 0.4-6.3d 0.3-9.0c Cheng et al. 2014 

Andean mountain lakes, Chile 1999 core 0.019-4.1f 0.005-0.23c Borghini et al. 2005 

Rocky Mountain lakes 2003 core 1.8-9.8g NAh Usenko et al. 2007 

Remote lakes, Norwegian Arctic 2001 core 1.6-4.0i NA Evenset et al. 2007 

Remote lakes, Canadian Arctic 1999 core BDL -0.20b BDL-0.33c Stern et al. 2005 

Mountain lakes, across TP 2006-07 surface 0.28 -1.0b 0.69-1.4c This study 

Southern Himalaya lakes, Nepal 2007 surface 0.19±0.27 b BDL Guzzella et al. 2011 

James Ross Island, Antarctic 2005 surface 0.19-1.15j 0.14-0.76c Klanova et al. 2008 

Ny-Alesund lakes, Arctic 2005 surface 0.12-5.9d 0.21-7.0c Jiao et al. 2009 

European mountain lakes 2004 surface 0.27-54 e BDL Grimalt et al. 2004 

a: BDL: below the detection limit; b: sum of p,p′-DDE, o,p′-DDE, p,p′-DDD, o,p′-DDD, p,p′- and o,p′-DDT; c: sum 

of α-, β-, γ- and δ-HCH; d: sum of p,p′-DDE, p,p′-DDD, p,p′- and o,p′-DDT; e: sum of p,p′-DDE, p,p′- and o,p′-

DDT; f: p,p′-DDE; g: sum of p,p′-DDE and p,p′-DDD; h: NA: not available; i: sum of p,p′-DDE, o,p′-DDE, o,p′-

DDD, p,p′- and o,p′-DDT; j:sum of p,p′-DDE, p,p′- and o,p′-DDT. 
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Figure legends: 

 

Figure 1 Map showing lake locations. 

Figure 2 Temporal trends of concentrations (blue diamonds) and depositional fluxes (red circles) 

for DDT and HCH in dated sediment cores. 

Figure 3  Comparison of temporal trends of OCP concentrations between dry weight basis and OM 

content basis in Cuo E Lake. 

Figure 4  Variations of ratios of α/γ-HCH (A) and o,p′-DDT/p,p′-DDT (B) against deposition year 

of lake sediments. 
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Fig. 1 Map showing lake locations. 
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Concentration (ng/g dw) 

 

 

Fig.2 Temporal trends of concentrations (blue diamonds) and depositional fluxes (red circles) for 

DDT and HCH in dated sediment cores. 
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Fig. 3 Comparison of temporal trends of OCP concentrations between dry weight basis and OM 

content basis in Cuo E Lake. 
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(A) 

(B) 

 

Fig.4 Variations of ratios of α/γ-HCH (A) and o,p′-DDT/p,p′-DDT (B) against deposition year of lake 

sediments. 
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