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Abstract— The beat-to-beat variability of the QT interval
(QTV) is a marker of ventricular repolarization (VR) dynamics
and it has been suggested as an index of sympathetic ventricular
outflow and cardiac instability. However, QTV is also affected
by RR (or heart rate) variability (RRV), and QTV due to RRV
may reduce QTV specificity as a VR marker. Therefore, it would
be desirable to separate QTV due to VR dynamics from QTV
due to RRV. To do that, previous work has mainly focused on
heart rate corrections or time-invariant autoregressive models.
This paper describes a novel framework that extends classical
multiple inputs/single output theory to the time-frequency (TF)
domain to quantify QTV and RRV interactions. Quadratic TF
distributions and TF coherence function are utilized to separate
QTV into two partial (conditioned) spectra representing QTV
related and unrelated to RRV, and to provide an estimates
of intrinsic VR dynamics. In a simulation study, a time-
varying ARMA model was used to generate signals representing
realistic RRV and VR dynamics with controlled instantaneous
frequencies and powers. The results demonstrated that the
proposed methodology is able to accurately track changes in
VR dynamics, with a correlation between theoretical and esti-
mated patterns higher than 0.88. Data from healthy volunteers
undergoing a tilt table test were analyzed and representative
examples are discussed. Results show that the QTV unrelated to
RRV dynamics quickly increased during orthostatic challenge.

I. INTRODUCTION

The interval between the onset of the Q-wave and the
end of the T-wave in the ECG, so called QT, is a marker
of cardiac repolarization. The beat-to-beat QT variability
(QTV) conveys relevant information regarding cardiac patho-
physiology. Several studies have suggested that QTV may
be a marker of sympathetic ventricular outflow and car-
diac instability [1], [2], [3]. However, relevant aspects of
QTV analysis are still only partially understood [2]. Among
them, there is the interaction between QTV and RR interval
variability (RRV). QTV can be modeled as the sum of a
component due to ventricular repolarization (VR) dynamics
[4] and another due to RRV. The former is thought to be
a marker of ventricular sympathetic activity [5] and it may
have a better predictive value than QTV. Therefore, it would
be desirable to disentangle these two components. Previous
techniques to remove the influence of RRV from QTV
have mainly utilized heart rate corrections [1], time-invariant
multivariate autoregressive models [5], [6] or other model–
based approaches [7]. However, there is still a need for
a methodology that provides accurate and robust estimates
of the dynamic profile of QTV changes unrelated to RRV.
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Fig. 1. Diagrammatic of the proposed model. QT variability is the sum of
RR-related variability (QT:RR) and RR-unrelated variability (QT:RV) due to
ventricular repolarization (VR) dynamics. HRR and HVR are linear transfer
functions. The proposed framework uses multivariate time-frequency analy-
sis to provide an estimates of changes in xQT:VR(t) based on measurements
of xRR(t) and xQT(t).

The aim of this study is to propose a novel framework
for estimating QTV unrelated to RRV during non-stationary
conditions, that enables to specifically track changes in VR
dynamics.

II. METHOD

A. A two-inputs/One-output model

Beat-to-beat QTV is modeled as a continuous-time sig-
nal composed of two separate contributions, xQT:RR(t) and
xQT:VR(t) (see Fig. 1). Signal xQT:RR(t) represents QTV due
to RRV. This component includes oscillations at respiratory
frequency (respiratory sinus arrhythmia) and at lower fre-
quencies (Mayer waves). Signal xQT:VR(t) represents oscilla-
tions unrelated to RR variability which are assumed to be due
to ventricular repolarization (VR) dynamics. Mathematically,
this is described as:

xQT(t) = xQT:RR(t)+xQT:VR(t) = xRR(t)∗hRR(t)+xVR(t)∗hVR(t)

where ∗ represents temporal convolution and hRR(t) and
hVR(t) are time-varying linear filters. The proposed method-
ology utilizes measurements of xQT(t) and xRR(t) to estimate
the time-frequency (TF) distribution of xQT:VR(t).
The following formulation is an extension to the TF domain
of classical signal processing theory describing multiple
inputs/single output relationships [8]. Assuming that inputs
xRR(t) and xRV(t) are locally uncorrelated, the transfer func-
tion HRR(t, f ), which describes hRR(t) in the TF domain, is
[8]:

|HRR(t, f )|2 = SQT:RR(t, f )
SRR(t, f )

= |γQT,RR(t, f )|2 SQT(t, f )
SRR(t, f )

(1)

where Sx(t, f ) represents the TF spectrum of a given process
x, and γQT,RR(t, f ) is the coherence function between xQT(t)



and xRR(t). These expressions are used to estimate the
spectrum of xQT:VR(t):

SQT:VR(t, f ) = SQT(t, f )−SQT:RR(t, f ) (2)
= SQT(t, f )−|HRR(t, f )|2SRR(t, f )

=
(
1−|γRR,QT (t, f )|2

)
SQT(t, f )

and the spectrum of xQT:RR(t):

SQT:RR(t, f ) = |γRR,QT (t, f )|2SQT(t, f ) (3)

B. Time-frequency analysis

Time-frequency spectra and coherence in (2) were esti-
mated using the framework proposed in [9], [10] based on
Cohen’s class distributions. Considering two continuous-time
signals, xi(t) and xk(t), spectra are defined as:

Si,k(t, f ) =
∫∫

∞

−∞

φd-D(τ,ν)Ai,k(τ,ν)e j2π(tν− f τ)dνdτ (4)

where Ai,k(τ,ν) is the ambiguity function of xi(t) and xk(t),
and φd-D(τ,ν) is the elliptical exponential kernel defined in
[9]. The TF coherence is estimated as [9]:

γi, j(t, f ) =
Si,k(t, f )√

Si,i(t, f )Sk,k(t, f )
; |γi,k(t, f )| ∈ [0,1] (5)

and it is equal to one in TF regions where the signals are
linearly coupled and zero where they are uncorrelated. Time
and frequency resolutions are quantified as described in [9]
and were equal to 12.5 s and 0.039 Hz, respectively.

C. Experimental Setting

The cardiovascular response to orthostatic challenge was
studied in 16 healthy volunteers (aged 29± 3 years) using
a tilt table test. The protocol included early supine (ES)
position (4 min), head-up tilt to an angle of 70◦ (5 min),
and late supine (LS) position (4 min) as described in other
studies [9], [11]. 12-Lead ECG was recorded with a sampling
frequency of 1000 Hz.

D. Data Analysis

Customized algorithms were used to detect the temporal
occurrence of R-waves and T-end [12]. The latter was
defined utilizing a tangent method. The QT interval was
approximated by the interval from the R-wave to the end of
the T-wave in lead V4. Ectopic beats and artifacts were rare.
When present, they were removed and the time series were
interpolated. RR and QT time series were interpolated at a
sampling frequency of 4 Hz, and the RRV and QTV signals,
xRR(t) and xQT(t), were obtained by high-pass filtering these
interpolated series with a cut-off frequency of 0.03 Hz.
Instantaneous powers and coherence in a given spectral band
Ω were estimated as:

PΩ

i (t) =
∫

Ω

Si,i(t, f )d f ; γ
Ω

i,k(t) =
∫

Ω

γi,k(t, f )d f (6)

where Ω includes the following spectral bands: LF ∈ [0.03−
0.15] Hz, HF ∈ [0.15− 0.50] Hz and TOT ∈ [0.03− 1.00]

Hz. Relative changes of PΩ

QT:VR(t) during tilt with respect to
baseline were measured as:

RΩ = mean
(
PΩ

QT:VR(t)
)

t∈I
/mean

(
PΩ

QT:VR(t)
)

t∈BL
(7)

where BL and I are intervals that goes from 1 min after the
beginning of early supine and tilt to 1 min before the end of
early supine and tilt, respectively.

E. Simulation Study

Fig. 2. Simulation study. A and B: Instantaneous frequencies and amplitude
of xRR(t). Solid and dashed lines represent HF and LF, respectively. C:
Coherence γTOT

QT,RR(t) (mean ± sd). D: Instantaneous power of QTV due
to ventricular repolarization (VR), PTOT

QT:VR(t) from the model (red) and
estimated with the proposed methodology (black, mean ± sd).

The methodology was tested in challenging conditions,
mimicking RRV and VRV during exercise stress testing. The
model shown in Fig. 1 was used to generate signals with
controlled dynamics. The signal representing RRV, xRR(t),
was the sum of a AM LF and an AM-FM HF component
(see Fig. 2A–B), and it was generated using the time-varying
ARMA scheme described in [13]. The signal representing
VR, xVR(t), was a white Gaussian noise with amplitude mod-
ulation associated with the instantaneous power, PTOT

QT:VR(t),
shown as a red solid line in Fig. 2D. Transfer functions
were assumed to be scaling factors, HRR(t, f ) = HVR(t, f ) =
0.20/σRR, where σRR is the standard deviation of xRR(t).
The correlation coefficient between theoretical and estimated
PTOT

QT:VR(t) was calculated to assess the proposed methodology.

III. RESULTS

A. Results of the Simulation Study

Figure 2D shows that the proposed model provided accu-
rate estimates of PTOT

QT:VR(t). Pearson’s and Sperman’s correla-
tion coefficients between theoretical and estimated PTOT

QT:VR(t)
were 0.888±0.021 and 0.873±0.002, respectively (N=500
iterations).



Fig. 3. Results from one subject showing QTV mainly related to RRV (left) and poorly related to RRV (right). From top to bottom: QT and RR variability
normalized by their standard deviation. Time-frequency distributions of QTV and RRV. Time-frequency coherence between QTV and RRV. TF distribution
of xQT:VR(t), i.e. QTV unrelated to RRV.

B. Real Data

Examples of spectra of xQT(t), xRR(t) and xQT:VR(t) are
given in Fig. 3. Panels on the left are representative of
a subject whose QTV is mainly driven by RRV. Spectra
SQT(t, f ) and SRR(t, f ) present similar features and are char-
acterized by high TF coherence. As a result, RR-unrelated
QTV SQT:VR(t, f ) is low. In particular, the increase in the
LF spectral band of SQT(t, f ) observed during head-up tilt is
mainly driven by SRR(t, f ) and therefore it does not appear
in SQT:VR(t, f ). Panels on the right show an example where
QTV is largely uncorrelated to RRV. SQT(t, f ) is low in
supine position and it increases during tilt. The temporal
and spectral organization of QTV and RRV do not correlate,
and γRR,QT(t, f ) is lower than 0.5 in a large proportion
of the TF domain. As a result, SQT:VR(t, f ) is similar to
SQT(t, f ). The comparison between the instantaneous power
and coherence from these two examples is displayed in Fig.
4. Results from the subject showing high and low coherence
between QTV and RRV are reported on the left and right
panels, respectively. In both cases PTOT

QT:VR(t) < PTOT
QT (t), and

the degree of similarity between them is determined by
γQT,RR(t, f ). Figure 5 shows the relation between γQT,RR(t),
whose temporal mean is represented on the horizontal axis,
and the correlation coefficient between PTOT

QT (t) and PTOT
QT:VR(t)

across all subjects (n=16). The highly negative correlation
(c = −0.83) means that the higher γQT,RR(t) the lower the
similarity between PTOT

QT (t) and PTOT
QT:VR(t). Therefore, this

methodology modifies the time course of QTV and its two
components based on local TF coupling, and the resulting
correction is time-varying, data-driven and subject-specific.
The change in spectral power during tilt with respect to
baseline was equal to RLF

Tilt = 4.17±1.39, RHF
Tilt = 5.13±1.44,

Fig. 4. Comparison between the instantaneous power and coherence from
the examples shown in Fig. 3. When coherence between QTV and RRV is
high (or low), instantaneous power of QTV and QTV unrelated to RRV has
a similar (o different) pattern.

RTOT
Tilt = 4.65±1.31. All changes were statistically significant

(P < 0.05, Wilcoxon signed-rank test).

IV. DISCUSSION

A new method to track changes in QTV unrelated to RRV
during non-stationary conditions is proposed. The results of
the simulation study demonstrates that it provides accurate
estimates of QTV unrelated to RRV, with correlation with
theoretical variability higher than 0.88. The analysis of data
from healthy volunteers shows that QTV unrelated to RRV



Fig. 5. Relation between the mean QTV–RRV TF coherence (horizontal
axis) and the degree of similarity between the time course of instantaneous
powers of QTV and QTV unrelated to RRV. The higher the coherence
between QTV and RRV and the more different the instantaneous powers of
QTV and QTV unrelated to RRV.

increased during tilt table test.
This methodology extends classical multiple inputs/single
output theory [8] to the TF domain to study the interactions
between QTV and RRV. Cohen’s class TF distributions and
TF coherence function [9] are utilized to separate QTV into
two partial TF spectra [10], [14], representing QTV related
and unrelated to RRV. To the best of our knowledge, this
is the first work presenting a non–stationary model–free
methodology to disentangle changes in RRV related and
RRV unrelated QTV. In this framework, QTV unrelated to
RRV is assumed to be due to ventricular repolarization (VR)
dynamics, and the two inputs, RR and VR variability, are
assumed to be uncorrelated. This assumption is based on the
fact that RR and VR variability have different anatomical
origins, i.e. the sinus node and the ventricular myocardium.
However, common drivers cannot be excluded since respi-
ratory and low-frequency oscillations have been observed in
human VR dynamics [15], [16] and both RRV and QTV
are known to be affected by sympathetic modulation [2].
Of note, this methodology allows xQT:VR(t) and xQT:RR(t)
to have components in the same TF regions, since their
power is assigned from QTV proportionally to the squared
magnitude of the TF coherence function. The framework
used in the simulation study tested the proposed methodology
in a challenging situation: signals were AM-FM random
processes with quick changes in instantaneous frequency and
amplitude, and VR dynamics was a white Gaussian noise
with fast amplitude modulation. Nevertheless, correlation be-
tween theoretical and estimated instantaneous QT:RV power
was very high. However, since TF coherence is a biased
estimate [9] the estimates were also slightly biased (see Fig.
2D).
These promising results may be the basis for further study to
assess the role of this methodology as a marker of ventricular
sympathetic activity and cardiac instability.
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