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A B S T R A C T

Sparse representation classification (SRC) is being widely investigated on hyperspectral images (HSI). For SRC
methods to achieve high classification performance, not only is the development of sparse representation
models essential, the designing and learning of quality dictionaries also plays an important role. That is, a
redundant dictionary with well-designated atoms is required in order to ensure low reconstruction error, high
discriminative power, and stable sparsity. In this paper, we propose a new method to learn such dictionaries for
HSI classification. We borrow the concept of joint sparse model (JSM) from SRC to dictionary learning. JSM
assumes local smoothness and joint sparsity and was initially proposed for classification of HSI. We leverage
JSM to develop an extension of discriminative K-SVD for learning a promising discriminative dictionary for
HSI. Through a semi-supervised strategy, the new dictionary learning method, termed JSM-DKSVD, utilises all
spectrums over the local neighbourhoods of labelled training pixels for discriminative dictionary learning. It can
produce a redundant dictionary with rich spectral and spatial information as well as high discriminative power.
The learned dictionary can then be compatibly used in conjunction with the established SRC methods, and can
significantly improve their performance for HSI classification.

1. Introduction

Sparse representation classification (SRC), proposed in [1], is being
widely investigated on hyperspectral images (HSI). It is based on the
assumption that high-dimensional data from the same class lie in a
low-dimensional subspace. Therefore a signal can be represented by a
linear combination of a small number of redundant bases (so-called
dictionary atoms). In [2], Chen et al. apply SRC and propose a joint
sparse model (JSM) to HSI classification. JSM assumes that all HSI
pixels in a small spatial neighbourhood can be jointly approximated by
sparse linear combinations of a few common training samples, which
can be solved by the simultaneous orthogonal matching pursuit
(SOMP) algorithm [3]. However, in JSM all neighbouring pixels make
equal contributions to the sparse recovery of the central pixel. To
determine more effective neighbours for JSM, several appealing ideas
have been proposed [4–8]. In [4], Zhang et al. introduce a non-local
approach [5], which assumes that a candidate has its weight deter-
mined by the similarity between its neighbourhood and the central
pixel's neighbourhood, termed non local weighting (NLW). Tang et al.
propose two manifold-based l1-norm methods, using locally linear
embedding and Laplacian eigenmap to regularise local structures of

pixels [6]. In [7,8], Fang et al. and Li et al. propose to adopt superpixel
methods [9,10] to integrate the spatial structures for JSM. The super-
pixel is regarded as a small spatial local region which is adaptive in
shape and size.

To achieve high classification performance, not only is the devel-
opment of sparse representation models essential, the designing and
learning of quality dictionaries also plays an important role. A well-
designed dictionary would have good representation power over a
certain sparsity, as well as to support optimal discrimination of classes
[11]. Previous literatures have shown that dictionary learning is
beneficial to signal representation as well as to classification
[12,11,13,14]. In [12], Aharon et al. propose K-SVD, a generalised K-
means method, to minimise the signal reconstruction error. It alter-
nates between sparse coding by orthogonal matching pursuit (OMP)
[15] and dictionary updating by singular value decomposition (SVD).
For face recognition, Zhang et al. introduce into sparse representation a
constraint to model classification error [11]. A K-SVD algorithm is then
adopted to minimise the sum of reconstruction error and classification
error, named as discriminative K-SVD (D-KSVD). In [13], Jiang et al.
propose label consistent K-SVD, which incorporates a label-consistent
term into D-KSVD, leading to an explicit correspondence between the
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dictionary atoms and labels. It also adopts the K-SVD algorithm to
solve the optimisation problem. Mairal et al. propose task-driven
dictionary learning (TDDL) [14], which is a general formulation for
learning sparse representations tuned for specific tasks. TDDL not only
can be designed for classification, but also can be designed for
regression and compressive sensing.

There have been a limited number of works on developing the
dictionary learning algorithms specifically for HSI classification pro-
blems. In [7], Fang et al. propose to use a modified class-labelled OMP
algorithm in D-KSVD to learn a dictionary of better discriminative
power. In [16], Soltani-Farani et al. partition given pixels into
contextual groups, and jointly model pixels inside the same contextual
group to be in a common subspace. Both methods endeavour to make a
better use of the limited amount of labelled training data. Taking one
step further, Wang et.al. utilise spatial context of a test pixel within its
local neighbourhood to develop a learning vector quantization (LVQ)-
based dictionary learning method [17]. In [18], Sun et al. introduce the
use of structure information into dictionary learning. They argue that
the requirement of a redundant dictionary in sparse coding can be
lessened if simultaneous sparse approximation is employed. Therefore
they aim to produce a compact dictionary by using a joint or Laplacian
sparsity prior and the TDDL framework [14]. Wang et al. follow the
same TDDL framework and introduce a more explicitly formulated
semi-supervised problem to the compact dictionary learning [19].

In this context, we believe that, in order to develop a dictionary with
high discriminative power for HSI classification but from only a limited
number of labelled training samples, it is a promising direction to
utilise the structure information as much as possible. Considering the
discriminative nature of D-KSVD and its imperfection of exploiting
spectral signatures only, we think D-KSVD has substantial room to be
explored for improvement. Furthermore, we are highly impressed by
the recent progress in HSI classification made by the JSM-based
algorithms from its leveraging both spectral and spatial information
in the representation of HSI pixels. All these factors inspire us to
develop a new dictionary learning approach for HSI classification, by
enforcing the JSM assumption, of local smoothness and joint sparsity
around the limited number of training sample, into D-KSVD through a
semi-supervised fashion. In this paper, we propose a new approach
called JSM-DKSVD. It is able to capture and organise the rich spectral
and spatial information into the learned dictionary, thus offering
higher discriminative power for HSI classification tasks.

Experiment results show that, when used in conjunction with
established SRC methods, the JSM-DKSVD-trained dictionary can
significantly improve the SRC methods' classification performance,
and can also outperform state-of-the-art dictionary learning methods
for HSI classification.

The main contribution of this research is that we introduce the
structure information around a limited number of training pixels into
the dictionary learning for HSI, establish a new discriminative optimi-
sation function to jointly model the enriched information, and develop
a JSM-constrained D-KSVD algorithm to solve the optimisation pro-
blem and produce a desired discriminative dictionary.

2. Joint sparse models for HSI classification

2.1. Sparse Model (SM)

Suppose a B-dimensional pixel, denoted by x ∈ B, can be approxi-
mated by a linear combination of ND training pixels:

αx D≈ , (1)

where D ∈ B N× D denotes a dictionary constructed by the ND training
pixels (also termed atoms), and α is the ND-dimensional vector of
coefficients in the linear combination.

In a sparse model, x can be approximated by only a few (e.g. at most
LC) atoms in D. That is, the coefficient vector α is sparse. The values of

α can be estimated by solving the following optimisation problem:

α α αs t Lx D= argmin − , . . ≤ ,
α

C

2

2

0 (2)

where α 0 denotes a l0-pseudo-norm (i.e. the number of non-zero
elements) of α, LC (L N⪡C D) is defined as the upper bound of the
sparsity level of the model. The problem in (2) is NP-hard, but it can be
approximately solved by greedy pursuit algorithms such as orthogonal
matching pursuit (OMP) [15] or be relaxed by replacing the l0-pseudo-
norm with the l1-norm. When the problem is solved by OMP, the
dictionary D is column-wise normalised to have unit l2-norm.

2.2. Joint Sparse Model (JSM)

In HSI, neighbouring pixels in a small area often consist of similar
materials and the classes of these materials are few. Hence, local
smoothness and sparsity can be assumed for HSI. In JSM [2], it is
assumed that all neighbouring pixels around a central pixel share a
common sparse pattern. The modelling, learning and labelling for JSM
can be described as follows.

Let X x x= [ ,…, ]T1 C , a B T× C matrix, denote a small window con-
sisting of TC pixels and centring on a test pixel xc, with each pixel xt
represented by a B-dimensional vector for B spectral bands. The TC
pixels are approximated by sparse linear combinations of atoms from a
given dictionary:

α αX x x D DA= [ ,…, ] ≈ [ ,…, ] = ,T T1 1C C (3)

where D ∈ B N× D is a dictionary with ND known and labelled atoms,
and A ∈ N T×D C is the matrix of unknown coefficients α α[ ,…, ]T1 C .
Because of the local smoothness and sparsity, we can assume that
there are only LC (L N⪡C D) non-zero rows in A. This leads to the so-
called joint sparse model (JSM), where the non-zero rows form the
support shared by coefficient vectors α{ }t t

T
=1
C . That is, α{ }t t

T
=1
C are sparse

vectors and A is a sparse matrix.
The learning of JSM is to estimate A, which can be achieved by

solving a joint sparse recovery problem:

s t LA X DA A= argmin‖ − ‖ , . . ≤ ,
row

C
A

2
2

,0 (4)

where A row,0, the row-wise l0-norm, is the number of non-zero rows of
A. As with (2), problem (4) is NP-hard and it can be approximately
solved by greedy algorithms such as the Simultaneous Orthogonal
Matching Pursuit algorithm (SOMP) [3] or the Simultaneous Subspace
Pursuit algorithm (SSP) [2]. When solved by SOMP or SSP, the
dictionary D is column-wise normalised to have unit l2-norm.

Once the sparse coefficient matrix A is obtained, we can calculate
the residual (distance) of window X from its class-wise approximation,
which is obtained from using the sub-dictionary of each class, as
follows:

r m MX X D A( ) = ‖ − ‖ , = 1,…, ,m m m
2
2 (5)

where M is the total number of classes, Am
consists of Nm rows in A

that are associated with sub-dictionary Dm of the mth class, with
N N= ∑D m

M
m=1 . The label of the central pixel xc in window X is then

determined by the minimal residual of X over all M classes:

Class rx X( ) = argmin ( ).c
m M

m

=1, …, (6)

3. Discriminative dictionary learning algorithms

JSM-based classification methods have achieved improved classifi-
cation performance over the traditional (individual) sparse model, but
most of these methods leave D simply as a stack of raw labelled pixels
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[2,4,6]. On the other hand, the focus of this work is on the learning of
D. Specifically, we propose to develop a new dictionary learning
algorithm, termed JSM-constrained discriminative K-SVD (JSM-
DKSVD), to incorporate both the spectral and spatial information into
dictionary learning and to improve the performance of HSI classifica-
tion in the end.

3.1. K-SVD

In K-SVD [12], signals are also represented by their sparse
coefficients. It aims to learn a dictionary D with unit atoms (bases),
which minimises the reconstruction error:

αs t L

p P

D A X DA{ , } = argmin‖ − ‖ , . . ‖ ‖ ≤ ,

= 1,…, ,

train train train
p
train

D
D A,

2
2

0
train

(7)

where D d d= [ ,…, ] ∈N
B N

1
×

D
D is a dictionary with ND atoms to be

learned; X x x= [ ,…, ] ∈train train
P
train B P

1
× is a training sample set of P

training samples; α αA = [ ,…, ] ∈train train
P
train N P

1
×D is the corresponding

sparse coefficient matrix of Xtrain; and LD (L N⪡D D) is upper bound of
the sparsity level of the model. K-SVD consists of a sparse coding stage
and a dictionary updating stage: it first solves (7) with D fixed to
compute sparse coefficient matrix Atrain by the OMP algorithm. Once
Atrain is obtained, a second stage is performed to update each dictionary
atom by SVD one at a time, fixing all other atoms. The two stages are
carried out iteratively till certain stopping criteria are met.

3.2. Discriminative KSVD (D-KSVD)

The discriminative K-SVD [11] is proposed to incorporate classifi-
cation error into the optimisation problem (7), allowing a linear
classifier and a dictionary with discriminative power to be learned at
the same time.

Specifically, a classification constraint with loss function
βH WA W‖ − ‖ + ‖ ‖train train

2
2

2
2 is considered, where W w w= [ ,…, ] ∈ND

M ND1 ×

is an M-classes linear classifier in the atom space,
H h h= [ ,…, ] ∈train train

P
train M P

1
× is the class matrix of P training pixels

in Xtrain, and W‖ ‖2
2 is the regularisation term. Each class vector

h = [0, 0,…,1,…,0, 0] ∈p
train T M corresponds to the labelling of one

training sample xp
train and the non-zero position in hp

train represents the

class of xp
train. The dictionary D and the linear classifier W are jointly

learned by solving the following optimisation problem:

α

γ

β s t L p P

D A W X DA H WA

W

{ , , } = argmin {‖ − ‖ + ‖ − ‖

+ ‖ ‖ }, . . ‖ ‖ ≤ , = 1,…, ,

train train train train train

p
train

D

D A W, ,
2
2

2
2

2
2

0

train

(8)

where γ and β control the relative contributions of the corresponding
terms. As described in [11], problem (8) can be rewritten as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

α

γ γ
β

s t L p P

D A W X
H

D
W

A W{ , , } = argmin ‖ − ‖ + ‖ ‖ ,

. . ∥ ∥ ≤ , = 1,…, .

train train

train
train

p
train

D

D A W, ,
2
2

2
2

0

train

(9)

Following [11], the constraint β W‖ ‖2
2 is omitted because during the

K-SVD process the joint matrix
⎛
⎝⎜

⎞
⎠⎟γ

D
W is always column-wise normal-

ised, i.e. the l2-norm constraint is implicitly enforced. Now we use the
following notation:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γ

X X
H

D D
W

* = , * = ;
train

train
(10)

and problem (9) is approximated by the following optimisation
problem:

αs t L p PD A X D A{ *, } = argmin‖ * − * ‖ , . . ‖ ‖ ≤ , = 1,…, ,train train
p
train

D
D A*,

2
2

0
train

(11)

which can then be solved by the K-SVD algorithm [12].
We note that the obtained matrix D* from K-SVD is not the actual

dictionary we are looking for. To extract the actual dictionary D′ and
the classifier W′, a final normalisation is needed. The dictionary D′ is to
be extracted from D* and column-wise normalised to have unit l2-
norm; the rest of the matrix D*, namely classifier W′, is scaled by using
the same normalisation constants accordingly:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

D

W

′ = , ,…, ,

′ = , ,…, ,

d
d

d
d

d
d

w
d

w
d

w
d

ND
ND

ND
ND

1
1 2

2
2 2 2

1
1 2

2
2 2 2 (12)

where dk and wk denote the k-th column of D and W, respectively.

3.3. Classification approach

Given the dictionary D′ and the linear classifier W′, the sparse
coefficient vector αtest of a test HSI pixel xtest is computed by solving the
following problem:

α α αs t Lx D= argmin ‖ − ′ ‖ , . . ∥ ∥ ≤ .α
test test test test

C2
2

0test (13)

By applying the linear classifier W′ to α test, the class label vector
h hh = [ ,…, ]test test

M
test T

1 of xtest is obtained as

αh W= ′ ,test test (14)

and the class label of xtest is determined by the position of the maximum
value within htest

:

class hx( ) = argmax .test

m M
m
test

=1, …, (15)

4. JSM-DKSVD

Dictionary learning by K-SVD and D-KSVD only considers spectral
signatures of the HSI pixels. Recent developments in JSM-related
algorithms show promising results of using not only spectral but also
spatial structure information in the representation of pixels. Inspired
by this progress, we propose to incorporate the HSI structure informa-
tion into the dictionary learning process and extend D-KSVD to HSI
classification. Specifically, we enforce the assumption of local smooth-
ness of images as well as sparsity of the representations of training HSI
pixels into dictionary learning. We name this new dictionary learning
approach as JSM-DKSVD.

4.1. Motivation of JSM-DKSVD

The core idea of JSM-DKSVD is to embed the structure information
into the representation of dictionary training pixels by joint modelling.
The sparse coefficients of a pixel are determined jointly with those in its
local neighbourhood, which is a collection of pixels located in a small
window centred on the pixel in question. Therefore the training set

X x x= [ ,…, ] ∈train train
P
train B P

1
× is extended as follows:

X XX = [ ,…, ] ∈ ,JSM JSM
P
JSM B T P

1
×( × )D (16)

where X p P∈ , = 1,…,p
JSM B T× D , denotes a small window consisting of

TD pixels and centred on the training pixel xp
train. Each of these

neighbourhoods XJSMp is now as a whole to be jointly modelled,
replacing the pixel xp

train in dictionary learning. Note that, although the
training sample size is effectively increased from P to T P×D , as JSM-
DKSVD is working in a semi-supervised fashion, we only need P
labelled training pixels, which are those central pixels; that is, our JSM-
DKSVD method does not require more labelled training samples than
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K-SVD and D-KSVD.
The spectral and spatial structure information of a training pixel is

therefore exploited by enforcing local smoothness of natural signals,
i.e. nearby pixels share a common pattern. In our case, a certain degree
of similarity is enforced on the sparse representation patterns of the
neighbouring pixels. This forms a new constraint, and will be reflected
by expanding the class matrix Htrain in D-KSVD correspondingly to a
larger matrix HJSM .

If, for example, the central pixel xp
train in the neighbourhood XJSMp is

labelled class #4 out of five classes, its class vector hp in D-KSVD is

h = [0, 0, 0, 1, 0] ,p
T (17)

where the non-zero position is at the 4th element. In our JSM-DKSVD,
by assuming that the neighbouring pixels share the same class label,
the class matrix of the 3×3 window centred on xp is as follows:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
H =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

,p
JSM

5×9 (18)

where the the class vector of each pixel in the window shares the same
non-zeros row, i.e. the 4th row of the class matrix HJSM

p. Naturally,
by concatenating the class matrices of all training pixels XJSM , the
overall class matrix HJSM is

H HH = [ ,…, ] ∈ .JSM JSM
P
JSM M T P

1
×( × )D (19)

4.2. Formulation of JSM-DKSVD

In the proposed JSM-DKSVD, signals in a small neighbourhood are
jointly represented by a common sparsity pattern, as in JSM.
Meanwhile, a classification constraint with a new class matrix HJSM is
reconstructed, leading to the following optimisation problem:

γ β

s t A L p P

D A W X D A

H WA W

{ , , } = argmin {‖ − ‖

+ ‖ − ‖ + ‖ ‖ },

. . ‖ ‖ ≤ , = 1,…, ,

JSM JSM JSM JSM JSM

JSM JSM

p
JSM

row D

D A W, ,
2
2

2
2

2
2

,0

JSM JSM

(20)

where XJSM and HJSM are defined in (16) and (19), respectively;
α αA = [ ,…, ] ∈p

JSM
p
JSM

p T
JSM N T

,1 ,
×

D
D D is the corresponding joint sparse

coefficient matrix of a small window Xp
JSM as defined in (16), and

therefore A AA = [ ,…, ] ∈JSM JSM
P
JSM N T P

1
×( × )D D is the corresponding

sparse coefficient matrix of XJSM ; D ∈JSM B N× D and W ∈ M N× D are
the dictionary and classifier to be learned by JSM-DKSVD. This
problem can be solved by the K-SVD algorithm. Again, due to the
column-wise normalisation through the K-SVD process, the constraint
β W‖ ‖2

2 can be omitted to simplify the problem.
Similarly to (10) and (11), the optimisation problem (20) can be

rewritten as

s t A L p P

D A X D A{ *, } = argmin ‖ * − * ‖ ,

. . ‖ ‖ ≤ , = 1,…, ,
*

JSM JSM JSM JSM JSM

p
JSM

row D

D A,
2
2

,0

JSM JSM

(21)

where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γX X

H D D
W* = , and * = .JSM

JSM

JSM
JSM

JSM

(22)

Therefore, X *JSM is a B M T P( + ) × ( × )D matrix and D *JSM is a
B M N( + ) × D matrix.

4.3. Algorithm of JSM-DKSVD

The objective function (20) of JSM-DKSVD can be solved by

adopting the original K-SVD algorithm in [12], more specifically, by
adopting the iterative updating process for D *JSM and A *JSM .

4.3.1. Initialisation
It is required that the dictionary DJSM and the classifier W are given

initial values to enable the iterative updating process to follow. Their
initial values can be as simple as randomised matrices; in this work we
follow the initialisation process of D-KSVD [11] which is explained as
follows.

The initial dictionary matrix is denoted by D(0). As with in [11], D(0)

should have l2-normalised columns. Given the number of atoms ND,
D(0) is designed to be a B N× D matrix, and it can be initialised by the
original K-SVD algorithm with only a couple of iterations.

As a result, the coefficient matrix of XJSM for initialisation, denoted
by A(0), is computed by solving the first objective term of (20):

A D D D X= ( ) ,T T JSM(0) (0) (0) −1 (0) (23)

where A(0) is an N T P× ( × )D D matrix.
The initial classifier, denoted by W(0), is computed by solving the

problem of H W A Wargmin{‖ − ‖ + ‖ ‖ }JSM

W

(0) (0)
2
2 (0)

2
2

(0)
:

W A A I A H= (( + ) ) ,T JSMT T(0) (0) (0) −1 (0) (24)

where W(0) is an M N× D matrix.
After initialisation, we compose the objective function (21) with

X * ∈JSM B M T P( + )×( × )D and D * ∈JSM B M N( + )× D, and the iterative updating
process of D *JSM and A *JSM can start.

4.3.2. Iterative updating - sparse coding stage
Fixing the dictionary D *JSM , we compute the joint sparse coefficient

matrix A ∈p
JSM N T×D D for each training window X * ∈p

JSM B M T( + )× D,
where p P= 1,…, , by approximating the following solution:

A X A s t A LD= argmin‖ * − * ‖ , . . ∥ ∥ ≤ ,p
JSM

A
p
JSM JSM

p
JSM

p
JSM

row D2
2

,0

p
JSM

(25)

which can be solved by the SOMP algorithm [2,3,20]. Then the sparse
coefficient matrix AJSM of all training window X *JSM (16) is concate-
nated as

α αA AA = [ ,…, ] = [ ,…, ].JSM JSM
P
JSM JSM

T P
JSM

1 1 ×D (26)

4.3.3. Iterative updating – dictionary updating stage
Following the similar idea of SVD in [12], the dictionary is updated

atom by atom.
In the jth iteration, for the kth atom d * ∈k

JSM B M+ in the dictionary
D *JSM j( −1), where j J= 1,…, and k N= 1,…, D; D *JSM j( −1) is the diction-
ary obtained from the previous iteration j − 1, the atom d *k

JSM is

updated to a new one, denoted by d *∼
k
JSM

, by the following steps:

a. define a group of the instances that use atom d *k
JSM ,

ω p p T P k pA= { |1 ≤ ≤ × , ( , ) ≠ 0},k D
JSM (27)

where k pA ( , )JSM denotes the kth row and pth column of AJSM;
b. compute the overall representation error Ek without using the atom

d *k
JSM ,

∑ iE X d A= * − * ( , ·),k
JSM

i k
i
JSM JSM

≠ (28)

where iA ( , ·)JSM denotes the ith row of AJSM and i N= 1,…, D;
c. restrict Ek by choosing only the column corresponding to ωk, and

obtain Ek
R:

ωE E= (·, )k
R

kk (29)

where ωE (·, )kk denotes the columns of Ek corresponding to ωk;

d. apply SVD decomposition E UΔV=k
R T. The updated atom d *∼

k
JSM

and
its corresponding sparse coefficients in the updated coefficient
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matrix A *͠ JSM are solved by

k ω Δd U A V* = (·,1) *( , ) = (1, 1) (·,1)∼ ͠
k
JSM JSM

k (30)

where U(·,1) and V(·,1) denotes the first column of U and the first
column of V, respectively.

After J iterations, the desired dictionary D′ and the classifier W′
learned by JSM-DKSVD should also be re-normalised as in (12).

Details of the proposed JSM-DKSVD are summarised in Algorithm
1.

Algorithm 1. JSM-DKSVD algorithm to solve (21).

Input:

Training HSI pixels X ∈train B P× .
Window size TD for training.
Control parameter γ.
Sparsity level LD.
Number of atoms ND of the dictionary to be learned.
Maximum iteration number J.

Output: D′, W′.
Initialisation:

• Generate training sample set XJSM by (16).

• Compose class matrix HJSM by (19).

• Initialise dictionary matrix D(0) with l2-normalised columns.

• Compute coefficient matrix A(0) by (23).

• Initialise classifier W(0) by (24).

• Compose X *JSM and D *JSM by (22).
while j J≤ do

Sparse coding stage:
Compute the sparse coefficient matrix AJSMp for each training

windows X *p
JSM by (25).

Concatenate the sparse coefficient matrix AJSM for all training

windows X *JSM by (26).
Dictionary updating stage:

for k=1:ND in D *JSM j( −1) do

Define the group of instances that use atom d *k
JSM by (27).

Compute the overall representation error Ek by (28).

Restrict Ek to Ek
R by (29).

Apply SVD decomposition to Ek
R and solve the updated atom

d *∼
k
JSM

and its corresponding sparse coefficients k ωA *( , )͠ JSM
k by

(30).
end for
Set j j= + 1.

end while
Compute the desired dictionary D′ and classifier W′ by (12).

4.4. Classification approach of JSM-DKSVD

Same as the D-KSVD, the dictionary D′ and the classifier W′ learned
by JSM-DKSVD can be used together with many established HSI
classification methods. By embedding richer structure information
from HSI in the dictionary and the classifier, the proposed JSM-
DKSVD aims to improve the overall classification accuracy when used
with these dictionary-based classification methods for HSI.

Specifically, when JSM-DKSVD is used in pair with the JSM-based
SRC method, given a test matrix X x x= [ ,…, ]test test

T
test

1 C with TC pixels
centred on the test pixel xtest, the JSM coefficient matrix

α αA = [ ,…, ]test test
T
test

1 C is computed by solving the following problem:

s t LA X D A A= argmin‖ − ′ ‖ , . . ∥ ∥ ≤ .test test test test
row C

A
2
2

,0
test (31)

Then, the classifier W′ is applied to Atest
to create the estimated

class label matrix Htest
for Xtest:

H W A= ′ .test test (32)

Finally, each row of H ∈test M T× C is summed together as a new class
label vector h ∈test M , and the class label of the central test pixel is
determined by (15).

5. Experimental studies

The experiments are carried out on two real hyperspectral datasets:
the AVIRIS Indian Pines dataset and the ROSIS University of Paiva
dataset, both of which are publicly available [21]. We evaluate the
proposed JSM-DKSVD and compare the learned dictionary with two
other types of dictionaries. The first comparison is against the
dictionary constructed by original labelled training pixels, denoted by
Draw, such as in [2,4,6]. The second comparison is against the direct
application of D-KSVD [11]. Dictionaries acquired from Draw, D-KSVD
and the proposed JSM-DKSVD are used with three different SRC
methods: 1) SM (referred to as OMP), 2) JSM [2] (referred to as
SOMP), and 3) NLW [4].

We employ three standard performance measures for HSI classifi-
cation: the overall accuracy (OA), the average accuracy (AA) and kappa
coefficient κ [22]. The overall accuracy is defined as the ratio of
correctly-classified test pixels over all classes; the average accuracy is
defined as the average value of the M accuracies of individual classes,
where M is the total number of classes; and the kappa coefficient κ is
defined as the percentage of classified test pixels corrected by the
number of agreements that would be expected purely by chance. The
OA, AA and κ are defined as follows:

∑OA N
N

AA
M

N
N

κ
OA p

p
= , = 1 , =

−
1 −

,corr

test i

M
i
corr

i
class

e

e=1 (33)

where Ncorr is the number of the correctly-classified test pixels, Ntest

is the total number of test pixels; Ncorr
i is the number of the correctly-

classified test pixels of class i, Nclass
i is the total number of test pixels

of class i; and p P P= ∑ ( × )e i
M

i i
t

=1 , in which Pi is the ratio of data
assigned to class i by the classifier and Pi

t is the ratio of data that
belong to class i.

The SPAMS toolbox [20] is used to execute the sparse recovery
process, i.e. OMP and SOMP. MATLAB codes from [11] are used to
perform the K-SVD and D-KSVD algorithms, and MATLAB codes from
[4] are used to perform the NLW algorithm.

5.1. Parameter settings

The parameters involved in the whole evaluation process include
those for both the SRC methods and the dictionary learning methods.
For the SRC methods, the parameters include the sparsity level LC and
the window size TC for SOMP and NLW. For the dictionary learning
methods, the parameters include the sparsity level LD, the number of
atoms ND, the regularisation parameter γ, the iteration number J, and
finally the window size TD for the proposed JSM-DKSVD method. It is
too costly to cross-validate through the entire design space. To simplify
the problem, we break it down into two steps:

• When the three SRC methods (OMP, SOMP and NLW) use Draw, we
perform the leave-one-out-cross-validation (LOOCV) to tune their
parameters LC and TC. Then the parameters of the three SRC
methods are fixed and decoupled from dictionary learning, provid-
ing a relatively fair testing platform for the dictionary learning
methods.

• For the D-KSVD and JSM-DKSVD dictionary learning methods
which produce dictionaries that are independent of and universally
applicable to different SRC methods, we define their parameters in
the following way. Parameter ND by the nature cannot be tuned by
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cross-validation. Therefore, we set ND to be the maximum possible
number of atoms, which is dataset-dependent (see details in the
following sections). Empirically and for simplicity, the regularisation
parameter γ is set to be 1 and the iteration number J is set to be 30.
The sparsity level LD for the matching pursuit algorithms is set to be
5 and 30 respectively for DKSVD and JSM-DKSVD due to the
difference between OMP and SOMP. Finally, we evaluate JSM-
DKSVD with two training window sizes, 3×3 and 5×5, for illustrative
purposes.

5.2. AVIRIS dataset: Indian Pines

The AVIRIS Indian Pines dataset consists of 145×145 pixels from
224 spectral bands with sixteen ground-truth labels. Similarly to [2,4],
we use its 200 bands after removing the water absorption bands.
Following [4], we first randomly choose 957 labelled pixels (9.23% of
all pixels) for training, i.e. X ∈train 200×957. The rest pixels are used for
testing, i.e. X ∈test 200×9409. A summary of the numbers of training and
test pixels for individual classes is given in the middle two columns in
Table 1. The sixteen ground-truth classes, the training set as well as the
test set are shown in Figs. 1(a)–(c).

For the three SRC methods, OMP, SOMP and NLW using Draw, the
optimal parameters obtained by LOOCV are LC=5 for OMP, LC=30 and
T = 7 × 7C for SOMP and LC=30 and T = 9 × 9C for NLW.

Regarding the number of atoms, we set ND=957 for D-KSVD. For
the JSM-DKSVD dictionary learning method, due to the possible
overlapping of the extended neighbourhoods, its training set XJSM ,

which is the extended Xtrain, may not be full rank and as a result the K-
SVD algorithm cannot be executed. The maximum possible number of
atoms for JSM-DKSVD is therefore defined to be the maximum unique
columns of XJSM . For the training window T = 3 × 3D , the unique
number of atoms is 5,145; and for T = 5 × 5D , the unique number of
atoms is 8,764. Therefore we set N = 5, 145D and N = 8, 764D under
T = 3 × 3D and T = 5 × 5D , respectively.

To have a reliable evaluation and fair comparison, we repeat the
experiments for 20 times under these parameter settings through
performing 20 random training-test splits. For each of the 12 combina-
tions of four dictionary learning schemes and three SRC methods with
their optimal parameters, all of its 20 overall classification accuracies
are recorded and box-plotted in Fig. 2(a). Moreover, for illustrative
purposes, the classification results for one experiment randomly
selected from the 20 experiments are given in Table 2 and depicted
in Figs. 3(a)–(l), respectively.

It can be observed that, firstly, the D-KSVD method does not
improve the classification performance significantly, compared with
those simply using Draw for HSI classification. Secondly, in contrast to
D-KSVD, JSM-DKSVD is capable of producing a dictionary-classifier
combination of much better performance than the other two dictionary
learning methods in both cases of T = 3 × 3D and T = 5 × 5D . In Table 2,
for OMP, the overall accuracy (OA) is improved the most, with an 11%
(78.63–89.94%) increase under T = 3 × 3D and with a 14% (78.63–
92.99%) increase under T = 5 × 5D . For SOMP and NLW, OAs are also
improved, by around 4% (93.85–97.95% and 95.00–98.68%) under
T = 3 × 3D . JSM-DKSVD combined with NLW reaches the highest
accuracies, 98.68%.

To further demonstrate the benefit of using the JSM-DKSVD-
trained dictionary, the same test is performed again but with even
fewer training pixels. For this test, only around 5% of the total pixels
are chosen as training pixels, i.e. X ∈train 200×524, and the rest of the
pixels are used for testing, i.e. X ∈test 200×9842. The summarised dataset
is shown in the rightmost two columns in Table 1. The number of
atoms ND is set by the same process as that in the case of 9% training
pixels, and the results are 2,919 under T = 3 × 3D and 5,831 under
T = 5 × 5D , respectively. Parameters LC, TC, LD, TD, γ and J are
remained the same as those in 9% pixels for training.

We randomly split the dataset into training-test pairs for 20 times.
All of the 20 overall classification accuracies are shown in Fig. 2. The
classification results for one experiment randomly selected from the 20
experiments are shown in Table 3, excluding the classification accura-
cies of individual classes and the classification maps to save space.
Once again, JSM-DKSVD-trained dictionaries are still capable of
improving the performance of the reference SRC methods to a high
standard, and can be much superior to the SRC methods with DKSVD-
trained dictionaries.

We also compare our proposed JSM-DKSVD method with state-of-
the-art method proposed in [18], which also incorporates the structure

Table 1
The Indian Pines dataset: Ground-truth labels, class material, the training set and the
test set. The middle two columns are for the case of 957 training pixels (9% of all pixels)
and 9409 test pixels; the rightmost two columns are for the case of 524 training pixels
(5% of all pixels) and 9842 test pixels.

Class Material Training Test Training Test

1 Alfalfa 5 49 3 51
2 Corn-notill 132 1302 72 1362
3 Corn-mintill 77 757 42 792
4 Corn 22 212 12 222
5 Grass-pasture 46 451 25 472
6 Grass-trees 69 678 38 709
7 Grass-pasture-mowed 3 23 2 24
8 Hay-windrowed 45 444 25 464
9 Oats 2 18 1 19
10 Soybean-notill 89 879 49 919
11 Soybean-mintill 227 2241 124 2344
12 Soybean-clean 57 557 31 583
13 Wheat 20 192 11 201
14 Woods 119 1175 65 122
15 Buildings-grass-trees-drives 35 345 19 361
16 Stone-steel-towers 9 86 5 90
Total 957 9409 524 9842

1#. alfalfa
2. corn-notill
3. corn- mintill
4. corn
5. grass-pasture
6. grass-trees
7. #grass-pasture-mowed
8. hay-windrowed
9. oats
10. soybean-notill
11. soybean-montill
12. soybean-clean
13. wheat
14. woods
15. buildings-grass-trees-drives
16. stone-steel-towers

Fig. 1. The Indian Pines dataset with 9% pixels randomly chosen for training: (a) ground-truth labels; (b) training set; (c) test set.
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information into their dictionary learning processes. Referenced
directly from [18], the test environment is slightly different in that
997 pixels (10.64% of all 16-classes pixels) are used for training
(comparing to the 957 pixels in our case). Under the two similar test
settings, our proposed JSM-DKSVD outperforms (98.68% as shown in
Table 2) the best performance in [18] which is 94.20%. It is worth
noting though: the method proposed in [18] aims to train compact
dictionaries and therefore is still expected to have an edge on the
computational cost.

The two parameters LD and ND in the dictionary learning process
are essential to the quality of the resultant dictionary. To better
investigate this matter for the proposed JSM-DKSVD, a sweep of the
parameter space of ND and LD is performed, using 5% pixels for
training and the training window T = 3 × 3D , for example. The classi-
fication accuracies of OMP, SOMP and NLW with JSM-DKSVD-trained
dictionaries are depicted in Fig. 4.

In all OMP (Fig. 4(a)), SOMP (Fig. 4(b)) and NLW (Fig. 4(c))
settings, it can be seen that the performances of the learned dictionary

are consistently maximal when the number of atoms ND is approach-
ing the maximum value. In these cases, the dictionary is large and
flexible enough to store the rich information provided by the extended
training neighbourhoods in JSM-DKSVD.

When ND drops below 1800, the performance becomes unstable,
with local maximal observed in different places depending on LD. This
is because: although the dictionaries in these cases are not big enough
to support excellent representation of the training neighbourhoods
themselves, when the sparsity level LD is appropriately matched, the
resultant dictionary can still achieve a relatively good performance.

Summarising all the LD dimensions, Fig. 5 shows the best
performance that the dictionary can achieve under different ND. It
can be seen that despite of the local maximum mentioned above, the
best performance remains at the places where ND is close to the
number of unique columns of XJSM .

Moreover, we can observe that the performance of the learned
dictionary is not sensitive to LD when ND is approaching the maximum
value. Therefore, based on the above discussion we can take the
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Fig. 2. Boxplots of the overall classification accuracies for the Indian Pines dataset, for 12 combinations indexed by the horizontal axis: (1) Draw-OMP, (2) DKSVD-OMP, (3) JSM-
DKSVD-OMP under T = 3 × 3D , (4) JSM-DKSVD-OMP under T = 5 × 5D , (5) Draw-SOMP, (6) DKSVD-SOMP, (7) JSM-DKSVD-SOMP under T = 3 × 3D , (8) JSM-DKSVD-SOMP under

T = 5 × 5D , (9) Draw-NLW, (10) DKSVD-NLW, (11) JSM-DKSVD-NLW under T = 3 × 3D , and (12) JSM-DKSVD-NLW under T = 5 × 5D . Each boxplot is constructed from the results of

20 experiments, with panel (a) for the case that 9% pixels are randomly chosen to train the dictionary; and panel (b) for the case that 5% pixels are randomly chosen to train the
dictionary.

Table 2
The classification accuracy (%) for the Indian Pines dataset with 957 training pixels (9% of all pixels) and 9409 test pixels, of four dictionary learning methods (Draw, DKSVD, JSM-
DKSVD (3×3), and JSM-DKSVD (5×5)) for three SRC methods (OMP, SOMP, NLW). TD: training window size; ND: number of atoms; OA: overall accuracy (%); AA: average accuracy
(%); κ: kappa coefficient.

Draw DKSVD JSM-DKSVD

TD N/A N/A 3×3 5×5

ND 957 957 5145 8764

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW

1 61.22 79.59 93.88 63.27 77.55 91.84 87.76 91.84 97.96 95.92 100.00 97.96
2 70.35 92.93 94.62 70.28 92.32 94.01 87.17 97.85 98.31 96.08 98.62 98.77
3 65.65 85.73 87.71 65.39 86.79 88.38 86.92 97.62 98.55 91.94 98.02 97.49
4 54.25 89.15 85.38 53.77 89.62 84.43 73.11 99.06 98.58 84.43 97.17 97.64
5 94.24 96.45 98.45 94.46 96.67 98.67 98.23 99.78 99.78 98.89 98.23 100.00
6 94.99 99.26 99.85 94.99 99.85 99.85 97.20 99.56 99.71 97.79 98.53 99.56
7 56.52 56.52 30.43 56.52 56.52 26.09 91.30 82.61 86.96 78.26 73.91 43.48
8 96.62 100.00 100.00 96.40 100.00 100.00 99.32 100.00 100.00 99.77 100.00 100.00
9 55.56 16.67 16.67 55.56 16.67 16.67 77.78 44.44 50.00 61.11 0.00 5.56
10 63.82 77.82 82.48 63.82 79.64 82.82 85.89 93.86 96.36 86.58 94.43 94.65
11 79.43 95.67 98.39 79.70 96.97 98.62 86.93 98.30 99.06 89.60 97.72 98.88
12 72.53 93.00 97.13 72.35 96.23 97.85 86.54 97.49 99.10 91.92 95.69 97.13
13 99.48 98.96 99.48 99.48 100.00 99.48 98.96 99.48 98.96 85.94 84.90 95.31
14 94.47 97.19 97.45 94.47 97.36 97.36 97.62 99.15 99.23 98.30 99.40 100.00
15 57.39 97.68 97.97 57.68 98.55 99.71 85.22 100.00 99.71 93.91 99.71 98.84
16 82.56 98.84 98.84 83.72 98.84 98.84 89.53 93.02 97.67 81.40 83.72 87.21

OA 78.58 93.05 94.89 78.63 93.85 95.00 89.94 97.95 98.68 92.99 97.28 98.02
AA 74.94 85.97 86.17 75.12 86.47 85.91 89.34 93.38 95.00 89.49 88.75 88.28
κ 0.755 0.921 0.943 0.756 0.923 0.943 0.885 0.977 0.985 0.920 0.969 0.978
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strategy of setting ND to be close to the number of unique columns in
XJSM and giving LD certain flexibility.

5.3. ROSIS dataset: University of Pavia

The ROSIS University of Pavia dataset consists of 610×340 pixels

from 103 spectral bands, with nine ground-truth labels. We randomly
choose only 1% of labelled samples for training, i.e. X ∈train 103×432 and
the rest for testing, i.e. X ∈test 103×42344. A summary of this dataset is
given in Table 4. The nine ground-truth classes, the training set as well
as the test set are shown in Figs. 6(a)–(c).

For the three SRC methods, OMP, SOMP, NLW using Draw, the

Fig. 3. The classification maps of the Indian Pines dataset with 9% pixels randomly chosen for training: (a) Draw-OMP; (b) DKSVD-OMP (c) JSM-DKSVD-OMP (3×3); (d) JSM-DKSVD-
SOMP (5×5); (e) Draw-SOMP; (f) DKSVD-SOMP (g) JSM-DKSVD-SOMP (3×3); (h) JSM-DKSVD-SOMP (5×5); (i) Draw-NLW; (j) DKSVD-NLW (k) JSM-DKSVD-NLW (3×3); (l) JSM-
DKSVD-NLW (5×5).

Table 3
The overall classification accuracy (%) on the Indian Pines dataset with 524 training pixels (5% of all pixels) and 9842 test pixels. The notation is as for Table 2.

Draw DKSVD JSM-DKSVD

TD N/A N/A 3×3 5×5

ND 524 524 2919 5831

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW

OA 75.75 90.46 92.35 75.67 91.15 92.48 85.17 96.08 96.97 88.41 95.74 97.02
AA 70.12 82.37 84.04 70.28 82.33 83.46 83.56 93.31 91.52 87.01 93.46 93.47
κ 0.723 0.891 0.913 0.722 0.899 0.914 0.831 0.955 0.966 0.868 0.952 0.966
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optimal parameters obtained by LOOCV are LC=5 for OMP, LC=10 and
T = 3 × 3C for SOMP and LC=20 and T = 5 × 5C for NLW.

For the D-KSVD and JSM-DKSVD algorithms, we set the number of
atoms ND=432 for D-KSVD. For the JSM-DKSVD, the unique number
of atoms is 3,604 under the training window T = 3 × 3D , and 9,344
under the training window T = 5 × 5D . Therefore ND is set as 3,604 and
9,344 under T = 3 × 3D and T = 5 × 5D , respectively.

As with Section 5.2, we randomly split the dataset into training-test
pairs for 20 times. All of the 20 overall classification accuracies are box-
plotted in Fig. 7. The classification results for one experiment random
selected from the 20 experiments are shown in Table 5 and Figs. 8(a)–
(l). Once again, we can observe that the JSM-DKSVD-trained diction-
ary combined with the three SRC methods outperforms the other two
methods (Draw and D-KSVD) in both cases of T = 3 × 3D and T = 5 × 5D .

Again, we compare our results against those in [18] which is a state-
of-the-art dictionary learning method. Even with only 1% of the pixels
used for training, the proposed JSM-DKSVD method achieves higher
OA (92.77% as shown in Table 5) than that reported (85.70%) in [18],
which is evaluated with 10% pixels as training pixels.

5.4. Discussion

JSM-DKSVD utilises the JSM constraint in a fundamentally
different way from JSM-based classification methods (SOMP and
NLW): JSM-DKSVD applies its constraint to dictionary learning while
SOMP and NLW apply their constraints to classification. Moreover, the
JSM constraint in classification is used to ensure stable sparse
representation for the test pixels when they are classified, while the
JSM constraint in JSM-DKSVD is used to ensure richer spectral and
spatial information incorporated into the learned dictionary.

Fig. 4. The overall classification accuracies of using JSM-DKSVD with different numbers of atoms ND and training sparsity levels LD. The 5% pixels randomly chosen from the Indian
Pines dataset are used to train dictionaries under T = 3 × 3D . The three SRC methods for testing are (a) OMP, (b) SOMP, and (c) NLW.
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Fig. 5. The optimal classification accuracies of OMP, SOMP, and NLW using the JSM-
DKSVD-trained dictionary with different numbers of atoms ND. The 5% pixels randomly
chosen from the Indian Pines dataset are used to train the dictionaries under T = 3 × 3D .

Table 4
The Pavia University dataset: Ground-truth labels, class material, the training set and the
test set.

Class materials Training Test

1 Asphalt 67 6564
2 Meadows 187 18462
3 Gravel 21 2078
4 Trees 31 3033
5 Painted metal sheets 14 1331
6 Bare soil 51 4978
7 Bitumen 14 1316
8 Self-blocking bricks 37 3645
9 Shadows 10 937
Total 432 42344

1. asphalt

2. meadows

3. gravel

4. trees

5. painted metal sheets

6. bare oil

7. bitumen

8. self-blocking bricks

9. shadows

Fig. 6. The University of Pavia dataset with 1% pixels randomly chosen for training: (a) ground-truth labels; (b) training set; (c) test set.
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As dictionary learning can be treated as a pre-processing step for
the subsequent classification process and the learned dictionary can be
utilised by any sparse representation-based classifiers, JSM-DKSVD
can be compatibly utilised in conjunction with existing JSM-based or
non-JSM-based classification methods, such as SOMP, NLW and OMP.
Because of the difference in the use of the JSM constraint, such a
combination of dictionary learning and classification will not introduce
undesirable over-smoothness.

Nevertheless, it is worth noting that the JSM constraint itself, be it
executed in the dictionary learning or classification process, is based on
the grand assumption of signal continuity in natural images. This
assumption may be violated in certain part of an image in practice. The
violation might be caused by the low resolution of capturing devices, by
the very existence of pixels near the border of object regions, or simply
by the effect of random noises. This limits the performance of all
dictionary learning/classification methods that are based on this
assumption.

For example, as is shown in Table 2 for class 7 and class 9 of the
Indian Pine dataset, the OMP method, which is not based on the JSM
assumption, in fact achieves higher classification accuracies than
SOMP and NLW, which are JSM-based. We note that both class 7
and class 9 are small regions with only 26 and 20 pixels in total,
respectively (shown in Table 1).

In fact, such a small class is prone to violate the smoothness

assumption and may prefer a small window for dictionary learning and
classification. As we can observe, applying a stronger JSM-constraint
during dictionary learning by switching from T = 3 × 3D to a larger
window T = 5 × 5D actually results in a drop of performance of all three
classification methods (OMP, SOMP, and NLW) for class 7 and class 9.
The optimal choice of the window size (e.g. TD) can be data-dependent,
as is the case for SOMP and NLW where the JSM-constraint is
employed for classification and for JSM-DKSVD where the constraint
is employed for dictionary learning. It is indeed of our research
interests to further investigate and make the window selection process
data-adaptive for JSM-DKSVD.

Finally for reference purposes, we discuss the time cost for training
dictionaries. All experiments are performed on Xeon E5-1650 CPU
(single thread). Table 6 lists the execution time of training dictionaries
by D-KSVD, JSM-DKSVD (3×3) and JSM-DKSVD (5×5) conducted at
their optimal parameters for the Pavia dataset with 1% pixels randomly
chosen for training. The execution time (sec/atom) is normalised by the

numbers of trained atoms, i.e. 432 in D-KSVD and 3604 in JSM-
DKSVD, respectively. Firstly, it should be noted that there is no
training phase on Draw since the atoms of the dictionary are constructed
directly from the training pixels. Secondly, JSM-DKSVD spends more
time than D-KSVD for both window sizes, i.e. T = 3 × 3D and 5×5, and
JSM-DKSVD (5×5) spends the most. These are expected, as the extra
cost comes from the neighbours involved with JSM in the training
phase. This time/dictionary quality trade-off is often preferred for
offline training, which is not uncommon in the literature of the HSI
classification.

6. Conclusion

In this paper, we have proposed a novel dictionary learning method
called JSM-DKSVD for hyperspectral image classification. Based on the
concept of joint sparse modelling, we incorporate spectral and spatial
structure information into the process of discriminative K-SVD, which
results in a more informative and discriminative dictionary.
Experiment results demonstrate that the proposed JSM-DKSVD
achieves better classification performance than those using established
dictionary construction methods, even when only a very small fraction
(1% for example) of the pixels from the benchmark HSI are used for
training.
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Fig. 7. Boxplots of the overall classification accuracies the University of Pavia dataset:
(1) Draw-OMP, (2) DKSVD-OMP, (3) JSM-DKSVD-OMP under T = 3 × 3D , (4) JSM-

DKSVD-OMP under T = 5 × 5D , (5) Draw-SOMP, (6) DKSVD-SOMP, (7) JSM-DKSVD-

SOMP under T = 3 × 3D , (8) JSM-DKSVD-SOMP under T = 5 × 5D , (9) Draw-NLW, (10)

DKSVD-NLW, (11) JSM-DKSVD-NLW under T = 3 × 3D , and (12) JSM-DKSVD-NLW

under T = 5 × 5D . Each boxplot is constructed from the results of 20 experiments and 1%

pixels are randomly chosen to train the dictionary.

Table 5
The classification accuracy (%) on the University of Pavia dataset with 432 training pixels (1% of all pixels) and 42344 test pixels. The notation is as for Table 2.

Draw D-KSVD JSM-DKSVD

TD N/A N/A 3×3 5×5

ND 432 432 3604 9344

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW

1 74.21 78.63 83.27 78.47 86.11 90.65 83.68 90.33 93.19 85.33 90.36 93.95
2 92.32 97.82 98.02 91.12 97.36 98.02 91.63 98.00 98.44 92.40 98.34 98.40
3 52.21 63.72 61.50 51.68 61.79 56.79 65.69 76.23 77.33 71.22 79.79 83.16
4 84.54 88.39 88.99 83.42 86.84 84.01 85.86 89.45 89.55 89.28 92.78 92.09
5 99.55 100.00 100.00 95.94 99.02 99.25 98.42 99.85 99.62 98.87 99.92 99.47
6 58.54 63.00 60.81 58.28 64.34 62.56 68.74 74.93 74.89 74.21 81.86 82.74
7 73.25 88.83 89.21 72.64 88.15 86.85 72.64 88.91 87.84 77.20 90.58 91.19
8 65.54 76.19 75.23 59.34 72.18 69.66 67.54 80.80 76.87 71.22 81.59 78.68
9 81.00 81.75 81.96 92.53 97.01 94.77 95.73 98.40 98.51 92.32 97.55 97.65

OA 80.10 85.97 86.39 79.68 86.83 86.86 83.66 90.72 91.04 85.81 92.20 92.77
AA 75.69 82.04 82.11 75.94 83.65 82.51 81.10 88.54 88.47 83.56 90.31 90.82
κ 0.734 0.811 0.816 0.729 0.823 0.822 0.783 0.876 0.880 0.812 0.896 0.903
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Fig. 8. The classification maps of the University of Pavia dataset with 1% pixels randomly chosen for training: (a) Draw-OMP; (b) DKSVD-OMP (c) JSM-DKSVD-OMP (3×3); (d) JSM-
DKSVD-SOMP (5×5); (e) Draw-SOMP; (f) DKSVD-SOMP (g) JSM-DKSVD-SOMP (3×3); (h) JSM-DKSVD-SOMP (5×5); (i) Draw-NLW; (j) DKSVD-NLW (k) JSM-DKSVD-NLW (3×3);
(l) JSM-DKSVD-NLW (5×5).

Table 6
Execution time (sec/atom) spent on the University of Pavia dataset with 432 training pixels (1% of all pixels) for training dictionaries.

Draw D-KSVD JSM-DKSVD (3×3) JSM-DKSVD (5×5)

Time 0.014 0.245 0.512
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