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and clustering algorithms to identify regions of space where the properties of the sys-

tem constituents can be considered uniform. We show how this method can be used to

define collective variables and how these collective variables can be used to enhance the

sampling of nucleation events. We then show how this method can be used to analyze

simulations of crystal nucleation and growth by using it to analyze simulations of the

nucleation of the molecular crystal urea and simulations of nucleation in a semicon-

ducting alloy. The semiconducting alloy example we discuss is particular challenging

as multiple nucleation centers are formed. We show, however, that our algorithm is

able to detect the grain boundaries in the resulting polycrystal.

1 Introduction

Many interesting phenomena in materials science occur at the interface between different

phases. For example, when a material melts or freezes an interface between the solid and

liquid phases must form. When describing this scenario at the macroscopic level the two

phases are identified by finding the regions of space throughout which the physical properties

of the system are uniform both in terms of structure and composition. As such, whenever a

boundary between two phases is crossed, the local physical properties of the system change

discontinuously. This description works well when the volumes of the two phases are large

as the the ratio between the number of surface atoms and the number of bulk atoms is

then guaranteed to be exceedingly small. When the extents of the two phases involved are

on the order of nanometers, however, this assumption breaks down as the surface atoms

now constitute a substantial part of the system. When studying problems at these tiny

length scales atomistic molecular dynamics (MD) is an invaluable tool as it allows one to

monitor the static and dynamic properties of the atoms/molecules. One difficulty with this

method is extracting the pertinent information from the vast amount of data contained in

a molecular dynamics trajectory. Doing this effectively requires the use of a certain degree

chemical/physical intuition about the problem in question. So, for example, when studying
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an interface between the solid and liquid phases of a material one would really like to begin

by defining the extent of the two phases and the location of the interface between them. If,

as in MD, one is given just the positions of all the atoms in the system this is a non-trivial

problem, particularly for dense systems.

In this paper, we discuss a set of computational tools we have developed that can be used

both to detect clusters of one phase within a second phase and to enhance the rate at which

phase separation processes occur. Our method is based on a set of differentiable Collective

Variables (CV) that have been implemented in PLUMED 2.01,2 and that are therefore freely

available online. In what follows we first briefly discuss the essential theoretical background

of our approach in section 2. We then demonstrate how these CVs can be used in enhanced

sampling simulations to drive the condensation of a Lennard-Jones vapor into liquid droplets.

Next, we show the various ways we have used these tools to quickly implement new CVs that

can be used to analyze molecular dynamics trajectories in which phase separation events are

observed. In the last of these examples, we demonstrate that these methods can even identify

complex interfaces such as three-dimensional grain boundaries. This example is particularly

problematic as the phases in this particular system possess the same crystalline structure

with different orientations.

2 Methodology

As discussed in the introduction, a phase is a region of space in which local physical properties

of the system are reasonably uniform. This uniformity occurs because the local symmetry

around each of the atoms/molecules in any given phase is similar. There are differences in

the symmetry around each of the molecules due to thermal motions, but as these fluctuations

are small we can exploit the differences in the local symmetries around atoms/molecules in

the various phases when designing CVs to understand nucleation. In what follows we will

begin by discussing the formation of a solid from the melt in order to make our explanation

3
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algorithm is a symmetric adjacency matrix whose (i, j) element tells us whether or not the

ith and jth particles are connected. The elements of this matrix can be calculated by using

something as simple as a Heaviside step function acting on the distance, rij, between the

centers of mass of molecules i and j. In general, however, because each of these elements

equals either one or zero, we can illustrate the connectivity structure encoded in our matrix

using a graph as shown in figure 2. There are numerous algorithms11–14 that can then be

used to divide the nodes of this graph into the subsets of connected components shown in

figure 2. We choose to use the depth first search (DFS)10 graph reduction algorithm although

other clustering algorithms would work equally well.

The final step in our prescription is to calculate some function, g, of the sum of the values

of the symmetry functions for the atoms in each of the connected components we find. In

other words, we compute:

s =
M
∑

i=1

g

(

Ni
∑

j=1

cj

)

(2)

where M is the number of connected components. The second sum runs over the Ni atoms

in the ith connected component and cj is the value of the symmetry function for the jth

atom that forms part of the ith connected component. The value of s that we extract

using this formula is not continuous. However, as discussed in the next section, we have

found that we can use such quantities as the CV in umbrella sampling,15 steered MD16 or

metadynamics17,18 simulations and that we can use these variable to enhance the sampling of

rare events such as nucleation.19 The only caveat being that, when doing such calculations,

special care is required as the system must be prevented from entering regions of phase space

in which the CV defined by equation 2 changes discontinuously. With these technicalities

aside we will, in the following sections, demonstrate how this method can be used to study

nucleation of liquid from gas, nucleation of crystals from solution and to study nucleation

from the melt.

6
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where rij is the distance between atom i and atom j. The function above goes smoothly

to zero at rij = 5.5 Å. We thus state that atoms i and j are only connected if they are

within 5.5 Å of each other. As illustrated in the middle panel of figure 3 we can analyze this

adjacency matrix using the DFS algorithm, find the connected components and thus identify

any droplets of liquid that have nucleated in our simulation. Furthermore, if we take the sum

of any row of the above adjacency matrix,
∑N

i=1 = Mij, we get the coordination number, ci,

for the ith atom. Our final CV in this section is thus the sum of the coordination numbers

for the atoms in the largest cluster:

s =

N1
∑

i=1

N
∑

j=1

Mij (4)

where, to reiterate, the first sum here runs over those atoms in the largest cluster identified

by the DFS algorithm and the second sum runs over all the atoms in the system.

When evaluating the adjacency matrix, we use the continuous function described in

equation 3 rather than a simpler Heavyside function because we would like to be able to

calculate derivatives for the final collective variable s. We need these derivatives because we

would like to use a bias that is a function of this coordinate to accelerate sampling. This

bias will introduce additional forces on the atoms the values of which will depend on the

derivative of the CV with respect to the atomic positions. The fact that our CV is not

differentiable is thus a concern. However, we have found that these issues resolve themselves

if the parameters are set sensibly. In particular, when using derivatives, it is important

to ensure that a smooth and differentiable function is used within the definition of the

symmetry function. If this is done, and if the cutoff that determines whether or not two

atoms are connected for the DFS algorithm is set at a value where this continuous switching

function has decayed to zero, the value of the final function will not change discontinuously

when one further atoms is added to the cluster. Even if these cutoffs are set in this way

the value of the function will still change discontinuously if two smaller clusters merge to

8
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form one much larger cluster. Fortunately, such events were not observed during the liquid

nucleation trajectories described in this section. This not surprising because, at these low

supersaturations, classical nucleation theory predicts that the concurrent formation of two

large nuclei is extremely unlikely.

As discontinuous changes in the value of equation 4 are not observed we can safely use

this function as a collective variable in a metadynamics simulation.17 This method uses

a history-dependent bias to force droplets to grow and dissolve rapidly. Furthermore, at

the end of a metadynamics simulation, we can recover the free energy as a function of our

collective variable from the bias.17,22 The system we investigated was composed of 100 Argon

atoms at 80.7 K. The temperature was kept constant using the velocity-rescale thermostat23

and the volume was fixed at 180.36 nm3. The equations of motion were propagated with a

2 fs time-step for 200 ns using gromacs-4.6.524–27 and the following PLUMED input file:

lq: COORDINATIONNUMBER SPECIES=1-100 SWITCH={CUBIC D_0=0.45 D_MAX=0.55} LOWMEM

cm: CONTACT_MATRIX ATOMS=lq SWITCH={CUBIC D_0=0.45 D_MAX=0.55}

dfs: DFSCLUSTERING MATRIX=cm

clust1: CLUSTER_PROPERTIES CLUSTERS=dfs CLUSTER=1 SUM

mt: METAD ...

ARG=clust1.sum SIGMA=10. HEIGHT=2. PACE=500

TEMP=80.7 BIASFACTOR=50 GRID_MIN=0 GRID_MAX=6000

... mt: METAD

Figure 4 shows that the CV is able to drive a cluster with a larger number of bonds to

form and dissolve multiple times over the course of this short simulation. As clusters form

and dissolve a large number of times during the metadynamics simulation we are able to

say with confidence that any estimate of the free energy we extract from this simulation will

be converged. We therefore calculated the estimate of the free energy as a function of the

number of atoms in the largest of the clusters that was identified using the DFS algorithm

that is shown in figure 5 using the reweighting algorithm developed by Bonomi et al.28 We

9
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can calculate the quantity on the x-axis of this figure by adding the following instructions

to the PLUMED input that was used for the metadynamics simulation and which was given

above:

ss: CLUSTER_NATOMS CLUSTERS=dfs CLUSTER=1

PRINT ARG=ss FILE=colvar

This converged free energy surface is shown in figure 5. It is important to note that we have

to use reweighting to extract the free energy as a function of cluster size as we cannot use

the number of atoms in the largest cluster as a CV for a metadynamics simulation as this

quantity can change discontinuously.

Our metadynamics simulations of the nucleation of the droplets were run with a constant

number of atoms, a constant temperature, and a constant volume so there is a coupling

between the size of the droplet and the chemical potential of the surrounding gas.29–32 The

free energy shown in figure 5 thus increases as the cluster grows because of this finite size

effect.

A visual inspection of the trajectories led us to believe that clusters became more spherical

as they grow. To investigate this more thoroughly we introduce the shape anisotropy k as a

measure of the sphericity of the clusters:

k =
3

2

(λ4
1 + λ4

2 + λ4
3)

(λ2
1 + λ2

1 + λ2
1)

2
−

1

2
(5)

To compute k we evaluated the inertia tensor for the largest cluster of atoms in our system:

Tαβ =

N1
∑

i=1

mi(x
(i)
αβ − x̂αβ)

In this formula the sums run over the atoms in the largest cluster and mi, x
(i) and x̂ are

used to denote the mass of the ith atom in this cluster, the position of this atom and the

position of the center of mass for the atom in the cluster. Tαβ is a symmetric, 3 × 3 matrix

11
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and j that is one when rij < 6.4 and zero otherwise. φij, meanwhile, is the torsional angle

between the vectors connecting the carbon atoms to the oxygen atoms in urea molecules i

and j. The function K(θij) is shown as a dashed line in the middle panel of figure 7 - the

parameters b1 and b2 were set equal to 0.8 and 0.7 throughout this work. K(θij) converts

torsional angles close to zero and π to a number close to one, while converting other values of

the torsion to numbers close to zero. Consequently, the i, j element of the adjacency matrix

is only large, and the corresponding urea molecules are thus only connected, if they are close

together and if the orientations of their carbon oxygen bonds are close to parallel or anti

parallel. When this connectivity matrix is analyzed using the DFS algorithm the largest

cluster of solid molecules should thus be identified. This is not what is observed in practice,

however. The experiments we ran using this method suggested that all the molecules in the

system were part of the largest crystalline cluster at all times. In other words, the algorithm

found that every molecule in the system was connected into one contiguous crystalline mass

at all times despite the fact that multiple conversions between solid and liquid were clearly

seen in the trajectory. It would appear that a small number of molecules are aligned when the

system is in the liquid phase simply because, as shown in figure 7, the distribution of relative

orientations of molecules is close to uniform. When the adjacency matrix is calculated as

described above molecules thus appear connected even though they are not crystalline.

To remedy this problem an average value for K(φij) was calculated for each of the

molecules in the system using:

ζi =

∑

j σ(rij)K(φij)
∑

j σ(rij)
(7)

This function, which is similar to that used in a number of other recent articles,37–39 measures

whether or not the C-O bonds on the urea molecules in the first coordination sphere around

molecule i point in the same direction as the bond in molecule i. As shown in the right-most

panel of figure 7 the value of this order parameter effectively distinguishes molecules within

the solid from molecules within the liquid. The crystalline clusters that are present in the

system can thus be identified using the strategy illustrated in figure 9. DFS clustering is
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input that instructs PLUMED to do this calculation is shown below:

MOLECULES ...

MOL1=1,2,1

MOL2=9,10,9

...

LABEL=m1

... MOLECULES

smac: SMAC ...

DATA=m1

SWITCH={RATIONAL D_0=0.639 R_0=0.1 D_MAX=0.64}

KERNEL1={TRIANGULAR CENTER=0 SIGMA=0.8}

KERNEL2={TRIANGULAR CENTER=pi SIGMA=0.7}

SWITCH_COORD={RATIONAL R_0=0.001}

... smac: SMAC

ff: MFILTER_MORE DATA=smac SWITCH={GAUSSIAN D_0=0.49 R_0=0.5 D_MAX=0.5}

c1: CONTACT_MATRIX ATOMS=ff SWITCH={RATIONAL D_0=0.639 R_0=0.01 D_MAX=0.64}

dfs: DFSCLUSTERING MATRIX=c1

cc1: CLUSTER_PROPERTIES ...

CLUSTERS=dfs CLUSTER=1

MORE_THAN={GAUSSIAN D_0=0.49 R_0=0.5 D_MAX=0.5}

... cc1: CLUSTER_PROPERTIES

This input was used to analyze a 300 ns well-tempered metadynamics trajectory, which,

as discussed in the first paragraph of this section, was taken from a previously published

article.35 In this trajectory urea was observed to transition between the solid and liquid

phases multiple times because of the simulation bias. The results of the analysis are shown
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5 Crystal Nucleation of GeTe from the supercooled liq-

uid phase

For this final application the formation of a polycrystalline solid within a supercooled liquid

phase was examined. In particular, we analysed simulations of the phase change material

GeTe whose equilibrium structure at temperatures above 623 K is that of cubic rock salt.41

Phase change materials such as this one are of great practical relevance,42,43 as they are

currently employed in optical storage devices (such as DVDs and Blu-ray Discs) as well as

in electronic nonvolatile memories (Phase Change Memories, PCM).43 At the heart of these

technologies stands the fast (on the ns timescale) and reversible phase transition between

the crystalline and amorphous phases of chalcogenide glasses such as GeTe.44 Devices that

use these materials take advantage of the fact that these substances can exist in these two

distinct forms when storing binary data. Furthermore, data can be read and thus recovered

as the amorphous phase has an optical reflectivity and electrical resistivity that differs by

several order of magnitudes from that of the crystalline phase. In PCMs, crystallization from

the amorphous phase is achieved by heating the system above its the glass transition temper-

ature. This generates a supercooled liquid which, under certain conditions, can recrystallize

in the ordered phase.

The density difference between the supercooled liquid at the melting temperature of

1000 K and the crystalline phase at 0 K is of the order of 5% only.45 If we are intent on

discovering crystalline clusters of GeTe in an MD simulation working with an adjacency

matrix that measures whether or not atoms are within a certain cutoff, as described in

Sec. 3, is thus clearly not appropriate. Similarly, the method described in Sec. 4 is also

not appropriate as the system in this case is composed of atoms, which do not have an

orientation per se. One can, however, calculate something similar to an orientation for each

central atom i by first calculating the set of vectors, {rij}, that connect it to the atoms in

its coordination spheres. Once these vectors are calculated the following quantities can be
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extracted:

q
(i)
lm =

∑N

j 6=i σ(|rij|)Ylm(rij)
∑N

j 6=i σ(|rij|)
where σ(|rij|) =















1 if |rij| < d0

0 otherwise

(8)

Here the sum runs over the N atoms in the system, Ylm(rij) is one of the spherical harmonics

and in this work σ(|rij|) is essentially a Heavyside function with d0 equal to 5.3 Å although

there is sufficient flexibility within PLUMED to use a continuous switching function here

instead if derivatives are required. It is common within the materials simulation community

to combine all the q
(i)
lm values for a given l value into a single vector quantity. The norm of

this vector is then the so-called Steinhardt parameter:7,8

q
(i)
l =

√

√

√

√

4π

2l + 1

l
∑

m=−l

|q
(i)
lm|

2 (9)

The top right panel of fig. 11 shows that this order parameter is not particularly effective

at distinguishing those atoms in the crystalline parts of the system from those atoms in

the supercooled liquid. Furthermore, we found that the method from Lechner and Dellago8

that involves taking local averages of these complex vectors was not much more effective at

distinguishing between atoms in the solid and in the liquid. A more effective choice is to use

local Steinhardt parameters:8,9

Q
(i)
6 =

∑N

j 6=i σ(|rij|)q̂
(i)
6 � q̂

(j)
6

∑N

j 6=i σ(|rij|)
(10)

In this expression σ(|rij|) is a switching function on the distance between atoms i and j with

parameter d0 = 5.3 Å. q̂
(i)
6 is the versor of the (2l + 1)-dimensional complex vector q

(i)
l that

is constructed by combining all the elements of q
(i)
lm with l = 6. This local order parameter,

Q
(i)
6 , thus measures whether or not the atoms in the first and second coordination spheres

around atom i have their coordination spheres ordered in a similar fashion. Obviously, for
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atoms in the bulk of an ordered solid phase this quantity is large. For atoms in a disordered

amorphous or liquid phase, meanwhile, this quantity should be small. It is thus unsurprising

to find that, as shown in the lower left panel of figure 11, this approach is better able to

distinguish between atoms in the disordered and ordered phases.

The local order parameter Q
(i)
6 has been used widely in the literature. It is popular

because it often gives a far more effective measure of local order than the Steinhardt order

parameter q
(i)
l (see Eq. 9), which is particularly important when performing enhanced sam-

pling simulations of crystallization.46 In this work the switching functions in equations 8 and

10 are set large enough so that all the atoms in the first and second coordination spheres of

atom i are taken into account when calculating q
(i)
6 and Q

(i)
6 because, as shown figure 11, the

resulting quantity is better able to distinguish crystalline from amorphous than the function

in which only the first coordination spheres are considered.

In figure 12a the atoms are colored according to the value of the Q
(i)
6 parameter. This

figure highlights an additional complexity associated with examining nucleation in this sys-

tem. In certain temperature regimes (500-600 K) multiple nucleation centers appear on the

very short timescale of 102−3 ps over which crystallization is observed and the product that

ultimately emerges is thus polycrystalline.47,48 This product polycrystal contains a number of

randomly oriented grains, which can be distinguished by eye in figure 12a. In this figure the

regions where the atoms are colored blue and where they are clearly ordered are separated

by narrow red regions where the structure is disordered. Ideally the clustering algorithm

should find that each of these misaligned domains is disconnected from the others so that

each domain is classified as a separate cluster.

The approach outlined in figure 9 shows how the local Steinhardt parameters can be used

when finding the crystalline domains. Remember these parameters allow one to distinguish

atoms in the ordered parts of the system from those in more disordered parts. The elements
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of the adjacency matrix are thus calculated using the following expression:

Aij = σ(|rij|)S(Q
(i)
6 )S(Q

(j)
6 ) where S(Q

(j)
6 ) =















1 if Q
(j)
6 > q0

0 otherwise

A Heavyside function was used in this work for S(Q
(j)
6 ) with q0 = 0.2, while the parameter

of the switching function on the distance, σ(|rij|), was set equal to d0 = 3.6 Å. It is worth

noting there is, once again, sufficient flexibility within PLUMED to replace these two discrete

switching functions with continuous functions if derivatives are required.

By filtering the atoms using a switching function, S(Q
(i)
6 ) on the local q6 parameter we

effectively ensure that the atoms in the disordered parts of the system, which have a low

value for Q6, are always disconnected. The overall effect is thus that the DFS clustering is

only performed on the set of atoms which have a high value for Q
(i)
6 .

Analyzing the configuration shown in figure 12a using this particular approach gives the

result shown in figure 12b. Unfortunately, all of the misaligned crystalline domains are

connected into one single contiguous mass. We are thus unable to label the different grains.

Looking closely at the cluster found in figure 12c, however, one sees that there is empty

space around the various crystalline grains in the polycrystalline sample. This makes a lot

of sense as figure 12a shows that each of the regions where the atoms are coloured blue,

indicating a high-Q
(i)
6 value, is surrounded by regions in which the atoms are coloured white

and red indicating low values for Q
(i)
6 . The problem is that within these regions, where the

Q
(i)
6 values are for the most part small, there are a few atoms that have anomalously high

values. These atoms connect the grains and thus explain why the clustering algorithm finds

that all the grains connected into one single domain. To counter balance this effect we thus

calculated the following coordination number for each of the atoms:

ci =
∑

i 6=j

S(Q
(i)
6 )S(Q

(j)
6 )σ(|rij|)
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The parameter of the switching function, σ(|rij|), is set equal to d0 = 3.6 Å in this case so

this function measures the number of ordered atoms in the first coordination sphere of atom

i. Figure 11 shows the overlap in the histograms of values for this quantity that were found

for a trajectory of crystalline structures and a trajectory of liquid structures. The overlap

between these two histograms is negligible so this quantity is better than Q6 at distinguishing

atoms in the crystal from atoms in the melt. To incorporate this symmetry function in the

cluster analysis the elements of the adjacency matrix were thus calculated using:

Aij = f(ci)f(cj)σ(|rij|) where f(ci) =















1 if ci > c0

0 otherwise

(11)

In this work the parameter in the Heavyside function c0 was set equal to 6 and once again

there is flexibility within PLUMED to make this discontinuous function continuous if deriva-

tives are required. The PLUMED input that allows one to cluster the configuration using

this matrix is shown below:

q6: Q6 SPECIES=1-32768 SWITCH={GAUSSIAN D_0=5.29 R_0=0.01 D_MAX=5.3} LOWMEM

lq6: LOCAL_Q6 SPECIES=q6 SWITCH={GAUSSIAN D_0=5.29 R_0=0.01 D_MAX=5.3} LOWMEM

flq6: MFILTER_MORE DATA=lq6 SWITCH={GAUSSIAN D_0=0.19 R_0=0.01 D_MAX=0.2}

cc: COORDINATIONNUMBER SPECIES=flq6 SWITCH={GAUSSIAN D_0=3.59 R_0=0.01 D_MAX=3.6}

fcc: MFILTER_MORE DATA=cc SWITCH={GAUSSIAN D_0=5.99 R_0=0.01 D_MAX=6.0}

mat: CONTACT_MATRIX ATOMS=fcc SWITCH={GAUSSIAN D_0=3.59 R_0=0.01 D_MAX=3.6}

dfs: DFSCLUSTERING MATRIX=mat

OUTPUT_CLUSTER CLUSTERS=dfs CLUSTER=1 FILE=cluster1.xyz

As in the previous example using this protocol effectively ensures that some of the atoms

in the system will always be disconnected from the clusters. In this case, however, rather

than just discarding those atoms with a low Q
(i)
6 parameter we also discard atoms that are

bonded to fewer than six atoms that also have a large value for Q
(i)
6 . This effectively removes
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the atoms in the disordered parts of the system from consideration as, although these atoms

have high values for Q
(i)
6 , they are connected to atoms that have low values for Q

(i)
6 . As

shown in figure 12d with this setup we find that the various misaligned crystalline domains

are disconnected.

Having identified a suitable collective variable we used it to analyze an 800 ps nucleation

trajectory that was taken from Ref. 48. This simulation involved 16384 GeTe formula units

and was run at 600 K, which corresponds to a supercooling of 400 K. The results from this

analysis are shown in figure 13. The top panel shows the sum of f(ci) calculated for all

the atoms in the system as a function of time. In other words, this top panel shows the

total number of atoms in crystalline domains. The middle panel of this figure shows how

the number of domains containing more than 27 atoms changes as a function of simulation

time. This quantity was calculated using:

w =
M
∑

i=1

Ω

(

Ni
∑

j=1

f(cj)

)

where Ω(x) =















1 if x > 27

0 otherwise

In this expression the first sum runs over the clusters found using the DFS algorithm. The

second sum meanwhile accumulates the sum of the f(ci) values (see equation 11) for those

atoms in each of the clusters found. It is important to note that, because of the difficulties

discussed in section 3, this quantity cannot be made continuous by replacing the discontin-

uous function Ω with a continuous function.

The lower panel in figure 13 shows the number of atoms in each of the six largest domains

found in the system as a function of simulation time. This quantity is calculated using the

following function:

n =
N
∑

j=1

f(cj)

where the sum runs over the atoms in in the cluster of interest and f(cj) is defined as in

equation 11. To calculate the quantities shown in the middle panels of figure 13 the following
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6 Conclusions

In the preceding sections we have discussed the framework that we have developed for exam-

ining nucleation and growth phenomena by means of molecular dynamics simulation. This

framework is based on a set of collective variables that are inspired by the definition given

to the word phase in thermodynamics. A phase of a system is defined as a region of space in

which the physical properties of the system are uniform. Hence, when one crosses a phase

boundary the physical properties of the system change discontinuously. All the CVs that we

have discussed within this article thus work by performing three operations:

1. Local atom-centered, symmetry functions are computed to distinguish between the

various different environments in the system.

2. An adjacency matrix is computed, which is then analysed using a clustering algorithm.

This procedure returns the set of connected components in the graph.

3. The sum of the symmetry functions in each of the connected components is determined

and some linear/non-linear combination of these quantities is used as a final collective

variable.

The object oriented structure within PLUMED has allowed us to write an extremely

flexible implementation of this method. Firstly, we can use all the various atom-centered

symmetry functions that are available in PLUMED in step 1. In step 2 we can construct

the adjacency matrix using all the atoms in the system as was explained in section 3 or we

can choose to only calculate the adjacency matrix for those atoms that have their symmetry

function within a particular range as discussed in sections 4 and 5. Furthermore, the method

used to calculate the elements of this adjacency matrix can be changed. We are thus not

confined to simply stating that particles i and j are connected if they are within a certain

cutoff distance of each other. Lastly, once we have determined a set of connected components

using the DFS algorithm, we can calculate a range of different non-linear combinations of

the symmetry functions of which they are composed in order to get a final CV.
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This new functionality in PLUMED makes it straightforward to create new CVs as com-

plex combinations of variables directly from the input file. In addition, other scientists using

PLUMED are not confined to using the functionality that is currently available within it.

We are aware that the specific details of any problem under study are important so we have

tried to make it as straight forward as possible to implement new methods for calculating

symmetry functions, adjacency matrices and even for finding the connected components from

the adjacency matrix in PLUMED. It is thus possible to use new methods implemented in

this way in any of the work flows described in the earlier sections of this paper.
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