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Abstract:  

Nanoscale drug depots, comprising a drug reservoir surrounded by a carrier 

membrane, are much sought after in contemporary pharmaceutical research. Using 

cellulose acetate (CA) as a filament-forming polymeric matrix and ferulic acid (FA) 

as a model drug, nanoscale drug depots in the form of core-shell fibers were designed 

and fabricated using a modified tri-axial electrospinning process. This employed a 

solvent mixture as the outer working fluid, as a result of which a robust and 

continuous preparation process could be achieved. The fiber-based depots had a linear 

morphology, smooth surfaces, and an average diameter of 0.62 ± 0.07 µm. Electron 

microscopy data showed them to have clear core-shell structures, with the FA 

encapsulated inside a CA shell. X-ray diffraction and IR spectroscopy results verified 

that FA was present in the crystalline physical form. In vitro dissolution tests revealed 

that the fibers were able to provide close to zero-order release over 36 h, with no 

initial burst release and minimal tailing-off. The release properties of the depot 

systems were much improved over monolithic CA/FA fibers, which exhibited a 

significant burst release and also considerable tailing-off at the end of the release 

experiment. Here we thus demonstrate the concept of using modified tri-axial 

electrospinning to design and develop new types of heterogeneous nanoscale 

biomaterials.     

Keywords: Nanoscale drug depot; sustained release; cellulose acetate; tri-axial 

electrospinning; core-shell nanostructure 

  

 



  

1. Introduction 

Nanosized drug depots, in which a drug reservoir is surrounded by 

pharmaceutical excipients, have attracted much attention in the biomedical field 

recently [1-6]. They have been explored for drug delivery through a variety of 

administration routes (such as oral, injected, inhaled, and implanted) and also as stents 

in tissue engineering [7-11]. Two trends are obvious with this type of biomaterials. 

One is that almost all the depots take the form of nanoparticles, microspheres or 

microemulsions [12-14]. Another is that the fabrication methods are mainly 

“bottom-up” approaches, including chemical synthesis, molecular self-assembly and 

emulsion methods; these are often time-consuming and very difficult to perform on a 

large scale [15-18]. New approaches for creating this kind of nanostructure, 

particularly “top-down” methods that can be scaled up easily, would offer great 

benefit to the fields of biomaterials and pharmaceutics.                       

One such route is the electrospinning technology, which uses electrical energy to 

produce nanoscale fiber composites from solutions of a polymer and functional 

component. After rapid development in the last two decades, the most exciting new 

work on electrospun fibers falls in two areas. The first is scale-up, with production on 

an industrial scale now possible. This has mainly been investigated in the context of 

monolithic fibers with one or two functional ingredients/nanoparticles distributed 

homogeneously in the filament-forming polymer matrix [19-22]. The second is the 

creation of more complex nanostructures (such as core-shell and Janus systems, and 

combinations thereof) in order to yield materials with improved functional 



  

performance [23-26]. In the biomedical field, if a drug reservoir could be formed as 

the core of electrospun core-shell fibers, then new fiber-based nanoscale drug depots 

could be created, such as an electrospun suture [27]. These would differ significantly 

from the nanoparticle-based depots which have mainly been explored to date. In the 

cases of coaxial and tri-axial electrospinning, it is possible to run these with only one 

of the working fluids being electrospinnable alone [28, 29]. In standard coaxial 

electrospinning, the sheath fluid must be electrospinnable to support the 

electrospinning process and the formation of core-shell structures [30]. However, a 

modified coaxial electrospinning process, characterized by the utilization of 

un-spinnable liquids as the sheath working fluids can also be implemented [29,31]. 

Similarly, traditional tri-axial electrospinning always uses an electrospinnable outer 

fluid [32-40]. A modified tri-axial process focused on the exploitation of un-spinnable 

liquids has also been reported [28]. These might comprise solvents, small molecule 

solutions, emulsions and suspensions, and should lead to a range of novel structures. 

Thus, it can be hypothesized that these technologies can be exploited to create 

drug-loaded nanofibers containing drug reservoirs even though the drug itself has no 

filament-forming properties.  

A wide variety of raw materials have been investigated as the shell for 

encapsulating a core drug reservoir. These materials include the traditional 

pharmaceutical excipients approved by the FDA such as natural polymers, a range of 

synthetic polymers, and phospholipids, but also more exotic systems including 

hydrogels and even inorganic material such as TiO2 [41-44]. Naturally-occurring 



  

polymers remain a key focus of research interest because of their abundant supply and 

relatively environmentally-friendly preparation routes. This is reflected in the frequent 

use of cellulose and its derivatives not only in the scientific literature but also in the 

food and pharmaceutical industries [45, 46]. In particular, cellulose acetate (CA), the 

acetate ester of cellulose, has broad applications - for instance in the coatings of 

pharmaceutical and food products, and as film in photography [47]. CA has been also 

frequently been utilized as the filament-forming polymer for creating drug-loaded 

nanofibers through single-fluid electrospinning spinning [48]. However, the direct 

electrospinning of CA is non-facile because the need to use volatile solvents in this 

process causes frequent clogging of the spinneret [31]. Furthermore, monolithic drug 

loaded CA nanofibers tend to exhibit an undesirable initial burst release [49, 50], 

which inhibits their potential as sustained-release biomaterials. 

    In this work, with the phytochemical ferulic acid (FA) as a model drug, we 

explore the preparation of CA-based nanoscale drug depots using a modified tri-axial 

electrospinning process. As a control, monolithic drug-CA fibers were produced using 

a modified coaxial process. The fiber morphologies, structures, functional 

performance, and the distribution and physical form of the drug in the formulations 

were compared in detail.      

2. Experimental section 

2.1. Materials 

Ferulic acid (FA; purity> 98%) was purchased from the Yunnan Yunyao Lab Co., Ltd. 

(Kunming, China). CA (Mw=100,000 Da) was obtained from Acros Organics (Geel, 



  

Belgium). Methylene blue, methylene orange, N,N-dimethylacetamide (DMAc), 

anhydrous ethanol and acetone were obtained from the Shanghai SSS Reagent Co., 

Ltd. (Shanghai, China). All other chemicals were analytical grade commercial 

products. Freshly double distilled water was used where required.         

2.2. Electrospinning 

Three kinds of electrospinning processes (traditional coaxial, modified coaxial 

and modified tri-axial) were explored for preparing fibers. The outer fluids for 

modified coaxial and tri-axial electrospinning comprised a solvent mixture of acetone, 

ethanol and DMAc in a volume ratio of 4:1:1 [30]. For the traditional coaxial process 

and the modified tri-axial process, an electrospinnable solution of CA (12% w/v in a 

mixture of acetone, ethanol and DMAc, 4:1:1 v/v/v) was utilized to surround an 

unspinnable 15% w/v FA solution in acetone/ethanol/DMAc (4:1:1 v/v/v). For the 

modified coaxial process, the core fluid comprised CA and FA at 12 and 3% w/v in 

the same solvent system. These experimental conditions are summarized in Table 1. 

    Each of the working fluids was driven by a syringe pump (KDS100, Cole-Parmer, 

Vernon Hills, IL, USA). A high voltage generator (ZGF 60kV/2mA, Wuhan Huatian 

Corp., Hubei, China) was applied to create an electric potential between the spinneret 

and collector. A flat piece of cardboard wrapped with aluminum foil was used as the 

collector plate. Both the concentric (coaxial) spinneret and tri-layer spinneret were 

produced in-house. After a series of initial optimization experiments, the applied 

voltage and spinneret to collector distance were fixed at 18 kV and 20 cm. The flow 

rates of the working fluids are listed in Table 1. To aid optimization of the 



  

experimental conditions, 2 µg/mL of methylene blue and methylene orange were 

added to the inner and middle working fluids, respectively.     

Table1 

2.3. Characterization 

2.3.1. Morphology 

The morphology of the fibers and their cross-sections were probed using a Quanta 

FEG450 field emission scanning electron microscope (SEM; FEI Corporation, 

Hillsboro, OR, USA). Before examination, samples were sputter-coated with platinum 

under argon. A polarized optical microscope (XP-700, Chang-Fang Optical 

Instrument Co., Ltd., Shanghai, China) was used to study the raw drug powders and 

CA particles. The fiber diameters were estimated from SEM images using the ImageJ 

software (National Institutes of Health, Bethesda, MD, USA). Samples of fibers for 

cross-section analysis were prepared immersion in liquid nitrogen for 20 min, after 

which they were manually broken.   

2.3.2. Physical form 

X-ray diffraction patterns (XRD) were recorded on a Bruker AXS diffractometer 

(Bruker, Karlsruhe, Germany). Fourier transform infrared (FTIR) analysis was carried 

out on a Spectrum 100 FTIR Spectrometer (Perkin Elmer, Billerica, MA, USA). For 

the latter, samples were prepared using the KBr disc method.    

2.3.3. In vitro drug release 

FA has a maximum absorbance at λmax = 322 nm [51], and was quantified on a 

Lambda 950 UV/vis/NIR spectrophotometer (Perkin Elmer, Billerica, MA, USA) 



  

following construction of a calibration curve. The in vitro drug release profiles were 

measured according to the Chinese Pharmacopoeia (paddle method, 2015 Ed.) using a 

dissolution apparatus with six cells (RCZ-8A, Tianjin University Radio Factory, 

Tianjin, China). 40 mg of FA powder (particle size < 20 µm) or 0.2 g of the F2 and F3 

fibers (containing the equivalent amount of FA) were placed in 900 mL of phosphate 

buffered saline (PBS, pH 7.0, 0.1M) at 37 ± 1 ºC, with a 50 rpm rotation speed. All 

experiments were performed under sink conditions. At pre-determined time points, 

5.0 mL of the dissolution liquid was removed for analysis. 5.0 mL of pre-heated PBS 

was then added to the cells to maintain a constant volume. All experiments were 

repeated six times, and the results are reported as mean ± S.D.  

2.4. Statistical analysis 

The experimental data are presented as mean ± SD. The results from the in vitro 

dissolution tests were analyzed using one-way ANOVA. The threshold significance 

level was set at 0.05. Thus, p (probability) values lower than 0.05 were considered 

statistically significant.  

3. Results and discussion 

3.1. Modified tri-axial electrospinning 

Electrospinning is commonly considered to be easy, low-cost and straightforward, 

giving products that have large surface areas and high porosity. However, the most 

fascinating aspect of this technique in the authors’ view is that complicated 

nanostructures can easily be created in a “top-down” manner through a single step in 

double- or multiple-fluid spinning, allowing systems to be accessed which are 



  

difficult or even impossible to achieve from “bottom-up” synthesis processes [52]. 

The implementation of double- or multiple-fluid processes is similar to the one-fluid 

process (Fig. 1a), except that more complex spinnerets are required. The introduction 

of un-spinnable fluids into the process can greatly expand the range of novel 

functional nanomaterials which can be produced [28]. There are only slightly over 

100 polymers which have filament-forming properties in electrospinning, and even 

these often can only be processed in a very narrow concentration window [53]. Our 

previous report of modified tri-axial spinning used a pure solvent as the outer fluid, a 

spinnable Eudragit solution in the center, and an unspinnable drug/phospholipid core, 

with the aim of generating a colon-targeted delivery system [28]. This comprised a 

useful proof-of-concept but there are myriad further opportunities to explore, and we 

expand significantly on this previous work here. 

Fig. 1. 

Building on our previous investigations [28,29,32], we sought to use tri-axial 

electrospinning to prepare novel CA-based depot structures in this work (Fig. 1b). In 

addition to the tri-layer concentric spinneret, a polymer-coated concentric spinneret 

was applied for carrying out coaxial spinning. Digital images of the concentric and 

tri-layer spinneret nozzles are shown in Fig. 2a1 to a4. The concentric spinneret is 

coated with polyvinyl chloride (PVC), an antistatic material. It is able to effectively 

prevent electrical energy loss to the surroundings. It also helps to prevent interactions 

between the spinneret and working fluids, and reduces the clogging of the spinneret 

which can occur as a result of the build-up of solid material on it [54].  



  

The PVC-coated concentric spinneret was found to be rapidly clogged when a 

traditional coaxial electrospinning experiment was conducted with a 12% w/v CA 

solution as the shell and a pure FA solution for the core working fluid (Fig. 2b). Thus, 

the collection of the F1 fibers was abandoned. However, using a co-dissolving 

solution containing both CA and FA as the core fluid, and a solvent sheath fluid, a 

modified coaxial process could be implemented to create monolithic FA-loaded CA 

nanofibers (F2) using the same spinneret (Fig. 2c). The latter processes run smoothly 

and continuously because of the “lubrication effect” of the sheath solvent mixture. 

The presence of a surrounding solvent at the exit of spinneret replaces the interfaces 

between the viscous polymer solution and the atmosphere with a solvent/atmosphere 

interfaces, which can effectively prevent premature drying and clinging of the 

working polymer fluid. Thus, with the two-needle spinneret, only monolithic fibers 

can be generated. 

The connections of the tri-layer concentric spinneret to the syringe pumps and the 

power supply are shown in Fig. 2d. A typical working process under the optimized 

experimental parameters is depicted in Fig. 2e. A Taylor cone can be seen on the 

spinneret; this ejects a straight fluid jet, which is followed by numerous gradually 

enlarged coiled circles. The bottom-right inset of Fig. 2e gives a clear image of the 

compound Taylor cone with three different fluid layers, as indicated by the 

color-markers methylene orange and methylene blue. The implementation of a 

modified tri-axial process could thus lead to the production of core-shell structures, 

which was not possible through a standard co-axial process owing to the need to have 



  

a lubricating shell solvent to facilitate the process.  

Fig. 2. 

3.2. Fiber morphology 

Both the fibers from the modified coaxial process, (F2; Fig. 3a1 and a2) and 

those from the modified tri-axial process (F3; Fig. 3b1 and b2) have consistent linear 

morphologies, with smooth surfaces and a narrow range of diameter distributions. In 

contrast, because of the volatile properties of acetone and ethanol, CA nanofibers 

from single-fluid electrospinning often have a flat morphology with wrinkled surfaces 

[30, 31]. These effects arise because often the surfaces of the fluid jets solidify faster 

than the inner parts. Subsequent evaporation of the residual solvent causes the fibers 

to collapse in on themselves, and results in wrinkles. In contrast, the presence of a 

solvent surrounding the inner fluid(s) in both the modified coaxial and tri-axial 

processes can promote the transfer of solvent and simultaneous solidification of the 

fluid jets. Thus, both fibers F2 and F3 have cylindrical morphology with smooth 

surfaces. They have average diameters of 0.54 ± 0.05 µm and 0.62 ± 0.07 µm, 

respectively, with the tri-axial fibers slightly larger than those from the coaxial 

process.     

Fig. 3. 

SEM images of the cross-sections of F2 and F3 are exhibited in Fig. 4. It is clear 

that the F2 fibers have a smooth cross-section without any visible particles or drug 

crystals embedded. In sharp contrast, there are a large number of particles present in 

the center of F3, suggesting the likely presence of a drug reservoir within the CA 



  

shells.      

Fig. 4. 

3.3. Physical form and component compatibility 

    It is commonly the case that electrospun fibers with a drug homogeneously 

distributed in the polymer matrix are amorphous solid dispersions, which are 

beneficial for the dissolution of poorly water-soluble drugs [19,51]. XRD patterns of 

the raw materials (CA and FA) and their electrospun products are shown in Fig. 5a. 

The raw CA material is amorphous, as reflected by the broad humps in its XRD 

pattern and also the appearance of its particles under the microscope (Fig. 5b). In 

contrast, the raw FA particles are crystalline, with many sharp reflections in the XRD 

pattern. This is verified by the FA particles showing polychromic properties under 

polarized light (Fig. 5c).  

The F2 fibers from the modified coaxial process have an XRD pattern with no 

characteristic reflections of crystalline FA, indicating production of an amorphous 

material. However, it is clear that there are still some FA reflections in the pattern of 

F3 (Fig. 5a). This can be ascribed to the use of a pure drug solution as the core: 

without the steric hindrance provided by the presence of a polymer, the FA molecules 

are able to re-crystallize during the process of solvent evaporation. 

Fig. 5. 

    To explore the possibility of any secondary interactions existing between the 

components in the composite fibers, FTIR spectra were obtained, and are given in Fig. 

6a. The molecular formulae of CA and FA are exhibited in Fig. 6b. Both CA and FA 



  

have hydroxyl and carboxylate groups and thus can both donate and accept H-bonds.  

The CA spectrum contains a characteristic -C=O absorbance peak at 1727 cm-1, 

while FA has -C=O absorbance peaks at 1691, 1667 and 1619 cm-1. Fig. 6b shows that 

FA molecules can potentially form two different dimers, and the presence of these in 

the pure drug is believed to be the reason for the three different carboxylate vibrations. 

These characteristic peaks have disappeared in the spectrum of F2 but can still be 

discerned in that of F3. In addition, the numerous sharp peaks in the fingerprint region 

of raw FA are absent in the F2 spectrum but can still be observed with F3. These 

observations suggest that the major secondary interactions present in the fibers are 

likely to be different. In F2, all the FA molecules were homogeneously distributed 

throughout the CA matrix. These FA molecules formed hydrogen bonds with the -OH 

or -C=O groups of CA, which hinders the formation of FA dimers and crystal lattices. 

In comparison, in the case of F3 most of the FA molecules were centralized in the 

core, and given the lack of polymer here the formation of FA dimers and a crystal 

lattice could occur.  

Fig. 6. 

3.4. In vitro drug release  

    FA is a typical poorly water-soluble active pharmaceutical ingredient, with a 

saturation solubility of 0.00583% (w/w) in water at 37 ºC [51]. Its dissolution rate is 

closely related to its particle size. In this work, the complete dissolution of 40 mg of 

FA with a particle size smaller than 20 µm took around 12 h in PBS (Fig. 7a), with 

75.8 ± 5.4% of the drug freed into the bulk dissolution media in the first 4 h (Fig. 7b).      



  

As a result of the insolubility of CA, the F2 fibers provided a sustained release 

profile over a time period of around 96 h (Fig. 7a). However, a significant initial burst 

release (27.4 ± 5.7%) within the first hour is clear (Fig. 7b), as a result of a significant 

proportion of the drug molecules in the fibers being close to the surface and thus able 

to diffuse into the release medium. This burst is even more pronounced than the raw 

FA (23.7 ± 6.17%). After 48 h, 88.4 ± 6.8% of the incorporated FA in F2 was released. 

This left a long tailing-off period, with a further 48 h required to release only 7.1% of 

the remaining FA.  

The F3 fibers release profile is also given in Fig. 7a. F3 released only 3.7 ± 2.4% 

of the encapsulated FA in the first hour of the experiment, and 11.9 ± 5.1% after 2 h 

(Fig. 7b). After 36 h, 93.7 ± 6.4% of the FA incorporated was freed into the 

dissolution medium (Fig. 7a). Although both F2 and F3 were able to provide a more 

sustained release profile than raw FA powder (found in commercial tablets), the F3 

fibers showed even better functional performance than F2. The F3 depots had no 

initial burst release effect, which often results in a higher blood drug concentration 

than the maximum safe concentration (MSC) [55]. Meanwhile, the F3 depots had less 

leveling-off release during the final stages of release, which often leads to a lower 

blood drug concentration than the minimum effective concentration (MEC) [56]. 

Fitting release models to the in vitro release data of F3 from 0 to 36 hours shows that 

FA was released in an almost zero-order manner. A linear equation between the drug 

release percentage (Q) and the release time (T) was calculated: Q=2.54T+8.57, with a 

correlation coefficient (R) of 0.9868 (Fig. 7c).                         



  

Fig. 7. 

3.5. Drug release mechanism  

   To further explore the drug release mechanisms of F2 and F3, samples were 

removed from the dissolution cells and lyophilized at the end of the experiments. 

SEM images of the cross-sections of these samples, together with schematics of the 

drug distribution in the fibers, are exhibited in Fig. 8. F2 has a uniform cross-section 

(Fig. 8a), while F3 displays a loose, collapsed, structure in the center of the CA shell 

(Fig. 8b), as a result of the exhaustion of the core FA crystals.      

CA is insoluble in water, and in the pharmaceutical industry is often exploited 

for sustained release membrane coatings or osmotic pumps [57]. Drug release from 

CA-based drug delivery systems (DDSs) is reported to be controlled by a typical 

Fickian diffusion mechanism. The Peppas equation Q = kt
n can be utilized to gain 

more insight here. Q is the drug release percentage, t is the time, k is a constant 

reflecting the structural and geometric characteristics of the DDS, and n is an 

exponent indicating the drug release mechanism [58].  

Fits of the Peppas equation to the profiles from F2 and F3 give equations of 

Q2=30.46t2
0.27 (R2=0.9922) and Q3=5.44t3

0.81 (R3=0.9827), respectively. For F2, an 

exponent value of 0.27 (<0.45) suggests that FA release was controlled by Fickian 

diffusion. For F3, an exponent value of 0.81 (<0.90, >0.45) might be interpreted to 

indicate that a combination of diffusion and erosion mechanisms was operational. 

However, it is more likely that the Peppas model is not really applicable here, since 

there is not a uniform distribution of the drug throughout the matrix (see Fig. 8c). 



  

During the drug dissolution process, the insoluble CA will not degrade or abrade, and 

thus erosion should not occur. The composite F2 fibers do have the drug 

homogeneously distributed throughout the CA matrix however (Fig. 8c), and thus the 

Peppas equation could successfully model the release from these fibers.  

Fig. 8. 

Although the drug FA molecules have re-crystallized in the core of F3 (Fig. 8c), 

the drug release process is approximately zero-order, with no initial burst release and 

a very small tailing-off effect. This is thought to be because transport of FA from the 

central depots to the outer dissolution medium must involve three successive steps. 

First, water molecules must permeate to the cores of the fibers. Second, FA molecules 

must dissolve from the solid state into solution, and finally the free FA molecules 

must migrate through the CA shell to the dissolution medium. It is hypothesized that a 

saturated FA solution could form in the core, and since the diffusion distance to the 

release medium is constant (i.e. the thickness of the CA shell, Tshell), close to 

zero-order release ensues. In contrast, in the composite F2 system, the drug at the 

exterior of the fiber monoliths would exit first, and thus as time passes the diffusion 

distances will gradually increase. This leads to an accelerated burst of release at the 

start of the experiment, and also to the tailing off in its final stages. 

We believe that the new results reported here could leads to a series of novel 

biomaterials aiming to provide controlled release profiles. For instance: 1) in the shell, 

soluble porogenic additives (such poly(ethylene glycol) or poly(vinylpyrrolidone)) 

could be used to regulate the drug release behavior, as is currently the case in some 



  

particle-based drug depots [59]; 2) the approach could be extended to achieve the 

sustained release of soluble drugs (a major challenge in pharmaceutics); 3) drug 

delivery systems with more complicated drug release profiles could be achieved, e.g. 

multiple-phase release of a drug using a pure drug exterior compartment; 4) combined 

therapies with temporally sequential drug release characteristics could be explored; 5) 

an extremely wide range of un-spinnable fluids including dilute polymer solutions 

[60], surfactant or electrolyte solutions could be explored as the outer fluid in 

modified tri-axial processes, in order to create numerous nanoscale biomaterials with 

complicated nanostructures.   

4. Conclusions 

In this work, a modified tri-axial electrospinning process was successfully developed 

to generate nanoscale drug depots of ferulic acid (FA) in a cellulose acetate (CA) 

nanofiber. SEM images demonstrated the presence of an internal drug reservoir 

encapsulated by a CA shell. XRD and IR spectroscopy results verified that FA was 

present in the reservoirs at least in part in the crystalline form. For comparison 

purposes, monolithic CA/FA fibers were prepared by modified coaxial spinning, and 

these were found to have an amorphous distribution of drug. In vitro dissolution tests 

demonstrated that the core-shell depots were able to provide almost zero-order 

sustained release over 36 h, with no initial burst release and minimal tailing-off. The 

concepts demonstrated in this work pave a new way for designing advanced structural 

biomaterials and drug delivery systems.     
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Table and Figure Legends 

Table 1. Experimental parameters used for creating different types of drug-loaded 

nanofibers. 

Fig. 1. Schematics showing the electrospinning process. (a) The key features of the 

experiment, illustrating the different spinnerets used for single-fluid, coaxial and 

tri-axial spinning. (b) A schematic diagram depicting the working fluids used in 

tri-axial spinning in this work. 

Fig. 2. Digital images of the concentric spinneret (a1 and a2) and tri-layer concentric 

spinneret (a3 and a4), and typical observations during the (b) traditional coaxial, (c) 

modified coaxial and (d, e) tri-axial processes. The bottom-right inset of (e) shows the 

compound tri-axial Taylor cone.   

Fig. 3. SEM images of the composite nanofibers from modified coaxial spinning (F2; 

a1 and a2) and the core-shell fibers from the modified tri-axial process (F3; b1 and 

b2).   

Fig. 4. SEM images of the cross-sections of F2 (a1 and a2) and F3 (b1 and b2).  

Fig. 5. (a) XRD patterns of the raw materials, F2 and F3; and, images taken under 

polarized light of (b) CA and (c) FA. 

Fig. 6. (a) FTIR spectra of CA, FA, F2 and F3 and (b) molecular formulae and an 

illustration of the hydrogen bonding possible between FA molecules.   

Fig. 7. The in vitro dissolution profiles of FA particles, F2 and F3 over (a) 96h and (b) 

the early stages of the release experiment, with (c) the results of fitting a zero-order 

profile to the data for F3. 

Fig. 8. Typical SEM images of the cross-sections of the remains of (a) F2 and (b) F3 

after drug exhaustion. (c) A schematic diagram of the drug distributions in the CA 

matrices, and their different mechanisms controlling their release behavior.  
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Table1 Experimental parameters used for creating different types of drug-loaded nanofibers 

No. Process 
Working fluid  Outer/Middle/Inner 

fluid flow rate 

(mL/h) 

Theoretical  
drug loading  

(% w/w) Outer Middle Inner 

F1 Coaxial CA solution a -- FA solution b 2.0/--/0.4 20 

F2 
Modified 

coaxial Mixed 
solvent-only c 

-- 
CA and FA 

mixed solution d 
0.5/--/2.4 20 

F3 
Modified 
tri-axial 

CA 
solution a 

FA solution b 0.5/2.0/0.4 20 

 

a The CA solution consisted of 12% (w/v) CA in a mixture of acetone:ethanol:DMAc (4:1:1, v:v:v); 
b The FA solution consisted of 15% (w/v) FA in a mixture of acetone:ethanol:DMAc (4:1:1, v:v:v); 
c The mixed solvent was a mixture of acetone:ethanol:DMAc (4:1:1, v:v:v); 
d The CA and FA mixed solution consisted of 12% (w/v) CA and 3.0% (w/v) FA in a mixture of  

acetone:ethanol:DMAc (4:1:1, v:v:v).      
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Statement of Significance (limited to 120 words) 

 

Nano drug depot with a drug reservoir surrounded by the drug carrier is a highly 

attractive topic in biomedical fields presently. A cellulose acetate based drug depot 

was investigated in details, including the design of nanostructure, its fabrication using 

a modified tri-axial electrospinning process, and a series of characterizations. The 

core-shell fiber-based drug depots can provide better long-time drug sustained release 

profile with no initial burst effect and less tailing-off release than its counterpart, the 

electrospun monolithic medicated nanofibers. The drug controlled release mechanism 

is distinct. This proof-of-concept job can be further expanded to conceive a series of 

new kinds of structural biomaterials with improved or new functional performances.   

 




