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SUMMARY 

 

Using computer simulations we evaluate the effects of genetic purging of inbreeding 

load in small populations, assuming genetic models of deleterious mutations which 

account for the typical amount of load empirically observed. Our results show that 

genetic purging efficiently removes the inbreeding load of both lethal and non-lethal 

mutations, reducing the amount of inbreeding depression relative to that expected 

without selection. We find that the minimum effective population size to avoid severe 

inbreeding depression in the short term is of the order of Ne  70 for a wide range of 

species´ reproductive rates. We also carried out simulations of captive breeding 

populations where two contrasting management methods are performed, one avoiding 

inbreeding (equalisation of parental contributions, EC), and the other forcing it (circular 

sib mating, CM). We show that, for the inbreeding loads considered, CM leads to 

unacceptably high extinction risks and, as a result, to lower genetic diversity than EC. 

Thus, we conclude that methods aimed at enhancing purging by intentional inbreeding 

should not be generally advised in captive breeding conservation programmes. 

 

INTRODUCTION 

 

One of the main issues currently discussed in conservation genetics refers to the joint 

consequences of inbreeding depression and purging, which determine the minimum size 

of a population to be viable over time (Jamieson and Allendorf, 2012; Frankham et al., 

2014). This minimum size is strongly dependent on the inbreeding load, i.e. the load of 

deleterious recessive mutations concealed in heterozygotes (Morton et al., 1956). This 

load, when exposed by inbreeding, is responsible for at least part of the decline in 

fitness traits (inbreeding depression) ubiquitous in all captive populations and species at 

the verge of extinction (Hedrick and Kalinowski, 2000; Boakes et al., 2007; 

Charlesworth and Willis, 2009). Inbreeding depression and the fixation of deleterious 

mutations due to the reduced efficiency of purifying selection in small populations 

(Lynch et al., 1995; Reed et al., 2003) are some of the main genetic factors which, 

combined with non-genetic ones, are likely to be responsible for the extinction of 

populations. 

The inbreeding load and, thus, the decline in fitness through inbreeding 

depression, can be partially restrained by genetic purging, the action of natural selection 
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to remove recessive deleterious mutations exposed by inbreeding (see, e.g., Leberg and 

Firmin, 2008). Although the effects of genetic purging are not systematically detected in 

empirical studies (Ballou and Lacy, 1998; Crnokrak and Barret, 2002; Boakes et al., 

2007; Leberg and Firmin, 2008), theoretical studies have shown that purging can be 

rather effective for moderate size populations (García-Dorado, 2012). Experiments 

specifically designed to quantify genetic purging confirm this expectation (Bersabé and 

García-Dorado, 2013; López-Cortegano et al., 2016). Theoretical and empirical 

evidence also suggests that purging is effective under subdivision of a population into 

small subpopulations, bottleneck cycles or forced inbreeding by partial full-sib mating 

(Hedrick, 1994; Miller and Hedrick, 2001; Swindle and Bouzat, 2006; Fox et al., 2008; 

Ávila et al., 2010). 

The consequences of inbreeding and purging are fundamental to determine the 

minimum effective size (Ne; Wright, 1931) of a population to avoid inbreeding 

depression and to survive in the short term. In this respect, a consensus rule arising from 

animal breeding programmes is that the minimum Ne is 50, which corresponds to a rate 

of increase in inbreeding of 1% per generation (Soulé, 1980; Franklin, 1980). Because 

of the arbitrariness of this rule, Frankham et al. (2014) proposed a more specific 

definition, based on a maximum decline of 10% in fitness over 5 generations. This 

minimum effective population size will obviously depend on the reproductive nature of 

the species considered and the total inbreeding load, usually estimated from the 

regression of the natural logarithm of survival on the inbreeding coefficient. The 

inbreeding load (B) is often measured in terms of the number of lethal equivalents 

carried by a genome (Morton et al., 1956). In a review by O´Grady et al. (2006), it was 

found that the total deleterious inbreeding load in vertebrates is about B = 6 lethal 

equivalents per haploid genome, of which about 2 correspond to fecundity traits and 4 

to survival traits. Similar or even larger estimates have been found by Kruuk et al. 

(2002), Grueber et al. (2010), Hedrick et al. (2015) and Hoeck et al. (2015), who 

obtained estimates of B  7.5, 8, 6, and 7, respectively.  

In the light of this high total inbreeding load, Frankham et al. (2014) questioned 

the classical minimum Ne = 50 to avoid short-term inbreeding depression. They 

estimated that the expected inbreeding depression accumulated in five generations for a 

population of effective size Ne = 50 would be 1 – exp(–0.05 × 6) = 26%, a too large 

decline according to the above definition of minimum effective size. With the same 

calculation they reckoned that Ne should be 142 to produce a maximum of 10% decline 
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in fitness in five generations. Thus, Frankham et al. (2014) suggested revising the Ne = 

50 rule upwards to a minimum of Ne = 100. This proposal has, however, generated some 

debate because the above rough estimations ignore purging (Franklin et al., 2014; 

Garcia-Dorado, 2015).  

O´Grady et al. (2006) performed simulations to address the impact of an 

inbreeding load of 6 lethal equivalents on the time to extinction for a number of species, 

using the software Vortex (Miller and Lacy, 2003), which performs population viability 

analysis accounting for a wide number of genetic and demographic factors of extinction. 

They concluded that the median time to extinction of populations declines by an 

average of 37% with a mutational load of 6 lethal equivalents, relative to that with a 

mutational load of 1.57 lethal equivalents, which were usually assumed as default by the 

software and obtained from juvenile survival analysis of zoo populations (Ralls et al., 

1988). 

Another issue of relevance in relation with the above arguments is the type of 

genetic management appropriate for conservation programmes. Managements based on 

equalisation of contributions from parents to progeny or minimum coancestry 

contributions (Ballou and Lacy, 1995; Wang, 1997; Caballero and Toro, 2000) are 

expected to maintain high levels of gene diversity, but have the collateral effect of 

reducing the strength of natural selection, particularly on fecundity traits, implying a 

diminished strength of genetic purging. Analytical and simulation studies indicate that 

equalisation of contributions is expected to produce higher fitness than random 

contributions for small populations (below about 50 individuals) in the short term (up to 

10-20 generations) (Fernández and Caballero, 2001; Theodorou and Couvet, 2003; 

García-Dorado, 2012), and this is confirmed by empirical evidence (see Sánchez-

Molano and García-Dorado, 2011 and references therein). 

In contrast, other methods have been suggested to increase the strength of 

purging by applying different degrees of forced inbreeding (Crnokrak and Barret, 2002), 

such as mating between full-sibs (Hedrick, 1994; Fox et al., 2008; Ávila et al., 2010), 

and crosses between lines of sibs (Wang, 2000). More recently, Theodorou and Couvet 

(2010, 2015) suggested the possibility of applying circular sib mating (Kimura and 

Crow, 1963) in conservation programmes. These authors showed that circular sib 

mating produces an efficient purging of the inbreeding load, and maintains higher 

genetic diversity and higher population fitness than minimum coancestry contributions. 

The problem with any form of excessive inbreeding, as pointed out by Theodorou and 
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Couvet (2010, 2015) and other authors (Reed et al., 2003; Fox et al., 2008), is the high 

short-term inbreeding depression and risk of extinction. Nevertheless, Theodorou and 

Couvet (2015) concluded that, in the case of circular mating, this issue would not be too 

relevant for population sizes larger than 30 individuals and species with high 

reproductive rate, so that circular mating could be advisable in conservation 

management in these scenarios. 

Genetic extinction of small populations thus depends on the inbreeding load and 

the efficacy of genetic purging. Previous simulation results assumed purging of only 

lethal mutations (O´Grady et al., 2006), of only non-lethal ones (de Cara et al., 2013), 

or of both but with lower inbreeding loads than observed (Wang et al., 1999, Pérez-

Figueroa et al., 2009, Theodorou and Couvet, 2010, 2015). Here we simulate small 

populations with different reproductive rates and allow purging of both lethal and non-

lethal mutations affecting viability and fecundity, to find the minimum population size 

used in conservation which aims to prevent fitness declining by more than 10% over a 

5-generation period. We also evaluate the relative performance of equalisation of 

contributions and circular mating in conservation programmes under the more realistic 

parameter values of inbreeding load. 

 

METHODS 

 

Overview of the simulation design 

 

Computer simulations were carried out of populations where deleterious alleles arise by 

mutations and are eliminated by selection and drift. The simulation procedure consisted 

of two steps. In the first, a large base population of size Nb = 1000 monoecious diploid 

individuals was simulated for 10,000 generations to reach a mutation–selection–drift 

balance. The details of the simulation procedure to obtain the base population can be 

found in Pérez-Figueroa et al. (2009). In the second, samples were taken from this base 

population to found populations of small sizes, which were maintained under different 

management schemes for a further number of generations. Two scenarios were 

considered for managing the small populations, a wild population scenario, with random 

mating of parents and variable contributions of offspring according to their fitness, and 

a captive breeding scenario, where two different management methods were followed as 

detailed below.    
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Simulation model and mutational parameters 

 

We assumed a model of deleterious mutations appearing with rate   per haploid 

genome and generation with homozygous allelic effects obtained from a gamma 

distribution with mean 𝑠̅ and shape parameter , such that the genotypic fitness values 

for locus i are 1, 1 – hisi, 1 – si, for the wild type homozygote, the heterozygote and the 

mutant homozygote, respectively. Dominance coefficients (h) were assumed to have 

negative correlation with selection coefficients by using the joint s and h model of 

Caballero and Keightley (1994), where h values are taken from a uniform distribution 

ranging between 0 and exp(–ks), k being a constant to obtain the desired average value 

ℎ̅. Additionally, lethal mutations (sL = 1) were assumed to occur with rate L and 

dominance hL = 0.02 (Simmons and Crow, 1977). The fitness of an individual was 

calculated as the product of genotypic fitness across all loci. 

The mutational models considered are shown in Table 1. Model A assumed 

mutational parameters in agreement with empirical data:  and 𝑠̅ (Halligan and 

Keightley, 2009; Keightley, 2012),   (value appropriate to obtain a mutational variance 

of VM = 0.002; García-Dorado et al., 1999, 2004), ℎ̅ (García-Dorado and Caballero, 

2000), L (Simmons and Crow, 1977), and inbreeding load B (O´Grady et al., 2006). 

Model B considered a larger rate of mutations with effects smaller than those for model 

A, but keeping the same values of VM and B. Model C considered a much larger lethal 

mutation rate, thus providing a high lethal inbreeding load (about 2.5). 

The above three models were used in the wild population scenario. For the 

captive breeding scenario we assumed model A and an additional model with the 

parameters used by Theodorou and Couvet (Model TC; Table 1), which implies an 

inbreeding load one third of that of model A. 

– Table 1 – 

In all cases, up to one thousand neutral loci were also simulated in order to 

obtain estimates of neutral gene diversity. All neutral and selected loci were assumed to 

be generally unlinked, but some simulations were carried out assuming a genome of L 

(5 to 30) Morgans in genetic map length where recombination occurred at random 

positions of the genome without interference.   
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Simulated populations of small size and systems of mating 

 

From the large base population, random samples were taken to found small populations 

of maximum size Nmax, ranging from 10 to 200 individuals, which were maintained for 

50 generations under the evolutionary forces of mutation, selection and drift. One 

thousand replicates were carried out for each maximum population size and mutation 

parameter combination. In these small populations, fitness was partitioned into two 

traits, fecundity (Wf) and viability (Wv), which were assumed to be affected by 1/3 and 

2/3 of the loci, respectively. At generation 0 of the small populations, fecundities and 

viabilities of individuals were scaled by their means, so that the initial average 

population fecundity and viability were at the maximum of Wf = Wv = 1. 

We assumed species with different reproductive rates by fixing a maximum 

number of progeny per individual of 2K, following a procedure similar to that used by 

Theodorou and Couvet (2015). The number of progeny from the mating between 

individuals i and j was then obtained as the product of 2K (wild scenario) or K (captive 

scenario; see Suppl. File 1) times √𝑊𝑓,𝑖 × 𝑊𝑓,𝑗 truncated to the lower integer number, 

where Wf,x is the fecundity of individual x (x = i, j). Values of K were varied from 1.5 to 

10 to consider a range of species from low to high reproductive abilities. An individual 

progeny x survived or died according to its viability, Wv,x. A random number was drawn 

from a uniform distribution in the range [0, 1] and was compared with Wv,x. If it was 

lower (higher) than Wv,x, the individual would survive (die). Thus, because of the 

limited fecundity and survival, a small population with a high inbreeding load could 

diminish in census size and become extinct. However, the maximum population size 

would always be Nmax, assuming a ceiling model where the maximum population size is 

limited by the resources. For some simulations, natural selection was assumed absent, 

what we call “no purging” scenario. 

The mating models are described in detail in Supplemental File 1. Briefly, a 

random contribution model was assumed in the wild population scenario. In this case, a 

polygamous mating system was assumed where parents were taken from the population 

with probability proportional to their fecundity values. In the captive scenario, two 

management systems were carried out, equalisation of parents´ contributions (EC) and 

circular mating (CM). In this scenario, relaxation of selection in a benign environment 
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(Fox and Reed, 2010) was taken into account by halving the selection coefficients of all 

mutations except lethal ones. 

Pedigrees were saved in all cases. The following parameters were calculated 

each generation and averaged over replicates: (1) the probability of extinction, 

computed as the percentage of replicated populations extinct at a given generation; (2) 

the time to extinction, computed as the average generation number when populations 

become extinct; (3) the number of individuals (N) in the population at each generation 

(excluding extinct populations); (4) the average fecundity (Wf) and the average viability 

(Wv) of the population; (5) the inbreeding load for fecundity (Bf) and viability (Bv), 

calculated as B = si(1 – 2hi)piqi (Morton et al., 1956), where qi is the mutant frequency, 

pi = 1 – qi, and the summation is for all loci affecting fecundity or viability; (6) the 

inbreeding coefficient estimated from pedigrees (F); (7) the average expected frequency 

of heterozygotes at generation t for neutral loci; and (8) the average effective size (Ne) 

calculated from the inbreeding coefficient as 𝑁e = 1 / (2F), where F is the average 

rate of change in inbreeding between generations 5 and 10, i.e. F = (F 10 –  F 5) / [5×(1 

–  F 5)]. 

 

RESULTS 

 

Minimum population size to avoid excessive inbreeding depression in a wild 

population scenario 

 

Figure 1 illustrates the evolution of populations over 50 generations with a maximum 

size Nmax = 50 and three reproductive rates (K) under mutation model A (see Table 1). A 

model with no purging is also displayed as a reference. Extinctions and reductions in 

population size were more extensive with a lower reproductive rate of the species (K), 

as expected (Fig. 1A-B). Some recoveries in census size were observed for all K values, 

but these still finally led to extinction in most cases. The average drop in fecundity and 

viability was considerably lower under selection than that expected with no purging 

(Fig. 1C-D), clearly showing the impact of purging in removing inbreeding load (Fig. 

1E-F). Supplemental Figure S1 gives the corresponding results for Nmax = 100, with the 

same qualitative results. 

– Figure 1 – 
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The drop in fitness during the first 5 generations is given in Figure 2A for 

different maximum population sizes (Nmax) and K values under mutation model A. The 

horizontal line at 10% drop indicates the limiting value suggested for a population to 

avoid severe short-term fitness decline due to inbreeding depression. With no purging, 

the drop in fitness was substantially larger than 10% for all Nmax values (Fig. 2A). 

However, when purging selection was taken into account the drop became smaller than 

10% for maximum population sizes above Nmax  130. 

The ratio of the effective population size (Ne) computed in the initial generations 

to the maximum population size (Nmax) is given in Fig. 2B, showing a tendency towards 

a value of Ne/Nmax  0.5 with no purging and a bit over with purging. Therefore, the 

populations showing a drop in fitness smaller than 10% were those with effective size 

above Ne  70. 

– Figure 2 – 

The average time until extinction and the probability of extinction at generations 

10, 25 and 50 for the different K values are shown in Figure 3. Except for species with 

very low reproductive rate (K = 1.5, a maximum of 3 progeny per individual), extinction 

rate in the first 50 generations was low for maximum population sizes over Nmax  130 

(Ne  70). From Figure 3, and assuming the asymptotic ratios of Ne/Nmax observed in 

Fig. 2B, the average times until extinction for K = 1.5, 2.5, 3.5 and 10 were about 0.3Ne, 

0.8Ne, 1.2Ne and 2.9Ne generations. 

– Figure 3 – 

 The drop in fitness in the first five generations was slightly lower for mutational 

models B and C than for model A, and the effective population sizes were very similar 

for the three models (Suppl. Fig. S2). In addition, extinction rates were similar for 

models A and B but somewhat lower for model C (Suppl. Fig. S3), as this latter implied 

many more lethal genes than models A and B and, therefore, a more efficient purging 

was allowed. Thus, in what follows we will focus on model A as the most conservative 

one in terms of purging efficiency. The above results assumed free recombination 

among mutations. Assuming a short genome length (L = 5 Morgans), the probability of 

extinction was somewhat larger than for free recombination or L = 20, but the effect 

was small (Suppl. Fig. S4). 

 

Conservation management in captive breeding populations 
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Figure 4 illustrates the evolution of a population over 50 generations for Nmax = 40 

under two conservation management methods, equalization of contributions (EC) and 

circular mating (CM). Extinction and decline in population size was larger for the CM 

scheme (Fig. 4A-B) than for EC scheme due to the sharp decline in fitness occurred 

during the first generations with CM (Fig. 4C-D). CM method resulted in a substantial 

amount of purging of inbreeding load (Fig. 4E-F) because of the large initial increase in 

inbreeding (Fig. 4G). This elimination of inbreeding load produced a higher fecundity 

than EC in the final generations (Fig. 4C). Expected heterozygosity for neutral genes 

declined more under CM than under EC (Fig. 4H). 

– Figure 4 – 

The probability of extinction with the two management methods is given in 

Figure 5 for different values of Nmax and K. For low reproductive rates, method CM 

showed substantial extinction even during the first 10-25 generations. It also showed a 

substantially larger extinction rate than for EC with higher values of K (see also Suppl. 

Table S1). This method produced a remarkable drop in fitness in the early generations 

(Suppl. Fig. S5). The effective population size for CM was larger than that for EC under 

a no purging model, but the opposite was true when selection was taken into account 

(Suppl. Fig. S5). Thus, the amount of diversity maintained by CM was always lower 

than that maintained by EC when purging was accounted for (Suppl. Fig. S6). 

Simulations with restricted recombination did not alter qualitatively the above results 

(Suppl. Fig. S7). 

– Figure 5 – 

These results contrast with those obtained using mutational models with lower 

inbreeding loads, such as model TC (Table 1), for which extinction rates were 

considerably lower and CM maintained a higher neutral expected heterozygosity than 

EC under some scenarios (Suppl. Table S1). In fact, for this model, EC incurred more 

extinctions than CM on some occasions. This did not occur, however, for the model 

with a higher inbreeding load of B  6 (Suppl. Table S1). 

 

DISCUSSION 

 

Minimum population size to avoid excessive inbreeding depression and extinction 

in the short term 
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When the minimum effective population size in conservation is defined as the one 

which results in the rate of fitness decline being below 10% in the first five generations 

(Frankham et al. 2014), our results suggest that this number is of the order of Ne  70 

for a range of species´ reproductive rates. The above result is based on a genetic model 

accounting for an inbreeding load of the order of B = 6. Thus, our results are midway 

between the classical rule of Ne = 50, originally suggested by Soulé (1980) and Franklin 

(1980), and the latest proposal from Frankham et al. (2014), who suggested to double 

that figure. Assuming absence of purging, Frankham et al. (2014) calculated that an 

effective size higher than 142 was necessary to limit fitness decline to less than 10% in 

five generations. This agrees with our simulations, which show that, without purging a 

drop in fitness below 10% would be reached with Nmax > 200 (Fig. 2A), corresponding 

to Ne > 100. However, the full consideration of purging of both lethal and non-lethal 

genes reduces these values (Fig. 2A). 

 Several caveats should be mentioned regarding these results. First, our model 

assumes absence of stochastic demographic changes in the population other than the 

reduction in population size due to inbreeding depression and fixation of mutations. If 

other factors occur, such as biases in the sex ratio or sudden reductions in population 

size due to genetic or non-genetic causes, the deduced minimum effective size could be 

larger. Second, we have assumed that the whole inbreeding load is due to recessive or 

partially recessive deleterious mutations. It is possible that part of this load is due to 

overdominant loci or other types of balancing selection which would not be purged by 

inbreeding. However, whereas partial recessive deleterious mutations are ubiquitous and 

are considered the predominant cause of inbreeding depression (Charlesworth and 

Willis, 2009), heterozygote advantage should be a minority (Hedrick, 2012). Third, we 

have assumed a model with inbreeding load B = 6, but other recent experimental data 

suggest larger values of B = 7-8 (Kruuk et al., 2002; Grueber et al., 2010; Hoeck et al., 

2015). The impact of inbreeding depression on the fitness decline, extinction risk and 

loss of genetic variation in small populations could thus be larger, which calls for a 

higher minimum effective population size. 

We have focused in this paper on short term-inbreeding and survival of small-

medium sized populations. There are other aspects regarding survival of populations 

which are out of the scope of the paper. For example, it has been proposed that Ne = 500 

is the minimum population size to retain evolutionary potential in perpetuity (Franklin, 
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1980). This figure has been recently suggested to be twice as large by Frankham et al. 

(2014). In addition, a long-term minimum viable population (MVP) size is also 

frequently discussed, which refers to the number of individuals required for a high 

probability of population persistence over the long run (Shaffer, 1981; Soulé, 1987), e.g. 

80% persistence over more than 20 years (Shaffer, 1981) or 99% persistence over 40 

generations (Frankham et al., 2014). The inference obtained by the review of population 

viability analyses carried out by Traill et al. (2007) suggests a median of the MVP size 

of about 4,200 individuals (95% CI of 3,600 - 5,100). Ratios of Ne/N are of the order of 

0.1-0.2 (Frankham, 1995; Palstra and Fraser, 2012), so considering a conservative value 

of 0.1 this would imply a minimum effective size (Ne) around 400. These inferences, 

however, cannot be taken as general rules, because of the huge variation in the estimates 

of Ne/N across species and other factors (Flather et al., 2011; Jamieson and Allendorf, 

2012). 

Our results are not directly addressing the issue of the long-term survival and 

minimum viable population sizes because they ignore environmental stochastic factors 

and only consider genetic issues. We assumed a ceiling model with a maximum 

population size (Nmax), so that populations cannot increase over that ceiling, and this 

would be a factor increasing the chances of extinction of the population. Therefore, any 

inference on long-term survival arising from our results should be taken with caution. 

Even so, our results suggest that, unless the reproductive rate of the species is very low, 

the chances of extinction for genetic reasons after 50 generations are low when 

maximum population sizes are around Nmax = 130 (Ne = 70) (Fig. 3). Assuming again a 

ratio Ne/N = 0.1 this would imply census sizes of N = 700 individuals. However, for low 

reproductive rate species (K = 1.5) we found that the probability of extinction at 

generation 50 was nearly 100% even for maximum census sizes of Nmax = 200 (Fig. 3). 

Therefore, genetic extinction for low reproductive rate species could be avoidable only 

with very large population sizes, perhaps of the order of thousands, in agreement with 

Traill et al. (2007) meta-analysis results. 

We found that the average times until extinction for species with reproductive 

rates of K = 1.5, 2.5, 3.5 and 10 were about 0.3Ne, 0.8Ne, 1.2Ne and 2.9Ne generations. 

The averages obtained for intermediate values of K are therefore consistent with those 

estimated by Soulé (1980) based on the experience of animal breeders (1.5Ne 

generations), and by Reed and Bryant (2000) for populations in captivity (Ne 

generations). In addition, the median values of time to extinction estimated by 
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simulation by O´Grady et al. (2006) for 30 species were 5.7, 11.9 and 21.8 generations 

for population sizes of N = 50, 250 and 1000, respectively (averages obtained from 

Table 2 of O´Grady et al., 2006). Assuming Ne/N = 0.1, this implies times to extinction 

of 1.1Ne, 0.5Ne and 0.2Ne generations, which are similar to our results for K values of 

1.5-3.5. 

 

Forced excessive inbreeding as a management method in captive breeding 

populations 

 

We have compared the performance of a conservation method restraining inbreeding, 

equalisation of parental contributions (EC), and a method forcing it, circular mating 

(CM). Theodorou and Couvet (2010, 2015) compared CM with minimum coancestry 

contributions and matings (Fernández and Caballero, 2001), a method which makes use 

of pedigree or molecular marker information to minimize genetic drift and inbreeding in 

conservation management. This method is more powerful than EC in the initial 

generations, but we used EC instead as a more simple method that can be applied in all 

circumstances, thus giving conservative results in terms of amount of variation 

maintained. 

Theodorou and Couvet (2010, 2015) showed that CM maintains higher levels of 

gene diversity than EC in the long-term and, because it is more effective in removing 

the inbreeding load, it leads to higher population fitness. They also acknowledged that 

the main drawback of CM is the possibly high short-term inbreeding depression and 

high extinction risk. However, they concluded that, with the mutational model they 

investigated, this would be only a relevant issue for small populations (Nmax < 30) and 

low reproductive ability (F < 3, where F is analogous to our K value). We cannot make 

a direct comparison between their simulations and ours because the models followed by 

Theodorou and Couvet (2010, 2015) are not exactly the same as those used here. First, 

as mentioned above, Theodorou and Couvet (2010, 2015) used minimum coancestry 

contributions with minimum coancestry matings whereas we just applied equalisation of 

contributions with only avoidance of full-sib mating. Second, Theodorou and Couvet 

(2010) used a model of mutations of fixed effects, rather than a model with variable 

mutational effects. Furthermore, whereas Theodorou and Couvet (2015) considered 

such variable mutational effects, they not only considered deleterious mutations for 

fitness but also stabilising selection on a quantitative trait, so that overall fitness is a 
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compound of deleterious mutations and selection on the trait. Thus, our results for 

extinction rates are rather different from those of Theodorou and Couvet (2015). For 

example, the probability of extinction with Nmax = 20 and F = 2.4 from Table 1 of 

Theodorou and Couvet (2015) was 66% and 10% for CM and minimum coancestry 

contributions and matings at generation 25, whereas our corresponding probabilities for 

K = 2.5 were 0%. Our simulations give, therefore, lower extinction rates. 

Our simulations using the mutational parameters of Theodorou and Couvet (2015) 

(Model TC in Suppl. Table S1), which account for deleterious inbreeding loads of the 

order of 2 lethal equivalents, show that extinction risk under CM is negligible for K > 

2.5 and Nmax > 20 even at generation 50 (Suppl. Table S1). However, assuming 

inbreeding loads of the order of those observed experimentally, CM may imply an 

extinction risk too high to be an advisable management method in captive breeding 

programmes.  

Circular mating can be considered a type of population subdivision where each 

individual is considered a subpopulation and each subpopulation contributes equally to 

the next generation. Without selection, this mating scheme is expected to produce a 

higher rate of decrease in expected heterozygosity in the early generations but a final 

lower rate than under random mating (Kimura and Crow, 1963; Robertson, 1964; Wang 

and Caballero, 1999). Thus, it is expected that CM would produce a larger effective 

population size and higher gene diversity than EC after a number of generations if a 

model with no selection is assumed (see Suppl. Fig. S5). When selection is taken into 

account, this may still be the case if mutational models with low inbreeding load are 

assumed, as the model considered by Theodorou and Couvet (2015) (model TC). Under 

these parameters, expected heterozygosity (at later generations) is sometimes larger than 

that obtained with EC (Suppl. Table S1). However, for models with an inbreeding load 

of the order of 6 lethal equivalents, this is no longer the case; both the effective size and 

the maintained neutral heterozygosity for CM are lower than those for EC. Hence, the 

possible advantage of CM in further increasing the effective size and maintaining larger 

neutral diversity than EC clearly disappears when models involving high inbreeding 

loads are assumed. 

Overall, we can therefore conclude that circular mating should not be generally 

advised as a management method in captive breeding conservation programmes. This is 

in accordance with other studies which suggest that purging the detrimental variation 

through forced inbreeding is a risky strategy in the genetic management of endangered 
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species (Miller and Hedrick, 2001) and the common practice of avoiding inbreeding 

should be followed (Boakes et al., 2007; Leberg and Firmin, 2008).  
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Table 1. Deleterious mutation models considered in simulations. : rate of mutations 

per haploid genome and generation. 𝑠̅: average homozygous effect of non-lethal 

mutations. : shape parameter of the gamma distribution for mutational effects of non-

lethal mutations. ℎ̅: average coefficient of dominance for non-lethal mutations. L: rate 

of lethal mutations per haploid genome and generation, with dominance coefficient hL = 

0.02. B: inbreeding load in the base population, measured as the number of recessive 

lethal equivalents.  

 

 

Model  𝒔̅  𝒉̅  L B 

A 0.5 0.05 0.45 0.20 0.015 6.00 

B 1.0 0.02 0.11 0.20 0.015 6.07 

C 0.5 0.05 1.0 0.20 0.070 6.18 

TC 0.5 0.05 1.0 0.35 0.015 2.12 
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Figure legends 

 

Figure 1. Evolution over generations of different parameters for populations of 

maximum size Nmax = 50 and maximum reproductive rate K (2K is the maximum 

number of progeny per individual) under mutational model A (see Table 1). A case with 

no selection (no purging) is shown as a reference. (A) Probability of extinction. (B) N: 

average population size (excluding extinct populations). (C) Wf: average population 

fecundity. (D) Wv: average population viability. (E) Bf: inbreeding load for fecundity. 

(F) Bv: inbreeding load for viability. 

 

Figure 2. (A) Drop in fitness (fecundity × viability) after five generations for 

populations of maximum size Nmax under mutational model A (see Table 1) for different 

reproductive rates (K; where 2K is the maximum number of progeny per individual) and 

for a model without selection (no purging). (B) Ratio of the effective population size 

(Ne, estimated from the change in pedigree inbreeding between generations 5 and 10) to 

the maximum population size (Nmax). 

 

Figure 3. Time to extinction (average generation number when populations become 

extinct) and probability of extinction at generations 10, 25 or 50 (percentage of 

replicates extinct at a given generation), for populations of maximum size Nmax under 

mutational model A (see Table 1) and different reproductive rates (K). 

 

Figure 4. Evolution over generations of different parameters for populations of 

maximum size Nmax = 40 and maximum reproductive rate K = 2.5 (2K is the maximum 

number of progeny per individual) under mutational model A (see Table 1) in a 

conservation management scenario. Selection coefficients of deleterious non-lethal 

mutations were halved. CM: circular mating. EC: equalisation of contributions. (A) 

Probability of extinction. (B) N: average population size (excluding extinct 

populations). (C) Wf: average population fecundity. (D) Wv: average population 

viability. (E) Bf: inbreeding load for fecundity. (F) Bv: inbreeding load for viability. (G) 

F: average pedigree inbreeding coefficient. (H) H: average expected heterozygosity for 

neutral genes. 
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 Figure 5. Probability of extinction at generations 10, 25 or 50 (percentage of replicates 

extinct at that generation), for populations of maximum size Nmax and two reproductive 

rates (K; where 2K is the maximum number of progeny per individual) under mutational 

model A (see Table 1) in a conservation management scenario. Selection coefficients of 

deleterious non-lethal mutations were halved. CM: circular mating. EC: equalisation of 

contributions. 
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