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Abstract

Background: Inter-women and intra-women comparisons of mammographic density (MD) are needed in research,
clinical and screening applications; however, MD measurements are influenced by mammography modality (screen film/
digital) and digital image format (raw/processed). We aimed to examine differences in MD assessed on these image types.

Methods: We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric
(GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital
pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441),
with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a
random intercept for woman, to estimate processed–raw MD differences.

Results: Breast area did not differ in processed images compared with that in raw images, but the percent MD was
higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI:
0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE
0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: −0.10, 0.23)). Additionally, within each system,
reader-specific differences varied in magnitude and direction (p < 0.001). Conversion equations revealed differences
converged to zero with increasing dense area. MD differences between screen-film and processed digital on the
subsequent screening round were consistent with expected time-related MD declines.

Conclusions: MD was slightly higher when measured on processed than on raw direct digital mammograms.
Comparisons of MD on these image formats should ideally control for this non-constant and reader-specific difference.
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Background
Mammographic density (MD), a measure of the radio-
dense tissue in the breast, is a strong marker of breast
cancer (BC) risk [1]. MD is increasingly being
incorporated into BC research and clinical practice, for
example in BC risk prediction models [2], as a marker for
the effectiveness of therapeutic drugs mediated through
MD [3], and in risk-based stratification for tailored BC
screening regimens [4]. To enable these applications, esti-
mates of differences in MD between women and within
women over time are needed. However, obtaining directly
comparable MD measurements is challenged by the fact
that no single MD measurement tool is used universally;
there are more than 10 quantitative methods currently in
use [5–8]. Further, for the widely used threshold method,
MD measurements are affected by well-documented
reader variability [9, 10]. Less studied is the influence of
the type of mammogram used for MD measurements.
Images originate from a variety of imaging modalities
and mammography systems; that is, from older screen-film
mammography (SFM) or more recently from digital
mammography.
Image quality differs between SFM and digital mam-

mography—for example, in terms of object visibility and
spatial resolution [11]—and thus a reader’s assessment of
threshold-based MD may also differ between these modal-
ities. Further, digital images are acquired in a raw (‘for pro-
cessing’) format, in which the greyscale is proportional to
X-ray attenuation. The processed (‘for presentation’) image
is a manipulation of the raw image to aid tumour detection,
based on manufacturer-specific algorithms which are gen-
erally unspecified and thus irreversible. Because processing
may suppress or enhance image features such as dense tis-
sue, MD measurements may systematically differ between
the original raw and the processed images. The raw image
is often deleted and only a processed format is available for
MD measurements. Further, differences in MD between
raw and processed images may vary by the type of digital
mammography; that is, computed radiography (CR, a
digital extension of screen film) or direct digital.
Two previous studies of MD in raw–processed pairs

showed different results. From a General Electric (GE)
Senographe 2000D model, percent MD (PMD) was
higher in processed than in raw images [12]; whereas
on images captured on a GE Senographe DS model
[10], PMD was lower in processed than in raw images
for one reader, but not different for another reader. We
are not aware of raw–processed MD comparisons for
other mammography systems.
In the present study, we extended the examination of

MD across three widely used digital mammography
systems (GE and Hologic, both direct digital, and Fuji,
a CR system) by comparing threshold-based MD mea-
surements for the same mammogram saved in both

raw and processed formats and estimating MD con-
version equations between these formats. In a similar
fashion, we examined differences in MD between digi-
tized SFM and processed CR-digital images taken from
the same woman during consecutive screening rounds.

Methods
Source of images
For raw–processed MD comparisons, we included women
who had both raw and processed image pairs available;
that is, the same mammogram from a single screening
session was saved in both formats. To examine different
digital mammography system manufacturers (hereafter
‘systems’) we acquired six sets from three systems (Table 1):
two direct digital systems (Hologic: sets H1, H2 and H3;
and GE: sets G1 and G2) and a Fuji CR system (set F1).
Hologic images were all captured on Lorad Selenia models
whereas the GE images were captured on different models;
Senographe 2000D, DS and Essential. Image sets originated
from the Chilean Cohort Study of Breast Cancer Risk [13]
(set H1), the Bahcesehir Mammographic Screening project
in Turkey [14] (set H2), screening mammograms from the
H. Lee Moffitt Cancer Center, Florida, USA (sets H3
and G1) [12] and the East London Breast Screening
Programme, UK (set G2) [7]. These five sets reflect
populations with nearly 3-fold differences in BC inci-
dence rates [15]. In contrast, set F1 is a pooled resource
of anonymized Fuji CR images taken for 100 women in
2008, on which both right craniocaudal (CC) and left CC
images were saved in both formats (400 images). Other
than age for 47 women, no other information was known
about these women. Thus whilst all other sets were from
BC-free women, we cannot guarantee this status for set
F1. All mammograms were taken between 2007 and 2013.
Two sets, H1 and G2, also contributed to the Inter-
national Consortium on Mammographic Density
(ICMD) [16].
For the comparison of MD assessed on SFM and digital

mammography (Table 1, set F2, BreastScreen Victoria,
Australia), we obtained pairs of view and laterality-matched
films for the same 139 woman who were screened on SFM
at one screening round and on a digital CR Fuji system at
the next, a median of 2.1 years later (range 1.2–2.5 years).
Ethics approvals were obtain from IARC (IEC 12–34

for the ICMD) and from contributing studies.

MD measurements
To improve readability of raw images, greyscale levels
were transformed using a log-inversion implemented in
Niftyview [17]. This process creates a ‘positive’ image
out of the raw ‘negative’ and restores the approximately
linear relationship between image intensity and tissue
density exhibited by SFM. MD was measured in Cumulus
version 3 or 6, in which the reader selects the threshold to
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dichotomize dense and non-dense pixels. These versions
give equivalent MD measurements, but differ in ease of
use for the reader. Measures obtained are areas (cm2) of
the breast, the dense area (DA) and the non-dense area,
and PMD, calculated as:

PMD ¼ 100 � DA = breast area:

Image sets were read by four experienced readers
(VAM, Id-S-S, NFB and JH) in combinations dependent
on permissions for inter-institutional image transfers.
Sets H1, H2 and G2 were distributed randomly into 12
batches of 100 images (six raw and six processed batches)
and allocated randomly to three readers. Each pair was
read by the same reader. Each batch included three
within-batch repeats and five images from each batch
were repeated in the other two readers’ batches. The Fuji
images (F1) and the SFM-digital image set (F2) were
mainly read by a single reader. Sets H3 and G1 were not
transferred between institutions, but had been measured
previously by one reader as published previously [12].
Twelve image pairs were excluded because one or both

images were indicated for exclusion upon MD measure-
ment (e.g. due to low image quality, breast implants).

Statistical methods
The primary outcome is PMD (%), and secondary out-
comes are DA and breast area. For each of these, we used
a square-root transformation (e.g. √PMD) to normalize
distributions [18]. The interpretation of these measures
can be aided by considering each area as a square, thus
√DA and √breast area are the width in centimetres of the
square. Similarly, √PMD can be thought of as the width of
the dense square for a 10 cm× 10 cm breast area.
For each image format, within-reader reliability of √MD

was assessed using the intraclass correlation coefficient:

ICC ¼ σ2b= σ2bþ σ2w
� �

:

Between-women variance (σ2b) and within-reader variance
(σ2w) were estimated in ANOVA models fitted on sets H1,
H2, G2, F1 and F2 and all of the ICMD measurements
combined. Sets H3 and G1 did not have within-reader
repeats.
To estimate within-pair raw–processed differences in

MD, we fitted multi-level normal-error regression models
of √MD, where the fixed effect of image format was level
1 and a random intercept for woman was level 2. The as-
sumption of a constant difference in √MD across the MD
range was examined using Bland–Altman plots. Subgroup
analyses were conducted by reader, system, model and
processing software version, and by PMD and breast area
categories and possible effect modification tested using
likelihood ratio tests. These potential effect modifiers are
features of the image or of the imaging process; woman-

level characteristics such as body mass index (BMI) or age
were not investigated, because potential effect modifica-
tion would be mediated through image characteristics.
A similar approach was used to compare SFM and

digital processed images for set F2.
Calibration equations for conversion between MD

measured on raw and processed images, and vice versa,
were based on √DA because all √PMD differences were
driven through √DA whilst the change in √breast area
was negligible (<1 mm). Standard regression models were
not used as they assume error only in the dependent vari-
able, which results in a fitted model that is not reversible
(i.e. predicting raw from processed would give a different
outcome to predicting processed from raw). Because there
is measurement error in MD assessment on both raw and
processed films, we applied a reversible conversion method.
The principle of this calibration method was to maintain,
for each reader and system combination, equality of the
standard normal z scores of √DA whether they were
assessed on a processed image (zp) or a raw image (zr):

zp ¼ ð√DAp�x�pÞ=sp

zr ¼ ð√DAr�x�rÞ=sr;
where x̄ and s are the mean and standard deviation for
the image type respectively. This method yields the
following conversion equation:

√DAr ¼ xr þ srzp:

Results
In total, 1294 raw–processed digital image pairs (2588
images) were analysed: 676 pairs captured on Hologic
Lorad Selenia direct digital systems (CC and mediolateral
oblique (MLO)), 418 on GE Senographe direct digital sys-
tems (CC and MLO) and 200 from Fuji CR (CC only)
(Table 1). For digital image pairs, women were aged from
26 to 87 years at mammography (mean 55.1, SD 12.8) and
the median BMI was 26.2 kg/m2 but varied between sets.
Median overall PMD ranged between 15.4 and 24.8% and
median DA ranged between 23.6 and 30.4 cm2 (Table 2)
and reader-specific median measures are given in (Add-
itional file 1: Table S1). Visual examination of sample
raw–processed image pairs shows different degrees of ac-
centuation of breast features and of the skin edge (Fig. 1).
Within-reader reliability of PMD was slightly higher in

SFM (ICC 0.94, 95% confidence interval (CI): 0.93, 0.95)
than in raw digital (ICC 0.91, 95% CI: 0.89, 0.93) or
processed digital (ICC 0.89, 95% CI: 0.88, 0.91) images.
This difference generally held across readers (Table 3)
and was driven by higher within-reader repeatability
from SFM than when measuring from digital images. In
contrast, whilst readers 1 and 3 had higher ICCs for

Burton et al. Breast Cancer Research  (2016) 18:130 Page 4 of 12



PMD and DA assessed on raw images than on proc-
essed images, this was reversed for reader 2. Reader 1
ICCs for PMD and DA did not differ between image
formats for the Fuji CR or Hologic systems, whereas for
GE images the ICCs were lower on processed than on

raw images. Throughout, ICCs for PMD predominantly
reflected those for DA because breast area ICCs were
near 100% for all image formats, readers and systems
(Table 3). Based on the subset of images that were read
by all readers, mean raw-processed MD measures and

Fig. 1 Examples of raw and processed images from Hologic, GE and Fuji digital mammography systems. a Raw and e processed paired images
captured on GE Senographe Essential (G2, UK). b Raw and f processed paired images captured on Hologic Lorad Selenia (H1, Chile). c Raw and g
processed paired images captured on Fuji CR (F1). d Screen-film image and h its paired Fujifilm CR processed image (SFM/digital set F2, Australia).
CC craniocaudal, L left, MLO mediolateral oblique, R right

Table 2 Percent density, dense area and total breast area in raw–processed image pairs and in SFM–processed digital image pairs

Raw–processed image pairs SFM–digital

Hologic GE Fuji All Fuji CR

Number of women 676 418 100 1194 128

Number of image pairs 676 418 200 1294 128

Number of image pairs
by view

L MLO 259 238 0 497

L CC 208 79 100 387

R CC 209 101 100 410 128

All 676 418 200 1294 128

Number of potential MD
readings (including 22%
repeats), by reader

Reader 1 234 232 60 526 0

Reader 2 246 218 60 524 0

Reader 3 232 222 460 914 283

Reader 4 834 360 0 1194 0

All 1546 1032 580 3158 283

PMDa (%) Raw 15.4 (6.7–27.7) 18.5 (8.5–32) 23.1 (12.5–34.3) 18.1 (8.6–30.5) SFM: 22.2 (15.6–28.5)

Processed 18.7 (11.4–27.9) 21.8 (11.3–35.7) 24.8 (13.4–36.6) 20.2 (11.7–31.7) 18.9 (13.0–26.9)

Dense areaa (cm2) Raw 23.6 (12.1–41.3) 25.0 (11.7–40.3) 28.8 (19.9–45.3) 25.4 (13.5–41.7) SFM: 32.4 (22.4–43.2)

Processed 28.2 (19–41.9) 27.6 (16.1–47.6) 30.4 (20.3–50.7) 28.5 (18.2–44.8) 28.9 (20.3–38.1)

Breast areaa (cm2) Raw 166.9 (127.9–216.1) 138.4 (108.4–173.1) 152.9 (111.4–207.1) 155.8 (116.9–201.3) SFM: 154.4 (119.1–193.1)

Processed 167.3 (127.5–214.4) 140.1 (109.9–175) 150.7 (112.7–206.2) 156.1 (117.3–201.5) 156.7 (122.7–202.1)
aMedian (interquartile range)
L left, R right, CC craniocaudal, MLO mediolateral oblique, GE General Electric, SFM screen-film mammography, CR computed radiography, PMD percent mammographic
density assessed in Cumulus version 6
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correlation coefficients by reader are given in Add-
itional file 2: Table S2 and correlations between readers
by image type in (and Additional File 3: Table S3.
For processed–raw digital image pairs, the median PMD

was higher when measured on processed images than
on raw images, by 1.7–3.3 absolute percentage points
depending on the system (Table 2). Similarly, the median
DA was larger by 1.6–4.6 cm2, whereas the median breast
area was similar. Regression results were similar: √PMD
was 0.34 cm (95% CI: 0.28, 0.40) larger in processed images

than in raw images, whilst √DA was 0.44 cm (95% CI: 0.36,
0.52) larger and √breast area did not differ (0.01 cm;
95% CI: −0.01, 0.02) (Table 4). These differences in PMD
were approximately one-fifth of the between-women SD
(Table 3). For a given reader, PMD and DA differences var-
ied in magnitude between systems (heterogeneity p < 0.01
for readers 1–3, p = 0.21 for reader 4), and for a given sys-
tem the differences varied in both magnitude and direction
between readers (p < 0.001 for each system). Specifically, for
readers 1, 3 and 4, √PMD was larger in processed than in

Table 4 Mean differences in MD measures between processed images and the corresponding raw digital image, by reader and
mammography system

Reader system Number of images Number of women Percent density Dense area Breast area

Differencea √PMD
(95% CI)

Differencea √Dense area
(cm) (95% CI)

Differencea √Breast area
(cm) (95% CI)

Reader 1

Hologic 234 104 0.91 (0.74, 1.08) 1.17 (0.96, 1.39) 0.01 (−0.03, 0.05)

GE 232 98 0.62 (0.44, 0.80) 0.79 (0.57, 1.00) 0.09 (0.07, 0.11)

Fuji 60 15 0.40 (0.20, 0.61) 0.51 (0.26, 0.75) −0.12 (−0.17, −0.08)

All 526 217 0.72 (0.61, 0.84) 0.93 (0.79, 1.06) 0.03 (−0.08, 0.84)

p for heterogeneityb 0.007 0.003 <0.001

Reader 2

Hologic 246 109 −0.47 (−0.64, −0.30) −0.60 (−0.85, −0.34) 0.05 (0.01, 0.09)

GE 218 95 0.05 (−0.12, 0.23) 0.07 (−0.15, 0.30) 0.11 (0.07, 0.16)

Fuji 60 15 −0.76 (−1.03, −0.48) −0.92 (−1.27, −0.57) 0.06 (−0.01, 0.12)

All 524 219 −0.28 (−0.40, −0.17) −0.36 (−0.52, −0.19) 0.08 (0.05, 0.11)

p for heterogeneityb <0.001 <0.001 0.09

Reader 3

Hologic 232 98 0.10 (−0.04, 0.24) 0.12 (−0.07, 0.31) 0.01 (−0.03, 0.04)

GE 222 95 0.69 (0.52, 0.85) 0.88 (0.64, 1.12) 0.00 (−0.03, 0.04)

Fuji 460 200 0.10 (−0.02, 0.23) 0.13 (−0.03, 0.29) 0.03 (−0.01, 0.08)

All 914 392 0.24 (0.16, 0.33) 0.31 (0.20, 0.43) 0.02 (0.00, 0.04)

p for heterogeneityb <0.001 <0.001 0.48

Reader 4

Hologic 834 417 0.55 (0.44, 0.65) 0.74 (0.60, 0.89) −0.09 (−0.10, −0.08)

GE 360 180 0.43 (0.28, 0.58) 0.50 (0.34, 0.67) 0.08 (0.01, 0.16)

All 1194 597 0.51 (0.43, 0.60) 0.67 (0.56, 0.78) −0.04 (−0.07, −0.02)

p for heterogeneityb 0.21 0.056 <0.001

All readers combined

Hologic 1546 679 0.37 (0.29, 0.45) 0.50 (0.39, 0.61) −0.04 (−0.05, −0.03)

GE 1032 418 0.45 (0.34, 0.56) 0.56 (0.42, 0.69) 0.07 (0.04, 0.10)

Fuji 580 200 0.04 (−0.09, 0.18) 0.06 (−0.10, 0.23) 0.02 (−0.03, 0.07)

All 3158 1297 0.34 (0.28, 0.40) 0.44 (0.36, 0.52) 0.01 (−0.01, 0.02)

p for heterogeneityb <0.001 <0.001 <0.001

p for heterogeneity <0.001 between readers for each of the Hologic, GE and Fuji systems, for both percent density and dense area. For breast area, p for
heterogeneity <0.001 also between readers on the Hologic system, and no difference between readers for breast area was found for GE (p = 0.07) and
Fuji (p = 0.08)
aDifferences are processed–raw images
bp value for heterogeneity between systems, for a given reader
CI confidence interval, MD Mammographic density, GE General Electric, PMD percent mammographic density
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raw images by 0.4–0.9 cm (reader 1), 0.1–0.7 cm (reader 3)
and 0.4–0.6 cm (reader 4), depending on the system. In
contrast, √PMD in processed compared with raw images
for reader 2 was either not different (GE) or was smaller
(Fuji CR system and Hologic). Mean √DA from processed
images was 0.9 (95% CI: 0.7, 1.1) higher for reader 2 and
0.9 (95% CI: 0.7, 1.1) higher for reader 3 compared with
reader 1. Between-reader differences were larger for raw
images; mean √DA was 2.3 (95% CI: 1.9, 2.8) higher for
reader 2 and 1.9 (95% CI: 1.4, 2.3) higher for reader 3 com-
pared with reader 1. For SFM, between-reader differences
were slightly smaller; mean √DA was 1.3 (95% CI: 1.1, 1.4)
higher for reader 2 and 0.7 (95% CI: 0.5, 0.8) higher for
reader 3 compared with reader 1. Breast area differences
also varied between system–reader combinations, but
average differences were extremely small in magnitude
(<1.2 mm √breast area). Differences by model or pro-
cessing software within a system were not significant
(data not shown). Effect modification of DA and PMD
differences by categories of PMD or of breast area (cat-
egories defined by the raw image) were significant (p <
0.001 for both). The differences tended to decrease with
increasing PMD, but they increased with increasing
breast area (Additional File 4: Table S4).
Most scatter plots (Fig. 2) showed that differences in DA

on processed images compared with raw images are larger
at lower DAs, and converge towards no difference in
breasts with a √DA of ≥5 cm. Bland–Altman plots also re-
vealed that processed–raw differences in √PMD and √DA
(Additional File 5: Figure S1) were not constant across the

underlying MD range. However differences were constant
on the standardized scale (shown for DA in Additional File
6: Figure S2), and thus calibration equations were based on
standardized values of DA in the two image types. Figure 2
(Additional file 7: Information 1) presents these reader-
specific and system-specific calibration equations for DA.
Differences were very small for the Fuji CR and were larger
and of a similar magnitude between the direct digital sys-
tems. For all readers combined, conversion equations from
raw DA to their processed equivalent are as follows:

� Hologic: processed √DA = 5.252 + 0.719 (raw
√DA – 4.751)

� GE: processed √DA = 5.081 + 0.872 (raw √DA –
4.523)

� Fuji: processed √DA = 5.694 + 1.107 (raw √DA –
5.633)

After correcting DA, the corrected non-dense area and
PMD would then be calculated using the original breast
area and preserving the original definitions:

Non�dense areac ¼ breast area � DAc

PMDc ¼ 100 � DAc= breast area:

Equations to generate √DA, as if measured on a raw
image, from DA measured on a processed image are
provided in (Additional file 7: Information 1).
For the processed–SFM set (F2), comparing MD

measured on the processed digital image with that on

Fig. 2 Scatter plot of paired √DA readings measured on processed (y axis) vs raw (x axis) digital images, by reader and system. Dashed lines,
equality (if DA from processed images was read identically to raw images); blue dots, modelled linear conversion. Reader-specific and system-
specific calibration equations for the conversion of raw √DA to processed √DA are supplied in (Additional file 7: Information 2). √DA square root
of dense area, GE General Electric
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the earlier SFM, √breast area was 0.17 cm larger (95%
CI: 0.06, 0.28) and √DA was 0.17 cm smaller (95% CI:
0.01, 0.33).

Discussion
Findings
In the present study, we compared Cumulus-assessed
MD measures (PMD, breast area and DA) on the same
digital mammograms saved in processed and raw formats.
Overall, we observed higher MD in the former image type,
a difference that was not entirely consistent either in mag-
nitude or direction across four readers for a given mam-
mography system. Differences in MD assessed on raw and
processed images were small for the CR system, but larger
for direct digital systems. Differences between SFM and
CR-digital images appeared to be small, although the latter
were not time-matched comparisons. Readers had higher
MD repeatability for SFM images than for raw or proc-
essed digital images. This may be because readers had
more experience of reading from SFM images, or because
density is more easily visualized in SFM images.

Comparison and plausibility
Readers noted several appearance qualities of processed
images that may affect the MD assessment, such as
‘thickened breast edge’ or ‘faded parenchyma’. Processing
algorithms involve multiple steps designed to clarify the
image, enhance suspected lesions and reduce noise—this
noise may be dense tissue, therefore it has been hypothe-
sized that density would be lower in processed images.
However, this and similar studies generally found higher
MD on processed images, particularly at lower density
levels. Enhancement of light/dark transitions and accentu-
ation of the breast edge may contribute to this increase.
Differences in PMD were almost entirely driven by changes
in the DA because breast area altered minimally. Our re-
sults are also consistent with those of Keller et al. [10], and
Martin et al. [19], who reported that differences were highly
reader dependent. Unsurprisingly, Vachon et al.’s results
[12], which comprised 14% of our raw–processed pairs, also
found that PMD was overestimated in less dense breasts in
processed compared with raw GE images. Studies that
compared MD using the BIRADS classification did not
find differences by image type [20], but differences may
be too small to be detected using a broad categorical
classification.
Differences in MD assessment between SFM and Fuji

CR were not assessed optimally, because they were based
on films taken 2 years apart. While there was no breast area
difference in the time-matched images, over this time inter-
val the breast area increased indicating measurable age-
related changes. The magnitude of this increase (0.17 cm
√breast area) was consistent with the expected within-
woman changes (0.16 cm over 2 years) found in a

previous SFM-only longitudinal study [21]. Similarly,
the decline in DA was only slightly larger than would
be expected from age-related changes (−0.13 cm √DA),
suggesting that any differences due to image formats
were small (at most 0.04 cm). However, similar studies
comparing PMD in SFM and digital mammography re-
ported that PMD was higher in SFM images than in
raw or processed digital images [22], including one in
which the digital and the SFM were taken on the same
day [19]. In both studies the differences were larger
than for the present study, possibly because they were
comparing SFM with direct digital and not with CR as in
the present study. Breast area was also higher in digital im-
ages taken on the same day as SFM images, indicating that
lower PMD assessment may be a product of both under-
estimation of DA and overestimation of breast area in
digital images compared with SFM images. Harvey [22] hy-
pothesized that more subcutaneous fat is included in digital
measurements because the breast edge can be seen and
delimited more precisely, but only PMD was reported in
that study. In the present study, small differences between
SFM and CR may reflect these closely related imaging tech-
nologies; CR systems are additions to SFM systems, using
phosphor plates and a separate reader to create digital
images, whereas the direct digital image is created at
the point of image capture [23]. Thus, CR images have
lower spatial resolution and more image noise than direct
digital images [24]. The improved image quality in direct
digital allows for more complex multi-functional pro-
cessing algorithms, which may account for the larger
raw–processed differences in direct digital images com-
pared with CR images.

Strengths and limitations
This is the first study to compare raw and processed
images, using the same design and analytic approach,
captured on several widely used mammography sys-
tems. Comparisons of MD across multiple systems are
important because it is unlikely that all women in a
study, or the same woman followed for several years,
will be screened on the same mammography machine.
Nevertheless, several design features would have improved
the study; by including CC views alongside MLO for all
images, and including other widely used mammography
systems such as Siemens, and other CR systems. We were
limited by the lack of information on manipulations per-
formed by processing algorithms which are proprietary to
manufacturers. Multiple readers are a further strength, be-
ing reflective of clinical and research settings—between-
reader differences in raw–processed calibration highlight
the need to recognize and quantify these differences where
possible. Further, we used a reversible statistical method
for processed–raw MD conversions; that is, neither raw
nor processed MD is considered the error-free
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independent variable, which would not have been the case
had a simple regression method been used. Finally, the
women included in this study came from countries with a
wide range of BC incidence rates, and thus the results
should be generalizable to women across the BC risk
spectrum.

Relevance and implications
The potential impact of raw–processed differences in
MD from direct-digital systems (3.3 percentage points)
will depend on the application. When investigating MD
as a predictor of BC risk, differences are unlikely to
introduce substantial misclassification between very low
density (<10%) and very high density (e.g. >50%) and would
thus have a small impact on relative risk estimates. For in-
vestigations of determinants of MD or changes in MD,
raw–processed differences are of a magnitude similar to
10 years of aging or the menopause-related PMD change
(as assessed within ICMD) and depend greatly on the
reader. Thus, in the screening or clinical setting when
assessing MD change over time for the same woman, it
is important that the same reader reads the woman’s re-
peat mammograms. If the calibration equations pre-
sented in this article are to be used in the screening or
clinical settings, they will need to be validated, particu-
larly for different readers. In studies comparing PMD
across raw and processed image types, correcting for
these differences is thus important and would ideally be
made using reader-specific and system-specific calibra-
tions. Even if all images are of the same type (raw or
processed) it is necessary to calibrate between readers.
Comparability of raw images between systems has not
been assessed and difference in acquisition between sys-
tems may be present. The repeated finding across studies
of large between-reader differences in MD, in addition to
their time-intensive nature, again emphasizes the need for
fully-automated methods of MD measurement. Four such
fully automated quantitative methods were recently evalu-
ated for BC risk prediction, alongside Cumulus [7]. Al-
though such methods eliminate between-reader variations
in readings, many only work on a single image type (often
raw digital images [25]), but others can be applied across
multiple types [8, 26]. It is possible that there would be
between-system differences in automated measures, par-
ticularly volumetric measures due to differences in breast
positioning and therefore breast thickness [27], but not all
studies have found this [28]. In the future, as further pro-
cessing algorithms are developed, MD differences between
raw and processed images are likely not only to persist
but also to change. However, as digital storage becomes
cheaper and faster, such problems may be overcome if
raw images are systematically stored and MD is consist-
ently measured on them. In a similar fashion, a consistent
and fully-automated MD measurement tool could be

applied to the raw image bank to provide MD data in an
efficient and systematic manner.

Conclusion
Processed ‘for presentation’ direct digital mammograms
have, on average, a higher Cumulus-assessed PMD and
dense area compared with their corresponding raw ‘for pro-
cessing’ images, whilst such differences were small for CR
systems. Raw–processed differences in the direct digital sys-
tems depended on mammography system and to a large ex-
tent on reader, as did absolute density readings for a given
image type. Controlling for these factors is necessary when
comparing density readings across image types. For detec-
tion of small differences in density (e.g. within-woman
changes), reader-specific processed to raw calibration, or re-
striction of comparisons to readings made by the same
reader and on the same image type may be necessary.

Additional files

Additional file 1: is Table S1 presenting percent density, dense area
and total breast area in raw–processed image pairs and in SFM–
processed digital image pairs, by reader. (DOC 33 kb)

Additional file 2: is Table S2 presenting mean MD measures of inter-
reader repeats, by reader and image type. (DOC 29 kb)

Additional file 3: is Table S3 presenting correlation of MD measures in
inter-reader repeats. (DOC 29 kb)

Additional file 4: is Table S4 presenting mean differences in MD
measures between processed images and the corresponding raw digital
image, by percent density and breast area categories. (DOC 30 kb)

Additional file 5: is Figure S1 showing Bland–Altman plots for vMD
measures, by mammography system and reader for: (A) percent
mammographic density, (B) dense area and (C) breast area. Y axes to the
same scale for comparisons. (DOCX 138 kb)

Additional file 6: is Figure S2 showing Bland–Altman plots for within-
system and within-reader standardized vDA measures. (DOCX 79 kb)

Additional file 7: is Information 1 showing calibration equations for
the conversion of raw vDA to processed vDA, and Information 2 showing
calibration equations for the conversion of processed vDA to raw vDA.
(DOC 41 kb)
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