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Abstract                

This study demonstrates the potential of developing a future Raman spectroscopy-based 

sensor system for monitoring carbonation of concrete structures. A tailored optical fibre 

Raman system was developed under the classical 45 degree geometry with a specific optical 

fibre assembly acting as the laser excitation-path. This system was then employed to 

characterise the calcium carbonate polymorphs, i.e. calcite and/or aragonite [ʋ1 (CO3
2-) at 

1086 cm-1], formed in the carbonated PC paste powder. The finding shows a good potential 

of optical fibre Raman spectroscopy for monitoring the health condition of concrete structures 

in the future.     
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1. INTRODUCTION 

 

In recent decades, structural health monitoring (SHM) with the employment of sensors has 

shown some success in monitoring the physical properties, such as stress and strain, of 

concrete structures [1, 2]. However, it has been increasingly recognised that, instead of 

physical properties, monitoring the changes in the chemical composition of hardened cement 

paste in concrete is more important because this can provide an in-depth understanding on 

the evolution of concrete deterioration mechanisms such as chloride ingress, carbonation and 

sulphate attack over time, so that both the prediction of service life and the diagnosis of the 
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causes of deterioration can be established. Although electrical sensor (ES) [3, 4] and fibre 

optic sensor (FOS) [5-7] have been attempted to monitor the deterioration mechanisms of 

concrete structures, the electrical change of ES can also be attributed to some other factors 

such as the humidity change or the change of the microstructure of cement matrix due to 

continued hydration [8]. Therefore, ES cannot clearly differentiate each individual deterioration 

mechanism. On the other hand, even though FOS can overcome the issues facing ES by 

impregnating the fibre with specific chemical dyes so that the colour variation induced by the 

deterioration mechanisms can be identified and, even, quantified, it responds irreversibly and 

cannot survive the inherently harsh alkaline environment of concrete for long  time [9]. 

 

In contrast, under the fingerprint characterisation capacity of Raman spectroscopy [10, 11], 

the reaction products of various deterioration mechanisms, such as calcium carbonate 

polymorphs (e.g., calcite, vaterite and aragonite) [12-19] from carbonation and sulphate-

bearing products (i.e., gypsum, ettringite and thaumasite) [20-23] from sulphate attack , can 

be clearly differentiated by their unique vibration bands (wavenumber in cm-1) and this can 

effectively overcome the limitations of ES. Moreover, as Raman spectroscopy works on the 

principle of intrinsic vibration of molecules, the chemical dyes as employed in the FOS is no 

longer needed which can totally eliminate the long-term instability and irreversibility issues 

facing FOS. On the other side of the spectrum, in recent years, the application of optical fibre 

assemblies, especially the low-loss optical fibre, has also enhanced the long-distance remote 

signal-collection capability of optical fibre Raman system [24-27]. Therefore, remote 

monitoring with optical fibre Raman system is becoming a reality. Surprisingly, up to date, the 

application of optical fibre Raman system in monitoring the durability of concrete structure has 

not been attempted in the literature. Previous study carried out by the authors showed that 

there is a good potential to monitor sulphate attack with optical fibre Raman spectroscopy [7]. 

This paper, therefore, extends the previous work to explore the potential of using optical fibre 

Raman system to monitor the carbonation mechanism of concrete.  

  

Among various durability issues facing structural concrete, carbonation is one of the two 

primary deterioration mechanisms leading to the corrosion of reinforcements. It is a chemical 

reaction between the CO3
2- (i.e., carbon dioxide must be dissolved in concrete pore solution 

first) and the Ca-bearing phases in the cement matrix. Whilst virtually all the hydration products 

(i.e. calcium hydroxide, calcium silicate hydrate and various calcium aluminate or ferro-

aluminate hydrates) can react with CO2 to produce calcium carbonate, silica gel and hydrated 

aluminium and iron oxides, the dominant reaction is the one between calcium hydroxide 

[Ca(OH)2] and CO2 which converts Ca(OH)2 to calcium carbonate (CaCO3),  leading to a 
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reduction in the pH of concrete pore solution and subsequent corrosion of reinforcing bars [28, 

29]. The calcium carbonate thus formed mainly exists in the form of three crystallised 

polymorphs, namely, calcite (well-crystallised stable phase) and vaterite & aragonite 

(crystallised meta-stable phases) [12, 30, 31]. Previous research reported in the literature on 

characterising carbonation products with bench-mounted Raman spectroscopy (i.e. no fibre 

optical assemblies were employed) indicates that the four internal vibration modes of CO3
2-, 

namely ʋ1 (symmetric stretching), ʋ2 (out-of-plane bending) (very weak), ʋ3 (asymmetric 

stretching) and ʋ4 (in-plane bending), together with the Ca-O lattice vibration (LV), all can be 

identified [12-19]. Table 1 summarises the Raman bands and their related assignments of 

these three crystallised calcium carbonates from the literature. It can be seen that, in addition 

to the wavenumber shifts between these three polymorphs, each individual calcium carbonate 

polymorph can be readily differentiated by their unique Raman features as outlined below: 

i) Degeneration of the ʋ1 symmetric stretching (CO3
2-) band of vaterite vs non-

degeneration of the ʋ1 (CO3
2-) bands of calcite and aragonite (i.e. double peaks vs 

single peak). This feature can clearly differentiate vaterite from calcite and 

aragonite.  

ii) Degeneration of the ʋ3 asymmetric stretching (CO3
2-)/ʋ4 in-plane bending (CO3

2-) 

mode of vaterite and aragonite vs non-degeneration of the ʋ3/ʋ4 (CO3
2-) modes of 

calcite (i.e. multiple peaks vs single peak). This can differentiate calcite from 

aragonite and vaterite. 

 

Table 1. Assignment of Raman bands of calcium carbonate polymorphs [12-19] 

 
Lattice 

vibration 

ʋ1 symmetric 

stretching of 

CO3
2- 

ʋ2 out-of-plane 

bending of 

CO3
2- 

ʋ3 asymmetric 

stretching of 

CO3
2- 

ʋ4 in-plane 

bending of 

CO3
2- 

Calcite 154, 281 1085  1434 711 

Aragonite 143, 153, 

180, 190, 

206, 247, 

261, 284 

1085 853 1462, 1574 701,705 

Vaterite 267, 300, 325 1074,1090 874 1445,1485 668, 682 

1550,1595 740, 750 

 

Therefore, the combination of the Raman spectroscopy with the latest advancement in optical 

fibre technique offers a unique opportunity to monitor the chemistry evolution during the 

carbonation of concrete structures. To verify this feasibility, in the current study, a tailored 
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Raman spectroscopy with optical fibre excitation pathway was developed and employed to 

characterise the carbonated Portland cement (PC) paste powder. Bench-mounted Raman 

spectroscopy and X-ray Diffraction (XRD) analyses on the carbonated PC paste powder were 

also conducted to verify the results obtained from the optical fibre Raman system.  

 

2. MATERIAL AND METHODS  

     

2.1 Sample preparation       

 

2.1.1   Materials         

                  

Portland cement (PC) used in this study was 42.5R CEM I (in accordance with BS EN 197-

1:2011) supplied by QUINN Group and its chemical composition is given in Table 2. The 

chemical regent calcium carbonate (main phase is calcite with an assay >98%) was purchased 

from the Fisher Scientific (UK) which was used as a pure calcium carbonate in the following 

characterisation.      

 

Table 2. Chemical composition of Portland cement                            

Oxides SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 

% wt 23.00 6.15 2.95 61.30 1.80 0.68 0.22 2.50 

             

2.1.2   Manufacture and carbonation of PC paste    

      

The cement paste was manufactured with a water-to-cement ratio (W/C) of 0.35 using a 

Hobart planetary mixer, cast in plastic centrifugal tubes and vibrated for around 1 minute to 

remove the air bubbles. After 24-hour initial curing in centrifugal tubes at 20 ± 1 ℃, the 

specimens were removed from the tubes and covered with water saturated hessian and then 

sealed in plastic sample bags. These bags were then stored in a curing room at constant 

temperature of 20 ± 1 ℃ for around 6 months. The wet hessian was regularly checked and 

replaced once the moisture level was low. At the end of six months, selected pastes were first 

ground into powders (with fineness of 63 µm) prior to being exposed to carbonation. The 

powders were then subjected to accelerated carbonation environments (temperature of 20 ± 

1 ℃, relative humidity of 60 ± 5% and CO2 concentration of 5 ± 0.5%) in a LEEC carbonation 

chamber for 14 days, in an attempt to obtain extensively carbonated samples. The powders 

were then used for the Raman spectroscopy study and XRD analyses below.     
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2.2 Bench-mounted Raman spectroscopy 

                           

The bench-mounted Raman spectrometer used in this study was a Renishaw inVia 

microscope equipped with a Charged Coupled Device (CCD) detector. It works under the 

back-scattering geometry with the laser beam being focused into a laser-spot of about 1.26 

µm diameter by means of an objective with 50X magnification and numerical aperture (N.A.) 

of 0.5 before interrogating the sample. A 514.5 nm single-line Argon-ions laser with output 

power of 25.5 mW was employed as the excitation source. The measured power at the 

sampling level was about 4.1 mW, with most of the laser lost during transmitting/reflecting 

through the excitation optics. Prior to each experiment, the Raman shift was calibrated using 

the well-defined peak of silicon wafer at about 520 cm−1. After calibration, Raman spectra were 

recorded with exposure time of 10 seconds and accumulations of 10 to improve the signal-to-

noise ratio (SNR). In this study, the bench-mounted Raman analysis was carried out to verify 

the results obtained from the optical fibre Raman analysis. 

 

2.3 Optical fibre excitation Raman spectroscopy                                     

 

The previous work carried out by the authors [7] has established successfully a fibre optic 

Raman system with a 45 degree ‘fibre excitation + objective collection’ geometry, which is 

capable of laser illumination, laser excitation and signal collection. Building upon this, the 

current study employed an optical fibre excitation pathway with the same optical geometry, 

but different laser source (i.e., 514.5 nm) and built-in optics (e.g., bandpass filter), to identify 

the carbonation mechanisms in cementitious materials. Furthermore, in order to compare the 

laser power densities between these bench-mounted Raman spectrometer and the newly 

developed optical fibre Raman system, the laser power in these two optical sub-paths were 

measured at the laser focusing point and are reported in Table 3. In the bench-mounted 

Raman spectroscopy, the laser interrogated the sample with a measured power of 4.1 mW 

which corresponded to a 16% coupling efficiency as the out-put laser of 25.5 mW. In contrast, 

a much higher excitation laser power level, 18.1 mW, was measured in the fibre excitation 

pathway which represented a 71% coupling efficiency. However, due to the fact that the 

focused laser spot size of the optical fibre Raman system (50.0 µm2) was much larger than 

that of the bench-mounted Raman spectroscopy (1.2 µm2), i.e., nearly 42 times larger, the 

calculated power density (i.e. power-to-excitation spot area) of the optical fibre Raman system 

(0.4 mW/µm2) was much lower than that of the bench mounted Raman spectroscopy (3.4 

mW/µm2). 
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Table 3. Laser powers and densities at exciting points of both Raman systems 

 
Excitation laser 

power 

Excitation laser  

spot area 

Excitation laser 

power density 

Optical fibre excitation  

Raman system 
18.1 mW 50.0 µm2 0.4 mW/µm2 

Bench-mounted 

Raman system 
4.1 mW 1.2 µm2 3.4 mW/µm2 

 

2.4 Raman Data Process                                                 

 

2.4.1 Peak fitting 

  

The peaks identified in the Raman spectra are usually fitted under appropriate logarithm 

functions in order to retrieve the genuine Raman features. In this study, baseline correction 

was first employed to subtract the background in the Raman spectra. Then, Lorentz function, 

which is accepted as an appropriate fitting function for crystallised phases, was adopted to fit 

the Raman peaks [32]. Under the Lorentz function, four features of a particular peak can be 

obtained, namely, wavenumber, height, area and FWHM (full width at half maximum), which 

can be illustrated as follows:     

i) Wavenumber (Xc, cm-1) – the Raman shift of certain ionic groups; 

ii) Height (H) – the intensity of the peak above the corrected baseline; 

iii) Area (A) – the integrated area of the peak above the corrected baseline; 

iv) FWHM (W, cm-1) – the full width at half maximum of the peak.  

These four Raman peak features indicate distinct information about the analytes. The 

wavenumber of the Raman peak is the fingerprint used to distinguish materials – as each ionic 

group has its own unique wavenumber under laser excitation [10]. FWHM is considered to be 

relevant to the crystallisation degree of the analytes [33], i.e., its enlargement would suggest 

the weakening of the crystallisation. On the other hand, the other two features, i.e., peak height 

and peak area, are both related to the quantitative information of the analytes [34]. In this 

study, the Raman shift (wavenumber of the Raman peaks) retrieved were employed to identify 

the type of the products formed, and the height of the peaks were used for calculating the 

signal-to-noise ratio (SNR) of the spectra (detailed in Section 2.4.2), respectively. The peak 

analysis of all the spectra was conducted with the Origin-Pro 8.6 (USA). 
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2.4.2 Calculation of signal-to-noise ratio (SNR) 

 

The signal-to-noise ratio (SNR) is one of the most significant parameters of the Raman spectra, 

which indicates the quality of the spectra. In the current study, the SNR was employed to 

quantitatively compare the spectrum obtained from the optical fibre Raman spectroscopy with 

that from the bench-mounted Raman spectroscopy. This information was then used to identify 

the advantages and disadvantages of the newly established optical fibre Raman system. In 

this study, the SNR values were calculated according to the method specified in ASTM E579-

04 [35], as follows: 

                                            𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙

𝑁𝑜𝑖𝑠𝑒 (𝑅𝑀𝑆)𝑙𝑒𝑣𝑒𝑙
                                                            (1) 

Where, the signal level is the peak intensity after subtracting the background; 

the noise level is obtained by root mean square (RMS) method, which is the standard 

deviation of the intensity values of a selected Raman shift region on the spectrum 

after subtracting the background.             

 

2.5 X-ray Diffraction (XRD)                                                

 

The powder method of X-ray diffraction was adopted in the present study as a supplementary 

technique to validate the results obtained from both Raman systems. An XPERT-PRO 

diffractometer with an X-ray source of Co Kα radiation (λ=1.78901 Å) was used. A scanning 

speed of 2 o/min and step size of 0.017o 2Ɵ were used to examine the samples in the range 

of 5o to 65o 2Ɵ. The X-ray tube voltage and current were fixed at 40 kV and 30 mA, 

respectively. 

                                               

3. RESULTS AND DISCUSSION                                                      

 

3.1 Calibration of Raman spectroscopy (with/without optical fibre) 

 

Calibration of Raman spectroscopy can be considered as a process to relate the observed 

spectra frequencies to their true values by adjusting the instrument [11]. In the case of optical 

fibre Raman system, this could also include optics alignment and initial optimisation. In the 

current study, the bench-mounted Raman and optical fibre Raman systems were calibrated 

through the same methodology as the previous work [7] by using the well-defined Raman peak 

of silicon wafer at 520.2 ± 0.5 cm-1 [36]. Figs. 1(a) and 1(b) present the Raman spectra of the 
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silicon wafer collected under bench-mounted Raman and optical fibre Raman systems 

respectively. In Fig. 1 the Raman fingerprint peaks of silicon were successfully retrieved by 

both these two Raman systems as evidenced by an intense and sharp peak at 521 cm-1, 

indicating that these two optical systems were fully calibrated. The signal-to-noise (SNR) ratios 

of the silicon peak were then calculated according to the method described in Section 2.4.2 

(ASTM E579-04) [35]. The corresponding results, along with the wavenumber of the peak 

retrieved, are presented in Table 4. Apparently, the intensity of the silicon peaks obtained from 

these two Raman systems were dramatically different, i.e., 3659.0 from optical fibre excitation 

Raman system, which was much lower than that of 251934.7 from bench-mounted Raman 

spectroscopy – only about 1.5%. The noise level under fibre mode (32.2) was lower than that 

of bench-mounted Raman spectroscopy (88.6) as well. However, due to the huge difference 

in the signal intensities between these two Raman systems, even though the noise level of 

the fibre mode was relatively lower, the overall SNR of the Raman spectra collected under the 

optical fibre excitation Raman system (113.6) was still much lower than that of the bench-

mounted Raman spectroscopy (2843.5), i.e., around 25 times lower.  As discussed, these 

differences in the Raman spectra features can be explained mainly by two factors, i.e., the 

lower power density hence lower excitation efficiency of the optical fibre Raman system, as 

well as lower signal collection efficiency (45 degree) of fibre pathway compared to bench-

mounted Raman spectroscopy (backscattering). 

 

 

(a) Bench-mounted Raman 
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(b) Optical fibre Raman 

Fig.1 Raman spectra of silicon wafer 

 

Table 4. Wavenumber and SNR of silicon peak at 521 cm-1                                                                     

 Wavenumber 
Signal 

intensity 

Noise 

level 
SNR 

Bench-mounted  

Raman system 
521 cm-1 251934.7 88.6 2843.5 

Optical fibre excitation 

Raman system 
521 cm-1 3659.0 32.2 113.6 

 

3.2 Characterisation of pure calcium carbonate with Raman spectroscopy 

(with/without optical fibre)                          

 

Calcium carbonate is the principal product formed in the carbonated cementitious materials. 

Amongst the various calcium carbonate polymorphs, calcite is the most stable form at ordinary 

temperature and pressure [37]. Hence, in the current study, the pure calcium carbonate 

(calcite) was used as a reference and characterised first by bench-mounted Raman and 

optical fibre Raman systems. The Raman spectra collected were then used as bench-mark 

information for the subsequent Raman spectroscopy analysis of the carbonated Portland 

cement (PC) paste powder in the next section.  The Raman spectra of the calcite so obtained 

are presented in Fig. 2 (without fibre) and Fig. 3 (with fibre), respectively.  
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As shown in Fig. 2(b), the bench-mounted Raman spectrum of calcite was dominated by a 

sharp peak located at 1085 cm-1, which is attributed to the ʋ1 symmetric stretching band of 

CO3
2- in calcite. In addition, three minor bands were also identified at 280 cm-1, 712 cm-1 and 

1436 cm-1, which can be assigned to the Ca-O lattice vibration (Ca-O LV), the ʋ4 in-plane 

bending mode and the ʋ3 asymmetric stretching vibration in calcite, respectively. In Fig. 3(b), 

the Raman signal of calcite was also successfully retrieved by optical fibre excitation Raman 

system as evidenced by a sharp and intense peak at 1086 cm-1 (ʋ1 CO3
2-), a prominent peak 

at 280 cm-1 (Ca-O LV) and two weak peaks located at 712 cm-1 (ʋ4 CO3
2-) and 1437 cm-1 (ʋ3 

CO3
2-), respectively.  

                

 

(a) Original spectrum 

 

(b) Spectrum after subtracting background 

Fig.2 Bench-mounted Raman spectra of calcite 
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(a) Original spectrum 

 

(b) Spectrum after subtracting background 

Fig.3 Optical fibre Raman spectra of calcite 

 

Table 5 summarises all the identified Raman bands and the related assignments of the Raman 

spectra shown in Fig. 2 (bench-mounted Raman spectroscopy) and Fig. 3 (fibre Raman 

system). Furthermore, the most intense peak (ʋ1 CO3
2-) was selected as reference and its SNR 

under these two optical systems were calculated and reported in Table 6. In Table 5, all the 

fingerprint bands identified from optical fibre Raman system are in good agreement with those 

from bench-mounted Raman spectroscopy, indicating that the optical fibre Raman 

spectroscopy is adequate to differentiate calcite. On the other hand, as shown in Table 6, the 

SNR of the ʋ1 CO3
2-

 under optical fibre excitation Raman system was lower than that of the 

bench-mounted Raman spectroscopy. This finding of calcite is consistent with that of silicon 

(Section 3.1), which again could be attributed to the lower power density and less efficient 

collection geometry of the optical fibre excitation Raman system.  
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Table 5.  Raman bands and assignments of calcite                                 

 
Bench-mounted 

Raman system  

Optical fibre 

excitation 

Raman system 

Assignments 

Raman 

shift 

1085 cm-1 1086 cm-1 Symmetric stretching (ʋ1) of CO3
2- in calcite 

1436 cm-1 1437 cm-1 Asymmetric stretching (ʋ3) of CO3
2- in calcite 

712 cm-1 712 cm-1 In-plane bending (ʋ4) of CO3
2- in calcite    

280 cm-1 280 cm-1 Lattice vibration (LV) in calcite     

 

Table 6. Wavenumber and SNR of ʋ1 CO3 in calcite                                                                                 

 Wavenumber 
Signal 

intensity 

Noise 

level 
SNR 

Bench-mounted  

Raman system 
1085 cm-1 112612.1 73.6 1530.1 

Optical fibre excitation 

Raman system 
1086 cm-1 6627.4 35.3 187.7 

 

3.3 Characterisation of carbonated PC paste powder with Raman spectroscopy 

(with/without optical fibre)                                                

 

In cementitious materials, the intruded CO2 is chemically bound by cement hydrates as 

CaCO3, which precipitates in various forms including calcite (well-crystallised/stable), vaterite 

and aragonite (poorly-crystallised/metastable). While the pure calcite has been successfully 

identified under both bench-mounted Raman and optical fibre excitation Raman systems in 

Section 3.2, the characterisation of calcium carbonate formed in the carbonated PC system 

could potentially be difficult owing to the following two reasons:                           

i) Heterogeneous nature of cementitious materials. Due to the heterogeneous nature 

of the hydration products formed in hardened cement matrix, it is highly unlikely that 

the calcium carbonate formed in the carbonated cement sample can be uniformly 

distributed and it is hence potentially difficult for Raman spectroscopy to identify – 

as the excitation spot of Raman spectroscopy is only confined to few micron meters.        

ii) The impurities existing in the cement (e.g. organic compounds like grinding agent), 

the defects introduced during grinding and the inter-particle scattering could all 

cause strong background to the intrinsically weak Raman peaks [38].              
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Hence, similar to the characterisation of pure calcite reported in the previous section, in order 

to identify the feasibility of characterising the calcium carbonate formed in carbonated 

cementitious matrix with optical fibre excitation Raman system, bench-mounted Raman 

analysis was first carried out as a benchmark and the Raman spectra obtained are shown in 

Fig. 4.  

        

 

(a) Original spectrum 

 

(b) Spectrum after subtracting background 

Fig. 4 Bench-mounted Raman spectra of the carbonated PC paste powder 

 

In Fig. 4(a), as expected, strong sloping background was observed in the Raman spectrum of 

carbonated PC paste powder. This could potentially be attributed to, as aforementioned, the 

organic contaminants in cement, the inter-particle scattering and the defects caused by 

grinding during cement manufacture [38]. The spectrum after subtracting the background is 

presented in Fig. 4(b). The most intense peak located at 1085 cm-1 is again the ʋ1 symmetric 
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stretching band of the CO3
2- in calcite and/or aragonite, and the humps located at about 

268/300 cm-1 is the LV mode of the Ca-O bond in vaterite. Furthermore, some minor bands 

were identified at 705 cm-1 and 738/751 cm-1. The former is the ʋ4 in-plane bending mode of 

the CO3
2- in calcite and the latter is the ʋ4 mode in vaterite. Obviously, the carbonated PC 

paste powder demonstrated severe carbonation as manifested by these pronounced Raman 

features of calcite and/or aragonite and vaterite. More importantly, it is worth highlighting that 

all these features have been successfully identified by the bench-mounted Raman 

spectroscopy. Following this bench-mounted Raman analysis, the same carbonated PC paste 

sample was then analysed by the optical fibre excitation Raman system and the Raman 

spectra are shown in Fig. 5.       

  

 

(a) Original spectrum 

 

(b) Spectrum after subtracting background 

Fig. 5 Optical fibre Raman spectra of the carbonated PC paste powder 
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Compared to Fig. 4(a), the original spectrum in Fig. 5(a) showed an even stronger sloping 

background. In addition to the organic compounds, the inter-particle scattering and the defects 

caused by grinding during cement manufacture as discussed under bench-mounted results, 

additional contribution could also come from the optical fibre. In an attempt to eliminate these 

effects, baseline correction was also employed to subtract the background and the new 

spectrum is shown in Fig. 5(b). As can be seen, the spectrum in Fig. 5(b) was also dominated 

by a sharp peak located at 1086 cm-1, which is again due to the ʋ1 symmetric stretching band 

of the CO3
2- in calcite and/or aragonite. It should be noted that, compared to the spectrum 

obtained under bench-mounted Raman spectroscopy, other Raman features such as the LV 

mode of the Ca-O bond in vaterite, ʋ4 in-plane bending mode of the CO3
2- in calcite and the ʋ4 

mode in vaterite, have not been observed under optical fibre system. This could have been 

caused by the heterogeneous nature of the cementitious materials. Future study is, thus, still 

needed in order to overcome this. Nonetheless, as the ʋ1 band is the most important 

vibrational mode for identifying carbonation mechanism, the current results suggest that 

optical fibre Raman system is sufficient and sensitive in differentiating carbonation 

mechanisms in carbonated PC paste which clearly demonstrates a potential for developing a 

Raman spectroscopy based optical fibre sensor system for monitoring the carbonation 

progress in concrete structures in the future.  

 

To further compare the working capacity of these two Raman systems for characterising 

cementitious materials, all the bands identified by the bench-mounted Raman and the optical 

fibre Raman systems are summarised in Table 7, whereas the wavenumber and SNR of the 

ʋ1 CO3
2-

 peak are compared in Table 8.   

 

Table 7.  Raman bands and assignments of the carbonated PC paste powder                

 
Bench-mounted 

Raman system 

Optical fibre 

excitation 

Raman system 

Assignments 

Raman 

shift 

1085 cm-1 1086 cm-1 Symmetric stretching (ʋ1) of CO3
2- in 

calcite/aragonite 

705 cm-1 

 

In-plane bending (ʋ4) of CO3
2- in calcite 

738/751 cm-1  In-plane bending (ʋ4) of CO3
2- in vaterite 

268/300 cm-1 Lattice vibration (LV) in vaterite 
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Table 8. Wavenumber and SNR of ʋ1 CO3
2-

 in the carbonated PC paste powder                                                                                      

 Wavenumber 
Signal 

intensity 

Noise 

level 
SNR 

Bench-mounted  

Raman system 
1085 cm-1 7578.4 54.0 140.3 

Optical fibre excitation 

Raman system 
1086 cm-1 420.3 31.0 13.6  

 

From Table 7 and Table 8, the following features can be observed:   

i) Different vibration modes were identified under bench-mounted Raman and optical 

fibre excitation Raman systems. Under the bench-mounted Raman spectroscopy, 

the ʋ1 symmetric stretching band of the CO3
2-, ʋ4 in-plane bending mode and LV 

mode were successfully identified. However, only ʋ1 symmetric stretching band of 

CO3
2- was identified under the optical fibre excitation Raman system due to the 

heterogeneous nature of the cementitious materials.                      

ii) Different signal intensity, noise level and overall SNR were identified under the 

bench-mounted Raman and the optical fibre excitation Raman systems. As can be 

seen from Table 8, the signal intensity of the ʋ1 CO3
2-

 peak under the bench-mounted 

Raman spectroscopy was much higher than that of the optical fibre excitation Raman 

system, i.e., 7578.4 vs 420.3. The same phenomenon was observed in the noise 

level, i.e., 31.0 of fibre mode vs 54.0 of bench-mounted Raman. Accordingly, 

different SNRs were achieved under the bench-mounted Raman spectroscopy 

(140.3) and the optical fibre excitation Raman system (13.6). As indicated in Section 

3.1, this could be caused by the lower power density and the less efficient collection 

geometry of the optical fibre excitation Raman system as compared with the bench-

mounted Raman spectroscopy.  

 

3.4 X-ray diffraction analysis on carbonated PC paste powder 

 

In this study, XRD analysis was carried out on the carbonated cement sample in order to verify 

the calcium carbonate polymorphs formed during the carbonation process. This can, 

subsequently, also be used to verify the results obtained from both the Raman systems. The 

XRD pattern of the carbonated PC paste powder is shown in Fig. 6. Obviously, several peaks 

of the calcium carbonate crystallised phases formed in the carbonated PC paste powder have 

been clearly identified, i.e. 2θ = 26.8o, 34.3o & 46.1o for calcite, 2θ = 24.5o, 29.0o & 31.5o for 

vaterite and 2θ = 30.6o, 36.2o & 48.4o for aragonite. Hence, it is apparent that different calcium 
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carbonate polymorphs were formed during the accelerated carbonation and dominate the 

composition of the PC paste sample analysed. Additionally, various cement hydration 

products have also been recognised, such as portlandite (2θ = 21.0o, 33.5o & 39.8o).      

               

 

Fig.6 XRD pattern of the carbonated PC paste powder 

 

4. CONCLUSIONS                                                                           

 

In the current study, a tailored optical fibre excitation Raman system with a 514.5 nm excitation 

laser under a 45 degree geometry of ‘optical fibre excitation + spectrometer objective 

collection’ was successfully developed and employed to characterise the calcium carbonate 

polymorphs formed in a carbonated Portland cement (PC) paste powder. Under this optical 

fibre excitation Raman system, the calcite and/or aragonite [ʋ1 (CO3
2-) at 1086 cm-1] formed in 

the carbonated PC paste sample were clearly identified and differentiated, with the results 

being well verified by the bench-mounted Raman spectroscopy and XRD analyses. The 

results indicate that optical fibre Raman spectroscopy is adequate to differentiate calcium 

carbonate polymorphs formed in the carbonated cementitious materials, therefore, there is a 

great potential for developing a Raman spectroscopy based optical fibre sensor system 

capable of monitoring the evolution of carbonation in concrete structures in the future. 

However, it was the powder of hardened cement paste which had been used to verify the 

concept of optical fibre Raman spectroscopy in this study. Before this system could be 

embedded in concrete as a sensor, suitable packaging techniques still need to be developed 

in order to protect the sophisticated optical components in the severe alkaline environment of 
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concrete.  Furthermore, the relatively low SNR of the Raman spectra obtained from optical 

fibre Raman system also needs to be addressed in the future.  
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