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ABSTRACT: Bandgap engineering of kesterite Cu2Zn(Sn, Ge)(S, Se)4 with well-controlled 

stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a 

cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is 

developed to grow p-type Cu2Zn(Sn, Ge)(S, Se)4 thin films with tunable bandgap. The bandgap 

of Cu2Zn(Sn, Ge)(S, Se)4 thin films can be tuned within the range 1.05 eV - 1.95 eV using the 

aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One 

of the as-grown Cu2Zn(Sn, Ge)(S, Se)4 thin films exhibits a hall coefficient of +137 cm3/C. The 

resistivity, concentration and carrier mobility of the Cu2ZnSn(S, Se)4 thin film are 3.17 ohm·cm, 

4.5×1016 cm-3, and 43 cm2/V·S at room temperature, respectively. Moreover, the Cu2ZnSn(S, 

Se)4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency 

of 3.55 %. The facile growth of Cu2Zn(Sn, Ge)(S, Se)4 thin films in an aqueous system, instead 

of organic solvents, provides great promise as an environmental-friendly platform to fabricate a 

variety of single/multi metal chalcogenides for the thin film industry and solution-processed 

photovoltaic devices. 

KEYWORDS: CZTGeSSe, solution processing, bandgap tunable, polymer-assisted deposition, solar 

cells 

INTRODUCTION 

Cu2Zn(Sn, Ge)(S, Se)4 (CZTGSSe) is one of the most promising p-type semiconductors in the 

optoelectronics field due to its low toxicity, cost-efficiency, abundance, high light absorption 

coefficient and direct bandgap. It has been widely applied to different fields including 

photocatalysis,1,2 photovoltaics, 3-6 and biomedicines.7 More importantly, the CZTGSSe has a 

tunable bandgap depending on the compositions of Sn, Ge, S, and Se elements.8, 9 It is well 

known that chemical solution synthesis approaches are effective in precisely controlling the 
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composition of the multicomponent material.10 Many recent efforts have been devoted to 

growing CZTGSSe thin films by chemical solution processes. For example, Mitzi et al. have 

fabricated Cu2Zn(Sn, Ge)S4 (CZTGS) thin films by a pure-hydrazine solution approach.9 The 

Moon group used a nanocrystal ink approach to grow CZTGS thin films.11 These solution-

processed films show great promise as effective light absorber layers in photovoltaic devices. 

However, harmful/toxic solvents,12 complex synthesis, and tedious post-purification13, 14 limit the 

use of these methods to grow CZTGSSe thin films in a viable manner for industry applications. 

Therefore, it is highly demanded to develop an alternative environmental-friendly solution route 

for synthesis of bandgap tunable CZTGSSe thin films.  

Water has been well recognized as an ideal and green solvent. However, easily-hydrolyzed 

metal ions (e.g. Sn, Ge, etc.) are difficult to form a stable solution in water.15, 16 Moreover, it is 

hard to control the metal ion concentration of the aqueous precursor solution, which often results 

in non-stoichiometric growth of the compound thin film. Here, we present a stable metal-ion 

aqueous system, comprising a homogeneous metal-polymer complex solution, to grow 

single/multiple metal sulfide/selenide thin films. A water-soluble polymer is used to stabilize the 

metal ions in precursor solution and facilitate the film coating. Specifically, the metal ions 

(nitrates salt, chloride salt) coordinate with lone-pair electrons of the nitrogen atoms in the 

polymer preventing hydrolysis of metal ions and hence forming stable metal-polymer 

complexes.17,18 Meanwhile, the non-coordinated anions or cations are easily removed by 

filtration processes to prepare a homogeneous precursor solution. By carefully adjusting the 

concentration of the Cu, Zn, Sn, and Ge precursors, the final aqueous solution can provide the 

desired stoichiometric mixture at the molecular level. The resulting stable and homogeneous 

solution ensures precisely control of the stoichiometry and spatial uniformity for the films. 
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Adjustment of the stoichiometry results in different bandgaps for the CZTGSSe films ranging 

from 1.05 eV to 1.95 eV. In this work, as one typical example of CZTGSSe thin films, CZTSSe 

film prepared by the polymer-assisted aqueous method is demonstrated with a hall coefficient of 

+137 cm3/C and carrier mobility of 43 cm2/V·S at room temperature, respectively. Moreover, the 

CZTSSe thin film, when used as the active layer in an inorganic solar cell, yields a power 

conversion efficiency of 3.55 %. 

RESULTS AND DISCUSSION 

The schematic diagram of precursor preparation process and annealing process are shown in 

Figure 1. To investigate the thermal decomposition of the precursor thin film, we utilize 

TG/DTA 7300 to trace the thermal behaviors of the mixed metal precursor solution under an 

argon atmosphere. Figure 2(a) shows that the sample begins to decompose at 200 oC and stops 

at around 450 oC. This suggests that the polymer is almost completely decomposed and that 

CZTGSSe thin films may be obtained above 450 oC. The mass spectroscopy data from a typical 

decomposition process (Figure S1) shows that the polymer decomposes into a molecular gas 

during the thermal treatment. The small gaseous molecules are swept away by the gas flow 

leaving behind pure metal atoms, which results in the growth of high-quality thin films. It is 

worth noting that the crystallinity of the resultant thin films is influenced by the annealing 

process and temperature. X-ray diffraction patterns (XRD) (Figure 2(b) and Figure 2(c)) were 

used to identify the crystal structures of the CZTGSSe thin films. All the peaks in the XRD data 

from samples A, C, E can be assigned to kesterite CZTSe (JCPDS: 52-0868), CZTS (JCPDS: 26-

0575) and CZGS (JCPDS: 78-781). The prominent peaks at ca. 28.5°, 33.0°, 47.3°, and 56.2° can 

be indexed to the (112) (200) (220), and (312) orientations for CZTGSSe. It is interesting to see 

that all the major peaks have regular shifts from samples A to E. Figure 2(c) shows the trend of 
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 5

the peak corresponding to the (112) peak. The shifts can be attributed to changing atomic mass. 

By replacing the lighter (smaller) S atom (1.84 Å) with heavier (larger) Se atom (1.98 Å) in a 

CZTS lattice after the selenization process, the diffraction peak in XRD pattern of sample B 

shows a distinct shift to lower (two-theta) angles compared with sample C due to the 

corresponding expansion in the unit cell. The Se/(Se+S) ratio can be calculated to be 0.32 based 

on the shift of the two-theta angles. A similar trend in XRD pattern for sample D is found when 

some Sn atoms are substituted by Ge atoms. In this case the ratio Ge/(Ge+Sn) is 0.41. Apart 

from the shifts, no unidentified peaks or peaks from secondary phases were observed in any of 

the XRD spectra. Based on the above analyses, samples A, B, C, D and E in Figure 2(b) 

correspond to the following thin films: Cu2ZnSnSe4 (CZTSe), Cu2ZnSn(S, Se4) (CZTSSe), 

Cu2ZnSnS4 (CZTS), Cu2Zn(Sn,Ge)S4 (CZTGS) and Cu2ZnGeS4 (CZGS), respectively. As is well 

known, XRD patterns are insufficient to confirm the phase purity of CZTGSSe structures due to 

similar diffraction peaks of binary and ternary chalcogenides.19 Here, Raman spectroscopy is 

employed to confirm the purity of the thin films. For the Raman spectroscopy of such thin films 

(Figure 2(d)), major characteristic peaks appear at 286 cm-1 and 336 cm-1 for sample C, 

corresponding to CZTS as previously reported.20-23 No evidence of other possible binary phases 

(Cu2S, ZnS, Cu2SnS3) appear in the Raman spectra.24 For sample A, the major peak shifts to 194 

cm-1 which is consistent with the reported value for CZTSe.25, 26 It is found that the Raman 

spectra show a systematic shift to a lower wavenumber as one substitutes the smaller S atoms 

with larger Se atoms. On the other hand, the major peaks are shifted to larger wavenumber along 

when replacing Sn atoms with Ge atoms. While the Sn atoms are completely substituted by Ge 

for sample E, the two strong peaks at 360 cm-1 and 291 cm-1 can be assigned to CZGS thin 
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films.27 Thus, in combination, the XRD and Raman spectroscopic data confirm high purity of 

CZTGSSe thin films are grown by our aqueous solution approach.  

The valence states of the constituent elements about CZTSSe and CZTGS are investigated 

by X-ray Photoelectron Spectroscopy (XPS). Figure 3(a) is the full spectrum of CZTSSe thin 

film, it indicates that the thin film contains Cu, Zn, Sn, S, Se, and C elements. Figure 3(b-f) are 

the high-resolution spectra of Cu 2p, Zn 2p, Sn 3d, S 2p, and Se 2p. As can be seen, the binding 

energy value of Cu 2p are 951.60 eV and 931.82 eV with a peak splitting of 19.78 eV, which is 

correspond to the Cu+. It can be illustrated that the Cu2+ has been reduced to Cu+ during the 

progress. The peaks show binding energy value of Zn 2p at 1044.62 eV and 1021.62 eV with a 

separation of 23.0 eV, which is consistent with divalent Zn2+. The spectrum of Sn 3d exhibits 

two characteristic peaks at 494.72 eV and 486.22 eV with a split orbit of 8.5 eV. It suggests that 

the Sn2+ have been oxidized to Sn4+ during the grown progress. This shows the Cu2+ phase is 

reduced to Cu+ while Sn2+ is oxidized to Sn4+ during the growth progress.8, 28 Meanwhile, the 

spectra of S can be fitted to two peaks which are assigned to S 2p. The peaks at 55.3and 54.6 eV 

are corresponding to the Se 2p. Therefore, these results are in line with the reported values of the 

binding energy of the elements forming CZTSSe, further confirming the phase purity of the 

synthesized CZTSSe. Furthermore, the XPS spectra (Figure S2) of CZTGS thin film were 

exhibited, which illustrated the pure CZTGS was grown. 

The surface morphology and layer properties of the deposited CZTSSe thin films were also 

investigated. Figure 4(a, c) and 4(b, d) show the film has a dense and uniform structure, which 

is free of cracks. The average grain size is about 85 nm. Cross-sectional SEM studies show the 

thin film has a homogeneous thickness and a sharp interface between the film and the substrate. 

The thickness of the films is about 2 µm after spin-coating 5 times. It is worth noting that the 
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 7

thickness of the film could be adjusted with different spin-coating repetition times. Elemental 

mapping (Figure S3 (a-g)) of the CZTSSe film is helpful to understand the elemental 

distribution. The different colors (Figure S3 (a-g)) of yellow, green, blue, red, pink, light blue 

and white represent Cu, Zn, Sn, S, Se, C and O, respectively. The uniform colors suggest that the 

five major elements (Cu, Zn, Sn, S, Se) are homogeneously distributed in the film. Upon 

combining all five elemental maps in Figure S3 (h), the uniform colorful image further confirms 

the compositional purity of the film, which is consistent with the results obtained from XRD and 

Raman spectroscopy. It is noting that the EDX data in Table S1 shows the CZTGSSe thin films 

have a copper-poor and zinc-rich conditions.29 Some literatures report that the copper-poor and 

zinc-rich films tend to have better device performance applying to inorganic solar cells.30 

The bandgap of the CZTGSSe thin films can be tuned by varying an elemental component. 

Usually, there are four components (Sn, Ge, S, and Se) influencing the bandgap of CZTGSSe. 

The bandgap of CZTSSe can be tuned between 1.0 eV to 1.5 eV by adjusting the ratio of 

Se/(Se+S).8, 31, 32 Similarly, the bandgap of CZTGS can be manipulated between 1.5 eV to 2.25 

eV by adjusting of the Sn and Ge compositions.14, 33, 34 The bandgap of the CZTGSSe thin films 

prepared in this work can be calculated through their UV-Vis absorption spectra (Figure S4). 

The relationship of the optical absorption coefficient (α) and optical bandgap (Eg) of the thin 

films is given by the following formula (1): 

          (1) 

Where A is a constant and the exponent value (m) is 1/2 for a direct band transition. Therefore, 

the Eg of Cu2Zn(Sn, Ge)(S, Se)4with direct band transitions can be calculated by formula (2): 

           (2) 

)()( EhvAAhv g
m

−=

)()(
2

EhvAAhv g−=
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 8

The optical bandgap is obtained by extrapolating the linear part of the plot (ahv)2 versus hv 

(Figure 5(a)). The result indicates that the bandgap of CZTS thin films is 1.55 eV. As the S 

atoms are substituted by Se, the bandgap decreases to 1.05 eV. For Se/(Se+S) of 0.32, the 

bandgap of CZTSSe obtained from the plot (ahv)2 versus hv is 1.35 eV. Meanwhile, the bandgap 

of CZTSSe(Se/(Se+S)=x) can be modeled by vegard’s law using the following equation: 

   (3) 

Where b is a constant relating to the nonlinear relationship between the bandgap and the ratio of 

Se/(Se+S). According to the calculation, the bandgap of CZTSSe, is about 1.37eV, which is in 

good agreement with the experimental value. Similarly, the bandgap of CZTGS films increases 

as the Ge content is increased (by replacing Sn atoms). For a ratio of Ge/(Ge+Sn) = 0.41, the 

bandgap of the CZTGS film extracted from the absorption plot is 1.67 eV, in close agreement to 

the theoretical value of 1.71 eV. When Ge completely replaces Sn, the bandgap of CZGS is 

estimated to be 1.95 eV. In short, the bandgap of CZTGSSe can be adjusted from 1.05 to 1.95 eV 

by controlling the Sn, Ge, S, and Se compositions.  

The electrical properties of the thin films were evaluated by a physical properties 

measurement system (PPMS). An evaluation of the typical CZTSSe thin film was carried out 

using a four-probe van der Pauw method. As shown in Figure 5(b), the film exhibits a resistivity 

of 3.17 Ωcm at room temperature. The resistivity gradually increases with decreasing 

temperature, suggesting semiconducting behavior. The Hall coefficient RH is +137 cm3/C 

indicating the CZTSSe film to be p-type. The carrier concentration (ns) and Hall mobility (µ) can 

be calculated, according to the following equations (4) and (5),  

            (4) 

)1()()()1()( xbxCZTSexCZTSxx EEE ggg
−−+−=

Rn
H

S e
1=
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 9

             (5) 

Where ns is carrier concentration, e is the electron charge, RH is Hall coefficient, µ is Hall 

mobility, and ρ is resistivity. The carrier concentration and Hall mobility are measured to be 

4.5×1016 cm-3 and 43 cm2 V-1 s-1 at room temperature, respectively. The carrier concentration is 

similar to the other reports by Liu et al.( 3.9×1016 cm−3) and Scragg et al.(1.7×1016 cm−3), 35,36 but 

lower than Nakazawa et al.(1018-1019 cm−3) found.37 The mobility of holes is higher than most of 

the other works. Liu et al. reported the mobility of CZTS film is 30 cm2 V−1 s−1 and Tanaka et al. 

reported the hall mobility is about 6.0 cm2 V-1 s-1.35,38 This suggests that our grown p-type 

CZTSSe films are of high quality and promising for optoelectronics applications. 

With a suitable bandgap and good mobility of hole, the p-type CZTSSe thin film as an 

absorptive layer was assessed for its suitability in a solar cell. A typical solar cell was been 

fabricated with SLG/Mo/CZTSSe/CdS/ZnO/ITO/Ag layers. The physical image of the solar cell 

is shown in Figure S5. The device (Figure 6(a)) displays a Jsc of 28.75 mA/cm2, Voc of 0.39 V 

and FF of 0.317, yielding a conversion efficiency ~3.55 %. Though the conversion efficiency is 

mediocre, it is comparable to solar cells that employ organic solvents.39, 40 Such as H. W. 

Hillhouse group reported 4.1 % conversion efficiency with dimethyl sulfoxide solvent and Y. 

Yang et al. reported 1.2% by single-component precursor with hydrazine.41, 42 Figure 6(b) shows 

EQE spectrum of the solar cell and exhibits a broad absorption from 350 to 980 nm. Without any 

optimization of the device, a high EQE over 60% (~660 nm) has been achieved. The bandgap of 

the CZTSSe film in a solar cell was calculated to be 1.35 eV (inset of Figure 6(b)) which is in 

good agreement with the value estimated from the absorption spectrum. To analyze the device 

structure, the cross-section image of the device was investigated by SEM (Figure 6(c)). The 

ρ
µ R H=
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 10

device includes Mo substrate, CZTSSe layer, and CdS/ZnO/In-doped SnO2(ITO)layer. 

Surprising to find that CZTSSe layer consists a small grain layer about 1200 nm and a large layer 

about 300 nm. The cross-section morphology of the CZTSSe layer is different from that grown 

on a quartz substrate. The different morphology is resulting from the annealing process. The 

CZTSSe grown on quartz is annealed from the room-temperature at a rate of 5 oC/min to 520oC 

and maintained at 520oC for 20 min, while the CZTSSe active layer in the solar cell is annealed 

by a rapid thermal process (RTP). It indicates that the large grain CZTSSe layer is grown during 

the RTP. The interface between the small grain layer and the large grain layer may be not an 

ideal structure, and the small grain CZTSSe layer will hindrance the electrons’ and holes’ 

transportation.43 Thereby the small grain CZTSSe layer will affect the performance of the device. 

To analyze the element distribution in the device, the SEM-EDAX-Line (Figure 6 (d)) is 

measured at the cross-section of the device according to the arrows direction as Figure 6 (c) 

shown. The Cu, Zn, Sn atoms show a uniform distribution in the active layer. However, the Se 

atom percent show a higher ratio in the large grain layer than the small grain layer and there is a 

carbon content in the small grain CZTSSe layer from the carbon spectrum. Therefore a carbon 

residue is impeding the formation of the large CZTSSe particles, resulting a high series 

resistance and restricting the transport of photo-generated carriers and forming recombination, 

thereby deteriorate to the performance of the device. A lot of methods have been proposed to 

improve the quality of the CZTSSe activity layer, the small grain layer is still existence yet. So 

the continued optimization of the CZTSSe activity layer is a significant challenge in the future. 

CONCLUSIONS 

In summary, we report an environmental-friendly aqueous solution-based polymer assisted 

deposition approach to growing high-quality Cu2Zn(Sn, Ge)(S, Se)4 (CZTGSSe) thin films. The 
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experimental results demonstrated CZTGSSe films can be easily tailored to fabricate with 

accurately controlled elemental compositions. Furthermore, the corresponding bandgaps of 

CZTGSSe thin films are readily tuned from 1.05 eV to 1.95 eV by changing the Sn, Ge, S, and 

Se composition in the aqueous precursor solution. A representative CZTSSe film exhibits good 

electrical properties along with optical properties and high charge mobility. Carrier transport 

measurements also indicated that a hall coefficient of +137 cm3/C s was achieved on one of our 

as-grown Cu2Zn(Sn, Ge)(S, Se)4 thin films. Meanwhile, other performance metrics including the 

resistivity, concentration and carrier mobility of the Cu2ZnSn(S,Se)4 thin film are meeting 

practical applications with values of 3.17 ohm·cm, 4.5×1016 cm-3 and 43 cm2/V·S at room 

temperature, respectively. Importantly, the Cu2ZnSn(S,Se)4 thin film, used as an active layer in a 

solar cell, yields a power conversion efficiency of 3.55%. Therefore, the feasible growth of 

Cu2Zn(Sn, Ge)(S, Se)4 thin films via an environmental benign aqueous system provides an 

effective pathway to fabricate a variety of single/multi metal films for solar energy applications 

and other solution-processed optoelectronic devices. 
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UV−Vis spectra, element ratio table of CZTGSSe thin films and the structure of the solar cell are 

included in the supporting information. 
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Figure 1. schematic illustration of precursor preparation progress and thin film annealing 

progress. 

 

 

Figure 2. (a) Thermal gravimetric analysis (TGA) curve of CuZn(Sn,Ge) precursor solution. (b) 

XRD patterns of CZTGSSe thin films. (c) The normalized (112) diffraction peak of all samples. 

(d) Raman spectra of CZTGSSe thin films (A: CZTSe, B: CZTSSe, C: CZTS, D: CZTGS, E: 

CZGS). 
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Figure 3. The XPS analysis of the CZTSSe thin films (a) full spectra, (b)Cu 2p core level, (c)Zn 

2p core level,(d) Sn 3d core level, (e) S 2p core level and (f) Se 2p core level. 

 

 

Figure 4. (a, c) Top-view and (b, d) Cross-section images of CZTSSe thin films.  
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Figure 5. (a) The band gap values of obtained Cu2Zn(Sn, Ge)(S, Se)4 thin films, evaluated from 

the plots of (ahv)
2 vs. hv. (b) The temperature dependence of resistivity, concentration and 

mobility of the CZTSSe thin films, respectively. 
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 16

 

Figure 6. (a) The current density-voltage (J-V) characteristics, (b) EQE plot of the CZTSSe solar 

cell, respectively. Inset, the bandgap is calculated by [E*ln(1-EQE)]2 vs. E curve. Cell area: 

0.3558 cm2], (c) the cross-section SEM image of a CZTSSe solar cell, (d) the compositional 

distributions of CZTSSe solar cell was tested via SEM-EDAX-line scan. 
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