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Abstract 

Traditional p-i-n junction solar cells imbedded with quantum dots are attractive to achieve 

chromatic light absorption enhancement. In this paper, multi-layer stacked GaAs and In0.1Ga0.9As 

quantum dots grown by the droplet epitaxy technique are sandwiched between Al0.4Ga0.6As layers 

for solar energy harvesting. The performance of GaAs and InGaAs quantum dot solar cells is 

compared using structural, optical, and electrical measurements. Two-step photon absorption 

process is studied via adding external infrared pumping sources in quantum efficiency 

measurements at room temperature. This work demonstrates that strain-free nanostructures by 

droplet epitaxy are promising for photovoltaic application. 

 

Key words: Quantum dots; solar cells; drop epitaxy; intraband; interband; intermediate band. 
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Introduction 

In order to boost the efficiency of p-n junction solar cells to exceed the Shockley-Queisser limit, 

the concept of quantum dot solar cells (QDSCs) has been proposed to achieve high efficiency 

solar cells. It was predicted that QDSCs have the potential to implement the intermediate band 

concept and increase efficiencies to ~45% under one sun and 63% under full concentration in a 

single p-n junction [1-3]. Quantum dots (QDs) incorporated in solar cells can give rise to multiple 

exciton generation [4], hot carrier transfer [1], and multiple transitions [5]. Particularly, the 

QD-based intermediate band solar cells (IBSCs) allow multiple transitions via two-step 

sub-bandgap absorption because of the discrete density of states of QDs. Martí et al. reported 

photocurrent production from two-step optical transitions via IB albeit under a cryogenic 

temperature [6]. Okada et al. showed direct Si-doping InAs QDSCs with a clear photocurrent 

production at room temperature owing to two-step absorption of sub-bandgap photons [7, 8]. III-V 

materials, such as GaAs, InAs, and InGaAs QDs are commonly inserted in a p n junction of the 

barrier materials to obtain IBSCs [9-12]. Although the InAs/GaAs QD structure is widely studied, 

the performance of InAs/GaAs systems is impaired by the buildup of the internal strain during 

stacking QD layers (7% lattice mismatch). InxGa1-xAs and GaAs QDs are alternative candidates 

for avoiding the large lattice mismatch with GaAs substrates. Sugaya et al. achieved 400-layer 

In0.4Ga0.6As QDs without introducing any strain balancing technique [12]. As a result, no obvious 

degradation in crystal quality was observed even after stacking 400 QD layers. The mainstream 

growth method for self-organization QDs is the Stranski-Krastanow (S-K) growth mode based on 

lattice-mismatched materials using molecular beam epitaxy (MBE) and/or metal organic chemical 

vapor deposition (MOCVD). The lattice mismatch results in accumulation of strain and thus 

generation of defects, restricting the number of stacked layers. Although the insertion of 

strain-compensation layers between QDs can alleviate the strain accumulation, the strain balance 

technique requires precise control in growth and imposes constrains on design flexibility. So far, 

researches on QDSCs are focusing on enhancing optical absorption in QDs, including 

optimization of the QD growth, improving solar cell structures, and engineering light trapping 

techniques [13, 14]. Among these efforts, droplet epitaxy (DE) growth technique shows its 

advantages on the fabrication of strain-free QDs [15, 16]. It was reported that DE allows the self- 
organization of strain-free GaAs QDs in AlGaAs barriers [17]. Two-photon absorption in 

strain-free GaAs/AlGaAs QDSCs grown via the DE method was confirmed [18]. While there are 

still opening questions to address to make QDSCs more efficient solar cells, such as the 

open-circuit voltage (Voc) degradation and marginal photocurrent contribution from QDs, solar 

cells based on strain-free QDs are expected to improve cell performance because of the alleviation 

of strain-induced defects. Strain-free ring-shaped QDSCs were reported with an improved Voc by 

post-growth thermal annealing [10]. Without the insertion of compensating layers, the number of 

DE QD layers can be much higher than that of the S-K QDs. Additionally, an areal density of 7.3

1011 cm2 GaAs QDs was achieved at a growth temperature of 30 °C by controlling the amount 

of Ga [19]. Compared with S-K method, locally stacked nanostructures can also be fabricated to 

increase absorption by droplet epitaxy [20]. InGaAs QDs without a wetting layer on GaAs (001) 

substrates were reported using the DE method with highly dense Ga droplets [21]. In this paper, 

we investigate QDSCs with the incorporation of GaAs/Al0.4Ga0.6As QDs and 
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In0.1Ga0.9As/Al0.4Ga0.6As QDs grown via the DE method. The optical inter-subband transitions on 

the solar cell performance are evaluated by external quantum efficiency measurements at room 

temperature. 

Experimental Details 

Atomic force microscopy (AFM) was used to determine the sizes and densities of the GaAs and 

In0.1Ga0.9As QDs. Figure 1 (a) and (b) show the 1×1 2 AFM images of uncapped GaAs QDs 

and InGaAs QDs, which yield densities of 3.43 1010/cm2 and 3.46 1010/cm2 respectively, 

comparable to that of S-K QDs. The mean diameters of GaAs and In0.1Ga0.9As QDs are 40 nm. 

Figure 1 (c) and (d) illustrate the solar cell structures with 10 layers of GaAs and In0.1Ga0.9As QDs 

sandwiched in the Al0.4Ga0.6As matrix. The samples were grown on n+-GaAs substrates started 

with a 100 nm n+-GaAs buffer layer, 30 nm AlGaAs BSF, 500 nm n-AlGaAs base and 50 nm 

AlGaAs spacer, sequentially. Ten periods of QDs were then grown via the DE method at 400 °C. 

The difference between the two samples is only the QDs, which are made of 4 MLs of GaAs and 

In0.1Ga0.9As, respectively. Each layer of QDs was separated by 50 nm Al0.4Ga0.6As spacer, of 

which 10 nm AlGaAs was deposited at 400 °C and 40 nm Al0.4Ga0.6As at 590 °C. A 200 nm 

p-Al0.8Ga0.2As was deposited as the emitter. Finally, a 30 nm p-Al0.8Ga0.2As window was 

deposited to curb surface recombination, and a 50 nm p+-GaAs layer was grown as the contact 

layer. Metal contacts were deposited on the top and rear of the solar cells by standard 

photolithography, thermal evaporation, and lift-off. Ti/Pt/Au (50/100/300 nm) was deposited as 

p-type metal contact and Ni/AuGe/Au (20/100/100 nm) as n-type back contact. Ohmic contacts 

were formed by rapid thermal annealing at 400 °C for 30 seconds under nitrogen atmosphere. No 

anti-reflection coating was deposited on these devices. The photoluminescence (PL) was measured 

using a Nanometrics RPM2000 rapid photoluminescence mapper at room temperature. The dark 

current was measured from 80 to 300K using an ARS wafer probe (Advanced Research System, 

Inc) interfaced with a Keithley 2400 source meter. The performance of the QDSCs was measured 

by a SAN-EI solar simulator under standard conditions of AM1.5G, 100 mW/cm2, and 25 °C. The 

external quantum efficiency (EQE) of GaAs and In0.1Ga0.9As QDSCs was characterized by a 

QEX10 Quantum Efficiency Measurement System (PV Measurements, Inc). To confirm the 

interband and intraband transitions, a continuous wave (CW) infrared (IR) laser source was 

illuminated on the sample to measure the change of EQE. The interband transition was pumped by 

monochromatic light from the monochromator of QEX10 system. The intraband transition was 

pumped by 905, 980, 1064 nm infrared lasers with nominal power of 40 mW. 
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Fig. 1. (a) (b) 2 GaAs QDs and In0.1Ga0.9As QDs on an AlGaAs surface grown by DE, respectively. (c) (d) 

Schematics of the GaAs and In0.1Ga0.9As QDSCs. 

Results and Discussion 

Figure 2 (a) is the energy band schematic of GaAs and In0.1Ga0.9As QDSCs. The intersubband 

transitions provide an extra photocurrent. The total bandgap is 1.93 eV, near the optimal value of 

1.95 eV for IBSCs [22]. The presence of the QD quantized energy levels is confirmed by PL 

emission spectra from the samples measured at room temperature as shown in Fig. 2 (b). The first 

peak (860 nm, 1.44 eV) is attributed to the optical transition from the QD energy levels. Weak 

emission peaks shown at 1.25 eV (991 nm) and 1.22 eV (1017 nm) for InGaAs QDs and GaAs 

QDs, respectively, are due to defects in DE QDs. Various defects, such as antisites and point 

defects, can formed in low temperature DE and serve as non-radiative recombination centers [23]. 

Such defects can be reduced or eliminated by optimizing the crystallization conditions. Rapid 

thermal annealing is used to improve the quality of InGaAs and GaAs QDs grown at low 

temperature via the DE method [10, 24]. However, the emission from InGaAs QDs is much 

weaker than that of the GaAs QDs because of the additional strain in the InGaAs QDs.  
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Fig. 2 (a) Schematic energy band diagram of multiple GaAs/AlGaAs and In0.1Ga0.9As/AlGaAs QDs. (b) PL spectra of GaAs and 

In0.1Ga0.9As QDs measured with excitation power of ~400 W/cm2 at 300 K. The inset is the magnified PL peaks measured from 

GaAs and In0.1Ga0.9As QDs.  

 

The dark current-voltage characteristics for GaAs QDSCs and In0.1Ga0.9As QDSCs are shown in 

Fig. 3 (a) and (b). The dark current-voltage characteristics were measured at different temperatures. 

As the temperature increases, the dark current increases due to the thermionic emission of the 

carriers. The large saturation current of both cells suggests the possible presence of defects in QDs 

[25]. The In0.1Ga0.9As QDSCs exhibit a more complicated behavior: it has a higher current at 

negative bias and a lower current at positive bias than that of the GaAs QDSCs, indicating more 

defects in In0.1Ga0.9As QDSCs cells. The short-circuit current density (Jsc) curves in Fig. 3 (c) 

show that the both cells have low fill factors (FF), 43.1% and 34.2% for GaAs and In0.1Ga0.9As 

QDSCs, respectively. The poor FF is caused by a low shunt resistance that can be attributed to low 

crystalline of QDs and AlGaAs layers grown at low temperatures [10, 26]. These defects can be 

reduced or eliminated by rapid thermal annealing process. The Voc of QDSCs and In0.1Ga0.9As 

QDSCs are 0.92 and 0.60 V, respectively. Compared with the strain-free GaAs/AlGaAs QDSCs, 

the Voc drop in InGaAs/AlGaAs QDSCs is primarily due to the lattice mismatch and 

strain-induced defects. The strain-induced defects may lead to additional non-radiative 

recombination and inefficient collection of the carriers in the QD regions. Various papers have 

reported a distinct degradation in Voc due to carrier recombination in QDSCs [27, 28]. Figure 3 (d) 

plots the EQE spectra of two samples. The low quantum efficiency in 700-900 nm is mainly due 

to the weak absorption of the QDs. GaAs and In0.1Ga0.9As QDSCs only contribute an efficiency of 

0.72% and 0.11% respectively due to the low absorption volume and non-optimized growth 

conditions at the low temperature as discussed above. Nonetheless, the strain-free GaAs QDSC 

significantly outperforms the slightly strained InGaAs QDSC from both JV and EQE 

measurements.  
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Fig. 3 The dark current-voltage characteristics of (a) GaAs QDSCs (b) In0.1Ga0.9As QDSCs measured from 80 to 300 K. (c) 

Current-voltage characteristics of GaAs QDSCs and In0.1Ga0.9As QDSCs measured under standard AM1.5 G 1sun illumination at 

room temperature. (d) External quantum efficiency of GaAs QDSCs and In0.1Ga0.9As QDSCs at room temperature. 

 

Given the weak absorption of QDs at room temperature, it is difficult to observe the contribution 

of QDs above 860 nm but possible to study the intraband and interband transitions by adding a 

second pumping source. The interband transitions refer to VB to IB and VB to CB, while the 

wavelengths of infrared lasers were chosen to be long enough so that the laser beam can only 

excite the intraband transitions, from IB to CB. Figure 4 (a) presents the schematic measurement 

setup to characterize photocurrent production as a direct result of optical transitions of electrons 

from intraband and interband transitions at room temperature. The energy band offsets between 

GaAs and InGaAs QD ground states and AlGaAs conduction band edge are less than 0.5 eV and 

the ground state transitions in both QDs are about 1.44 eV. Therefore, the lasers, 1064 nm (1.16 

eV), 905 nm (1.37 eV), and 980 (1.27 eV) can only excite the intraband transitions and pump the 

electrons from IB to CB. As shown in Fig. 4 (b) and (c), although the EQE spectra above GaAs 

bandgap are overwhelmed in noise, a distinct enhancement is observed from 400 nm to 560 nm. 

The 1064 nm light source has led a maximum EQE enhancement while the 905 and 908 nm lasers 

demonstrate a lower enhancement. The 1064 nm source is able to efficiently drive the electrons on 

the IB to CB. However, the 905 and 908 sources have lower impact on the transition of IB-CB. 

Additionally, the enhancement observed in GaAs QDs is clearly higher than that measured in 

InGaAs QDs, which again confirms no lattice-mismatch is preferred under the same growth 

conditions. Negative EQE occurs from 570 to 660 nm. A possible interpretation of negative 

EQE at the long wavelength region from 570 to 660 nm can be ascribed to the fact that no QD is 

presented in the AlGaAs base region, where most long-wavelength photons are absorbed, and thus 

no additional current is generated from the secondary excitation. On the other hand, enhanced 

nonradiative recombination of carriers via the trap states may be enhanced under the second IR 

illumination, as illustrated in Fig. 5. This is in agreement with the observation reported in ref. [3]. 
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When mid-gap trap states are presented, the IR excited photocarriers from QDs are then 

annihilated resulting in the EQE reduction. At the surface of solar cells, there are some unoccupied 

antibonding states which locate within the CB continuum [3]. The additional infrared excitation 

can also lead to nonradiative loss of photocarriers via higher energy trap states. The negative and 

positive EQE depends on the amount of photocarriers in QDs and the conduction band. If it is 

low and limited, the negative EQE appears; if the amount of carriers is high, the pumped carriers 

contribute to photocurrent can compensate the annihilated carriers during recombination.  
 

 

Fig. 4 (a) Schematic measurement setup to characterize EQE as a direct result of optical transitions of electrons from IB to CB. 

The illumination of low-energy photons from this IR source can then pump the electrons only from IB to CB. (b) and (c) EQE 

spectra of GaAs QDSCs and In0.1Ga0.9As QDSCs. Since the weak EQE spectrum of the InGaAs QDSC, the fluctuation in Fig. 4 

(c) may originate from the uncertainty i.e. noise. 

 

Fig. 5 Trap-assisted recombination in QD solar cells: IR excitation create additional hot carriers that recombine non-radiatively 

via trap states in the bandgap and conduction band. 

Due to the relative low optical quality of the nanostructures and AlGaAs spacer layers obtained at 

low growth temperatures, the performances of these prototype devices are still far from 

satisfactory. In addition to QDs and quantum rings, a rich spectrum of nanostructures can be 

fabricated via the DE method, such as nanorods, nanoholes, dome-shaped nanocrystals, 

square-shaped nanocrystals, pentagon-shaped nanocrystals and coupled quantum structures [29]. 

These nanostructures are promising for optoelectronic applications. Till now, most work on 

droplet epitaxy focuses on fabrication, optical properties and understanding the growth 

mechanisms of nanostructures while device applications of these nanostructures are much less 

explored. Future efforts in solar cells based on the DE method are still desired. 
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Conclusion 

In conclusion, GaAs/AlGaAs and InGaAs/AlGaAs quantum dots are fabricated via droplet epitaxy 

(DE) method to achieve zero strain or low strain photovoltaic devices. PL measurements are 

performed to examine the optical properties of the QDs. Electrical measurements including EQE 

and J-V characteristics were carried out, and confirm higher device performance with strain-free 

nanostructures. Although the QDSCs were grown under the same conditions, the GaAs QDSC has 

a better performance than InGaAs QDSC, because of the small lattice mismatch of GaAs/AlGaAs 

QDs (0.25% verse 0.69%). InxGa1-xAs can be further tailored by the DE method to match the 

barriers to form a lattice-matched system for high efficiency IBSCs. By adding infrared sources to 

excite the intraband transitions in EQE measurements, an additional photocurrent from the QD 

layers was observed at room temperature. This study demonstrates the potential of using DE 

method to create QD based IBSCs using materials preferred for ideal IBSCs. 
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