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ABSTRACT
We here place a recent joint anomaly detection and classifi-
cation approach based on sparse error coding methodology
into multi-scale wavelet basis framework. The model is ex-
tended to incorporate an overcomplete wavelet basis into the
dictionary matrix whereupon anomalies at specified multiple
levels of scale are afforded equal importance. This enables,
for example, subtle transient anomalies at finer scales to be
detected which would otherwise be drowned out by coarser
details and missed by the standard sparse coding techniques.
Anomaly detection in power networks provides a motivating
application and tests on a real-world data set corroborates the
efficacy of the proposed model.

1. INTRODUCTION
Occam's razor principle states that if two models can explain
an event, then the one that is more parsimonious is typically
better and more robust. There is much ongoing interest in the
use of sparse regularisation techniques to exploit the common
phenomena that natural signals can be described as a sparse
combination of basis elements either in their natural domain
or some alternative transform domain. Sparse coding, the pro-
cess that models data vectors as a sparse linear combination
of basis components, has proven to be effective and robust
for many applications such as signal reconstruction [1, 2] and
classification [3] and is widely used in many fields, including
signal processing, machine learning, and statistics.

Sparse coding with anomaly detection and convex optimi-
sation has been recently considered in [4]. Anomaly detection
is a problem that aims to detect outliers/faults/anomalies in
the data that do not conform to an expected model. It is used
in many applications such as fault detection in low-voltage
data, data security, fraud detection, event detection in sen-
sor networks, detecting Eco-system disturbances and others
[5]. In [4], Adler et al. applied the K-SVD method to learn
a dictionary from ECG data and applied sparse coding with
anomaly detection to detect irregular heartbeats. In [4], the
same approach was used to remove specular reflectance and
shadows from a set of images. In [6], Kalaitzis et al. consid-
ered a similar approach to detect and classify faults/anomalies
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in a three-phase low-voltage time series data. In both pa-
pers [4, 6], the sparse coding idea is used to balance error
against sparsity of the solution, thereby allowing one to simul-
taneously detect anomalies and represent data vectors with a
sparse representation.

A drawback of the standard sparse error-coding frame-
work is that anomalies at all scales are treated the same. The
anomaly detection schemes discussed above can be improved
by incorporating the wavelet transform to better detect the
early signs of failures in the data. The wavelet transform
is a multi-scale time-frequency transform that with its good
time-frequency resolution can accurately detect discontinu-
ities and sudden changes in signals. This motivates us here
to propose a multi-scale, wavelet-based sparse error-coding
approach whereby an overcomplete wavelet basis is incorpo-
rated. Anomalies can then be more apparent at certain scale
levels more clearly than they otherwise would be by the stan-
dard mode studies in [4, 6]. In this paper we propose a novel
convex optimisation scheme for fault detection and classifica-
tion using the multi-scale stationary wavelet transform. We
place the approach into an alternating direction method of
multipliers (ADMM) [7] framework and show, with a real-
world voltage traces, that the method demonstrates utility not
currently possible with the standard sparse-coding model.

The rest of the paper is organised as follows. In Sec-
tion II, some background on sparse coding, dictionary design
and stationary wavelet transform is presented. In Section III
we frame the sparse coding for detecting anomalies in three-
phase low-voltage time series data with multi-scale stationery
transform. With an ADMM-based implementation we show
that our method can accurately detect anomalies in the data
which are not picked up by the standard sparse error-coding
method. In Section IV, using a similar approach in Section
III, we present our method that can simultaneously detect and
classify faults using stationary wavelet transform. In Section
V, we offer conclusions and ideas for possible future direc-
tions.

2. BACKGROUND
Consider a data vector y ∈ Rn×1 that can be expressed as y =
Ds where D ∈ Rn×K is called the dictionary, a database that
contains the features/atoms as its columns. Here, s ∈ RK×1
is a vector that represents the signal y from the dictionary D.



When the dictionary is a basis, every signal can be uniquely
represented as the linear combination of the dictionary atoms.
IfD is an overcomplete basis, where the dimension of the data
vector is smaller than the number of atoms of the dictionary
(n ≤ K), then there are infinite number of solutions to the
above model. However, by imposing sparsity on the vector
s, it is possible to obtain the sparsest solution. Overcomplete
dictionaries, with the extended feature vectors in the basis,
have the ability of better capturing the structures and pattern
in the data. To achieve sparsity, an additional term needs to be
introduced on the vector s. The most direct measure of spar-
sity is the `0 norm on s, where ||s||0 is a quasi-norm which
counts the number of non-zero elements in the vector s. The
above discussion can be described with the following minimi-
sation model:

min
s

1

2
||y −Ds||2F + λ||s||0. (1)

Here, the first term can be interpreted as a reconstruction or
log-likelihhod term that forces the objective function to yield
an acceptable representation of the vector s and the second
term imposes sparsity on the vector s; it is equivalent to a
log-prior on the solution. The penalty parameter λ is a regu-
larisation parameter on the sparsity. The above minimisation
problem is NP-hard, however there are many available pur-
suit algorithms, such as matching pursuit [8] and orthogonal
matching pursuit [9], that can find an approximate solution to
the problem. In practice however, it is common to apply a
convex relaxation and use ||s||1 instead to impose sparsity via
a Laplacian log-prior:

min
s

1

2
||y −Ds||2F + λ||s||1. (2)

Thus, the problem reduces to the LASSO [10] or the Basis
Pursuit problem [11]. The `1 norm is convex and therefore
the solution to the norm is unique. In the framework dis-
cussed in the introduction, the choice of dictionary is of ut-
most importance. Generally, dictionary design can be done
in one of the following ways: (1) Analytically: By a mathe-
matical model of the data such as transforming the signal to
the Fourier domain, STFT, wavelet domain, etc. These meth-
ods lead to highly structured dictionaries with fast numeri-
cal implementations [12, 13]. (2) Data-Driven: By learning
the dictionary from a set of training set. Examples include
Principal Component Analysis [14], Generalised PCA [15],
Method of Optimal Directions (MOD) [16] and the K-SVD
method [2]. These methods lead to dictionaries that are much
more adaptive to the data. (3) Combination of signal trans-
formation and the data driven approach [17]. Our aim is to
design a dictionary that can best describe the signal and that
is most sensitive to faults. The dictionary can be designed
with the actual low-voltage time series samples [6], however
this approach lacks frequency resolution, which is necessary
for detecting abrupt faults. Instead, we consider the incorpo-
ration of an overcomplete wavelet basis into the dictionary.
Unlike [6], this results in a dictionary which can better model
the healthy signal, resulting in an accurate detection of dis-
continues and sudden changes in the data. With the discrete

wavelet transform (DWT) we can achieve a non-redundant
N to N transformation. However, the DWT lacks the shift-
invariance property, and in many applications, such as pattern
recognition, non-shift invariance can lead to misleading re-
sults. One way to overcome the lack of shift-invariance prop-
erty in the DWT is to remove the decimators and up-samplers
in the transform and up-sample (insert zeros) the wavelet fil-
ters at each level in a dyadic fashion, that is by a factor 2(j−1)

at the j level. The resulting transform is overcomplete and
has multiple names in the literature, such as the stationary
wavelet transform (SWT) [18], ε-decimated wavelet trans-
form [18], undecimated wavelet transform and ”Algorithme á
Trous” [19]. It is important to note that SWT is only defined
for signals of length divisible by 2J where J is the maximum
wavelet transform decomposition level.

In this paper we will refer to this transform as the Sta-
tionary wavelet transform; it is a shift-invariant, overcomplete
transform that is able to provide shift invariance at the cost of
overcompleteness. It has also been shown that a large class
of processes can be captured by models based on stationary
wavelets [18, 20].

3. FAULT DETECTION WITH STATIONARY
WAVELET TRANSFORM

In this section we will present our novel method to detect
faults on a three-phase low-voltage data with multi-scale sta-
tionary wavelet transform and sparse coding. The three-phase
voltage signals have a sinusoidal structure with 120 degrees
phase difference between the different phases. In the time do-
main, we can design the dictionary by dividing a period of the
signal at each phase to multiple segments [6]. In the wavelet
domain however, given that we have multiple scales, there are
different ways of designing the dictionary. Similar to the time
domain approach, we can divide the signal into different seg-
ments at each scale. Then we can either design multi-scale
atoms where different scales are merged into one atom or we
can have each segment of each scale as an atom. The dictio-
nary design in the latter case can be expressed as:

D = [D1 D2 . . . DN ], (3)

where N is the number of wavelet scales. The three-phase
voltage data we consider1 are sampled at 4KHz, resulting in
80 samples per period. Due to speed limitations, we assume
data vectors have length of 8 samples, therefore we only take
8 samples per phase for the length of each atom of the dictio-
nary, resulting in 24 samples per atom. Given the number of
samples, we take the stationary wavelet transform up to 2 lev-
els, resulting in 4 scales. This process can also be done with
dictionary learning methods such as K-SVD. Our empirical
results show that, since the healthy voltage data do not evolve
over time, dictionary with analytical design described above,
performs better. The discussion above can be summarized as
follows:

min
S

1

2
||WAY −DS||2F + λ||S||1. (4)

1Courtery of Kehui Ltd.



Here, WA denotes the wavelet analysis operator, yielding
WAY to be the wavelet transform of the data vectors. We
have changed all the vectors to their matrix format with capi-
tal letters to show that this method can be applied both online
and in batch format. For the sake of simplicity, we omit WA

and assume the data vectors are already transformed using
the Stationary wavelet transform. Our aim is to detect faults
in the data and capture them in a separate vector. This is the
underlying principle used for anomaly detection in [4] and
[6]. With this approach in mind, we can write the following
convex minimisation model for the fault detection:

min
S,E

1

2
||Y −DS − E||2F + λ1||S||1 + λ2||E||1. (5)

Here, S is the sparse coding vector (or matrix for batch cod-
ing), E is the error term which absorbs anomalies and λ1 and
λ2 are regularisation parameters for the sparse coding and er-
ror term respectively. The above convex minimisation prob-
lem can solved with the alternating direction method of mul-
tipliers (ADMM) [7]. The ADMM method, an augmented
Lagrangian method, is a popular technique due to its simplic-
ity and its fast convergence. To make the above minimisation
problem ADMM compliant, we need to add an auxiliary term
and its corresponding constraint as follows:

min
L,S,Z

1

2
||Y −DS − E||2F + λ1||Z||1 + λ2||E||1,

subject to Z = S.

The augmented Lagrangian function of the above problem is:

L(S,Z,E, U) =
1

2
||Y −DS − E||2F + λ1||Z||1 + λ2||E||1+

UT (Z − S) + β

2
||Z − S||2F ,

where U is the called the Lagrangian multiplier and β is a
regularisation parameter. Minimizing with respect to S, Z
and E yields the ADMM’s variable updates for this problem:

SK+1 =min
S

1

2
||Y −DS − E||2F − UTS +

β

2
||Z − S||2F

ZK+1 =min
Z
λ1||Z||1 + UTZ +

β

2
||Z − S||2F

EK+1 =min
E

1

2
||Y −DS − E||2F + λ2||E||1

UK+1 = UK + β(ZK+1 − SK+1).

By applying the minimisations, we achieve closed-form so-
lutions for each variable. This separable structure gives the
ability to implement the convex minimisation in a parallel
framework. The fault detection algorithm is presented in Al-
gorithm I. Here, S denotes element-wise soft-thresholding,
λ1, λ2 are vectors of the regularisation parameters for all the
wavelet scales and ε denotes the stopping criterion. Gener-
ally ε = 10−3 was a reasonable number, in terms of speed
and accuracy, for most of our tests. Having presented the
fault detection algorithm, we now illustrate how the detection
performs compared to similar algorithms. Figure 1a shows a

Algorithm 1 ADMM steps for Fault Detection
1: Initializations: S = 0, Z = 0, E = 0; U = 0; k = 0, iter =

250.
2: while not converged & k ≤ iter do:
3: SK+1 = (DTD+ βI)−1(DT (Y −EK) +UK + βZK)

4: ZK+1 = Sλ1
β

(SK+1 − 1
β
UK)

5: EK+1 = Sλ2(Y −DSK+1)

6: UK+1 = UK + β(ZK+1 − SK+1)

7: END LOOP if:

8:
||SK+1−ZK ||22
||SK ||22

< ε

9: k = k + 1

sample three-phase low-voltage time series data with multi-
ple faults. We apply the minimisation algorithm described in
Algorithm I to detect faults in the time series data. Figure 1b
shows the anomaly matrix when dictionary is designed using
the time domain samples. The regularisation and the ADMM
parameters are λ1 = 5, λ2 = 10 and β = 1. The process can
detect the faults at 0:0.04s, 0.17:0.18s and 0.19:0.2s. How-
ever, it can not detect the fault at 0.13s. Figures 1c up to 1f
show the anomaly matrix at 4 different scales with stationary
wavelet transform. The regularisation and the ADMM pa-
rameters are λ1 = [5, 5, 5, 5], λ2 = [15, 15, 3, 3] and β = 1.
All these parameters were obtained by cross-validation. Gen-
erally, the coarse scales require higher values and the detail
scales require smaller values for λ2. As can be observed, Fig-
ures 1e and 1f, which are the detail scales of the transform,
can detect the fault accurately at 0.13s. We can also observe
from all the wavelet scales output, that our methodology has
also correctly detected the healthy signals.
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Fig. 1. Fault Detection in time and wavelet domain. (a) Three-phase low-
voltage time series data with multiple faults. (b) Fault detector (anomaly)
matrix using the time domain samples. (c:f) Fault detector (anomaly) matrix
using stationary wavelet transform at scales 1,2,3 and 4 respectively.

4. FAULT CLASSIFICATION WITH STATIONARY
WAVELET TRANSFORM

In the previous section we explained how stationary wavelet
transform with convex optimization can be utilized to detect
faults very accurately. The type of fault occurred is also of
significant importance to the power distribution industry. In
this section we will show how the same methodology can be
used to detect and classify faults simultaneously. Fault types
can typically be categorized by their phase, amplitude and fre-
quency behaviours. The faults manifest as: a reduction in
magnitude of one or two of the phases; or a syncing of two
of the phases. As such, including the healthy class, there are
therefore ten signal classes [6]. The approach we take is very
similar to the previous section, except with two differences:
first, the dictionary needs to also include the signatures of dif-
ferent faults, either designed analytically or learnt through a
training set. Second, we can take benefit of the classification
scheme and apply group-sparsity on the sparse coding vector.
The updated minimisation model becomes:

min
S,E

1

2
||Y −DS − E||2F + λ1||S||2,1 + λ2||E||1. (6)

Here, ||S||2,1 is an `2,1 norm which groups the components of
S into K = 10 groups (classes) such that it imposes group-
lasso penalty [21] on S: ||S||2,1 =

∑K
k=1 ||Sk||2. The spar-

sity is now on the level of the K classes and not the atoms
of the dictionary. With the addition of ||S||2,1, Algorithm I,
needs also to be updated. This results in a column-shrinkage
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Fig. 2. Simultaneous fault detection and classification. (a) A three-phase
low-voltage time series data with multiple faults. (b) The output of the clas-
sification where the results at each wavelet scale is normalized and combined
to give a final classification matrix.

operator on Z. The update is therefore:

ZK+1(:, i) =

P (:, i) ||P (:,i)||2−λ1β
||P (:,i)||2

λ1

β < ||P (:, i)||2
0 otherwise.

Here, P = (SK+1 − 1
βU

K) and P (:, i) is the i-th column
of P . We now illustrate how the above proposed model per-
forms for simultaneous fault detection and classification. Fig-
ure 2a shows a three-phase low-voltage time series data with
two faults. The first fault occurs from around 0.06s where we
can see that the phases of phase 1 and 2 are not 120 degrees
apart and are identical. The second fault occurs at 0.1s and
it is a reduced magnitude phase 1 fault. All the classifica-
tion outputs from all wavelet scales are normalized and added
together to achieve one final classification matrix, shown in
Figure 2b. The regularisation and the ADMM parameters are
λ1 = [30, 30, 30, 30], λ2 = [7, 7, 3, 3] and β = 1. It can be
observed that the method has perfectly detected and correctly
classified both faults.

5. CONCLUSION
In this paper we presented a novel method for anomaly detec-
tion using multi-scale stationary wavelet transform and sparse
coding. We showed that our method can accurately detect
anomalies in the data which are not picked up by the standard
sparse error-coding schemes. We also presented an extension
to the method to incorporate fault classification and showed
that our method can simultaneously detect and classify faults.
The faults we considered for the classification are faults that
might not be entirely realistic. One possible future direction
for this paper is to design a scheme that can retrieve extra
information from the stationary wavelet domain in order to
classify more complicated faults.
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